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This study proposes METCL-BERT, a novel automatic translation quality assessment framework for 

large language models (LLMs), which synergistically combines BERTScore for deep semantic 

representation and contrastive learning for enhanced error discrimination. The architecture employs a 

shared XLM-RoBERTa-large encoder to dynamically generate feature vectors (768D from BERTScore 

with layer 8-16 weighting and 512D from contrastive learning), fused via a two-layer neural network to 

output a normalized quality score (0-100). Comprehensive experiments were conducted on multilingual 

datasets WMT22/23 and TED-MT (totaling 18,000 baseline and 32,000 LLM-generated translation 

pairs), evaluating performance across English-to-Chinese, -German, and -Russian tasks. The framework 

was rigorously tested for robustness against lexical, syntactic, and semantic perturbations and domain 

shifts (medical, legal, financial), with robustness measured by the correlation decline rate (RDR). 

Results demonstrate that METCL-BERT achieves sentence-level Spearman correlations of 0.791 (en-zh), 

0.803 (en-de), and 0.782 (en-ru), significantly outperforming the best baseline KIWI-22 by >7.6%. It 

attains a system-level Kendall Tau of 0.832, markedly superior to COMET-22 (0.745). Crucially, its 

robustness is validated by an average RDR of 18.70% across perturbation tests, substantially lower than 

BERTScore (24.50%) and COMET-22 (21.20%). Further strengths include exceptional discriminative 

power (QSD=2.14) with strictly increasing quality interval medians (92.5→78.0→65.0→38.0) and a 

large effect size (Cohen's d=4.37). Ablation studies confirm the synergistic contribution (63%) of both 

modules. 

Povzetek: Raziskava predstavi metodo, ki s pomočjo naprednega jezikovnega modela bolj zanesljivo 

oceni, kako dober je samodejni prevod, in je natančnejša ter stabilnejša od obstoječih rešitev. 

 

1 Introduction 
The current research status of automatic translation 

quality assessment methods for large language models 

based on BERT scores and contrastive learning shows a 

trend of multi-dimensional technology integration. 

Zhongshui Qu et al. construct a unicentric semantic 

representation space through contrastive learning [1], 

providing a methodological basis for translation 

representation alignment; while Min Pan et al. 

demonstrate that contrastive learning can deeply mine the 

semantics of irrelevant texts [2], hinting at its potential 

for distinguishing subtle errors in evaluation. Shining 

Wang et al. innovatively apply contrast loss to noise 

robust translation [3], whose sentence/word-level 

dual-granularity alignment mechanism can be directly 

migrated to representation similarity computation in 

evaluation. The 12-layer Transformer architecture 

developed by Dan Wang [4] and Fanglin Wang et al.'s 

NAT-Transformer [5] provide a more robust coding 

foundation for BERT scoring through enhanced context 

modelling capabilities. Zhang Fan et al.'s multi-task  

 

comparison framework [6] reveals that the evaluation  

system can collaboratively optimise the enhancement and 

detection tasks. Xiong Xiaozhou et al.’s improved 

GQA-SM BERT [7] and Qiao Bo et al.’s BERT-CRF [8] 

enhance feature capture accuracy through attention 

optimisation and sequence annotation, respectively, 

which is crucial for critical information extraction in 

evaluation. The core breakthroughs are embodied in 

direct applications in translation scenarios: Linghui Wu 

et al. fused OCR confidence and word level comparison 

[9], demonstrating that auxiliary information can 

strengthen representation alignment; Zhengshan Xue et 

al. injected Gaussian noise in the hidden representation 

layer [10], which significantly improves the sensitivity of 

the robustness assessment by keeping the noise different 

from clean samples through KL scatter constraints. Liu 

Wuying et al.'s two-stage domain adaptation framework 

[11], on the other hand, solves the domain migration 

problem in evaluation. 

Recent advances highlight the advantages of hybrid 

architectures: Xiaohe Yuan verifies the effectiveness of 
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the BERT+BP algorithm in cross-modal assessment [12]; 

Fida Ullah et al. enhance the performance of BERT for 

low-resource languages through data augmentation [13]; 

while Yice Zhang et al. fuse a hybrid approach of BERT 

and LLM [14] to achieve SOTA in fine-grained sentiment 

analysis, the provide a new paradigm for 

multi-dimensional assessment of translation quality. 

Although current research has made progress in 

representation alignment, noise robustness and 

cross-domain adaptation, it has not yet formed an 

end-to-end evaluation framework, and there is an urgent 

need to integrate the sample differentiation mechanism of 

contrastive learning with the deep semantic 

characterisation capability of BERT. 

  While recent metrics like COMETKiwi-23 (Rei et al., 

2023), xCOMET (Kocmi et al., 2023), and SEScore2 (Xu 

et al., 2024) also integrate contrastive learning, 

METCL-BERT innovates through: (1) Dual-path feature 

extraction from shared encoder (vs. COMETKiwi's 

separate encoders); (2) Dynamic layer weighting (layers 

8-16) for granular semantic capture; (3) Unified 

calibration of 0-100 scores via sigmoid mapping. 

Publicly unavailable models (MetricX-24) were excluded 

due to API restrictions, but we validated METCL-BERT 

against xCOMET on available language pairs (Appendix 

Table C). 

 

Table 1: Comparative analysis of related works in translation quality assessment 

Study Core Contribution Technical Approach 
Application 

Scope 

Limitations Addressed by 

METCL-BERT 

Qu et al. 
Unicentric semantic 

representation space 

Contrastive learning 

semantic 

representation space 

Contrastive 

learning for 

representation 

alignment 

Translation representation alignment 

Pan et al. 

Deep mining of 

irrelevant text 

semantics 

Fine-grained 

semantic 

discrimination via 

contrastive learning 

Error detection ❌ No end-to-end framework 

Wang et al. 

Noise-robust 

dual-granular 

alignment 

Sentence/word-leve

l contrastive loss 

Representation 

similarity 
❌ Not adapted to LLM-specific errors 

Wang et al. 
Enhanced context 

modeling 

Optimized 12-layer 

Transformer 

BERT scoring 

foundation 
❌ Static layer aggregation (fixed layers) 

Wang et al. 
Non-autoregressive 

encoding efficiency 
NAT-Transformer 

Efficient feature 

extraction 
❌ No dynamic layer weighting 

Zhang et al. 
Enhancement-detectio

n co-optimization 

Multi-task 

contrastive 

framework 

Evaluation system 

optimization 
❌ No semantic-contrastive fusion 

Xiong et al. 
Key information 

capture accuracy 

Attention 

optimization 

(GQA-SM BERT) 

Feature extraction ❌ Fails domain adaptation 

Qiao et al. 
Sequence labeling for 

feature integrity 

BERT-CRF 

architecture 

Critical 

information 

extraction 
❌ Lacks perturbation robustness 

Wu et al. 

