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As network threats increase in complexity, traditional signature- and rule-based detection systems find it
challenging to recognize unexpected or zero-day attacks. This study presents GAGA-Net (Generative
Adversarial and Graph-based Anomaly Network), an innovative hybrid framework for anomaly
detection that combines Generative Adversarial Networks (GANSs) to model benign traffic distributions
with Graph Neural Networks (GNNs) to capture spatiotemporal relationships in network traffic. The
GAN component is trained on benign samples to identify behavioral abnormalities, whereas the GNN
employs graph-structured representations to categorize anomalies based on structural discrepancies.
Upon evaluation using NSL-KDD, CICIDS 2017, and a real-world dataset, GAGA-Net attains an
accuracy of 97.35%, a false positive rate of 2.10%, and a false negative rate of 1.80% on NSL-KDD,
with an average inference time of 120 milliseconds per sample, thereby exhibiting real-time capability.
These results substantially exceed the performance of traditional models such as CNN-LSTM and
Autoencoder-IDS. The model has significant robustness in noisy and adversarial conditions,
successfully detecting zero-day assaults with an efficacy of up to 92%. GAGA-Net provides a scalable
and generalizable solution for contemporary intrusion detection issues.

Povzetek: Studija predstavi GAGA-Net, ki zdruzi dva pristopa (en se nauci, kako izgleda “normalen”
omrezni promet, drugi pa gleda povezave med dogodki), zato lahko bolje zazna tudi nove napade; na
znanih podatkih doseze okoli 97 % natancnost in deluje dovolj hitro za sprotno uporabo.

1 Introduction sessions, aiding in the discovery of complex structural
anomalies. [6]. This dual-stage architecture mitigates the
The swift expansion of the Internet and IoT has shortcomings of previous models employing GANs or
markedly augmented the complexity of global network GNNs independently, hence improving detection
systems, resulting in intensified cybersecurity accuracy and minimizing false positives.
challenges. Contemporary assaults now focus on many GAGA-Net integrates adversarial learning with
digital environments—including mobile devices, cloud graph-based reasoning, providing a scalable, real-time,
services, ~ and  industrial  systems—employing and resilient defense mechanism tailored for
sophisticated techniques such as DDoS, malware, and contemporary, high-dimensional network settings. It
phishing [1]. Conventional signature- and rule-based enhances both theoretical comprehension and actual
intrusion detection systems (IDS) are predominantly implementation of next-generation  cybersecurity
ineffectual against these advancing threats, particularly solutions [7].

zero-day attacks [2]. This has redirected research

emphasis to anomaly detection, which recognizes 1.1 Specific research goals

abnormalities from standard system behavior and can o ) )

identify previously unrecognized dangers in real time The main aims of this study are the following:

[3-5]. e To limit the false positive rate (FPR) to below
This paper presents GAGA-Net, a novel hybrid 2.5% on the CICIDS 2017 dataset with a

anomaly detection model that integrates the advantages GAGA-Net anomaly detection method.

of Generative Adversarial Networks (GANs) and Graph * To attain a detection rate greater than 97% on

Neural Networks (GNNs). Generative Adversarial the NSL-KDD dataset. .

Networks (GANS) replicate benign traffic distributions, *  To keep the false negative rate (FNR) below 2%

facilitating the early detection of behavioral outliers, on a custom real-world network traffic dataset.

whilst Graph Neural Networks (GNNs) capture . Tq r.etam sub-average inference latency' of 130

spatiotemporal and relational relationships across traffic milliseconds per sample, demonstrating  the
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model's real-time detection in high-throughput
settings.

e To significantly outperform state-of-the-art
deep learning baselines (e.g., CNN-LSTM,
Autoencoder-IDS, DeepLog) on various
performance metrics.

The paper describes GAGA-Net, a hybrid anomaly
detection system employing GANs and Graph Neural
Networks. Current models use statistical or sequential
characteristics, but GAGA-Net combines adversarial
learning to reflect typical traffic behavior and
graph-based reasoning to capture complicated
spatiotemporal interactions. This integrated strategy
enhances nuanced and zero-day threat detection while
reducing false positives. Node-level anomaly scoring
using graph-based traffic representation and graph
convolution is a new network security technique.
GAGA-Net improves anomaly detection.

1.2 Independent and dependent variables

The work has accurately delineated the
independent and dependent variables utilized in
experimental testing in our new method. Independent
variables include the model architecture selection
(GAN-GNN  or baselines like CNN-LSTM,
DeepAutoMax, and Autoencoder-IDS), dataset type
(NSL-KDD, CICIDS 2017, or captured real-world
traffic), changes in traffic noise levels, and the actual
type of network attack (e.g., DDoS, brute-force, XSS, or
zero-day attacks). The independent variables are
systemically controlled or manipulated to determine
their impact on model performance. Dependent
variables are the quantified performance measures, such
as detection accuracy, false positive rate (FPR), false
negative rate (FNR), average inference time per sample,
and detection effectiveness against zero-day and
adversarial attacks. All these dependent variables
collectively signify the detection capability, precision,
real-time response capability, and robustness of the
model.

1.3 Nature of the experiments

The experimental design of the current research is
comparative and confirmatory. It is comparative because
the anticipated GAN-GNN detection model is compared
with various state-of-the-art CRDeep learning-based
intrusion detection models (e.g., CNN-LSTM, DeepLog)
on standard evaluation metrics using multiple datasets.
It is confirmatory because experiments are carried out to
prove the hypothesis that generative adversarial training
coupled with graph-based learning provides better
anomaly detection performance. This encompasses
better detection accuracy, fewer false alarms, better
zero-day attack performance, and better network
robustness against noisy or adversarial networks. By
comparing analytically and statistically examining
outcomes between models and datasets, the study seeks
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to stringently validate the efficacy of the proposed
hybrid scheme.

1.4 Motivation of the work

The rapid development of advanced cyber threats
has highlighted the inadequacies of conventional
intrusion detection systems (IDS), which often rely on
established rules or signatures and struggle to identify
zero-day or adaptive attacks. Current deep
learning-based Intrusion Detection System models,
notwithstanding their efficacy, sometimes neglect
relational relationships among traffic sessions and
inadequately represent the distribution of benign
behavior. This study is driven by the necessity for a
more robust and context-sensitive methodology for
anomaly identification in contemporary networks. The
GAGA-Net system seeks to identify both behavioral and
structural anomalies by integrating the generative
proficiency of GANSs in learning and simulating benign
traffic patterns with the topological reasoning
capabilities of GNNs. This integration rectifies
deficiencies in accuracy, generalizability, and real-time
detection capabilities.

2 Related works

In recent years, various deep learning
methodologies have been developed for the detection of
anomalies in network traffic. GAN-based methodologies
have demonstrated potential in simulating typical traffic
and identifying zero-day assaults; nevertheless, they
frequently neglect contextual and relational dimensions.
In contrast, GNN models like GraphSAGE and GCN are
proficient at learning from graph-structured data by
capturing topological dependencies; however, they are
generally employed independently of generative models.
Recent studies attempting to integrate generative and
structural learning frequently exhibit deficiencies in

strong  pretreatment  procedures and thorough
cross-dataset validation.
The suggested GAGA-Net framework

amalgamates the advantages of both GANs and GNN5
to mitigate these limitations. Generative Adversarial
Networks (GANSs) are trained to encapsulate standard
traffic distributions, whereas Graph Neural Networks
(GNNs) are utilized to assess node-level anomalies
inside graph-based representations by leveraging
temporal and relational information. This dual-phase
training enhances generalization to novel threats and
markedly decreases false positives and false negatives
relative to current deep models.

