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As network threats increase in complexity, traditional signature- and rule-based detection systems find it 

challenging to recognize unexpected or zero-day attacks. This study presents GAGA-Net (Generative 

Adversarial and Graph-based Anomaly Network), an innovative hybrid framework for anomaly 

detection that combines Generative Adversarial Networks (GANs) to model benign traffic distributions 

with Graph Neural Networks (GNNs) to capture spatiotemporal relationships in network traffic. The 

GAN component is trained on benign samples to identify behavioral abnormalities, whereas the GNN 

employs graph-structured representations to categorize anomalies based on structural discrepancies. 

Upon evaluation using NSL-KDD, CICIDS 2017, and a real-world dataset, GAGA-Net attains an 

accuracy of 97.35%, a false positive rate of 2.10%, and a false negative rate of 1.80% on NSL-KDD, 

with an average inference time of 120 milliseconds per sample, thereby exhibiting real-time capability. 

These results substantially exceed the performance of traditional models such as CNN-LSTM and 

Autoencoder-IDS. The model has significant robustness in noisy and adversarial conditions, 

successfully detecting zero-day assaults with an efficacy of up to 92%. GAGA-Net provides a scalable 

and generalizable solution for contemporary intrusion detection issues. 

Povzetek: Študija predstavi GAGA-Net, ki združi dva pristopa (en se nauči, kako izgleda “normalen” 

omrežni promet, drugi pa gleda povezave med dogodki), zato lahko bolje zazna tudi nove napade; na 

znanih podatkih doseže okoli 97 % natančnost in deluje dovolj hitro za sprotno uporabo.  

1 Introduction 

The swift expansion of the Internet and IoT has 

markedly augmented the complexity of global network 

systems, resulting in intensified cybersecurity 

challenges. Contemporary assaults now focus on many 

digital environments—including mobile devices, cloud 

services, and industrial systems—employing 

sophisticated techniques such as DDoS, malware, and 

phishing [1]. Conventional signature- and rule-based 

intrusion detection systems (IDS) are predominantly 

ineffectual against these advancing threats, particularly 

zero-day attacks [2]. This has redirected research 

emphasis to anomaly detection, which recognizes 

abnormalities from standard system behavior and can 

identify previously unrecognized dangers in real time 

[3-5]. 

This paper presents GAGA-Net, a novel hybrid 

anomaly detection model that integrates the advantages 

of Generative Adversarial Networks (GANs) and Graph 

Neural Networks (GNNs). Generative Adversarial 

Networks (GANs) replicate benign traffic distributions, 

facilitating the early detection of behavioral outliers, 

whilst Graph Neural Networks (GNNs) capture 

spatiotemporal and relational relationships across traffic  

 

 

sessions, aiding in the discovery of complex structural 

anomalies. [6]. This dual-stage architecture mitigates the  

shortcomings of previous models employing GANs or 

GNNs independently, hence improving detection 

accuracy and minimizing false positives. 

GAGA-Net integrates adversarial learning with 

graph-based reasoning, providing a scalable, real-time, 

and resilient defense mechanism tailored for 

contemporary, high-dimensional network settings. It 

enhances both theoretical comprehension and actual 

implementation of next-generation cybersecurity 

solutions [7]. 

1.1 Specific research goals 

The main aims of this study are the following: 

• To limit the false positive rate (FPR) to below 

2.5% on the CICIDS 2017 dataset with a 

GAGA-Net anomaly detection method. 

• To attain a detection rate greater than 97% on 

the NSL-KDD dataset. 

• To keep the false negative rate (FNR) below 2% 

on a custom real-world network traffic dataset. 

• To retain sub-average inference latency of 130 

milliseconds per sample, demonstrating the 
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model's real-time detection in high-throughput 

settings. 

• To significantly outperform state-of-the-art 

deep learning baselines (e.g., CNN-LSTM, 

Autoencoder-IDS, DeepLog) on various 

performance metrics. 

The paper describes GAGA-Net, a hybrid anomaly 

detection system employing GANs and Graph Neural 

Networks. Current models use statistical or sequential 

characteristics, but GAGA-Net combines adversarial 

learning to reflect typical traffic behavior and 

graph-based reasoning to capture complicated 

spatiotemporal interactions. This integrated strategy 

enhances nuanced and zero-day threat detection while 

reducing false positives. Node-level anomaly scoring 

using graph-based traffic representation and graph 

convolution is a new network security technique. 

GAGA-Net improves anomaly detection. 

1.2 Independent and dependent variables 

The work has accurately delineated the 

independent and dependent variables utilized in 

experimental testing in our new method. Independent 

variables include the model architecture selection 

(GAN-GNN or baselines like CNN-LSTM, 

DeepAutoMax, and Autoencoder-IDS), dataset type 

(NSL-KDD, CICIDS 2017, or captured real-world 

traffic), changes in traffic noise levels, and the actual 

type of network attack (e.g., DDoS, brute-force, XSS, or 

zero-day attacks). The independent variables are 

systemically controlled or manipulated to determine 

their impact on model performance. Dependent 

variables are the quantified performance measures, such 

as detection accuracy, false positive rate (FPR), false 

negative rate (FNR), average inference time per sample, 

and detection effectiveness against zero-day and 

adversarial attacks. All these dependent variables 

collectively signify the detection capability, precision, 

real-time response capability, and robustness of the 

model. 

1.3 Nature of the experiments 

The experimental design of the current research is 

comparative and confirmatory. It is comparative because 

the anticipated GAN-GNN detection model is compared 

with various state-of-the-art CRDeep learning-based 

intrusion detection models (e.g., CNN-LSTM, DeepLog) 

on standard evaluation metrics using multiple datasets. 

It is confirmatory because experiments are carried out to 

prove the hypothesis that generative adversarial training 

coupled with graph-based learning provides better 

anomaly detection performance. This encompasses 

better detection accuracy, fewer false alarms, better 

zero-day attack performance, and better network 

robustness against noisy or adversarial networks. By 

comparing analytically and statistically examining 

outcomes between models and datasets, the study seeks 

to stringently validate the efficacy of the proposed 

hybrid scheme. 

1.4 Motivation of the work 

The rapid development of advanced cyber threats 

has highlighted the inadequacies of conventional 

intrusion detection systems (IDS), which often rely on 

established rules or signatures and struggle to identify 

zero-day or adaptive attacks. Current deep 

learning-based Intrusion Detection System models, 

notwithstanding their efficacy, sometimes neglect 

relational relationships among traffic sessions and 

inadequately represent the distribution of benign 

behavior. This study is driven by the necessity for a 

more robust and context-sensitive methodology for 

anomaly identification in contemporary networks. The 

GAGA-Net system seeks to identify both behavioral and 

structural anomalies by integrating the generative 

proficiency of GANs in learning and simulating benign 

traffic patterns with the topological reasoning 

capabilities of GNNs. This integration rectifies 

deficiencies in accuracy, generalizability, and real-time 

detection capabilities. 

2 Related works 

In recent years, various deep learning 

methodologies have been developed for the detection of 

anomalies in network traffic. GAN-based methodologies 

have demonstrated potential in simulating typical traffic 

and identifying zero-day assaults; nevertheless, they 

frequently neglect contextual and relational dimensions. 

In contrast, GNN models like GraphSAGE and GCN are 

proficient at learning from graph-structured data by 

capturing topological dependencies; however, they are 

generally employed independently of generative models. 

Recent studies attempting to integrate generative and 

structural learning frequently exhibit deficiencies in 

strong pretreatment procedures and thorough 

cross-dataset validation. 

The suggested GAGA-Net framework 

amalgamates the advantages of both GANs and GNNs 

to mitigate these limitations. Generative Adversarial 

Networks (GANs) are trained to encapsulate standard 

traffic distributions, whereas Graph Neural Networks 

(GNNs) are utilized to assess node-level anomalies 

inside graph-based representations by leveraging 

temporal and relational information. This dual-phase 

training enhances generalization to novel threats and 

markedly decreases false positives and false negatives 

relative to current deep models. 