Auxiliary 

information-enhanced 

alignment 

OCR confidence + 

word-level contrast 

Representation 

alignment 
❌ Uncalibrated scoring 

Xue et al. 
Hidden-layer noise 

injection for robustness 

KL-divergence 

constrained 

Gaussian noise 

Robustness 

evaluation 
❌ No dual-module synergy 

Liu et al. 
Domain adaptation 

solution 

Two-stage domain 

adaptation 

framework 

Cross-domain 

evaluation 
❌ Low efficiency (separate encoders) 

Yuan et al. 
Cross-modal 

assessment validation 

BERT+BP hybrid 

algorithm 

Multimodal 

evaluation 
❌ Excludes LLM translation scenarios 

Ullah et al. 
Low-resource language 

enhancement 

Data augmentation 

+ BERT fine-tuning 

Low-resource 

evaluation 
❌ No dynamic fusion mechanism 

Zhang et al. 
SOTA fine-grained 

sentiment analysis 

BERT+LLM hybrid 

architecture 

Multidimensional 

assessment 
❌ Unnormalized scoring (non-0-100) 

METCL-BER

T 

End-to-end evaluation 

framework 

Shared encoder + 

dynamic weighting 

+ sigmoid 

calibration 

Full-scene LLM 

translation QA 
Breakthrough innovation 
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2 Assessment framework 

incorporating BERT scores and 

comparative learning 

2.1 Model architecture design 
The METCL-BERT framework integrates two 

synergetic modules that share the XLM-RoBERTa-large 

encoder. The BERTScore module is responsible for 

processing the source text and hypothetical translations, 

generating semantic similarity vectors by dynamically 

weighting the representations from layer 8 to layer 16. 

On the other hand, the contrastive learning module is 

trained with hypothetical translations as input using 

carefully designed positive and negative samples. The 

positive samples are high-quality human references 

filtered for semantic similarity. Negative samples include 

human-annotated errors, word 

replacement/deletion/insertion/sorting results from 

automatically scrambled versions, and sub-optimal 

translations from seven different large language models. 

In order to bring positive word pairs closer together 

while pushing negative word pairs farther away, the 

comparison encoder computes similarity scores using 

InfoNCE Loss with a temperature coefficient of 0.07. 

Finally, the 768-dimensional vector generated by the 

BERTScore module is merged with the 512-dimensional 

vector generated by the comparison learning module to 

form a 1280-dimensional feature vector [15-17]. This 

vector is then transformed by a two-layer feed-forward 

neural network with 512 hidden units and a ReLU 

activation function. The output of the neural network is 

normalised by a Sigmoid function and converted into a 

final quality score ranging from 0 to 100, allowing for 

accurate translation quality assessment. This approach 

maintains a high degree of correlation with human 

judgement and benefits from the computational 

efficiency that comes from parameter sharing. 

 

 

Figure 1: Model architecture diagram 

 

# METCL-BERT pseudocode 

def evaluate_quality(src, hyp, ref): 

# 1. Word Segmentation and Encoding 

tokens_src = tokenize(src) # source text word segmentation 

tokens_hyp = tokenize(hyp) # Assume translation word segmentation 

tokens_ref = tokenize(ref) # Reference translation word segmentation 

# 2. Dynamic Layer Weighting (8-16 layers) 

layers = model.encoder(tokens_src, tokens_hyp, output_hidden_states=True)[8:17] 

weights = softmax(learnable_weights) # learnable weights 

v_bert = sum(layers[i] * weights[i] for i in range(9)) # 768D vector 

# 3. Comparative Learning 

pos_sim = cosine_sim(enc(hyp), enc(ref)) # Positive sample similarity 

neg_sims = [cosine_sim(enc(hyp), enc(neg)) for neg in negatives] # negative sample 

v_cl = InfoNCE_loss(pos_sim, neg_sims, tau=0.07) # 512D vector 

# 4. Feature Fusion and Scoring 

fused = concat(v_bert, v_cl) # 1280D fusion vector 

score = sigmoid(FFN(fused)) * 100 # two-layer FFN mapping 

return score 

# Training Objective: Minimize the MSE loss of manual MQM scoring 

loss = MSE(score, human_mqm_score) 

 

2.2 Comparison learning module 
2.2.1 Sample construction strategy 

Sample construction is a fundamental task in 

contrastive learning, aiming at guiding the model to learn 

the difference between high-quality and low-quality 

translations by designing pairs of positive and negative 

samples. Positive samples represent high-quality 

translations, such as human high-scoring reference 

translations (from human-annotated, high-quality 

translations) or high-quality machine translations (e.g., 
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GPT-4-generated translations). Negative samples 

represent low-quality translations, including human 

low-scoring translations (translations that have been 

manually rated with low scores), perturbed samples 

(low-quality translations generated by various kinds of 

perturbations to the positive samples), such as 

substitutions, deletion (randomly removing some words 

or sentence components), insertion (adding irrelevant 

words or grammar to a sentence), word order disruption, 

and so on. In addition, suboptimal machine translation is 

also a form of negative samples [18-20]. 

In contrastive learning, the choice of encoder 

determines how the model learns the representation of 

the samples and how the similarity between them is 

computed. In order to improve computational efficiency 

and consistency of semantic representation, a shared 

encoder is chosen. A shared encoder means that the same 

pre-trained model (e.g. BERT or RoBERTa) is used in 

both the contrast learning module and the BERTScore 

module. This design ensures that all translation samples 

are represented in the same semantic space and efficient 

computation is achieved through shared parameters. 

Formula (1) is as follows: 

( )Encoderi i=h x               (1) 

where ix  is the input text (translation) and ih  is 

the representation of the encoder output. 

(1) Independent Encoder 

If an independent encoder is used, each module 

(BERTScore and Comparison Learning) will use a 

different encoder for feature extraction. While this 

approach can improve performance in some cases, it is 

less efficient due to the additional computational 

resources required. 

The core goal of contrast learning is to optimise the 

model by designing an appropriate loss function that 

allows it to distinguish between positive and negative 

samples. A commonly used loss function is InfoNCE 

Loss. by maximising the similarity between pairs of 

positive samples and minimising the similarity between 

pairs of negative samples, the model learns how to 

differentiate the quality of translations [21]. 

Negative sampling achieves a dynamic intra-batch 

sampling ratio of 1:5, among which 3 are randomly 

disturbed samples and 2 are LLM suboptimal outputs. 

Through grid search, the optimal temperature coefficient 

τ is determined to be 0.07, at which point the InfoNCE 

loss is the lowest. For difficult samples, a Top-20% 

high-confidence negative sample reuse rate of 40% is 

adopted. The results of the ablation experiment showed 

that τ=0.07 performed best in terms of poor sample F1 

(0.85) and training stability (smooth convergence), 

outperforming τ=0.05 (F1=0.82, severe oscillation) and 

τ=0.10 (F1=0.83, slight oscillation). 

2.2.2 Training Objective  

The contrastive module optimizes translation 

representations using InfoNCE loss with temperature 

τ=0.07, Formula (2) is as follows: 

L=- log
exp (sim(zi,zp)/τ)

∑ exp (K
k=1 sim(zi,zk)/τ)

                  (2) 

where zi =anchor translation, zp =positive sample, 

{zk}
k=1

K
.=negative samples (K=5). 

2.3 Fusion Strategies 

METCL-BERT adopts a dual-path fusion strategy 

of feature concatenation and neural network mapping. Its 

core process is shown in Figure 2. 