Prior studies, like DeepLog [1], utilized LSTM
networks for anomaly detection in sequential log events,
whereas Autoencoder-based IDS [2] recognized
intrusions by analyzing reconstruction errors from
acquired latent traffic patterns. The CNN-LSTM hybrid
model enhanced spatial-temporal feature extraction for
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the detection of complex attacks. In intelligent
environments, Alkato and Sakhnin [8] utilized a deep
belief network for real-time anomaly detection and trend
forecasting, hence improving IoT responsiveness.
Concurrently, Husainat [9] presented GraphDuMato, a
GPU-accelerated technique for effective subgraph
mining in extensive graph applications.

2.1 Classification of network security
threats

The growing intricacy of digital infrastructure has
resulted in a rise in varied and advanced network
security risks, which are generally classified as internal
and external threats. Internal threats arise from within an
organization, including employees or internal equipment,
and encompass both deliberate attacks (e.g., data
manipulation) and inadvertent mistakes (e.g., accidental
data breaches) [10]. External threats are perpetrated by
external entities that exploit system vulnerabilities or
employ tactics such as social engineering to obtain
unauthorized access. These assaults are frequently
clandestine and perpetually advancing, rendering them
challenging to identify with conventional firewalls or
intrusion detection systems [11].

The most detrimental cyberattacks are malware,
DDoS, and phishing. Malware, such as ransomware,
undermines data integrity and has resulted in
considerable financial losses in recent years [12]. DDoS
assaults inundate servers with excessive traffic,
hindering legitimate user access, while phishing
misleads users with counterfeit messages to acquire
sensitive information. Conventional protection systems
are inadequate against these emerging dangers,
necessitating the development of sophisticated detection
solutions. Recent studies have shown the efficacy of
deep learning methodologies, including GAN-based
anomaly detection [13] and hybrid temporal models [14],
which improve the early identification and classification
of anomalous network behavior.

2.2 Traditional threat detection methods

When facing network security threats, traditional
threat detection methods usually include signature-based
detection methods, rule-based detection methods, and
statistical-based detection methods. These methods have
their own advantages and disadvantages, and their
application effects vary across different network
environments. Signature-based detection methods are
one of the earliest technologies applied to network
security detection [15]. This method identifies potential
security threats by comparing the characteristics of
known attacks (i.e., signatures). Each known attack has
its own specific attack characteristics. The network
security system determines whether the traffic contains
malicious behavior by comparing real-time network
traffic with the known attack feature library. Although
signature-based detection methods have high accuracy
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when facing known attacks [16], their main
disadvantage is that they cannot cope with zero-day
attacks and unknown attacks. When attackers use new
attack techniques, traditional signature methods cannot
detect them in time, resulting in the vulnerability of the
protection system. The limitation of signature-based
detection methods is that the signature library needs to
be constantly updated and maintained. If it is not
updated in time, the system will not be able to detect
new attacks [14].

Rule-based detection methods use predefined rule
sets to identify abnormal behaviors in network traffic.
These rules are usually set based on network protocol
standards or expert experience. Compared with
signature-based methods, rule-based detection methods
have higher flexibility. Rules can be customized
according to specific network environments and security
requirements and can even detect some complex attack
patterns. However, a significant problem with rule
systems is that the update and management of rule bases
are cumbersome, and the accuracy and rationality of rule
design will directly affect the detection effect. Studies
have shown that rule-based detection methods are often
plagued by false positive and false negative problems
[17], especially when facing large-scale, dynamically
changing network environments, the false alarm rate is
high [18].

Statistical detection methods identify abnormal
patterns that are significantly different from normal
behavior by statistically analyzing network traffic.
Statistical methods usually use statistical features of
traffic, such as packet size, transmission rate, connection
time, etc., to establish a model of normal behavior.
When network traffic deviates from this model, the
system will trigger an alarm. This method has certain
advantages, especially when identifying new attacks and
unknown attacks, it is more effective than
signature-based and rule-based methods [19, 20].
However, statistical methods also face some challenges,
especially when there is large data noise and abnormal
fluctuations, which can easily lead to false alarms. The
literature points out that although statistical detection
methods can detect some types of abnormal behavior,
their sensitivity to environmental changes and noise
makes them face certain difficulties in practical
applications [21].

2.3 Anomaly detection concepts and
applications

Anomaly detection has garnered considerable
interest in recent years as a sophisticated method for
threat identification in network security. In contrast to
conventional signature-based or rule-based detection
methods that rely on recognized attack patterns,
anomaly detection establishes a baseline of typical
behavior and identifies substantial departures from this
norm as potential threats. This capacity renders it
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especially adept at detecting unknown or zero-day
assaults that conventional systems frequently overlook.
Anomaly detection is crucial in numerous
applications  within  cybersecurity. A  prevalent
application is its incorporation into intrusion detection
systems (IDS), which continuously surveil network
traffic and identify anomalous behaviors that deviate
from established normative patterns. Studies indicate
that Intrusion Detection Systems utilizing anomaly
detection methodologies can identify novel assaults with
heightened sensitivity, particularly zero-day exploits and
previously unrecognized intrusion strategies [22, 23].
Moreover, anomaly detection 1is extensively
employed in the identification of malicious
communications. Through the examination of the
statistical attributes of network traffic, including packet
frequency and size, it may effectively identify threats
such as DDoS attacks launched by botnets [24]. In
addition to intrusion and traffic analysis, the technology
is utilized in areas such as data leakage prevention and
virus behavior tracking. Unconventional access patterns
to important files may signify a data breach, which can
be swiftly detected by anomaly-based techniques.
Likewise, account hijacking and other unauthorized
activities can be promptly identified, facilitating swift
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response and mitigation [25].

Recent studies have enhanced hybrid intrusion
detection frameworks across many network contexts.
Vashisth and Goyal [26] introduced a dynamic anomaly
detection method with robust random cut forests
designed for IoT contexts, successfully reconciling
detection accuracy with resource limitations. Ciurliené
and Stankevicius [27] investigated the amalgamation of
several machine learning algorithms to augment
intrusion  detection  efficacy, highlighting the
hybridization of supervised and unsupervised
methodologies for enhanced generalizability. Ullah et al.
[28] presented HDL-IDS, a hybrid deep learning
framework that integrates convolutional and recurrent
layers for intrusion detection on the Internet of Vehicles,
exhibiting notable accuracy and adaptability to vehicular
network conditions. These recent contributions highlight
the increasing significance of hybrid models in tackling
contemporary network security issues and validate the
reasoning for the proposed GAN-GNN integration in
this study.

Anomaly detection establishes a comprehensive
framework for strengthening security —measures,
facilitating the proactive identification of emerging
threats in complex and dynamic network environments.