Prior studies, like DeepLog [1], utilized LSTM 

networks for anomaly detection in sequential log events, 

whereas Autoencoder-based IDS [2] recognized 

intrusions by analyzing reconstruction errors from 

acquired latent traffic patterns. The CNN-LSTM hybrid 

model enhanced spatial-temporal feature extraction for 
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the detection of complex attacks. In intelligent 

environments, Alkato and Sakhnin [8] utilized a deep 

belief network for real-time anomaly detection and trend 

forecasting, hence improving IoT responsiveness. 

Concurrently, Husainat [9] presented GraphDuMato, a 

GPU-accelerated technique for effective subgraph 

mining in extensive graph applications. 

2.1 Classification of network security 

threats 

The growing intricacy of digital infrastructure has 

resulted in a rise in varied and advanced network 

security risks, which are generally classified as internal 

and external threats. Internal threats arise from within an 

organization, including employees or internal equipment, 

and encompass both deliberate attacks (e.g., data 

manipulation) and inadvertent mistakes (e.g., accidental 

data breaches) [10]. External threats are perpetrated by 

external entities that exploit system vulnerabilities or 

employ tactics such as social engineering to obtain 

unauthorized access. These assaults are frequently 

clandestine and perpetually advancing, rendering them 

challenging to identify with conventional firewalls or 

intrusion detection systems [11]. 

The most detrimental cyberattacks are malware, 

DDoS, and phishing. Malware, such as ransomware, 

undermines data integrity and has resulted in 

considerable financial losses in recent years [12]. DDoS 

assaults inundate servers with excessive traffic, 

hindering legitimate user access, while phishing 

misleads users with counterfeit messages to acquire 

sensitive information. Conventional protection systems 

are inadequate against these emerging dangers, 

necessitating the development of sophisticated detection 

solutions. Recent studies have shown the efficacy of 

deep learning methodologies, including GAN-based 

anomaly detection [13] and hybrid temporal models [14], 

which improve the early identification and classification 

of anomalous network behavior. 

2.2 Traditional threat detection methods 

When facing network security threats, traditional 

threat detection methods usually include signature-based 

detection methods, rule-based detection methods, and 

statistical-based detection methods. These methods have 

their own advantages and disadvantages, and their 

application effects vary across different network 

environments. Signature-based detection methods are 

one of the earliest technologies applied to network 

security detection [15]. This method identifies potential 

security threats by comparing the characteristics of 

known attacks (i.e., signatures). Each known attack has 

its own specific attack characteristics. The network 

security system determines whether the traffic contains 

malicious behavior by comparing real-time network 

traffic with the known attack feature library. Although 

signature-based detection methods have high accuracy 

when facing known attacks [16], their main 

disadvantage is that they cannot cope with zero-day 

attacks and unknown attacks. When attackers use new 

attack techniques, traditional signature methods cannot 

detect them in time, resulting in the vulnerability of the 

protection system. The limitation of signature-based 

detection methods is that the signature library needs to 

be constantly updated and maintained. If it is not 

updated in time, the system will not be able to detect 

new attacks [14]. 

Rule-based detection methods use predefined rule 

sets to identify abnormal behaviors in network traffic. 

These rules are usually set based on network protocol 

standards or expert experience. Compared with 

signature-based methods, rule-based detection methods 

have higher flexibility. Rules can be customized 

according to specific network environments and security 

requirements and can even detect some complex attack 

patterns. However, a significant problem with rule 

systems is that the update and management of rule bases 

are cumbersome, and the accuracy and rationality of rule 

design will directly affect the detection effect. Studies 

have shown that rule-based detection methods are often 

plagued by false positive and false negative problems 

[17], especially when facing large-scale, dynamically 

changing network environments, the false alarm rate is 

high [18]. 

Statistical detection methods identify abnormal 

patterns that are significantly different from normal 

behavior by statistically analyzing network traffic. 

Statistical methods usually use statistical features of 

traffic, such as packet size, transmission rate, connection 

time, etc., to establish a model of normal behavior. 

When network traffic deviates from this model, the 

system will trigger an alarm. This method has certain 

advantages, especially when identifying new attacks and 

unknown attacks, it is more effective than 

signature-based and rule-based methods [19, 20]. 

However, statistical methods also face some challenges, 

especially when there is large data noise and abnormal 

fluctuations, which can easily lead to false alarms. The 

literature points out that although statistical detection 

methods can detect some types of abnormal behavior, 

their sensitivity to environmental changes and noise 

makes them face certain difficulties in practical 

applications [21]. 

2.3 Anomaly detection concepts and 

applications 

Anomaly detection has garnered considerable 

interest in recent years as a sophisticated method for 

threat identification in network security. In contrast to 

conventional signature-based or rule-based detection 

methods that rely on recognized attack patterns, 

anomaly detection establishes a baseline of typical 

behavior and identifies substantial departures from this 

norm as potential threats. This capacity renders it 
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especially adept at detecting unknown or zero-day 

assaults that conventional systems frequently overlook. 

Anomaly detection is crucial in numerous 

applications within cybersecurity. A prevalent 

application is its incorporation into intrusion detection 

systems (IDS), which continuously surveil network 

traffic and identify anomalous behaviors that deviate 

from established normative patterns. Studies indicate 

that Intrusion Detection Systems utilizing anomaly 

detection methodologies can identify novel assaults with 

heightened sensitivity, particularly zero-day exploits and 

previously unrecognized intrusion strategies [22, 23]. 

Moreover, anomaly detection is extensively 

employed in the identification of malicious 

communications. Through the examination of the 

statistical attributes of network traffic, including packet 

frequency and size, it may effectively identify threats 

such as DDoS attacks launched by botnets [24]. In 

addition to intrusion and traffic analysis, the technology 

is utilized in areas such as data leakage prevention and 

virus behavior tracking. Unconventional access patterns 

to important files may signify a data breach, which can 

be swiftly detected by anomaly-based techniques. 

Likewise, account hijacking and other unauthorized 

activities can be promptly identified, facilitating swift 

response and mitigation [25]. 

Recent studies have enhanced hybrid intrusion 

detection frameworks across many network contexts. 

Vashisth and Goyal [26] introduced a dynamic anomaly 

detection method with robust random cut forests 

designed for IoT contexts, successfully reconciling 

detection accuracy with resource limitations. Čiurlienė 

and Stankevičius [27] investigated the amalgamation of 

several machine learning algorithms to augment 

intrusion detection efficacy, highlighting the 

hybridization of supervised and unsupervised 

methodologies for enhanced generalizability. Ullah et al. 

[28] presented HDL-IDS, a hybrid deep learning 

framework that integrates convolutional and recurrent 

layers for intrusion detection on the Internet of Vehicles, 

exhibiting notable accuracy and adaptability to vehicular 

network conditions. These recent contributions highlight 

the increasing significance of hybrid models in tackling 

contemporary network security issues and validate the 

reasoning for the proposed GAN-GNN integration in 

this study. 

Anomaly detection establishes a comprehensive 

framework for strengthening security measures, 

facilitating the proactive identification of emerging 

threats in complex and dynamic network environments. 

 

Table 1: Summary of prior anomaly detection models 

 

Reference Method Dataset Accuracy 

(%) 

FPR (%) FNR (%) 

[1] CNN-LSTM NSL-KDD 94.20 3.50 4.00 

[2] Autoencoder-based IDS NSL-KDD 95.12 3.00 3.50 

[3] DeepLog NSL-KDD 96.50 2.50 2.70 

[4] DeepAutoMax NSL-KDD 96.85 2.25 2.00 

 

Table 1 emphasizes that although previous models 

such as CNN-LSTM and DeepAutoMax exhibit good 

performance, they have a higher false positive and false 

negative rate compared to the proposed method. This 

emphasis is on the requirement of an improved and 

stronger detection scheme, like the GAGA-Net model. 