Training configuration: 8×NVIDIA A100 (80GB), 

PyTorch 2.0 + CUDA 11.8. The optimizer is AdamW 

(β₁=0.9, β₂=0.999, ε=1e-8), and the learning rate is cosine 

annealing scheduling (initial 5e-5, minimum 1e-6, 

warm-up 1000 steps). Batch size is 32 (including 5 

negative samples/positive samples), with 50,000 training 

steps (approximately 10 epochs, each epoch lasting 1.2 

hours). Regularization: dropout=0.1, weight decay =0.01, 

gradient clipping =1.0. Mixed-precision training (AMP 

O2) was adopted. Early stop: Trigger when the 

verification set ρ drops by more than 0.5% for three 

consecutive rounds. 

 

 
 

Figure 2: Flowchart of the dual-path fusion strategy 
 

The algorithm flow is as follows: 

（1）Concatenation As shown in Formula (3) 

vfused = [vbert, vcl]                       (3)   

Among them, vbert  is the BERTScore feature 

vector and vcl is the contrastive learning feature vector. 

(2) FFN fusion layer as shown in Formula (4) 

h = ReLU(W1vfused + b1)                  (4) 

W1 is the weight matrix,b1is the bias term. 

(3) Score Mapping As shown in Formula (5) 

sraw = W2h + b2         (5) 

W2is the weight matrix，b2is the bias term. 

(4) Score normalization as shown in Formula (6) 

Score = 100 ⋅ σ(sraw)                    (6) 

Here, σ(⋅) is the Sigmoid function, ensuring that the 

output falls within the range of [0,100]. 
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2.4 Final assessment score generation 
The output of the final evaluation is a single score, 

usually in the range [0, 100], indicating the quality of the 

translation. Higher values indicate better translation 

quality. This score is the combined result of the model by 

fusing multiple sources of information (BERTScore and 

the Comparative Learning Module) [24-25]. 

The output score finalS  is determined by the fusion 

of the following two main components: 

F1 score of BERTScore: indicates the semantic 

similarity between the translation and the reference 

translation, focusing on the accuracy of the translation. 

The similarity score of the comparison learning 

module: indicates the similarity between the translation 

and the generated translation, focusing on the quality of 

the translation and its relation to the high-quality 

reference translation. 

With the designed mapping function scoref , these 

two sources of information are fused into a final 

evaluation score. 

With the above feature and score fusion strategy, the 

final generated evaluation score finalS  can be expressed 

as Formula (7): 

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐹𝑁(𝐯𝑏𝑒𝑟𝑡, 𝐯𝑐𝑙))      (7) 

ReLU is the activation function, which is 

responsible for introducing non-linear properties. 

The process, through backpropagation and 

optimisation, enables the model to generate an accurate 

translation quality assessment score that matches the 

human rating. 

 

3 Experimental design and dataset 

3.1 Evaluation objectives 
METCL-BERT aims to comprehensively assess the 

translation quality of LLMS. Its performance evaluation 

focuses on three key goals: Validity, that is, accurately 

distinguishing translation quality levels in multilingual 

and diverse texts, and the correlation is significantly 

better than the existing baseline; Robustness, that is, the 

ability to resist typical LLM errors (such as 

lexical/syntactic confusion, semantic distortion, domain 

drift), while the decline rate of test set relevance does not 

exceed 10%; And Human Consistency (Human 

Consistency), that is, highly consistent with manual 

evaluation in fine-grained error identification and quality 

interval distinction, achieving frage-level Spearman's ρ ≥ 

0.75 and ANOVA p < 0.01. 

To address the targeted advances, we explicitly 

propose three research hypotheses: H1: Contrastive 

learning significantly enhances sensitivity to 

LLM-specific errors (e.g., factual tampering, 

over-translation) beyond COMET-22-level detection. H2: 

The dual-module synergy reduces correlation decline rate 

(RDR) to ≤10% under combined perturbations, 

outperforming SOTA robustness. H3: METCL-BERT 

achieves Cohen's d >4.0 in quality interval differentiation, 

enabling actionable error diagnosis. 

 

3.2 Data set construction 
In order to comprehensively verify the performance 

of METCL-BERT in LLM translation evaluation, a 

multi-dimensional dataset is designed, covering 

mainstream language pairs, text types and typical error 

patterns: 

 

Table 1: Core data composition 

Data 

Categories 
Sources & Notes 

sample 

size 

Manual labelling 

scheme 
Uses 

Baseline 

Translation 

Pairs 

WMT22/23 English → 

German/Chinese/Russian 

(one-way) + TED-MT 

(lecture texts) 

18,000 

MQM annotation: 

error type 

localisation 

Training/Verification/Testing 

LLM 

Generated 

Translation 

Library 

ainstream model 

generation: GPT-4/3.5 

Claude-2 

Gemini-Pro 

LLaMA-2-70B 

32,000 Severity Grading Training/Testing 

Perturbation 

Adversary Set 

Automatic generation of 

perturbation types: 

Lexical Perturbation, 

Syntactic Perturbation, 

5,000 DA score (0-100): Robustness Testing 

Domain 

Migration Set 

Semantic Perturbation 

Specialised domain texts: 

medical, legal, financial 

3,000 

3-member 

independent 

annotation 

Krippendorff's α ≥ 

0.75 

Cross-domain testing 
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Table 2: Data segmentation strategy 

Data 

subsets 

Baseline data 

sets 

LLM Generation 

Library 
perturbation set Domain migration set (grand) total 

Training 

Set 
12,600 (70%) 22,400 (70%) - - 35,000 

Validation 

Set 
1,800 (10%) 3,200 (10%) - - 5,000 

Test Set 3,600 (20%) 6,400 (20%) 5,000 3,000 18,000 

 

The benchmark dataset and the LLM generation 

library strictly follow the 7:1:2 ratio allocation, where the 

training set contains 12600 benchmark data and 22400 

generated data, respectively, the validation set 

incorporates 1800 benchmark data and 3200 generated 

data, respectively, and the test set is configured with 

3600 benchmark data and 6400 generated data. Notably, 

5000 samples from the perturbation set and 3000 samples 

from the domain migration set were kept intact for the 

test set and were not involved in any training or 

validation phase. This design ensures that the test set 

comprehensively evaluates the model's ability to 

generalise in the face of unknown perturbations and 

cross-domain scenarios. The final size of the training set 

reaches 35,000 samples, the validation set 5,000 samples, 

and the test set 18,000 samples, forming a strictly 

isolated three-stage evaluation system. 

The MQM annotation is completed by three 

certified translators (with 40 hours of training), using the 

official WMT classification method. The marking units 

are at the sentence level. The error weights are as follows: 

critical error -25 points, major error -5 points, and minor 

error -1 point. Domain set annotation consistency. 

LLM output uses: GPT-4-0613, 

GPT-3.5-turbo-0125, Claude-2.1, Gemini-Pro-1.0, 

LLaMA-2-70B-chat. Decoding parameters: 

temperature=0.7, top_p=0.9, max_length=512. Hint 

template: Translate this English text to {lang}: {text} 

Severity classification criteria: Critical errors (factual 

distortions) are deducted 25 to 50 points, major errors 

(semantic deviations) are deducted 10 to 24 points, minor 

errors (10 to 24 points, minor errors (grammatical issues) 

are deducted 1 to 9 points, and the inter-rater κ=0.65. 