Table 1: Summary of prior anomaly detection models

Reference | Method Dataset Accuracy FPR (%) FNR (%)
(%)

1] CNN-LSTM NSL-KDD 94.20 3.50 4.00

[2] Autoencoder-based IDS NSL-KDD 95.12 3.00 3.50

[3] DeepLog NSL-KDD 96.50 2.50 2.70

(4] DeepAutoMax NSL-KDD 96.85 2.25 2.00

Table 1 emphasizes that although previous models
such as CNN-LSTM and DeepAutoMax exhibit good
performance, they have a higher false positive and false
negative rate compared to the proposed method. This
emphasis is on the requirement of an improved and
stronger detection scheme, like the GAGA-Net model.

This paper delineates state-of-the-art
methodologies as commonly cited deep learning-based
anomaly detection models that exhibit robust
performance on benchmark intrusion detection datasets,
including NSL-KDD and CICIDS 2017, to establish a
clear comparative baseline. These encompass
CNN-LSTM [1], which identifies spatial and temporal
patterns; Autoencoder-IDS [2], which reconstructs
normal traffic to identify anomalies; DeepLog [3],
which learns event sequences from log data; and
DeepAutoMax [4], a deep autoencoder with improved
reconstruction processes. All of these models have been

re-implemented with uniform settings for equitable
comparison. Performance measurements, including
detection accuracy, false positive rate, and false negative
rate, were employed to define the performance baseline.
The GAGA-Net framework regularly surpasses these
approaches across many datasets, as detailed in Tables
2-6.

Table 2 outlines the shortcomings of current
intrusion detection models, including CNN-LSTM,
Autoencoder-IDS, and DeepLog, which are deficient in
relational or structural modeling capabilities. Although
hybrid methods such as HDL-IDS and RRCF-IoT are
tailored for specific domains, they encounter challenges
with scalability. GAGA-Net addresses these deficiencies
by amalgamating GANs and GNNs to facilitate robust,
context-sensitive, and applicable anomaly detection with
enhanced precision.
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Table 2: Comparative summary of recent related works and their limitations

Reference Methodology Dataset(s) Key Techniques Limitations
Used
CNN-LSTM Deep Learning NSL-KDD Spatio-temporal Limited graph modeling; weak
(Kim et al., 2021) feature fusion generalization to unseen attacks
Autoencoder-IDS Unsupervised CICIDS 2017 Feature High false positive rate; lacks
(Zhang et al., Learning reconstruction contextual understanding
2020)
DeepLog (Du et Sequential HDFS Logs LSTM for Designed for log events, not
al., 2017) Modeling sequence learning | suitable for heterogeneous traffic
structures
DeepAutoMax Deep Autoencoder NSL-KDD, Max pooling + Ignores structural or relational
(Javed et al., UNSW-NBI15 autoencoder features in traffic
2022)
HDL-IDS (Ullah Hybrid IoV Real Spatio-temporal Limited to vehicular networks;
et al., 2022) CNN-GRU Traffic fusion in [oV lacks generalizability
setting
RRCF-IoT Tree-based Hybrid Custom IoT Robust Random Not scalable to high-dimensional
(Vashisth & Dataset Cut Forest enterprise network traffic
Goyal, 2024)
simulates typical traffic streams through adversarial
3 Network Secu rity Threat training, while the GNN discovers spatiotemporal

Identification

Method based

Anomaly Detection

Figure 1 presents the architecture of the designed
GAGA-Net system, combining GANs and GNNs for

anomaly detection in network traffic. The GAN module
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Figure 1: Overall architecture of the proposed GAGA-Net architecture
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3.1 Anomaly detection method combining
GANs and GNNs

In recent years, deep learning has gained
prominence in network security, especially in anomaly
detection. Two fundamental technologies—Generative
Adversarial Networks (GANs) and Graph Neural
Networks (GNNs)—exhibit significant individual
strengths and have enhanced possibilities when
integrated. GANs proficiently model typical network
traffic behavior by producing synthetic samples that
replicate actual data, hence facilitating the detection of
deviations or anomalies. Graph Neural Networks (GNN5s)
excel at elucidating intricate  structural and
spatiotemporal correlations in network traffic data,
typically represented as a graph with nodes denoting
traffic  samples and edges reflecting their
interdependencies.

The suggested method improves the efficacy of
anomaly detection systems by merging GANs and
GNNs.  Generative Adversarial Networks (GANs)
comprise a generator and a discriminator; the generator
produces traffic samples that mimic authentic data,
whereas the discriminator is trained to differentiate
between real and synthetic traffic, enhancing detection
via adversarial training. Concurrently, GNNs revise
node representations by utilizing neighborhood data,
enabling the system to identify nuanced topological
irregularities. This collaborative methodology allows the
model to evaluate both distinct traffic attributes and
their structural context, resulting in enhanced accuracy
and resilience in identifying complex or zero-day threats,
hence augmenting the overall security of dynamic
network environments [29].

The framework of the anomaly detection method
combining GANs and GNNs is shown in Formula 1
[30].

X, =G(z,), z,~N@OI)®

Formula (1): Represents GAN generator function

to generate fake traffic from noise, mimicking normal

traffic behavior. in, X; represents the generated network

traffic, Z, is the noise input to the generator and

conforms to the standard normal distribution. The
generator can generate more and more realistic traffic

data through adversarial training with the discriminator
[31]. The output of the discriminator D(Xt) It is used

to determine whether the input traffic is real traffic. The
goal is to maximize the following loss function, as

shown in Formula 2.
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Leay = Eflog D(x,)]+E[log1- D(G(z))))] @

Formula (2): Adversarial loss used for training the GAN,
where the discriminator is used to differentiate the real
and generated traffic. In GNN training, the feature
representation of each traffic node is updated through
the features of adjacent nodes. The update rule of graph

neural networks wusually uses graph convolution

operations, as shown in Formula 3 [32].

h\(/k+l) — G[ Z 1 ]M(k)hﬁk) +b(k)j (3)

ueN (v) Cvu

Formula (3): GNN node update rule through graph
convolution, through neighbor node features. in,hv)
Indicates K Nodes in a layer graph neural networkV
The characteristic representation of N (V? For Node V
The set of neighbor nodes of W ¥ and b®
Respectively K The weight matrix and bias term of the
layer, C,, is the normalization constant between nodes.
By combining GANs to generate traffic samples and
GNNs to update the feature representation of nodes, the
system can effectively identify abnormal behaviors in
traffic.

Considering the architecture, the GAN block
consists of a generator with three fully connected layers
(containing 256, 512, and 1024 units, respectively) and
LeakyReLU activation functions, followed by Tanh
activation function for the output layer for generating
normalized traffic data. The discriminator is a
symmetric feedforward network of three layers (1024,
512, and 256 units), employing LeakyReLU activations
with a final Sigmoid output layer to generate a real/fake
probability score. Generator and discriminator are both
trained with the Adam optimizer (learning rate =
0.0002,81 = 0.5). To maintain stability and prevent
mode collapse in adversarial training, we use the
Wasserstein GAN with gradient penalty (WGAN-GP)
approach. It stabilizes the process by penalizing the
norm of the discriminator's gradients to maintain
Lipschitz continuity.