This paper delineates state-of-the-art 

methodologies as commonly cited deep learning-based 

anomaly detection models that exhibit robust 

performance on benchmark intrusion detection datasets, 

including NSL-KDD and CICIDS 2017, to establish a 

clear comparative baseline. These encompass 

CNN-LSTM [1], which identifies spatial and temporal 

patterns; Autoencoder-IDS [2], which reconstructs 

normal traffic to identify anomalies; DeepLog [3], 

which learns event sequences from log data; and 

DeepAutoMax [4], a deep autoencoder with improved 

reconstruction processes. All of these models have been 

re-implemented with uniform settings for equitable 

comparison. Performance measurements, including 

detection accuracy, false positive rate, and false negative 

rate, were employed to define the performance baseline. 

The GAGA-Net framework regularly surpasses these 

approaches across many datasets, as detailed in Tables 

2-6. 

Table 2 outlines the shortcomings of current 

intrusion detection models, including CNN-LSTM, 

Autoencoder-IDS, and DeepLog, which are deficient in 

relational or structural modeling capabilities. Although 

hybrid methods such as HDL-IDS and RRCF-IoT are 

tailored for specific domains, they encounter challenges 

with scalability. GAGA-Net addresses these deficiencies 

by amalgamating GANs and GNNs to facilitate robust, 

context-sensitive, and applicable anomaly detection with 

enhanced precision. 

 



GAGA-Net: A GAN and GNN Hybrid Model for Enhanced… Informatica 49 (2025) 355–374 359 
 

 

Table 2: Comparative summary of recent related works and their limitations 

 

Reference Methodology Dataset(s) 

Used 

Key Techniques Limitations 

CNN-LSTM 

(Kim et al., 2021) 

Deep Learning NSL-KDD Spatio-temporal 

feature fusion 

Limited graph modeling; weak 

generalization to unseen attacks 

Autoencoder-IDS 

(Zhang et al., 

2020) 

Unsupervised 

Learning 

CICIDS 2017 Feature 

reconstruction 

High false positive rate; lacks 

contextual understanding 

DeepLog (Du et 

al., 2017) 

Sequential 

Modeling 

HDFS Logs LSTM for 

sequence learning 

Designed for log events, not 

suitable for heterogeneous traffic 

structures 

DeepAutoMax 

(Javed et al., 

2022) 

Deep Autoencoder NSL-KDD, 

UNSW-NB15 

Max pooling + 

autoencoder 

Ignores structural or relational 

features in traffic 

HDL-IDS (Ullah 

et al., 2022) 

Hybrid 

CNN-GRU 

IoV Real 

Traffic 

Spatio-temporal 

fusion in IoV 

setting 

Limited to vehicular networks; 

lacks generalizability 

RRCF-IoT 

(Vashisth & 

Goyal, 2024) 

Tree-based Hybrid Custom IoT 

Dataset 

Robust Random 

Cut Forest 

Not scalable to high-dimensional 

enterprise network traffic 

 

3 Network Security Threat 

Identification Method based on 

Anomaly Detection 

Figure 1 presents the architecture of the designed 

GAGA-Net system, combining GANs and GNNs for 

anomaly detection in network traffic. The GAN module 

simulates typical traffic streams through adversarial 

training, while the GNN discovers spatiotemporal 

relationships through the creation of a graph from traffic 

data. Combined outputs from each module facilitate 

precise anomaly scoring as well as real-time security 

alerts. This end-to-end system improves detection 

performance and responsiveness in advanced network 

settings. 

 

Figure 1: Overall architecture of the proposed GAGA-Net architecture 
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3.1 Anomaly detection method combining 

GANs and GNNs 

In recent years, deep learning has gained 

prominence in network security, especially in anomaly 

detection. Two fundamental technologies—Generative 

Adversarial Networks (GANs) and Graph Neural 

Networks (GNNs)—exhibit significant individual 

strengths and have enhanced possibilities when 

integrated. GANs proficiently model typical network 

traffic behavior by producing synthetic samples that 

replicate actual data, hence facilitating the detection of 

deviations or anomalies. Graph Neural Networks (GNNs) 

excel at elucidating intricate structural and 

spatiotemporal correlations in network traffic data, 

typically represented as a graph with nodes denoting 

traffic samples and edges reflecting their 

interdependencies. 

The suggested method improves the efficacy of 

anomaly detection systems by merging GANs and 

GNNs. Generative Adversarial Networks (GANs) 

comprise a generator and a discriminator; the generator 

produces traffic samples that mimic authentic data, 

whereas the discriminator is trained to differentiate 

between real and synthetic traffic, enhancing detection 

via adversarial training. Concurrently, GNNs revise 

node representations by utilizing neighborhood data, 

enabling the system to identify nuanced topological 

irregularities. This collaborative methodology allows the 

model to evaluate both distinct traffic attributes and 

their structural context, resulting in enhanced accuracy 

and resilience in identifying complex or zero-day threats, 

hence augmenting the overall security of dynamic 

network environments [29]. 

The framework of the anomaly detection method 

combining GANs and GNNs is shown in Formula 1 

[30]. 

( ), ~ (0, )t t tG I=x z z N (1) 

Formula (1): Represents GAN generator function 

to generate fake traffic from noise, mimicking normal 

traffic behavior. in, tx  represents the generated network 

traffic, tz  is the noise input to the generator and 

conforms to the standard normal distribution. The 

generator can generate more and more realistic traffic 

data through adversarial training with the discriminator 

[31]. The output of the discriminator ( )tD x  It is used 

to determine whether the input traffic is real traffic. The 

goal is to maximize the following loss function, as 

shown in Formula 2. 

[log ( )] [log(1 ( ( )))]GAN t tL D D G= + −x zE E  (2) 

Formula (2): Adversarial loss used for training the GAN, 

where the discriminator is used to differentiate the real 

and generated traffic. In GNN training, the feature 

representation of each traffic node is updated through 

the features of adjacent nodes. The update rule of graph 

neural networks usually uses graph convolution 

operations, as shown in Formula 3 [32]. 

( 1) ( ) ( ) ( )

( )

1k k k k

v u

u v vu

W b
c

+



 
= + 

 
h h
N

(3) 

Formula (3): GNN node update rule through graph 

convolution, through neighbor node features. in,
( )k

vh  

Indicates k  Nodes in a layer graph neural network v  

The characteristic representation of ( )vN  For Node v  

The set of neighbor nodes of
( )kW  and

( )kb  

Respectively k  The weight matrix and bias term of the 

layer, vuc  is the normalization constant between nodes. 

By combining GANs to generate traffic samples and 

GNNs to update the feature representation of nodes, the 

system can effectively identify abnormal behaviors in 

traffic. 

Considering the architecture, the GAN block 

consists of a generator with three fully connected layers 

(containing 256, 512, and 1024 units, respectively) and 

LeakyReLU activation functions, followed by Tanh 

activation function for the output layer for generating 

normalized traffic data. The discriminator is a 

symmetric feedforward network of three layers (1024, 

512, and 256 units), employing LeakyReLU activations 

with a final Sigmoid output layer to generate a real/fake 

probability score. Generator and discriminator are both 

trained with the Adam optimizer (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
 0.0002, 𝛽1 =  0.5). To maintain stability and prevent 

mode collapse in adversarial training, we use the 

Wasserstein GAN with gradient penalty (WGAN-GP) 

approach. It stabilizes the process by penalizing the 

norm of the discriminator's gradients to maintain 

Lipschitz continuity. 

GNN module employs a 2-layer Graph 

Convolutional Network (GCN). Spectral convolution 

operation with ReLU activations and hidden layer size 

128 is applied for every GCN layer. Node classification 

is performed based on the output of the GCN. 