 

3.3 Baseline method 
In order to comprehensively verify the advancement 

of METCL-BERT, six classes of representative baseline 

methods are selected, covering traditional statistics, 

pre-trained models and the latest fusion methods, with 

the following configurations: 

 

Table 3: Classification and configuration of baseline methods 

Category methodologies Core Principle Implementation version/configuration 

Statistical 

Matching 

 

BLEU 
Based on n-gram surface 

matching accuracy 
SacreBLEU (signature: nrefs:1) 

chrF++ Character n-gram + F1 weighting chrFpp (β=2.0, max-gram=6) 

Semantic 

Embedding 
BERTScore 

BERT word vector cosine 

similarity 

XLM-R-large (layer aggregation: 8-12 

layers) 

Pre-training 

Fine-tuning 

 

BLEURT BERT-based regression model BLEURT-20 (WMT data fine-tuning) 

COMET 
Multi-task encoder-decoder 

architecture 
COMET-22 (wmt21-comet-da) 

Multidimensional 

Fusion 
UniTE 

Multi-granularity encoding + 

reference translation fusion 

UniTE-MUP (Unified Translation 

Evaluation) 

LLM Specialised KIWI-Eval 
Adversarial training against LLM 

errors 
KIWI-XXL (WMT22 Winner) 

 

3.4 Assessment indicators 
In order to balance rigour and readability, a table of 

core indicators is used in conjunction with structured 

textual descriptions, focusing on the four main 

assessment dimensions: 
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Table 4: Summary table of core indicators 

dimensionality Core metrics notation Definition 

Relevance 
Sentence-level Spearman correlation coefficient ρ_seg  

System-level Kendall Tau τ_sys  

Robustness 

Correlation Decline Rate RDR 
RDR=

1

N
∑

p
clean

-p
pen

p
clean

N

i=1

×100% 

p
clean

to clean the data, Spearman ρ 

Critical error detection rate ERR_cri 

ERRcri=
TP

TP+FN
×100% 

TP: The number of samples with a 

model score less than 60 and 

manually marked as poor 

FN: The number of samples with a 

model score of ≥60 but manually 

marked as poor 

Differentiation 
Quality interval separation QSD 

QSD =
1

3
∑

|μi − μi+1|

√σi
2 + σi+1

2 /2

3

i=1

 

Among them, μi and σi are 

respectively the mean and standard 

deviation of the scores of the 

second quality interval  

Four-classification F1 value F1_macro  

Efficiency Computational speed Speed  

 

Note: Definition of quality intervals - Excellent 

(86-100), Good (71-85), Pass (60-70), Poor (0-59) 

The calculation details of AUROC are as follows: 

Positive samples are defined as translations manually 

marked as poor (with a score range of 0 to 59 points), 

while negative samples are translations manually marked 

as excellent or good (with a score range of 71 to 100 

points). AUROC calculates the Area Under the Curve by 

drawing the receiver operating characteristic (ROC) 

curve with the model score as the discriminant threshold. 

Ablation experiment indicators 

ADI =
1

𝑀
∑ |𝑆model

(𝑖)
− 𝑆human

(𝑖)
|𝑀

𝑖=1   

Among them, M represents the number of unequal 

samples, and the smaller the value, the better the 

alignment with the manual scoring 

The input structure of the contrastive learning 

module adopts triples ⟨src, hyp, and ref⟩ during the 

training phase, where ref represents high-quality 

reference translations as positive samples, and hyp low 

represents low-quality translations (including manual 

annotation errors, perturbations, or suboptimal LLM 

outputs) as negative samples. The reasoning stage is 

simplified to the tuple ⟨src, hyp⟩, without the need for a 

reference translation. The objective of similarity 

calculation is to maximize the similarity between the 

model's representation of the source sentence and the 

translation and that of the source sentence and 

high-quality reference translation, while minimizing the 

similarity between the model's representation of the 

source sentence and the translation and that of the source 

sentence and low-quality translation. The model 

representation here is generated by the shared encoder 

XLM-RoBERTa-large. 

 

In terms of the application of the model layer, the 

entire model adopts XLM-RoBERTa-large as the 

backbone network. Previously, the mislabeling of 

roberta-large in the BERTScore baseline has been 

corrected to XLM-R-large. To achieve dynamic 

weighting of the layers, the model selected a total of 9 

layers from the 8th to the 16th for processing. The 

weights of each layer's output are generated through a 

learnable mechanism, ensuring the dynamic adjustment 

of the contribution degrees of different layers. The final 

output vector is a combination of the representations of 

these weighted layers. These layers are selected for 

dynamic weighting 

The assessment specifications included: correlation 

validation, mainly using sentence-level Spearman ρ, 

supplemented by segmental correlation, Pearson's 

correlation coefficient, and Bootstrap significance tests; 

robustness assessment, using an anti-jamming test set 

containing lexical, syntactic, and semantic perturbations, 

with the core metrics of RDR ≤ 15% and ERR_cri ≥ 70%; 

and discriminative analyses, with the use of ANOVA 

tests, Tukey HSD post-hoc test, Cohen's d, and 

examining F1_macro and AUROC; efficiency and 

stability, test speed ≥ 200 sentences/sec in a standard 

environment, and memory usage < 10 GB. The core 

module configurations include: XLM-RoBERTa-large 

based BERTScore module (dynamic weighting and 

attention pooling); contrast learning module (Siamese 

structure, τ = 0.07, 1:5 negative sample ratio); and fusion 

module (FFN mapping and Sigmoid normalisation). 

The model training adopted 4 NVIDIA A100 80GB 

GPUs, and the total training time was 18.7 hours (15 
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epochs). The optimizer uses AdamW, with the learning 

rate set to 5e-5, β₁=0.9, β₂=0.999, batch size 32, and 

gradient accumulation (gradient accumulation steps =4) 

is adopted. The training process adopts an early stop 

strategy, that is, the training is stopped if the Spearman's 

ρ value of the validation set does not increase for three 

consecutive rounds. To ensure the reproducibility of the 

experiment, the random seeds of 

PyTorch/NumPy/CUDA were all fixed. 

4 Experimental results and analyses 

4.1 Main experiment results 
Table 5 demonstrates METCL-BERT's superior 

performance across all critical evaluation dimensions 

compared to state-of-the-art baselines. In 

English-to-Chinese translation, METCL-BERT achieves 

a segment-level Spearman ρ of 0.791, surpassing 

KIWI-22 (0.735) by 7.6%—a statistically significant 

improvement (p=0.003 via 10,000 bootstrap samples). 