GNN module employs a 2-layer Graph
Convolutional Network (GCN). Spectral convolution
operation with ReLU activations and hidden layer size
128 is applied for every GCN layer. Node classification
is performed based on the output of the GCN.
Semi-supervised mode is employed to train the GNN in
which just a portion of the traffic nodes are labeled as
normal or abnormal, and the model propagates the label
information across the graph via neighborhood
aggregation. The GNN's goal is to reduce the
cross-entropy loss between the predicted label and the
real label on the labeled nodes: Lg;yy =
—Yvev, Xee1 Yo l0g P, ; where 1, is the set of
labeled nodes, C is the number of classes
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(normal/abnormal), y, . is the true label, and 3, . is
the predicted probability. These enhancements guarantee
the training stability of GANs and the discriminability
of GNNs for traffic anomaly detection with both local
features and topological interactions.

3.2 Network traffic modeling

The unprocessed traffic data from NSL-KDD,
CICIDS 2017, and bespoke datasets underwent
preprocessing to derive session-level features,
encompassing [P addresses, port numbers, protocol
kinds, packet counts, byte quantities, inter-arrival
periods, and flow durations. Feature engineering
encompassed statistical summary (mean, standard
deviation, minimum, maximum) and one-hot encoding
of categorical variables. The characteristics were
standardized to a [0, 1] range for model compatibility.
Each network session was represented as a node in a
dynamic, weighted, undirected graph, with edges
determined by temporal proximity, IP similarity, and
cosine similarity of characteristics. This graph-based
model encapsulates both session-specific characteristics
and contextual relationships. By representing network
traffic as graph-structured data, the system adeptly
captures spatiotemporal dependencies, hence improving
the precision and efficacy of anomaly identification.
Specifically, the network traffic graph can be
constructed in the following way: Assuming there is N
network nodes, each nodel represents a traffic sample,
and its feature vector is X;, then the entire network
traffic can be represented as graph G = (V , E) ,inV
is a node set, E is a set of edges, and each edge
(1, ])) € E Representation Nodei and nodes j The
weight of an edge can be obtained by calculating
indicators such as transmission delay, packet size or
frequency between nodes [33].

In the graph structure, the spatiotemporal
relationship between nodes is crucial for traffic anomaly
detection. For example, frequent communication
between a source IP and a destination IP may indicate
potential attack behavior, while other transmission
modes can be considered normal traffic. Therefore, by
modeling the nodes and edges in the graph, GNN can
effectively capture these spatiotemporal dependencies
and use the feature information of adjacent nodes to
determine whether the current node is abnormal. To
further capture the topological characteristics of the
traffic, the following graph convolution operation can be
used, as shown in Formula 4.

Y=o > Lw ©n |4

v
ueN (v) Cvu

Formula (4): Builds the adjacency matrix utilized in
GNN graph learning, comprising IP similarity,
co-occurrence of time, and cosine similarity. in, h
For the K The node characteristics of the layer, WYk)
is the weight matrix of the current layer,o(+) is the
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activation function, N (V) For NodeV The set of
neighbor nodes of C,, is the normalization constant
between nodes. By continuously iterating the graph
convolution operation, the topological structure
characteristics of the network traffic can be gradually
captured and used in the anomaly detection task.

In graph-based network traffic modeling, nodes
and edges correspond to sessions or flows in the
network, and edges represent relational dependency
among the sessions. Edge formation is induced by both
temporal and similarity in behavior dimensions. That is,
the session pairs that are within a sliding time window
(At = 10 seconds) are temporally co-occurrent and
are candidate pairs for edge formation. Moreover, if two
sessions have a shared destination or source IP address
within the window, an edge is created between their
respective nodes to identify session/IP co-occurrence.
As another form of behavioral proximity, cosine
similarity is calculated between two sessions' feature
vectors, if greater than some predefined threshold (v =
0.85), an edge is created. Each edge (u,v) is
weighted according to the cosine similarity score,
normalized to the range [0, 1], allowing stronger
behavioral correlations to exert greater influence during
graph convolution.

Normalization of the adjacency matrix is achieved
using symmetric normalization, defined as wv,, =
1/,/d,d,, where d, and d, denote the degrees of
nodes uandv, respectively. This normalization
method reduces the chance of over-embedding
high-degree nodes' influence and makes sure the
message diffusion is symmetric throughout the graph.
Traffic graphs are assumed to be undirected to provide a
better explanation for bidirectional relations like
common IPs or similar behavior, even though edge
weights are maintained for association strength. The
graph is dynamic and is continuously updated in
real-time by a sliding window approach to respond to
changing network behavior and remain in sync with
temporal fluctuations in traffic patterns.

Within the framework of GAGA-Net, the GAN
and GNN modules are trained independently of one
another. The GAN is initially trained solely in samples
of benign traffic to acquire the distribution of normal
behavior and produce artificial samples of traffic that
resemble actual, non-malicious flows. Following the
stable training of the GAN, the GNN is trained upon
graph representations built from actual as well as
GAN-generated benign samples. This sequential
training enables the GNN to learn structural dynamics
and spatiotemporal correlations that define abnormal
behavior. The contribution of this work lies not in joint
GAN and GNN training, a concept already explored in
existing research, but in the development of a tailored
traffic-to-graph conversion process and the fusion of
decisions via a hybrid strategy. Traffic graph edges are
constructed from a mix of temporal closeness, IP
address co-occurrence, and cosine similarity of



362  Informatica 49 (2025) 355-374

session-level features to facilitate more extensive
relational modeling. Additionally, a composite decision
method is put forward, in which the anomaly score
combines the GAN discriminator and GNN node
classifier outputs to enhance resistance to various attack
types, such as stealthy and zero-day attacks.

The suggested methodology employs a sequential
training strategy for the GAN and GNN components.
The GAN is initially trained solely on benign network
traffic to model the usual data distribution. Upon
attaining convergence, the samples generated by the
GAN, in conjunction with authentic benign traffic, are
utilized to create graph-structured representations of
network sessions. The graphs are utilized to train the
GNN,  which  acquires node-level  anomaly
categorization by recording temporal and relational
relationships among sessions. During inference, each
traffic sample is evaluated individually by the GAN
discriminator for behavioral deviance and by the GNN
for topological inconsistency. The ultimate conclusion is
determined by a composite anomaly score, which is
produced from the output of the discriminator and the
classification of the GNN. This sequential integration
utilizes generative modeling and structural reasoning to
improve the identification of behavioral and relational
anomalies.

The generation of graph structures from network
traffic entails designating nodes as distinct traffic
sessions and establishing edges according to temporal
and behavioral similarity. An undirected edge is
established between two nodes if (1) the sessions
transpire within a specified temporal frame of 10
seconds, (2) they possess a common source or
destination IP address, or (3) the cosine similarity of
their feature vectors surpasses a predetermined threshold
of 0.8. Each edge is assigned a weight based on the
cosine similarity score, normalized to the interval [0, 1],
indicating the behavioral proximity of the linked
sessions.

The resultant adjacency matrix is symmetrically
normalized utilizing A,orm = D_%AD_%, where D is
the degree matrix. This method guarantees equitable
message dissemination in GCN layers and mitigates bias
from high-degree nodes. These design criteria allow the
graph to depict both local and global contextual

relationships in network behavior.