Semi-supervised mode is employed to train the GNN in 

which just a portion of the traffic nodes are labeled as 

normal or abnormal, and the model propagates the label 

information across the graph via neighborhood 

aggregation. The GNN's goal is to reduce the 

cross-entropy loss between the predicted label and the 

real label on the labeled nodes: ℒ𝐺𝑁𝑁 =
− ∑ ∑ 𝑦𝑣,𝑐

𝐶
𝑐=1 log 𝑦̂𝑣,𝑐𝑣∈𝒱𝐿

; where 𝒱𝐿  is the set of 

labeled nodes, 𝐶 is the number of classes 
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(normal/abnormal), 𝑦𝑣,𝑐  is the true label, and 𝑦̂𝑣,𝑐  is 

the predicted probability. These enhancements guarantee 

the training stability of GANs and the discriminability 

of GNNs for traffic anomaly detection with both local 

features and topological interactions. 

3.2 Network traffic modeling 

The unprocessed traffic data from NSL-KDD, 

CICIDS 2017, and bespoke datasets underwent 

preprocessing to derive session-level features, 

encompassing IP addresses, port numbers, protocol 

kinds, packet counts, byte quantities, inter-arrival 

periods, and flow durations. Feature engineering 

encompassed statistical summary (mean, standard 

deviation, minimum, maximum) and one-hot encoding 

of categorical variables. The characteristics were 

standardized to a [0, 1] range for model compatibility. 

Each network session was represented as a node in a 

dynamic, weighted, undirected graph, with edges 

determined by temporal proximity, IP similarity, and 

cosine similarity of characteristics. This graph-based 

model encapsulates both session-specific characteristics 

and contextual relationships. By representing network 

traffic as graph-structured data, the system adeptly 

captures spatiotemporal dependencies, hence improving 

the precision and efficacy of anomaly identification. 

Specifically, the network traffic graph can be 

constructed in the following way: Assuming there is N  

network nodes, each node i  represents a traffic sample, 

and its feature vector is ix , then the entire network 

traffic can be represented as graph ( )  ,  G V E= ,inV  

is a node set, E  is a set of edges, and each edge

( , )i j E  Representation Node i  and nodes j  The 

weight of an edge can be obtained by calculating 

indicators such as transmission delay, packet size or 

frequency between nodes [33]. 

In the graph structure, the spatiotemporal 

relationship between nodes is crucial for traffic anomaly 

detection. For example, frequent communication 

between a source IP and a destination IP may indicate 

potential attack behavior, while other transmission 

modes can be considered normal traffic. Therefore, by 

modeling the nodes and edges in the graph, GNN can 

effectively capture these spatiotemporal dependencies 

and use the feature information of adjacent nodes to 

determine whether the current node is abnormal. To 

further capture the topological characteristics of the 

traffic, the following graph convolution operation can be 

used, as shown in Formula 4. 

( 1) ( ) ( )

( )

1k k k

v u

u v vu

W
c

+



 
=  

 
h h
N

(4) 

Formula (4): Builds the adjacency matrix utilized in 

GNN graph learning, comprising IP similarity, 

co-occurrence of time, and cosine similarity. in, 
( )k

vh  

For the k  The node characteristics of the layer, 
( )kW  

is the weight matrix of the current layer, ( )   is the 

activation function, ( )vN  For Node v  The set of 

neighbor nodes of vuc  is the normalization constant 

between nodes. By continuously iterating the graph 

convolution operation, the topological structure 

characteristics of the network traffic can be gradually 

captured and used in the anomaly detection task. 

In graph-based network traffic modeling, nodes 

and edges correspond to sessions or flows in the 

network, and edges represent relational dependency 

among the sessions. Edge formation is induced by both 

temporal and similarity in behavior dimensions. That is, 

the session pairs that are within a sliding time window 

(𝛥𝑡 =  10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ) are temporally co-occurrent and 

are candidate pairs for edge formation. Moreover, if two 

sessions have a shared destination or source IP address 

within the window, an edge is created between their 

respective nodes to identify session/IP co-occurrence. 

As another form of behavioral proximity, cosine 

similarity is calculated between two sessions' feature 

vectors, if greater than some predefined threshold (𝜏 =
 0.85),  an edge is created. Each edge (𝑢, 𝑣)  is 

weighted according to the cosine similarity score, 

normalized to the range [0, 1], allowing stronger 

behavioral correlations to exert greater influence during 

graph convolution. 

Normalization of the adjacency matrix is achieved 

using symmetric normalization, defined as 𝕧𝑢𝑣 =
1 √𝑑𝑢𝑑𝑣⁄ , where 𝑑𝑢  and 𝑑𝑣  denote the degrees of 

nodes 𝑢 𝑎𝑛𝑑 𝑣,  respectively. This normalization 

method reduces the chance of over-embedding 

high-degree nodes' influence and makes sure the 

message diffusion is symmetric throughout the graph. 

Traffic graphs are assumed to be undirected to provide a 

better explanation for bidirectional relations like 

common IPs or similar behavior, even though edge 

weights are maintained for association strength. The 

graph is dynamic and is continuously updated in 

real-time by a sliding window approach to respond to 

changing network behavior and remain in sync with 

temporal fluctuations in traffic patterns. 

Within the framework of GAGA-Net, the GAN 

and GNN modules are trained independently of one 

another. The GAN is initially trained solely in samples 

of benign traffic to acquire the distribution of normal 

behavior and produce artificial samples of traffic that 

resemble actual, non-malicious flows. Following the 

stable training of the GAN, the GNN is trained upon 

graph representations built from actual as well as 

GAN-generated benign samples. This sequential 

training enables the GNN to learn structural dynamics 

and spatiotemporal correlations that define abnormal 

behavior. The contribution of this work lies not in joint 

GAN and GNN training, a concept already explored in 

existing research, but in the development of a tailored 

traffic-to-graph conversion process and the fusion of 

decisions via a hybrid strategy. Traffic graph edges are 

constructed from a mix of temporal closeness, IP 

address co-occurrence, and cosine similarity of 
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session-level features to facilitate more extensive 

relational modeling. Additionally, a composite decision 

method is put forward, in which the anomaly score 

combines the GAN discriminator and GNN node 

classifier outputs to enhance resistance to various attack 

types, such as stealthy and zero-day attacks. 

The suggested methodology employs a sequential 

training strategy for the GAN and GNN components. 

The GAN is initially trained solely on benign network 

traffic to model the usual data distribution. Upon 

attaining convergence, the samples generated by the 

GAN, in conjunction with authentic benign traffic, are 

utilized to create graph-structured representations of 

network sessions. The graphs are utilized to train the 

GNN, which acquires node-level anomaly 

categorization by recording temporal and relational 

relationships among sessions. During inference, each 

traffic sample is evaluated individually by the GAN 

discriminator for behavioral deviance and by the GNN 

for topological inconsistency. The ultimate conclusion is 

determined by a composite anomaly score, which is 

produced from the output of the discriminator and the 

classification of the GNN. This sequential integration 

utilizes generative modeling and structural reasoning to 

improve the identification of behavioral and relational 

anomalies. 

The generation of graph structures from network 

traffic entails designating nodes as distinct traffic 

sessions and establishing edges according to temporal 

and behavioral similarity. An undirected edge is 

established between two nodes if (1) the sessions 

transpire within a specified temporal frame of 10 

seconds, (2) they possess a common source or 

destination IP address, or (3) the cosine similarity of 

their feature vectors surpasses a predetermined threshold 

of 0.8. Each edge is assigned a weight based on the 

cosine similarity score, normalized to the interval [0, 1], 

indicating the behavioral proximity of the linked 

sessions.  

The resultant adjacency matrix is symmetrically 

normalized utilizing 𝐴𝑛𝑜𝑟𝑚 = 𝐷−
1

2𝐴𝐷−
1

2 , where 𝐷 is 

the degree matrix. This method guarantees equitable 

message dissemination in GCN layers and mitigates bias 

from high-degree nodes. These design criteria allow the 

graph to depict both local and global contextual 

relationships in network behavior. 