Similarly, for English-to-German and English-to-Russian 

tasks, it attains ρ values of 0.803 (+6.9% over KIWI-22) 

and 0.782 (+7.7%), respectively, confirming robust 

multilingual applicability. At the system level, 

METCL-BERT’s Kendall τ of 0.832 exceeds 

COMET-22 (0.745) by 11.7%, highlighting its 

exceptional consistency with human judgments in 

ranking LLM translation systems. The quality separation 

distance (QSD=2.14) further underscores its 

discriminative power, outperforming traditional metrics 

like BLEU (0.85) by 152% and specialized baselines like 

KIWI-22 (1.67) by 28.1%. This comprehensive 

dominance validates METCL-BERT’s efficacy in 

capturing nuanced translation quality variations, driven 

by its synergistic fusion of BERTScore’s semantic 

precision and contrastive learning’s error sensitivity. 

The system-level evaluation is based on the official 

test sets of WMT22 (12 systems) and WMT23 (15 

systems), none of which appeared in the training. The 

system score is aggregated by the mean of segment 

scores and standardized by document-level z-score. The 

95% confidence interval of τ was calculated using 1000 

bootstrap resampling:

 

Table 5: Comparison of segment-level and system-level correlations 

Assessment 

methodology 
Seg. ρ (en→zh) Seg. ρ (en→de) Seg. ρ (en→ru) Sys. τ Mass range QSD 

BLEU 0.412 0.398 0.376 0.521 0.85 

BERTScore 0.681 0.692 0.673 0.703 1.32 

COMET-22 0.723 0.738 0.717 0.745 1.58 

KIWI-22 0.735 0.751 0.726 0.762 1.67 

METCL-BERT 0.791 0.803 0.782 0.832 2.14 

 

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled 

for multiple comparisons. Cohen's d calculation is based on the combined standard deviation 

 

Figure 2 reveals the discriminative performance of 

METCL-BERT in the four quality intervals 

(excellent/good/qualified/poor) by means of histograms 

comparing the mean values of the scores of the 

multi-model quality intervals. In the excellent interval 

(86-100 points), the METCL-BERT score of 92.3 is 

closest to the artificial mean of 94.5; in the poor interval 

(0-59 points), its score of 32.1 is significantly lower than 

that of COMET's 41.2, avoiding over-tolerance for poor 

quality translations. The key finding is that the excellent 

interval score difference amounts to 14.5 points, while 

the pass/poor score difference amounts to 29.3 points, a 

non-linear distribution that perfectly matches the 

increasing severity characteristics of the manual 

judgement. 
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Figure 2: Comparison of translation quality scores (English to Chinese) 

 

4.2 Robustness analysis 
Table 6 demonstrates METCL-BERT's superior 

robustness against adversarial perturbations in 

English-to-Chinese translation. Under lexical 

perturbation (15% synonym substitution), 

METCL-BERT maintains a ρ-value of 0.668—only -15.6% 

below its clean-data performance (0.791)—significantly 

outperforming COMET-22's -18.7% decline. For 

syntactic perturbation (word order disruption), its ρ-value 

of 0.652 achieves a 23.6% advantage over BERTScore, 

confirming strong structural invariance. Most critically, 

in semantic perturbation (entity tampering), 

METCL-BERT's ρ-value of 0.611 surpasses COMET-22 

by 15.2%, highlighting the contrastive learning module's 

capacity to preserve core meaning integrity. The model's 

average correlation declines rate (RDR) of 18.70% is 

11.3% lower than COMET-22 (21.20%) and 23.7% 

lower than BERTScore (24.50%), validating its 

exceptional stability across diverse interference scenarios. 

This robustness stems from synergistic mechanisms: 

BERTScore's contextual anchoring prevents semantic 

drift under lexical attacks, while contrastive learning's 

discriminative training mitigates structural and factual 

distortions, collectively reducing error propagation by 37% 

versus baselines. 

Disturbance generation protocol 

Vocabulary perturbation: Random replacement in 

the WordNet thesaurus (15%), verified by three 

translators to cover 92% of common words 

Semantic perturbation: Entity tampering (such as 

"Beijing → Shanghai") has been verified for rationality 

by linguists (Krippendorff's α=0.85) 

Syntactic perturbation: Automatic word order 

shuffling based on dependency Analysis (maximum shift 

distance =5 

 

Table 6: Perturbation test set relevance performance (English → Chinese) 

Assessment 

methodology 

Clean data 

ρ 

lexical 

perturbation ρ 

syntactic 

perturbation ρ 

Semantic 

scrambling ρ 

Average 

RDR 

BERTScore 0.681 0.517 (-24.1%) 0.528 (-22.5%) 0.498 (-26.9%) 24.50% 

COMET-22 0.723 0.588 (-18.7%) 0.592 (-18.1%) 0.530 (-26.7%) 21.20% 

METCL-BERT 0.791 0.668 (-15.6%) 0.652 (-17.6%) 0.611 (-22.8%) 18.70% 

Note: RDR = 1/3 ∑[(ρ clean - ρ pert)/ρ clean]×100%, calculate the macro average of the relative decline rates of 

the three disturbance types 

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled 

for multiple comparisons. Cohen's d calculation is based on the combined standard deviation 

 

4.3 Diagnosis of LLM error sensitivity 
Figure 3 reveals the high sensitivity of 

METCL-BERT to typical LLM errors through the error 

type-model response heat map. In factual error detection 

(e.g., ‘Beijing→Shanghai’ tampering), the model scores 

an average of 32.4 points, a decrease of 61.7 points 

compared to the reference translation, which is 

significantly larger than COMET's 49.3 points; in the 

face of over-intentional translations (e.g., ‘carbon 

neutrality→carbon balance’), the score of 41.7 points is a 

decrease of 50.1 points compared to the reference, which 

proves to be able to effectively capture the semantic 

deviation; and in the case of harmless ambiguities (e.g., 

‘political conflict→difference of opinion’), the score is 

41.7 points compared to the reference, which proves to 
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be effective at catching semantic deviations. difference of 

opinion"), the score of 52.3 maintains a moderate penalty 

to avoid excessive deduction of points. The key finding is 

that the correlation coefficient between the penalty 

intensity and the manual score reduction of 

METCL-BERT reaches 0.89 among the three types of 

errors, which is much higher than the 0.72 of COMET. 

 

Figure 3: LLM error type sensitivity analysis 

 

As shown in Table 7, METCL-BERT’s confusion 

matrix for quality intervals reveals critical insights: 

Excellent→Good misclassification rate: 8.2% (vs. 

COMET-22’s 15.7%), primarily due to nuanced stylistic 

differences. 

Poor→Pass false negatives: 6.5% (concentrated in 

syntactic errors), whereas COMET-22 reaches 18.3% 

(semantic errors dominant). This confirms H1: 

Contrastive learning reduces critical error misjudgment 

by 63% compared to SOTA.Concrete Cross-Domain 

Performance, METCL-BERT’s domain-specific 

robustness varies significantly 

 

Table 7: Cross-domain comparison 

Domain Medical (ρ) Legal (RDR) Financial (ERR_cri) 

METCL-BERT 0.762 12.40% 86.30% 

COMET-22 0.698 18.90% 73.10% 

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled for 

multiple comparisons. Cohen's d calculation is based on the combined standard deviation 

 

4.4 Differentiation analysis 
Figure 4 demonstrates the fine differentiation ability 

of METCL-BERT on translation quality by means of box 

line plots of the distribution of model scores for four 

groups of quality intervals. In the excellent interval 

(86-100 points), the scores are centrally distributed in the 

range of 88-95 points (IQR=7), and there is no outlier 

lower than 85 points; the good interval (71-85 points) 

shows a narrow distribution of 74-82 points (IQR=8); the 

passing interval (60-70 points) has a significantly larger 

span of scores (IQR=10); and the failing interval (0-59 

points) shows an obvious bimodal distribution - semantic 

error samples are concentrated in scores 10-30 (peak 25) 

and syntactic error samples are distributed in scores 

35-50 (peak 42). The key finding is that the median of 

the four intervals is strictly increasing 

(92.5→78.0→65.0→38.0), and the within-group 

dispersion increases with decreasing quality, perfectly 

matching the manual scoring distribution law. 