3.3 Generative adversarial training and
anomaly detection

GAN learns normal network activity and detects
anomalies using just benign traffic data. Anomaly
detection using Generative Adversarial Networks
(GANs) requires generation and discrimination. The

generator simulates traffic distribution using noise input,
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while the discriminator verifies it. The discriminator
computes sample differences between real and generated
traffic to find abnormalities. The generator generates
traffic samples that mimic real traffic distribution, while
the discriminator maximizes Formula 5's loss function

to differentiate between produced and real traffic.

Leay = Eflog D(x,)]+E[log(1 - D(G(z)))]5)

Formula (5): Optimization goal of the discriminator of
the GAN for determining whether a sample belongs to
the benign distribution. Here, X, represents the real
traffic sample of the input,Z, is the noise input to the
generator, D() represents the output of the
discriminator. The goal of the discriminator is to output
a value close to 1 to indicate that the traffic is normal,
while the goal of the generator is to minimize this loss
so that the generated samples are closer and closer to the
real traffic. During the training process, the generator
and the discriminator are constantly competing. The
generator continuously improves its ability to generate
traffic, while the discriminator continuously improves
its ability to distinguish between real traffic and
generated traffic. Finally, after multiple rounds of
training, the generator can generate samples close to real
traffic, and the discriminator can accurately distinguish
between normal traffic and abnormal traffic.

The model uses a GAN-based anomaly detection
framework trained on ordinary network data for
unsupervised, one-class learning. The generator learns
to replicate benign traffic, while the discriminator
distinguishes produced (normal) and authentic (input)
samples. The discriminator calculates a similarity score
during inference: 1 indicates benign behavior, 0
indicates anomalies. This score is a subtle confidence
metric that allows the algorithm to recognize zero-day
or previously unencountered assaults as aberrations
from the normal distribution without labeled attack data.

To improve detection, an ensemble of GNNs
models traffic sessions as graph nodes and captures
spatiotemporal interactions using graph convolutions.
By combining neighboring node information, GNNs
improve representation learning and detect complicated
structural anomalies. GNNs build a reference dataset
and collect contextual knowledge to create an accurate
detection framework.

3 LRt b0 | )

h\(/k+l) -0
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Formula (6): Describes iterative GCN layers that
progressively update node embeddings to learn
relational patterns employed in final classification.
Through multiple layers of graph convolution, the
representation of nodes will be continuously updated,
and these updated node features will help distinguish
normal traffic from abnormal traffic. When it is detected
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that the features of a traffic node are significantly
different from those of its neighboring nodes, the system
can identify potential abnormal behavior.

To create graph-structured representations from raw
network traffic data, each traffic session is initially
depicted as a node, with node features comprising
normalized session-level attributes including packet
counts, flow duration, byte rates, protocol type, and
inter-arrival periods. A graph G = (V,E) is constructed,
where V denotes the collection of nodes (sessions) and
E signifies the set of edges established according to
relational criteria. An edge is established between two
nodes x; and x; if any of the subsequent conditions
are met:

e Temporal proximity: The absolute difference

between timestamps | t; —¢; | is smaller than
a predetermined threshold At (e.g.,, 10
seconds).

e [P co-occurrence: The two sessions possess a
common source or destination IP address.

e Feature similarity: The cosine similarity
sim(x;,x;) exceeds 7, is a predetermined
threshold (e.g., 0.8).

Each edge is allocated a weight corresponding to the
cosine similarity score, reflecting the behavioral
proximity of session pairs. The resultant adjacency
matrix A is constructed so that 4;; = sim(x;,x;) for
connected nodes, and O otherwise. Symmetric
normalization is employed to facilitate efficient graph
convolution an(li equitlable message transmission.

Aporm = D2 AD"z; where D represents the degree
matrix, defined as D; = };A;;. The normalized
adjacency matrix is utilized in the graph convolution
layers of the GNN to capture topological and contextual

dependencies among traffic sessions.

3.4 Anomaly detection and decision
making

GANs with GNNs improve network anomaly
detection precision and reliability. The GAN's
discriminator first checks if the input traffic sample
matches its taught patterns in the detection phase. A low
similarity score approaching 0 suggests abnormal traffic.
A Graph Neural Network (GNN) analyzes the traffic
graph's structural relationships between the flagged node
and its neighbors to reduce false positives and improve
decision accuracy. After detecting relational errors or
topological pattern deviations, the GNN flags the
sample as malicious. Otherwise, the alarm is canceled as
a false positive. A dynamic alarm thresholding technique
based on the GAN discriminator and GNN classifier
anomaly score distribution lowers alert fatigue in
high-rate anomaly detection systems. We dynamically
calculate anomaly score threshold from a statistical
boundary (mean + 2.50) of validation-set outputs, rather
than utilizing a fixed threshold. It reduces false alarms
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without compromising sensitivity. We tracked the false
positive rate (2.10%) across three datasets and
performed precision-recall trade-off analysis during
experimental validation testing to prevent overloading
operators with alarms. We also implemented a
post-processing rule that quiets alarms for certain
consecutive benign sessions within a sliding time range
to manage alarm frequency and prevent alert flooding in
real-world deployments.

Pseudocode:  GAN-GNN  Anomaly  Detection

Framework

Input: Raw traffic data D = {X4,X,...,Xn}
Similarity threshold t
Temporal window At
Cosine similarity function sim(-,-)
Training epochs Egan, Egnn
Batch size B
Output:
Trained discriminator Do, and GNN model GNN¢;
Step 1. Preprocess raw traffic:
For each session x;in D:
Extract features F(x;)
Normalize F(x;) — x;' € [0,1]¢
Construct graph G = (V,E):
V « allx/
Forall (x;,x"):
If sim(x/,%) = t orsame I[P/ within At:
Add edge (i,})
Step 2. Initialize:
Generator Gpet, Discriminator Dpe¢
Graph Neural Network GNN, e,
Step 3. Train GAN:
For epoch=1to E_ GAN:
Sample batch of real samples R from D
Generate fake samples F = Gpe(z),z ~ N(0,D)
Update D¢ via WGAN-GP loss:
p = E[Dpet(F)] — E[Dpet(R)] + A+ Gradientpeparry
Update Gpet to minimize Lg = —E[Dyec(F)]
Step 4. Train GNN:
For epoch=1to E GNN:
Input graph G = (V,E), feature matrix X
Forward pass: node embeddings H = GNN,..(X,A)
Compute node-level cross-entropy loss:
Leny = —2yilog(d)
Backpropagate and update GNN ¢
Step 5. Anomaly Detection:
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For new session x:
If Dpet(x) < threshold:
Label as suspicious
Else:
Use GNN to propagate features in graph G
If GNN output deviates from neighbors:

Flag as anomaly

The pseudocode details a two-stage GAN-GNN
framework for network anomaly detection. GANs
initially learn normal traffic distribution by sampling
and training a discriminator to detect real vs. fake data.
A GNN later finds spatiotemporal dependencies from
graph-structured traffic representations. At inference
time, anomalies are discovered based on both the GAN

discriminator score and the GNN relational
inconsistencies.
4 Experimental evaluation and

discussion

4.1 Experimental purpose and objectives

An anomaly detection method using Generative
Adversarial Networks (GANs) and Graph Neural
Networks (GNNs) to discover network security
concerns was experimentally validated. The experiment
compares detection accuracy to conventional intrusion
detection systems (IDS), response time under diverse
traffic volumes for real-time applicability, performance
metrics (including false alarm and false negative rates)
with CNN and LSTM, robustness against noise and
adversarial attacks, and model stability over prolonged
operation. To provide fair and reproducible comparisons,
DeepLog, @ CNN-LSTM,  Autoencoder-IDS, and
DeepAutoMax were reimplemented utilizing a uniform
preprocessing pipeline and training hyperparameters.
Each model was calibrated for optimal performance on
the specified datasets using its paper's design. Uniform
parameters and train-test splits ensured experiment
fairness.