3.3 Generative adversarial training and 

anomaly detection 

GAN learns normal network activity and detects 

anomalies using just benign traffic data. Anomaly 

detection using Generative Adversarial Networks 

(GANs) requires generation and discrimination. The 

generator simulates traffic distribution using noise input, 

while the discriminator verifies it. The discriminator 

computes sample differences between real and generated 

traffic to find abnormalities. The generator generates 

traffic samples that mimic real traffic distribution, while 

the discriminator maximizes Formula 5's loss function 

to differentiate between produced and real traffic. 

[log ( )] [log(1 ( ( )))]GAN t tL D D G= + −x zE E (5) 

Formula (5): Optimization goal of the discriminator of 

the GAN for determining whether a sample belongs to 

the benign distribution. Here, tx  represents the real 

traffic sample of the input, tz  is the noise input to the 

generator, ( )D   represents the output of the 

discriminator. The goal of the discriminator is to output 

a value close to 1 to indicate that the traffic is normal, 

while the goal of the generator is to minimize this loss 

so that the generated samples are closer and closer to the 

real traffic. During the training process, the generator 

and the discriminator are constantly competing. The 

generator continuously improves its ability to generate 

traffic, while the discriminator continuously improves 

its ability to distinguish between real traffic and 

generated traffic. Finally, after multiple rounds of 

training, the generator can generate samples close to real 

traffic, and the discriminator can accurately distinguish 

between normal traffic and abnormal traffic. 

The model uses a GAN-based anomaly detection 

framework trained on ordinary network data for 

unsupervised, one-class learning. The generator learns 

to replicate benign traffic, while the discriminator 

distinguishes produced (normal) and authentic (input) 

samples. The discriminator calculates a similarity score 

during inference: 1 indicates benign behavior, 0 

indicates anomalies. This score is a subtle confidence 

metric that allows the algorithm to recognize zero-day 

or previously unencountered assaults as aberrations 

from the normal distribution without labeled attack data. 

 To improve detection, an ensemble of GNNs 

models traffic sessions as graph nodes and captures 

spatiotemporal interactions using graph convolutions. 

By combining neighboring node information, GNNs 

improve representation learning and detect complicated 

structural anomalies. GNNs build a reference dataset 

and collect contextual knowledge to create an accurate 

detection framework. 

( 1) ( ) ( ) ( )

( )
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Formula (6): Describes iterative GCN layers that 

progressively update node embeddings to learn 

relational patterns employed in final classification. 

Through multiple layers of graph convolution, the 

representation of nodes will be continuously updated, 

and these updated node features will help distinguish 

normal traffic from abnormal traffic. When it is detected 
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that the features of a traffic node are significantly 

different from those of its neighboring nodes, the system 

can identify potential abnormal behavior. 

To create graph-structured representations from raw 

network traffic data, each traffic session is initially 

depicted as a node, with node features comprising 

normalized session-level attributes including packet 

counts, flow duration, byte rates, protocol type, and 

inter-arrival periods. A graph 𝐺 = (𝑉, 𝐸) is constructed, 

where 𝑉 denotes the collection of nodes (sessions) and 

𝐸 signifies the set of edges established according to 

relational criteria. An edge is established between two 

nodes 𝑥𝑖  and 𝑥𝑗  if any of the subsequent conditions 

are met: 

• Temporal proximity: The absolute difference 

between timestamps ∣ 𝑡𝑖 − 𝑡𝑗 ∣ is smaller than 

a predetermined threshold 𝛥𝑡 (e.g., 10 

seconds). 

• IP co-occurrence: The two sessions possess a 

common source or destination IP address. 

• Feature similarity: The cosine similarity 

𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑗)  exceeds 𝜏,  is a predetermined 

threshold (e.g., 0.8). 

Each edge is allocated a weight corresponding to the 

cosine similarity score, reflecting the behavioral 

proximity of session pairs. The resultant adjacency 

matrix 𝐴 is constructed so that 𝐴𝑖𝑗  =  𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑗) for 

connected nodes, and 0 otherwise. Symmetric 

normalization is employed to facilitate efficient graph 

convolution and equitable message transmission. 

 𝐴𝑛𝑜𝑟𝑚  =  𝐷−
1

2 𝐴𝐷−
1

2; where 𝐷 represents the degree 

matrix, defined as 𝐷𝑖𝑖  =  ∑ 𝐴𝑖𝑗𝑖 .  The normalized 

adjacency matrix is utilized in the graph convolution 

layers of the GNN to capture topological and contextual 

dependencies among traffic sessions. 

3.4 Anomaly detection and decision 

making 

GANs with GNNs improve network anomaly 

detection precision and reliability. The GAN's 

discriminator first checks if the input traffic sample 

matches its taught patterns in the detection phase. A low 

similarity score approaching 0 suggests abnormal traffic. 

A Graph Neural Network (GNN) analyzes the traffic 

graph's structural relationships between the flagged node 

and its neighbors to reduce false positives and improve 

decision accuracy. After detecting relational errors or 

topological pattern deviations, the GNN flags the 

sample as malicious. Otherwise, the alarm is canceled as 

a false positive. A dynamic alarm thresholding technique 

based on the GAN discriminator and GNN classifier 

anomaly score distribution lowers alert fatigue in 

high-rate anomaly detection systems. We dynamically 

calculate anomaly score threshold from a statistical 

boundary (mean + 2.5σ) of validation-set outputs, rather 

than utilizing a fixed threshold. It reduces false alarms 

without compromising sensitivity. We tracked the false 

positive rate (2.10%) across three datasets and 

performed precision-recall trade-off analysis during 

experimental validation testing to prevent overloading 

operators with alarms. We also implemented a 

post-processing rule that quiets alarms for certain 

consecutive benign sessions within a sliding time range 

to manage alarm frequency and prevent alert flooding in 

real-world deployments. 

 

Pseudocode: GAN-GNN Anomaly Detection 

Framework 

Input: Raw traffic data D =  {x₁, x₂, . . . , xₙ} 

 Similarity threshold τ 

 Temporal window Δt 

 Cosine similarity function sim(·,·) 

 Training epochs EGAN, EGNN  

 Batch size B 

Output: 

 Trained discriminator Dnet and GNN model GNNnet 

Step 1. Preprocess raw traffic: 

 For each session xi in D: 

  Extract features F(xi) 

  Normalize F(xi)  →  xᵢ′ ∈  [0, 1]d 

 Construct graph G =  (V, E): 

  V ←  all xᵢ′ 

  For all (xᵢ′, xⱼ′): 

  If sim(xᵢ′, xⱼ′)  ≥  τ or same IP / within Δt: 

  Add edge (i, j) 

Step 2. Initialize: 

 Generator Gnet , Discriminator Dnet 

 Graph Neural Network GNNnet 

Step 3. Train GAN: 

 For epoch = 1 to E_GAN: 

  Sample batch of real samples R from D 

  Generate fake samples F =  Gnet(z), z ∼  N(0, I) 

  Update Dnet via WGAN-GP loss: 

 LD  =  E[Dnet(F)]  −  E[Dnet(R)]  +  λ ·  GradientPenalty 

  Update Gnet to minimize LG  =  −E[Dnet(F)] 

Step 4. Train GNN: 

 For epoch = 1 to E_GNN: 

  Input graph G =  (V, E), feature matrix X 

 Forward pass: node embeddings H =  GNNnet(X, A) 

  Compute node-level cross-entropy loss: 

   LGNN  =  −Σ yᵢ log(ŷᵢ) 

  Backpropagate and update GNNnet 

Step 5. Anomaly Detection: 
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 For new session x: 

  If Dnet(x)  <  threshold: 

   Label as suspicious 

  Else: 

   Use GNN to propagate features in graph G 

 If GNN output deviates from neighbors: 

    Flag as anomaly 

 

The pseudocode details a two-stage GAN-GNN 

framework for network anomaly detection. GANs 

initially learn normal traffic distribution by sampling 

and training a discriminator to detect real vs. fake data. 