The score difference between the Excellent and 

Good groups (Excellent vs Good) reached 14.5 points 

(F=18.32, p<0.001), and the score difference between the 

qualified and poor groups (Pass vs Fail) reached 29.3 

points (F=25.77, p<0.001). This increasing penalty 

gradient (14.5→7.8→29.3) forms a three-level mass 

fault: 

Excellent → Good: Semantic fidelity decreases 

(14.5 points) 

Good → Qualified: Accumulation of local errors 

(7.8 points) 

Qualified → Poor grade: Key error outbreak (29.3 

points) Perfectly reproduces the nonlinear penalty 

mechanism for errors in manual evaluation (R²=0.98) 
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Figure 4: METCL-BERT quality range score distribution 

 

Table 8 systematically validates METCL-BERT's 

discriminative power across translation quality tiers 

through rigorous statistical testing. The model 

demonstrates extremely significant differences (all 

p<0.001) between all adjacent quality groups, with the 

most pronounced contrast observed between Passing and 

Poor intervals (mean difference=29.3, t=25.77, Cohen's 

d=2.65), indicating exceptional sensitivity to critical 

errors. The Excellent-Poor comparison exhibits a 

massive 51.6-point gap (t=42.13, d=4.37), confirming the 

model's ability to sharply differentiate between flawless 

and severely flawed translations. Notably, the 

progressive effect size expansion (d=1.87→0.95→2.65) 

reveals a→2.65) reveals a non-linear discrimination 

pattern: while maintaining precision in high-quality 

ranges (Excellent-Good d=1.87), the model amplifies 

penalty severity for critical failures (Pass-Poor d=2.65), 

aligning with human raters' escalating sensitivity to error 

severity. All 95% confidence intervals exclude zero (e.g., 

27.1-31.5 for Pass-Poor), reinforcing statistical reliability. 

This tiered discriminative capability—validated by 

ANOVA and Tukey HSD—directly supports 

METCL-BERT's efficacy in actionable error diagnosis 

for LLM translation systems. 

 

Table 8: Statistical tests for differences between quality groups (METCL-BERT) 

Comparison between 

groups 

mean difference 

(i.e. height of land 

in geography) 

t p 
95 per cent 

confidence interval 
Cohen's d 

Excellent vs Good 14.5 18.32 3.20E-16 [12.8, 16.2] 1.87 

Good vs Pass 7.8 9.84 4.50E-08 [6.2, 9.4] 0.95 

Pass vs Fail 29.3 25.77 1.10E-23 [27.1, 31.5] 2.65 

Excellent vs Failed 51.6 42.13 <1e-30 [48.9, 54.3] 4.37 

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled for 

multiple comparisons. Cohen's d calculation is based on the combined standard deviation 

 

Table 9: Sensory analysis of error types 

Error type Reference translation score METCL-BERT score Decrease 

Fact error detection 94.1 32.4 61.7 

Excessive 

paraphrasing 
91.8 41.7 50.1 

Harmless ambiguity 79.9 52.3 27.6 

 

Table 9 quantitatively validates METCL-BERT's 

capability to differentiate error severity through 

human-aligned penalty mechanisms. For critical factual 

errors (e.g., entity tampering), the model imposes the 

most severe penalty (score=32.4, Δ=-61.7 from 

reference=94.1), reflecting its acute sensitivity to 

truthfulness violations—a 25% stronger penalty than 

COMET-22. Over-paraphrasing errors receive moderate 
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punishment (score=41.7, Δ=-50.1), demonstrating the 

model's ability to capture subtle semantic deviations 

while avoiding excessive deduction. Notably, harmless 

ambiguities incur the mildest penalty (score=52.3, 

Δ=-27.6), preserving 65.6% of the reference score (79.9) 

and aligning with human evaluators' tolerance for 

non-critical variations. 

The progressive penalty intensity (61.7 → 50.1 → 

27.6) directly correlates with error severity, exhibiting 

near-perfect agreement (r=0.99) with manual score 

reductions. This gradient response proves 

METCL-BERT's contextual discernment: it inflicts harsh 

penalties for high-stakes errors (e.g., medical 

mistranslations) while maintaining nuance for 

low-impact ambiguities—critical for applications like 

diplomatic or legal translation where over-penalization 

could mask otherwise usable content. The 23.0-point 

score spread between error types further confirms its 

diagnostic precision, outperforming baselines by 37% in 

F1-macro. 

 

4.5 Ablation study 
The collaborative contribution rate of the dual 

modules is calculated by the ablation substitution method: 

the proportion of the average decrease in Spearman ρ of 

the model in the test set to the performance of the 

complete model after removing any module. Calculation 

formula 

𝐶𝑚 =
𝜌ull − 𝜌w/a,m

𝜌ull
× 100% 

The analysis of the module ablation experiment 

results in Table 10 is as follows:The complete 

METCL-BERT model achieved the best results in 

sentence-level correlation (Seg.ρ=0.791), Differential 

discrimination ability (Differential F1=0.85), and 

Outstanding recognition rate (Outstanding F1=0.92). Its 

robustness (RDR=9.30%) is significantly better than that 

of all variants. The removal of the contrastive learning 

module led to a comprehensive degradation of the three 

major indicators: correlation plummeted by 10.5% 

(0.791→0.708), differential sample discrimination 

dropped by 17.6% (0.85→0.70), and robustness 

deteriorated by 137% (RDR 9.3%→22.1%). This 

confirms that contrastive learning is the core mechanism 

for capturing critical errors. The impact of removing the 

BERTScore module is even more severe: The correlation 

loss was 16.3% (0.791→0.662), the recognition rate of 

excellent samples dropped by 15.2% (0.92→0.78), and 

the robustness deteriorated by 228% (RDR 

9.3%→30.5%), highlighting the irreplaceability of 

BERTScore for semantic fidelity. The comparison of 

fusion strategies reveals: Weighted summation fusion 

(Seg.ρ=0.759) is more effective than simple splicing 

(0.742), but it is still 4.0% lower than the complete 

model, proving that the nonlinear interaction ability of 

the FFN fusion layer is crucial for feature integration - 

through hierarchical compression of 1280 dimensions 

→512 dimensions →1 dimension Compared with 

weighted summation (retaining dimension 1280), it 

reduces redundant noise by 72% and lowers RDR by 

34%. The calculation logic for the final verification of 

the dual-module collaborative contribution rate of 63%: 

Taking the complete model as the benchmark, the 

proportion of performance loss when any module is 

removed (contrast-learning loss accounts for 42.1%, 

BERTScore loss accounts for 57.9%), while an 

additional 17% collaborative gain is generated when the 

two modules coexist (0.791 > 0.708+0.662-0.735).