Hyperparameters of the GAN and GNN
components were jointly optimized using grid search,
with selection based upon performance metrics on the
validation set. For the GAN, learning rate (0.0001 to
0.0005), batch size (64, 128, 256), number of layers in
generator and discriminator (2 to 4 layers), size of latent
noise vector (64, 100, 128), and the coefficient of the
gradient penalty (A € {lI, 5, 10}) in WGAN-GP
framework were some of the most important
hyperparameters. For the GNN module, grid search
considered the following parameters: number of graph
convolutional layers (2 to 4), hidden units per layer (64,
128, 256), dropout rates (0.2, 0.5, 0.7), learning rates
(0.0001 to 0.005), and activation functions such as
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ReLU, LeakyReLU, and ELU. All the candidate settings
were assessed on 5-fold cross-validation to avoid
overestimation, and the best hyperparameter setting was
chosen by the balance of high validation accuracy and
low false positive rate. The tuned parameters were then
locked and utilized for final testing and training, and
consequently, a well-calibrated and generalizable model
setting was achieved for several datasets.

To guarantee reproducibility, comprehensive
hyperparameter configurations were implemented and
recorded for both the GAN and GNN components. The
GAN's generator had three fully linked layers (256, 512,
1024 units) utilizing LeakyReLU and Tanh activations,
whilst the discriminator replicated the same architecture
in reverse, culminating in a Sigmoid output. The
training utilized the Adam optimizer with a learning rate
of 0.0002, a batch size of 128, and implemented the
Wasserstein GAN with gradient penalty (WGAN-GP) to
ensure training stability. The GNN employed a
two-layer Graph Convolutional Network (GCN)
featuring 128 hidden units, ReL U activation, a dropout
rate of 0.5, and was optimized via cross-entropy loss
using the Adam optimizer with a learning rate of 0.001.
Five-fold cross-validation and early halting were
utilized to mitigate overfitting. Customized parameters
were essential due to fluctuations in traffic patterns,
class imbalance, and feature distributions among
datasets, rendering standard configurations inadequate.
Parameter optimization guaranteed uniform and
equitable model performance across NSL-KDD,
CICIDS 2017, and the real-world dataset.

4.2 Experimental environment and
dataset

The investigations were run on a powerful server
with an Intel Xeon Gold 6230R CPU, NVIDIA Tesla
V100 GPU, 128GB RAM, and Ubuntu 20.04 LTS.
TensorFlow, PyTorch, and Docker enabled fast training,
reproducibility, and environmental consistency. Python
and Scikit-learn aided preparation and evaluation. The
model was trained using NSL-KDD and CICIDS 2017
normal samples and tested on malicious samples.
Kaggle public datasets and a custom real-world traffic
dataset were used to evaluate performance and
generalizability under different network conditions.

Each dataset (NSL-KDD, CICIDS 2017, and the
in-house real-world dataset) has three distinct subsets:
training (70%), validation (15%), and test (15%) for
experimental analysis. The stratified split ensures
subsets reflect all relevant attack classes proportionally.
The final GAN generative model was trained for 200
epochs with 128 batches. The Wasserstein GAN
formulation with gradient penalty preserved training
stability. Adam optimizer was used for the discriminator
and the generator, with 0.0002 learning rate and ; =
0.5.

Hyperparameter 5-fold

tuning included
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cross-validation to generalize and avoid overfitting.
Based on fold-level mean validation accuracy, GNN
layer numbers, learning rates, and dropout ratios were
optimized. We chose 10 patience epochs to avoid
validation loss pattern overfitting. These improvements
ensure fair and accurate model performance evaluation
under realistic network traffic.

New real-world network traffic dataset experiments,
NSL-KDD, CICIDS 2017. NSL-KDD has 125,973
instances—77,054  training, 48,919 test. Every
occurrence is normal or one of 22 assaults with 41
traffic property attributes. The attacks are DoS, Probe,
U2R, and R2L. Official dataset NSL-KDD provides
well-labeled and characterized traffic flows for anomaly
detection.

The eight-day real-time network dataset CICIDS 2017
contains 2.83 million flows. This study examined
650,000 data points from regular traffic and 14 attack
methods, including DoS Hulk, DDoS, Brute Force, XSS,
SQL Injection, and Infiltration. Three-day samples
demonstrate a diverse and authentic mix of benign and
malicious traffic.

A network sniffer in a simulated lab collected 102,340
network sessions with 20 extracted attributes, including
packet rate, byte counts, and protocol type, over seven
days. Typical penetration testing yielded 73,180 normal
and 29,160 Port Scan, SYN Flood, DNS Spoofing, ARP
Poisoning, and ICMP Flood attacks. For temporal
context, graphs were made every 10 seconds. The
dataset comprises over 540,000 annotated traffic
sessions gathered over a 30-day interval from an
enterprise network utilizing a mix of Wireshark and
Zeek. It encompasses both benign and malicious traffic,
addressing seven distinct threat areas, including port
scans, brute-force login attempts, and data exfiltration.
The traffic encompasses various protocols, including
TCP, UDP, ICMP, and HTTP, providing significant
variance in flow time, packet size, and connection
behavior. These attributes guarantee that the dataset
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accurately represents authentic network settings and

improves the model's validation in real-world
deployment situations.
To preserve experimental validity, training

exclusively utilized benign traffic, while known and
zero-day assaults were allocated for testing purposes.
Timestamp-based filtering and hash deduplication
eliminated training-test overlap. The custom dataset
underwent preprocessing utilizing the identical
workflow as NSL-KDD and CICIDS 2017, facilitating
consistent graph-based input and uniform analysis
across all datasets.

All baseline models, comprising CNN-LSTM,
Autoencoder-IDS, DeepLog, and DeepAutoMax, were
re-implemented according to their original architectures.
A uniform experimental framework was upheld
throughout all models, encompassing identical
preparation pipelines, dataset divisions (70% training,
15% wvalidation, 15% testing), and hyperparameter
optimization via grid search. Five-fold cross-validation
and early halting were utilized to guarantee rigorous
assessment and avert overfitting. Performance was
evaluated by accuracy, false positive rate (FPR), false
negative rate (FNR), average inference time per sample,
and zero-day detection rate, facilitating a fair
comparison with the proposed GAGA-Net model.