A GNN later finds spatiotemporal dependencies from 

graph-structured traffic representations. At inference 

time, anomalies are discovered based on both the GAN 

discriminator score and the GNN relational 

inconsistencies. 

4 Experimental evaluation and 

discussion 

4.1 Experimental purpose and objectives 

An anomaly detection method using Generative 

Adversarial Networks (GANs) and Graph Neural 

Networks (GNNs) to discover network security 

concerns was experimentally validated. The experiment 

compares detection accuracy to conventional intrusion 

detection systems (IDS), response time under diverse 

traffic volumes for real-time applicability, performance 

metrics (including false alarm and false negative rates) 

with CNN and LSTM, robustness against noise and 

adversarial attacks, and model stability over prolonged 

operation. To provide fair and reproducible comparisons, 

DeepLog, CNN-LSTM, Autoencoder-IDS, and 

DeepAutoMax were reimplemented utilizing a uniform 

preprocessing pipeline and training hyperparameters. 

Each model was calibrated for optimal performance on 

the specified datasets using its paper's design. Uniform 

parameters and train-test splits ensured experiment 

fairness. 

Hyperparameters of the GAN and GNN 

components were jointly optimized using grid search, 

with selection based upon performance metrics on the 

validation set. For the GAN, learning rate (0.0001 to 

0.0005), batch size (64, 128, 256), number of layers in 

generator and discriminator (2 to 4 layers), size of latent 

noise vector (64, 100, 128), and the coefficient of the 

gradient penalty (λ ∈ {1, 5, 10}) in WGAN-GP 

framework were some of the most important 

hyperparameters. For the GNN module, grid search 

considered the following parameters: number of graph 

convolutional layers (2 to 4), hidden units per layer (64, 

128, 256), dropout rates (0.2, 0.5, 0.7), learning rates 

(0.0001 to 0.005), and activation functions such as 

ReLU, LeakyReLU, and ELU. All the candidate settings 

were assessed on 5-fold cross-validation to avoid 

overestimation, and the best hyperparameter setting was 

chosen by the balance of high validation accuracy and 

low false positive rate. The tuned parameters were then 

locked and utilized for final testing and training, and 

consequently, a well-calibrated and generalizable model 

setting was achieved for several datasets. 

To guarantee reproducibility, comprehensive 

hyperparameter configurations were implemented and 

recorded for both the GAN and GNN components. The 

GAN's generator had three fully linked layers (256, 512, 

1024 units) utilizing LeakyReLU and Tanh activations, 

whilst the discriminator replicated the same architecture 

in reverse, culminating in a Sigmoid output. The 

training utilized the Adam optimizer with a learning rate 

of 0.0002, a batch size of 128, and implemented the 

Wasserstein GAN with gradient penalty (WGAN-GP) to 

ensure training stability. The GNN employed a 

two-layer Graph Convolutional Network (GCN) 

featuring 128 hidden units, ReLU activation, a dropout 

rate of 0.5, and was optimized via cross-entropy loss 

using the Adam optimizer with a learning rate of 0.001. 

Five-fold cross-validation and early halting were 

utilized to mitigate overfitting. Customized parameters 

were essential due to fluctuations in traffic patterns, 

class imbalance, and feature distributions among 

datasets, rendering standard configurations inadequate. 

Parameter optimization guaranteed uniform and 

equitable model performance across NSL-KDD, 

CICIDS 2017, and the real-world dataset. 

4.2 Experimental environment and 

dataset 

The investigations were run on a powerful server 

with an Intel Xeon Gold 6230R CPU, NVIDIA Tesla 

V100 GPU, 128GB RAM, and Ubuntu 20.04 LTS. 

TensorFlow, PyTorch, and Docker enabled fast training, 

reproducibility, and environmental consistency. Python 

and Scikit-learn aided preparation and evaluation. The 

model was trained using NSL-KDD and CICIDS 2017 

normal samples and tested on malicious samples. 

Kaggle public datasets and a custom real-world traffic 

dataset were used to evaluate performance and 

generalizability under different network conditions. 

Each dataset (NSL-KDD, CICIDS 2017, and the 

in-house real-world dataset) has three distinct subsets: 

training (70%), validation (15%), and test (15%) for 

experimental analysis. The stratified split ensures 

subsets reflect all relevant attack classes proportionally. 

The final GAN generative model was trained for 200 

epochs with 128 batches. The Wasserstein GAN 

formulation with gradient penalty preserved training 

stability. Adam optimizer was used for the discriminator 

and the generator, with 0.0002 learning rate and 𝛽₁ =
 0.5. 

Hyperparameter tuning included 5-fold 
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cross-validation to generalize and avoid overfitting. 

Based on fold-level mean validation accuracy, GNN 

layer numbers, learning rates, and dropout ratios were 

optimized. We chose 10 patience epochs to avoid 

validation loss pattern overfitting. These improvements 

ensure fair and accurate model performance evaluation 

under realistic network traffic.  

New real-world network traffic dataset experiments, 

NSL-KDD, CICIDS 2017. NSL-KDD has 125,973 

instances—77,054 training, 48,919 test. Every 

occurrence is normal or one of 22 assaults with 41 

traffic property attributes. The attacks are DoS, Probe, 

U2R, and R2L. Official dataset NSL-KDD provides 

well-labeled and characterized traffic flows for anomaly 

detection.  

The eight-day real-time network dataset CICIDS 2017 

contains 2.83 million flows. This study examined 

650,000 data points from regular traffic and 14 attack 

methods, including DoS Hulk, DDoS, Brute Force, XSS, 

SQL Injection, and Infiltration. Three-day samples 

demonstrate a diverse and authentic mix of benign and 

malicious traffic.  

A network sniffer in a simulated lab collected 102,340 

network sessions with 20 extracted attributes, including 

packet rate, byte counts, and protocol type, over seven 

days. Typical penetration testing yielded 73,180 normal 

and 29,160 Port Scan, SYN Flood, DNS Spoofing, ARP 

Poisoning, and ICMP Flood attacks. For temporal 

context, graphs were made every 10 seconds. The 

dataset comprises over 540,000 annotated traffic 

sessions gathered over a 30-day interval from an 

enterprise network utilizing a mix of Wireshark and 

Zeek. It encompasses both benign and malicious traffic, 

addressing seven distinct threat areas, including port 

scans, brute-force login attempts, and data exfiltration. 

The traffic encompasses various protocols, including 

TCP, UDP, ICMP, and HTTP, providing significant 

variance in flow time, packet size, and connection 

behavior. These attributes guarantee that the dataset 

accurately represents authentic network settings and 

improves the model's validation in real-world 

deployment situations. 

To preserve experimental validity, training 

exclusively utilized benign traffic, while known and 

zero-day assaults were allocated for testing purposes. 

Timestamp-based filtering and hash deduplication 

eliminated training-test overlap. The custom dataset 

underwent preprocessing utilizing the identical 

workflow as NSL-KDD and CICIDS 2017, facilitating 

consistent graph-based input and uniform analysis 

across all datasets. 

All baseline models, comprising CNN-LSTM, 

Autoencoder-IDS, DeepLog, and DeepAutoMax, were 

re-implemented according to their original architectures. 

A uniform experimental framework was upheld 

throughout all models, encompassing identical 

preparation pipelines, dataset divisions (70% training, 

15% validation, 15% testing), and hyperparameter 

optimization via grid search. Five-fold cross-validation 

and early halting were utilized to guarantee rigorous 

assessment and avert overfitting. Performance was 

evaluated by accuracy, false positive rate (FPR), false 

negative rate (FNR), average inference time per sample, 

and zero-day detection rate, facilitating a fair 

comparison with the proposed GAGA-Net model. 