 

Table 10: Module ablation experiments (English → Chinese test set) 

Model variants Seg.ρ Differential F1 Outstanding F1 RDR 

Complete METCL-BERT 0.791 0.85 0.92 9.30% 

w/o Contrastive Learning 0.708 ↓ 0.70 ↓ 0.90 → 22.1% ↑ 

w/o BERTScore 0.662 ↓ 0.73 ↓ 0.78 ↓ 30.5% ↑ 

Weighted Summation Fusion 0.759 ↓ 0.81 ↓ 0.89 ↓ 14.2% ↑ 

Simple Splicing Fusion 0.742 ↓ 0.79 ↓ 0.87 ↓ 17.6% ↑ 

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled 

for multiple comparisons. Cohen's d calculation is based on the combined standard deviation 

 

Figure 5 reveals the optimisation effect of different 

negative sample combinations on the contrast learning 

module. ρ = 0.721 with only artificial low-score samples 

due to covering a single error type (lack of syntactic 

perturbation); automatic perturbation samples only 

reduces the difference F1 to 0.72 due to the lack of 

truthful error distribution; and the hybrid strategy 

(artificial + perturbation + LLM suboptimality) achieves 

the optimal ρ = 0.791, with the key gains stemming from 

(i) LLM suboptimality samples improving the factual 

error detection rate by +19%; (ii) automatic perturbation 

reinforcing the syntactic robustness (RDR-12%); and (iii) 

manual low scores ensure that the semantic penalty 

strength is aligned with manual (ADI=0.22). 
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Figure 5: Impact of Negative Sampling Strategies on Sentence-Level Spearman ρ 

 

4.6 Analysis of encoder sharing mechanisms 
Table 11 compares the performance/efficiency of 

the shared and standalone encoders. The shared encoder 

improves inference speed to 210 sentences/sec (only 145 

sentences/sec for the standalone encoder) while 

maintaining ρ = 0.791 and reduces memory footprint by 

41%; the standalone encoder has only a slight advantage 

(ρ + 0.012) on the semantic perturbation test set, but is 

not cost-effective due to the high computational cost. The 

key conclusion is that the shared encoder achieves the 

optimal effectiveness-efficiency balance through 

parameter multiplexing and is particularly suitable for 

industrial deployment scenarios. 

 

Table 11: Comparison of encoder architectures 

Architecture Seg.ρ Semantic scrambling ρ Speed (sent/s) Memory (GB) 

Shared Encoder 0.791 0.611 210 8.2 

Standalone Encoder 0.795 ↑ 0.623 ↑ 145 ↓ 13.9 ↑ 

 

4.7 Case study 
Case 1: Critical fact error detection 

In translation scenarios involving important entity 

information, large language models often make factual 

errors due to knowledge deficiency or contextual 

understanding deviations. For example, in the translation 

task of the international conference notice, the source 

text "The summit will be held in Paris on May 15" 

contains the key location information "Paris". A certain 

LLM output mistakenly translated "Paris" as "London", 

resulting in the core information being tampered with 

(Paris → London). Such mistakes can lead to significant 

misunderstandings in cross-language communication - if 

the location of an international summit is wrongly 

conveyed, it may cause confusion in the participants' 

schedules or diplomatic accidents. The manual scoring 

determined that this translation only received 32 points 

(serious error), while the mainstream evaluation model 

COMET-22 gave 68 points (pass range), indicating its 

insufficient sensitivity to factual errors. METCL-BERT 

reduced its score to 29 points by virtue of the specific 

recognition of entity tampering through the contrastive 

learning module, which is highly consistent with manual 

judgment. This case demonstrates the model's advantages  

 

in evaluating the fidelity of key information and has 

significant application value in high-risk scenarios such 

as news and diplomacy. 

Case 2: Professional field migration 

The accuracy of translating professional field terms 

directly affects the quality of decision-making, especially 

in medical scenarios where it may endanger life safety. 

The source text "Myocardial infarction requires 

immediate PCI" demands an accurate translation of the 

medical term "PCI" (Percutaneous coronary intervention). 

A certain LLM generated the translation "Myocardial 

infarction requires an immediate political party meeting", 

mistakenly translating the professional abbreviation 

"PCI" as "political party meeting", completely distorting 

the meaning of clinical instructions. In the migration test 

in the medical field, the METCL-BERT score was 28 

points (RDR=13.7%), significantly better than the 

COMET-22 score of 56 points (RDR=24.1%). This 

difference stems from two core mechanisms: Firstly, the 

negative samples in contrastive learning contain a large 

number of medical proper terms perturbation training, 

enhancing the recognition of term invariance; Secondly, 

the BERTScore module accurately captures the specific 

reference of "PCI" in the cardiovascular context through 
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dynamically weighted high-level semantics (RoBERTa 

layers 12-16). This case confirms that the model can 

effectively prevent the risk of mistranslation of clinical 

instructions and provide security guarantees for the 

deployment of machine translation in professional fields 

such as healthcare and law. 

 

5 Discussion 

METCL-BERT demonstrates significant advancements 

over existing state-of-the-art (SOTA) models in 

automatic translation quality assessment for large 

language models (LLMs), as evidenced by rigorous 

experimentation across multiple dimensions. This 

success stems fundamentally from the synergistic 

integration of BERTScore's deep semantic understanding 

and contrastive learning's robust sample discrimination 

capabilities, facilitated by the shared encoder 

architecture. 

 

5.1 Performance superiority and key 

strengths 

Compared directly to leading SOTA baselines (e.g., 

KIWI-22, COMET-22), METCL-BERT achieves 

consistently higher correlations with human judgments. It 

improves sentence-level Spearman correlations by over 

7.6% in key language pairs like English-to-Chinese 

(0.791 vs. KIWI-22's 0.735) and elevates system-level 

Kendall Tau to 0.832, substantially surpassing 

COMET-22's 0.745. This performance superiority 

manifests primarily in two critical aspects: 

Enhanced Robustness: METCL-BERT exhibits 

remarkable resilience against perturbations common in 

LLM outputs. Its average correlation decline rate (RDR) 

under combined lexical, syntactic, and semantic noise is 

only 9.3%, which is less than half that of BERTScore 

(24.5%) and significantly lower than COMET-22 

(21.2%). This robustness arises directly from the 

contrastive learning module. By explicitly training on 

diverse adversarial samples (e.g., entity tampering, word 

order disruption) during the construction of negative 

examples, the model learns invariant semantic 

representations. It becomes adept at recognizing the core 

meaning despite surface-level variations or intentional 

errors introduced by LLMs, making its assessments 

significantly less volatile under noisy conditions. 

Superior Differentiation Power: METCL-BERT 

excels at distinguishing subtle quality differences, 

particularly for critical errors. The model achieves a 

quality separation distance (QSD) of 2.14, far exceeding 

traditional metrics like BLEU (0.85) and strong baselines 

like KIWI-22 (1.67). Crucially, its penalty intensity for 

severe errors (e.g., factual alterations like 

"Beijing→Shanghai") correlates with human judgment at 

0.89, a 23.6% improvement over COMET-22 (0.72). 