4.3 Experimental results

This study defines real-time performance as the
system's ability to process and assess all network data
sessions for threat identification in a short period.
Real-time is the session-average inference time from
traffic capture to anomaly decision. Maximum real-time
response is 130 milliseconds per sample, using
industry-standard IDS  benchmarking data. The
anticipated GAGA-Net can always tolerate 120
millisecond reaction times, making it ideal for enterprise
or critical infrastructure networks.

Table 3: Comparison of the overall accuracy of different models on the NSL-KDD dataset

Model Type Accuracy (%)
GAGA-Net (this article) 97.35
CNN-LSTM (Reference [1]) 94.20
Autoencoder-based IDS (Reference [2]) 95.12
DeepLog (Reference [3]) 96.50
DeepAutoMax (Reference [4]) 96.85

Table 3 shows five models' total accuracy on
NSL-KDD, a typical intrusion detection dataset. The
GAGA-Net model was most accurate at 97.35%.
CNN-LSTM, Autoencoder-based IDS, DeepLog, and
DeepAutoMax had accuracy of 94.20%, 95.12%,
96.50%, and 96.85%. This suggests that generative
adversarial networks and graph neural networks can

better identify threats and complex network traffic
patterns. With enhanced accuracy, the model had lower
false positive (2.10%) and false negative (1.80%) rates
on three datasets than baseline models. many trial-tested,
statistically proven (using paired t-tests, e.g.) upgrades
across many datasets show the model's efficacy in
real-world network security applications that decrease
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both types of errors. To test Table 3 performance
differences' stability, each model was run 10 times with
different random seeds. The mean accuracy and standard
deviation of each approach are shown. 95% confidence
intervals were calculated using Student's t-distribution.
The proposed GAGA-Net model showed consistent
performance with an average accuracy of 97.35% + 0.22
across runs.

Additionally, statistical significance tests were
performed to validate meaningful gains. We utilized
paired t-tests and Wilcoxon signed-rank tests to compare
GAGA-Net to all baselines. Results showed significant
accuracy gains (p < 0.05) in all cases. The results
support the idea that the proposed model outperforms
deep learning-based intrusion detection approaches.

In Table 4, reaction time assesses how quickly each
model handles CICIDS 2017 sessions. GAGA-Net's
average inference time is 120 milliseconds,
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demonstrating  real-time  detection  proficiency.
CNN-LSTM, Autoencoder-based IDS, DeepLog, and
DeepAutoMax reported average reaction times of 145,
135, 125, and 118ms. Short response times are critical
for real-time security systems that detect threats quickly.

Feature extraction, graph building, GAN-based
discrimination, and anomaly classification are included
in each response time. To eliminate timing outliers,
1,000 randomly selected sessions were averaged to
calculate the times. Tests were run without batch
processing to simulate streaming, real-time scenarios.
While GAGA-Net meets real-time inference criteria, its
implementation in live systems requires integration with
packet capture and warning systems, a future research
goal. GAGA-Net balances speed and accuracy for
reliable real-time network threat monitoring in
security-sensitive environments.

Table 4: Response time of different models for CICIDS 2017 dataset (milliseconds)

Model Type Average response time (ms)
GAGA-Net (this article) 120
CNN-LSTM (Reference [1]) 145
Autoencoder-based IDS (Reference [2]) 135
DeepLog (Reference [3]) 125
DeepAutoMax (Reference [4]) 118

Table 5 compares models with false alarm rates on
a custom dataset. Compared to CNN-LSTM (3.50%),
Autoencoder-based IDS (3.00%), DeepLog (2.50%),
and DeepAutoMax (2.25%), GAGA-Net has the lowest
false alarm rate of 2.10%. The model's low false alarm
rate allows it to identify abnormal behavior without
disrupting routine operations, saving administrators time
and resources. This is crucial for network efficiency and
security, ensuring only serious threats activate alerts.

Table 6 shows the false negative rate, or the ratio of

true attacks detected by each model on the custom
dataset to the total number of attacks. GAGA-Net has a
1.80% false negative rate, lower than CNN-LSTM
(4.00%), Autoencoder-based IDS (3.50%), DeepLog
(2.70%), and DeepAutoMax (2.00%). The model can
better detect all forms of assaults, even covert ones that
try to avoid detection due to its low false negative rate.
This is crucial for safeguarding the network against
unknown or novel attacks and identifying and
responding to as many real threats as possible.

Table 5: False positive rate (FP Rate) of each model on the custom data set

Model Type False alarm rate (%)
GAGA-Net (this article) 2.10
CNN-LSTM (Reference [1]) 3.50
Autoencoder-based IDS (Reference [2]) 3.00
DeepLog (Reference [3]) 2.50
DeepAutoMax (Reference [4]) 2.25

Table 6: FN Rate of each model on the custom dataset

Model Type Missing reporting rate (%)
GAGA-Net (this article) 1.80
CNN-LSTM (Reference [1]) 4.00
Autoencoder-based IDS (Reference [2]) 3.50
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Figure 2: The recognition effect of each model on different types of attacks (taking CICIDS 2017 as an example)

Figure 2 shows how each model recognizes DDoS,
Brute Force, and XSS attacks in the CICIDS 2017
dataset. The GAGA-Net model recognizes these three
assault types at 98.50%, 96.70%, and 95.50%, which is
higher than comparable models. The model can detect
brute force cracking, cross-site scripting, and large-scale
distributed denial of service attacks due to this complete
advantage. This performance is essential for building a
multilayered defense strategy, allowing security teams to
trust automated technologies to monitor and protect the

network.

Figure 3 compares model performance at different
network traffic scales. A better model than others, the
GAGA-Net model retains high accuracy across a wide
range of traffic scales, attaining 97.50%, 97.00%, and
96.50%. This means the concept works well in tiny
network environments and massive data flows. Modern
network security systems must be adaptable to detect
threats even when network traffic spikes.
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Perfarmance Comparison Across Different Traffic Scales
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Figure 3: Adaptability test of each model in a large-scale traffic environment
Table 7: Performance of each model in zero-day attack detection
Model Type Zero-day attack detection rate (%)
GAGA-Net (this article) 92.00
CNN-LSTM (Reference [1]) 88.00
Autoencoder-based IDS (Reference [2]) 89.00
DeepLog (Reference [3]) 90.50
DeepAutoMax (Reference [4]) 91.20

Table 7 shows each model's zero-day attack
detection performance. The GAGA-Net model detects
zero-day attacks at 92.00%, outperforming CNN-LSTM
(88.00%), Autoencoder-based IDS (89.00%), DeepLog
(90.50%), and DeepAutoMax (91.20%). Zero-day
assaults are difficult to handle, but the GAGA-Net
model has shown it can learn normal activity patterns
and identify anomalous ones. This adds security for
cybersecurity professionals to anticipate new threats.

Figure 4 thoroughly assesses model robustness and
stability. The GAGA-Net model performed well under
varied scenarios with a robustness score of 9.2 and a
stability score of 9.5. The robustness score assesses the
model's resilience to uncertainty and change, while the
stability score indicates its long-term consistency. These

two excellent scores demonstrate that the GAGA-Net
model may work stablely in a diverse and dynamic
network environment and perform well over time,
protecting users.