4.3 Experimental results 

This study defines real-time performance as the 

system's ability to process and assess all network data 

sessions for threat identification in a short period. 

Real-time is the session-average inference time from 

traffic capture to anomaly decision. Maximum real-time 

response is 130 milliseconds per sample, using 

industry-standard IDS benchmarking data. The 

anticipated GAGA-Net can always tolerate 120 

millisecond reaction times, making it ideal for enterprise 

or critical infrastructure networks. 

 

Table 3: Comparison of the overall accuracy of different models on the NSL-KDD dataset 

Model Type Accuracy (%) 

GAGA-Net (this article) 97.35 

CNN-LSTM (Reference [1]) 94.20 

Autoencoder-based IDS (Reference [2]) 95.12 

DeepLog (Reference [3]) 96.50 

DeepAutoMax (Reference [4]) 96.85 

 

Table 3 shows five models' total accuracy on 

NSL-KDD, a typical intrusion detection dataset. The 

GAGA-Net model was most accurate at 97.35%. 

CNN-LSTM, Autoencoder-based IDS, DeepLog, and 

DeepAutoMax had accuracy of 94.20%, 95.12%, 

96.50%, and 96.85%. This suggests that generative 

adversarial networks and graph neural networks can 

better identify threats and complex network traffic 

patterns. With enhanced accuracy, the model had lower 

false positive (2.10%) and false negative (1.80%) rates 

on three datasets than baseline models. many trial-tested, 

statistically proven (using paired t-tests, e.g.) upgrades 

across many datasets show the model's efficacy in 

real-world network security applications that decrease 
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both types of errors. To test Table 3 performance 

differences' stability, each model was run 10 times with 

different random seeds. The mean accuracy and standard 

deviation of each approach are shown. 95% confidence 

intervals were calculated using Student's t-distribution. 

The proposed GAGA-Net model showed consistent 

performance with an average accuracy of 97.35% ± 0.22 

across runs. 

Additionally, statistical significance tests were 

performed to validate meaningful gains. We utilized 

paired t-tests and Wilcoxon signed-rank tests to compare 

GAGA-Net to all baselines. Results showed significant 

accuracy gains (p < 0.05) in all cases. The results 

support the idea that the proposed model outperforms 

deep learning-based intrusion detection approaches. 

In Table 4, reaction time assesses how quickly each 

model handles CICIDS 2017 sessions. GAGA-Net's 

average inference time is 120 milliseconds, 

demonstrating real-time detection proficiency. 

CNN-LSTM, Autoencoder-based IDS, DeepLog, and 

DeepAutoMax reported average reaction times of 145, 

135, 125, and 118ms. Short response times are critical 

for real-time security systems that detect threats quickly. 

Feature extraction, graph building, GAN-based 

discrimination, and anomaly classification are included 

in each response time. To eliminate timing outliers, 

1,000 randomly selected sessions were averaged to 

calculate the times. Tests were run without batch 

processing to simulate streaming, real-time scenarios. 

While GAGA-Net meets real-time inference criteria, its 

implementation in live systems requires integration with 

packet capture and warning systems, a future research 

goal. GAGA-Net balances speed and accuracy for 

reliable real-time network threat monitoring in 

security-sensitive environments. 

 

Table 4: Response time of different models for CICIDS 2017 dataset (milliseconds) 

Model Type Average response time (ms) 

GAGA-Net (this article) 120 

CNN-LSTM (Reference [1]) 145 

Autoencoder-based IDS (Reference [2]) 135 

DeepLog (Reference [3]) 125 

DeepAutoMax (Reference [4]) 118 

 

Table 5 compares models with false alarm rates on 

a custom dataset. Compared to CNN-LSTM (3.50%), 

Autoencoder-based IDS (3.00%), DeepLog (2.50%), 

and DeepAutoMax (2.25%), GAGA-Net has the lowest 

false alarm rate of 2.10%. The model's low false alarm 

rate allows it to identify abnormal behavior without 

disrupting routine operations, saving administrators time 

and resources. This is crucial for network efficiency and 

security, ensuring only serious threats activate alerts. 

Table 6 shows the false negative rate, or the ratio of 

true attacks detected by each model on the custom 

dataset to the total number of attacks. GAGA-Net has a 

1.80% false negative rate, lower than CNN-LSTM 

(4.00%), Autoencoder-based IDS (3.50%), DeepLog 

(2.70%), and DeepAutoMax (2.00%). The model can 

better detect all forms of assaults, even covert ones that 

try to avoid detection due to its low false negative rate. 

This is crucial for safeguarding the network against 

unknown or novel attacks and identifying and 

responding to as many real threats as possible. 

 

Table 5: False positive rate (FP Rate) of each model on the custom data set 

Model Type False alarm rate (%) 

GAGA-Net (this article) 2.10 

CNN-LSTM (Reference [1]) 3.50 

Autoencoder-based IDS (Reference [2]) 3.00 

DeepLog (Reference [3]) 2.50 

DeepAutoMax (Reference [4]) 2.25 

 

Table 6: FN Rate of each model on the custom dataset 

Model Type Missing reporting rate (%) 

GAGA-Net (this article) 1.80 

CNN-LSTM (Reference [1]) 4.00 

Autoencoder-based IDS (Reference [2]) 3.50 
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DeepLog (Reference [3]) 2.70 

DeepAutoMax (Reference [4]) 2.00 

 

 

Figure 2: The recognition effect of each model on different types of attacks (taking CICIDS 2017 as an example) 

 

Figure 2 shows how each model recognizes DDoS, 

Brute Force, and XSS attacks in the CICIDS 2017 

dataset. The GAGA-Net model recognizes these three 

assault types at 98.50%, 96.70%, and 95.50%, which is 

higher than comparable models. The model can detect 

brute force cracking, cross-site scripting, and large-scale 

distributed denial of service attacks due to this complete 

advantage. This performance is essential for building a 

multilayered defense strategy, allowing security teams to 

trust automated technologies to monitor and protect the 

network. 

Figure 3 compares model performance at different 

network traffic scales. A better model than others, the 

GAGA-Net model retains high accuracy across a wide 

range of traffic scales, attaining 97.50%, 97.00%, and 

96.50%. This means the concept works well in tiny 

network environments and massive data flows. Modern 

network security systems must be adaptable to detect 

threats even when network traffic spikes. 
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Figure 3: Adaptability test of each model in a large-scale traffic environment 

 

Table 7: Performance of each model in zero-day attack detection 

Model Type Zero-day attack detection rate (%) 

GAGA-Net (this article) 92.00 

CNN-LSTM (Reference [1]) 88.00 

Autoencoder-based IDS (Reference [2]) 89.00 

DeepLog (Reference [3]) 90.50 

DeepAutoMax (Reference [4]) 91.20 

 

Table 7 shows each model's zero-day attack 

detection performance. The GAGA-Net model detects 

zero-day attacks at 92.00%, outperforming CNN-LSTM 

(88.00%), Autoencoder-based IDS (89.00%), DeepLog 

(90.50%), and DeepAutoMax (91.20%). Zero-day 

assaults are difficult to handle, but the GAGA-Net 

model has shown it can learn normal activity patterns 

and identify anomalous ones. This adds security for 

cybersecurity professionals to anticipate new threats. 

Figure 4 thoroughly assesses model robustness and 

stability. The GAGA-Net model performed well under 

varied scenarios with a robustness score of 9.2 and a 

stability score of 9.5. The robustness score assesses the 

model's resilience to uncertainty and change, while the 

stability score indicates its long-term consistency. These 

two excellent scores demonstrate that the GAGA-Net 

model may work stablely in a diverse and dynamic 

network environment and perform well over time, 

protecting users. 