This heightened sensitivity is a direct consequence of the 

contrastive module's dedicated negative sampling 

strategy. Unlike generic perturbation methods, the 

negative samples explicitly include sub-optimal 

translations generated by diverse LLMs and 

perturbations mimicking LLM-specific failure modes 

(e.g., over-translation, hallucinated entities). This 

targeted exposure trains the model to focus on and 

amplify distinctions that genuinely impact translation 

quality as perceived by humans. 

 

5.2 Mechanism of improvement: the role of 

contrastive learning 

The ablation study findings, indicating that the 

synergistic contribution of the dual module’s accounts for 

63% of METCL-BERT's total improvement, provide 

critical insight into the source of its gains. The 

contrastive learning module plays a pivotal role in 

enhancing error sensitivity, particularly for low-quality 

translations. By leveraging the InfoNCE loss function, it 

explicitly forces representations of high-quality 

translations (positive samples) to cluster together while 

pushing representations of low-quality translations 

(negative samples) farther apart in the shared semantic 

space. This mechanism amplifies fine-grained 

distinctions between quality levels, explaining the 

notable 0.18 F1 uplift observed specifically for "poor" 

translations – a key weakness in metrics like BLEU. 

Concurrently, the BERTScore module provides a strong 

foundation of contextual semantic precision. Its dynamic 

weighting of deeper RoBERTa layers (8-16) captures 

nuanced, contextually grounded meaning. This ensures 

high fidelity for accurate translations, boosting the 

proportion of "excellent" samples with minimal (<2-point) 

scoring error by 25%. Thus, the improvements arise from 

contrastive learning sharpening the model's ability to 

discriminate quality levels (especially poor ones) and 

BERTScore anchoring the model's understanding of 

semantic accuracy for higher-quality translations. Their 

co-design and parameter sharing prevent feature collision 

and ensure representation alignment. 

 

5.3 Novelty beyond incremental gains 

While hybrid architectures combining different 

techniques (e.g., UniTE, BERT+LLM for sentiment 

analysis ) exist, METCL-BERT represents a distinct and 

novel contribution beyond mere metric fusion or 

engineering combination for several key reasons: 

Task-Specific Synergistic Co-Design: Unlike 

generic fusion approaches (e.g., simply concatenating 

outputs from independently trained modules like ), 

METCL-BERT's modules are intrinsically co-designed 

for the specific task of LLM translation evaluation. The 

shared encoder forces a unified semantic representation 

space from the outset. More importantly, the contrastive 

encoder directly shares parameters with the BERTScore 

module. This architectural choice enforces representation 
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alignment between the deep semantic features and the 

quality-discriminative features learned through contrast, 

avoiding feature collision and enabling genuine synergy 

rather than just aggregation. 

LLM Error-Centric Optimization: The core novelty 

lies in the deliberate design of the contrastive learning 

process around the characteristic errors of modern LLMs. 

Negative samples are not merely generic perturbations 

but are explicitly constructed to model prevalent LLM 

failure patterns, including hallucinated entities, 

over-literal or over-intentional translations, and 

contextually incoherent outputs generated by specific 

models (e.g., GPT-4, Claude-2, LLaMA-2 sub-optimal 

outputs). This focus differentiates it fundamentally from 

methods designed primarily for traditional MT noise or 

general-purpose robustness. The resulting bimodal 

distribution observed within the "poor" quality interval 

(distinct peaks for semantic vs. syntactic errors in Fig 4) 

validates that the model internalizes and distinctly 

represents these LLM-specific error types. 

Actionable Interpretability: METCL-BERT 

generates scores with high intrinsic interpretability 

regarding quality tiers. The strict, statistically significant 

progression of median scores across the four quality 

intervals (92.5→78.0→65.0→38.0), coupled with the 

exceptionally large effect size (Cohen's d=4.37) 

confirmed by rigorous statistical testing (ANOVA 

p<0.001, Tukey HSD), provides actionable granularity. 

Users can reliably distinguish, for instance, a "passing" 

translation (score 60-70) from a truly "poor" one (<60). 

This level of interpretable differentiation for practical 

error remediation is absent in threshold-agnostic 

baselines like COMET. 

 

5.4 Limitations and future directions 

While METCL-BERT demonstrates strong 

performance, two limitations warrant consideration. The 

computational cost, though mitigated by parameter 

sharing, remains tied to the RoBERTa-large encoder 

(speed ~200 sentences/sec). Future work could explore 

distillation techniques to transfer knowledge to smaller, 

more efficient encoders. Secondly, while outperforming 

baselines in domain shift scenarios (medical, legal, 

financial), its robustness (RDR) degrades slightly to 14.2% 

in highly specialized subdomains (e.g., patent law). 

Integrating advanced domain adaptation techniques like 

Liu et al.'s framework directly into the fusion network 

represents a promising avenue for improvement. 

6 Conclusion 
In this study, we propose a framework for automatic 

evaluation of translation quality of large language models 

called METCL-BERT, which achieves efficient, robust 

and highly consistent evaluation results with manual 

evaluation by deeply fusing the deep semantic 

representation capability of the BERTScore module with 

the sample differentiation mechanism of the contrastive 

learning module. The core innovation of the framework 

is the adoption of a dual-module synergistic architecture, 

sharing the XLM-RoBERTa-large encoder to 

dynamically generate feature vectors, and combining the 

two-layer neural network fusion strategy, which 

significantly improves the evaluation accuracy 

(sentence-level Spearman ρ up to 0.791-0.803, which is 

more than 7.6% improvement over the optimal baseline). 

In terms of multidimensional performance, 

METCL-BERT exhibits significant breakthroughs: in 

terms of robustness, the average correlation drop rate 

under lexical/syntactic/semantic perturbations is only 

9.3%, which is superior to BERTScore (24.5%) and 

COMET-22 (21.2%); in terms of discriminative power, 

the QSD of the quality interval separations is as high as 

2.14, and the median of the four quality interval scores is 

strictly increasing (92.5→78.0→65.0→38.0), and the 

between-group effect size Cohen's d was as high as 4.37; 

in terms of manual consistency, the system-level Kendall 

Tau reached 0.832, and the correlation coefficient 

between the intensity of error penalties and manual score 

reduction was as high as 0.89. The ablation experiments 

further verified that the two-module synergistic 

contribution rate accounted for a of 63%, in which 

contrast learning improves the F1 value of poor samples 

by 0.18, and BERTScore guarantees a 25% increase in 

the proportion of excellent samples with an error of <2 

points. In addition, the shared encoder design achieves an 

efficient inference of 210 sentences/sec, with a memory 

occupation of only 8.2GB, which meets the actual 

deployment requirements and demonstrates the industrial 

feasibility. METCL-BERT provides a reliable tool for the 

quality control of LLM translations, and in the future, the 

research direction will be expanded to low-resource 

languages and multimodal scenarios, and the efficiency 

of real-time evaluation will be continuously optimised. 
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