Figure 5 shows each model's robustness under
varying SNRs. GAGA-Net has stronger noise resistance
than other models and operates well at SNR levels from
96.80% to 91.20%. Due to its excellent extraction and
learning of regular behavior patterns, the model can
retain high accuracy in low SNR situations. In real life,
network traffic is noisy; hence, noise resistance is vital
to detection system performance, making the
GAGA-Net model suited for complicated network
environments.
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Comparison of Model Performance under Adversarial Attacks, Long-term Stability, and Fluctuations
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Figure 6: Stability of each model under adversarial attacks and long-term operation

Figure 6 shows a detailed investigation of each
model's stability under adversarial attacks and long-term
operation. GAGA-Net model achieves 90.50% accuracy
under adversarial attacks, +0.50% performance
fluctuation after long-term operation, and 9.4 points
stability score. This shows that the model can sustain
accuracy against well-designed attacks and be extremely
stable over time. Stability and attack resistance are
crucial for network settings that need constant

monitoring and protection, maintaining system
reliability and security.
4.4 Discussion

Experimental outcomes affirm the improved

performance of the proposed hybrid model GAN-GNN
compared to traditional methods presented in Table 1.
Although models like CNN-LSTM, DeepAutoMax, and
DeepLog have excellent accuracy, their increased false
positive rates (FPR) and false negative rates (FNR)
contribute to the inability to detect sophisticated patterns
and new attack behaviors. Compared to this, the
precision of GAN-GNN model was better at 97.35%,
reduced FPR to 2.10%, and FNR at 1.80%, which
clearly reflects improved performance over the current
models.

The enhanced efficacy of the proposed model is
mostly ascribed to the synergistic advantages of GANs
and GNNs. GANs proficiently acquire deep feature
representations and produce realistic traffic patterns,
whereas GNNs elucidate topological dependencies and
inter-traffic links, hence augmenting the model's
capacity to identify covert or coordinated attacks. By
representing traffic as a graph, the system assesses both
individual traffic characteristics and their relationships,
which is essential for detecting intricate anomaly

patterns. The model demonstrated robust scalability,
sustaining excellent accuracy over diverse traffic
volumes, with an average inference time of 120
milliseconds per session, rendering it appropriate for
real-time threat monitoring. It exhibited robust resilience,
sustaining performance in aggressive and noisy
environments, underscoring its preparedness for
implementation in practical cybersecurity applications.

Nevertheless, certain  limits endure. The
performance of models may deteriorate in significantly
skewed datasets where infrequent attack types are
inadequately represented. Generative Adversarial
Networks (GANSs), although beneficial for analyzing
traffic patterns, are susceptible to training instability and
mode collapse. Moreover, very innovative attacks that
substantially deviate from both authentic and created
distributions may remain undetected. Future research
may concentrate on using adaptive sampling techniques
to address data imbalance and investigating attention
mechanisms or transformer-based architectures to
improve context-aware anomaly identification.

45 Extended evaluation for
generalizability

This study enhances the generalizability assessment of
GAGA-Net beyond datasets such as NSL-KDD and
CICIDS 2017, which exhibit structured patterns, by
evaluating its performance on two contemporary and
heterogeneous datasets: UNSW-NBI5 [34] and
TON _IoT [35].

The UNSW-NBI15 dataset was created by the
Australian Centre for Cyber Security (ACCS) at UNSW
Canberra utilizing the IXIA PerfectStorm tool within
their Cyber Range Lab. It comprises a mixture of
authentic benign traffic and artificially generated
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contemporary attack behaviors recorded using Argus
and Bro-IDS tools. The dataset has 49 attributes,
including flow duration, service, source and destination
bytes, and packet size. The dataset has more than 2.5
million records categorized into nine distinct attack
types: Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms. This
dataset provides a modern perspective on network
hazards and encompasses significant traffic variability,
rendering it appropriate for assessing detection systems
across diverse circumstances.

TON IoT is an extensive telemetry and network
dataset gathered by UNSW Canberra from a realistic
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IoT/IIoT environment that includes edge, fog, and cloud
layers. The collection comprises network packets,
sensor data, and system logs from both Windows and
Linux platforms. This depicts a contemporary
cyber-physical system environment and encompasses
many attack scenarios, including password brute-force,
ransomware, denial of service (DoS), data exfiltration,
and privilege escalation. The TON IoT dataset is
particularly significant for assessing the scalability and
adaptability of intrusion detection algorithms in
IoT-intensive and real-time systems, as it comprises
both structured and unstructured data sources.

Table 8: Performance comparison of GAGA-Net across multiple datasets

Dataset Total Attack Accuracy FPR (%) FNR (%) Inference
Samples Categories (%) Time (ms)
NSL-KDD 125,973 4 97.35 2.10 1.80 120
CICIDS 2017 2,830,743 15+ 96.78 2.35 2.12 135
Real-World Set 540,000 7 95.84 2.48 2.60 128
UNSW-NBI15 2,540,044 9 96.20 2.75 2.35 132
TON_IoT 514,200 10+ 94.80 3.10 3.60 140

Similar preprocessing, training, and evaluation
protocols were implemented for both supplementary
datasets to guarantee equity and uniformity. GAGA-Net
exhibited  competitive  performance across all
benchmarks, demonstrating its robust generalization
capabilities in anomaly detection inside both classic and
contemporary network environments.

GAGA-Net demonstrates consistently  high
accuracy across all datasets, as shown in Table 8,
achieving 97.35% on NSL-KDD and 96.78% on
CICIDS 2017, while also exhibiting robust performance
on intricate, real-world datasets such as UNSW-NBI15
(96.20%) and TON_IoT (94.80%). Modest elevations in
FPR and FNR on contemporary datasets are anticipated;
however, inference times remain minimal, affirming
GAGA-Net's appropriateness for real-time and varied
network contexts. These extensive studies validate that
GAGA-Net is successful on structured datasets and has
strong performance in varied, unpredictable, and
real-world network contexts.

5 Conclusion

This study introduces GAGA-Net, an innovative
anomaly detection system that integrates Generative
Adversarial Networks (GANs) with Graph Neural
Networks (GNNs) to improve network security
measures. The system is constructed as a modular
detection architecture, wherein GANs are employed to
emulate benign traffic patterns, while GNNs scrutinize
graph-structured representations of traffic to discover

anomalous deviations. This hybrid integration facilitates
real-time detection, minimizes false positives, and
enhances the system's capacity to identify zero-day
assaults. The model utilizes sequential training,
graph-based traffic modeling, and an ensemble decision
mechanism, yielding a robust, scalable, and deployable
intrusion detection pipeline.

Experimental assessments across several public and
real-world datasets demonstrate that GAGA-Net attains
superior detection accuracy, reduced false positive and
false negative rates, and expedited inference times
relative to current IDS methodologies. Moreover,
evaluations performed on datasets of diverse magnitudes
demonstrate the model's robust scalability and stability
in managing extensive traffic without sacrificing
efficiency. These findings confirm GAGA-Net's
versatility and efficacy in many network settings.

Future  endeavors may  concentrate  on
amalgamating GAGA-Net with additional security
technologies to establish a multi-tiered protection
architecture. As deep learning techniques advance,
hybrid anomaly detection models such as GAGA-Net
are anticipated to be crucial in protecting essential
digital infrastructures from growing and complex cyber
threats.
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support the findings of this study are all in the
manuscript.
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