Figure 5 shows each model's robustness under 

varying SNRs. GAGA-Net has stronger noise resistance 

than other models and operates well at SNR levels from 

96.80% to 91.20%. Due to its excellent extraction and 

learning of regular behavior patterns, the model can 

retain high accuracy in low SNR situations. In real life, 

network traffic is noisy; hence, noise resistance is vital 

to detection system performance, making the 

GAGA-Net model suited for complicated network 

environments. 
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Figure 4: Robustness and stability evaluation of each model 

 

 

Figure 5: Robustness of each model in a noisy data environment 
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Figure 6: Stability of each model under adversarial attacks and long-term operation 

 

Figure 6 shows a detailed investigation of each 

model's stability under adversarial attacks and long-term 

operation. GAGA-Net model achieves 90.50% accuracy 

under adversarial attacks, ±0.50% performance 

fluctuation after long-term operation, and 9.4 points 

stability score. This shows that the model can sustain 

accuracy against well-designed attacks and be extremely 

stable over time. Stability and attack resistance are 

crucial for network settings that need constant 

monitoring and protection, maintaining system 

reliability and security. 

4.4 Discussion 

Experimental outcomes affirm the improved 

performance of the proposed hybrid model GAN-GNN 

compared to traditional methods presented in Table 1. 

Although models like CNN-LSTM, DeepAutoMax, and 

DeepLog have excellent accuracy, their increased false 

positive rates (FPR) and false negative rates (FNR) 

contribute to the inability to detect sophisticated patterns 

and new attack behaviors. Compared to this, the 

precision of GAN-GNN model was better at 97.35%, 

reduced FPR to 2.10%, and FNR at 1.80%, which 

clearly reflects improved performance over the current 

models. 

The enhanced efficacy of the proposed model is 

mostly ascribed to the synergistic advantages of GANs 

and GNNs. GANs proficiently acquire deep feature 

representations and produce realistic traffic patterns, 

whereas GNNs elucidate topological dependencies and 

inter-traffic links, hence augmenting the model's 

capacity to identify covert or coordinated attacks. By 

representing traffic as a graph, the system assesses both 

individual traffic characteristics and their relationships, 

which is essential for detecting intricate anomaly 

patterns. The model demonstrated robust scalability, 

sustaining excellent accuracy over diverse traffic 

volumes, with an average inference time of 120 

milliseconds per session, rendering it appropriate for 

real-time threat monitoring. It exhibited robust resilience, 

sustaining performance in aggressive and noisy 

environments, underscoring its preparedness for 

implementation in practical cybersecurity applications. 

 Nevertheless, certain limits endure. The 

performance of models may deteriorate in significantly 

skewed datasets where infrequent attack types are 

inadequately represented. Generative Adversarial 

Networks (GANs), although beneficial for analyzing 

traffic patterns, are susceptible to training instability and 

mode collapse. Moreover, very innovative attacks that 

substantially deviate from both authentic and created 

distributions may remain undetected. Future research 

may concentrate on using adaptive sampling techniques 

to address data imbalance and investigating attention 

mechanisms or transformer-based architectures to 

improve context-aware anomaly identification. 

4.5 Extended evaluation for 

generalizability 

This study enhances the generalizability assessment of 

GAGA-Net beyond datasets such as NSL-KDD and 

CICIDS 2017, which exhibit structured patterns, by 

evaluating its performance on two contemporary and 

heterogeneous datasets: UNSW-NB15 [34] and 

TON_IoT [35].  

The UNSW-NB15 dataset was created by the 

Australian Centre for Cyber Security (ACCS) at UNSW 

Canberra utilizing the IXIA PerfectStorm tool within 

their Cyber Range Lab. It comprises a mixture of 

authentic benign traffic and artificially generated 
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contemporary attack behaviors recorded using Argus 

and Bro-IDS tools. The dataset has 49 attributes, 

including flow duration, service, source and destination 

bytes, and packet size. The dataset has more than 2.5 

million records categorized into nine distinct attack 

types: Fuzzers, Analysis, Backdoors, DoS, Exploits, 

Generic, Reconnaissance, Shellcode, and Worms. This 

dataset provides a modern perspective on network 

hazards and encompasses significant traffic variability, 

rendering it appropriate for assessing detection systems 

across diverse circumstances. 

TON_IoT is an extensive telemetry and network 

dataset gathered by UNSW Canberra from a realistic 

IoT/IIoT environment that includes edge, fog, and cloud 

layers. The collection comprises network packets, 

sensor data, and system logs from both Windows and 

Linux platforms. This depicts a contemporary 

cyber-physical system environment and encompasses 

many attack scenarios, including password brute-force, 

ransomware, denial of service (DoS), data exfiltration, 

and privilege escalation. The TON_IoT dataset is 

particularly significant for assessing the scalability and 

adaptability of intrusion detection algorithms in 

IoT-intensive and real-time systems, as it comprises 

both structured and unstructured data sources. 

 

Table 8: Performance comparison of GAGA-Net across multiple datasets 

Dataset Total 

Samples 

Attack 

Categories 

Accuracy 

(%) 

FPR (%) FNR (%) Inference 

Time (ms) 

NSL-KDD 125,973 4 97.35 2.10 1.80 120 

CICIDS 2017 2,830,743 15+ 96.78 2.35 2.12 135 

Real-World Set 540,000 7 95.84 2.48 2.60 128 

UNSW-NB15 2,540,044 9 96.20 2.75 2.35 132 

TON_IoT 514,200 10+ 94.80 3.10 3.60 140 

 

Similar preprocessing, training, and evaluation 

protocols were implemented for both supplementary 

datasets to guarantee equity and uniformity. GAGA-Net 

exhibited competitive performance across all 

benchmarks, demonstrating its robust generalization 

capabilities in anomaly detection inside both classic and 

contemporary network environments.  

GAGA-Net demonstrates consistently high 

accuracy across all datasets, as shown in Table 8, 

achieving 97.35% on NSL-KDD and 96.78% on 

CICIDS 2017, while also exhibiting robust performance 

on intricate, real-world datasets such as UNSW-NB15 

(96.20%) and TON_IoT (94.80%). Modest elevations in 

FPR and FNR on contemporary datasets are anticipated; 

however, inference times remain minimal, affirming 

GAGA-Net's appropriateness for real-time and varied 

network contexts. These extensive studies validate that 

GAGA-Net is successful on structured datasets and has 

strong performance in varied, unpredictable, and 

real-world network contexts. 

5 Conclusion 

This study introduces GAGA-Net, an innovative 

anomaly detection system that integrates Generative 

Adversarial Networks (GANs) with Graph Neural 

Networks (GNNs) to improve network security 

measures. The system is constructed as a modular 

detection architecture, wherein GANs are employed to 

emulate benign traffic patterns, while GNNs scrutinize 

graph-structured representations of traffic to discover 

anomalous deviations. This hybrid integration facilitates 

real-time detection, minimizes false positives, and 

enhances the system's capacity to identify zero-day 

assaults. The model utilizes sequential training, 

graph-based traffic modeling, and an ensemble decision 

mechanism, yielding a robust, scalable, and deployable 

intrusion detection pipeline. 

Experimental assessments across several public and 

real-world datasets demonstrate that GAGA-Net attains 

superior detection accuracy, reduced false positive and 

false negative rates, and expedited inference times 

relative to current IDS methodologies. Moreover, 

evaluations performed on datasets of diverse magnitudes 

demonstrate the model's robust scalability and stability 

in managing extensive traffic without sacrificing 

efficiency. These findings confirm GAGA-Net's 

versatility and efficacy in many network settings. 

Future endeavors may concentrate on 

amalgamating GAGA-Net with additional security 

technologies to establish a multi-tiered protection 

architecture. As deep learning techniques advance, 

hybrid anomaly detection models such as GAGA-Net 

are anticipated to be crucial in protecting essential 

digital infrastructures from growing and complex cyber 

threats. 
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