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This study proposes METCL-BERT, a novel automatic translation quality assessment framework for
large language models (LLMs), which synergistically combines BERTScore for deep semantic
representation and contrastive learning for enhanced error discrimination. The architecture employs a
shared XLM-RoBERTa-large encoder to dynamically generate feature vectors (768D from BERTScore
with layer 8-16 weighting and 512D from contrastive learning), fused via a two-layer neural network to
output a normalized quality score (0-100). Comprehensive experiments were conducted on multilingual
datasets WMT22/23 and TED-MT (totaling 18,000 baseline and 32,000 LLM-generated translation
pairs), evaluating performance across English-to-Chinese, -German, and -Russian tasks. The framework
was rigorously tested for robustness against lexical, syntactic, and semantic perturbations and domain
shifts (medical, legal, financial), with robustness measured by the correlation decline rate (RDR).
Results demonstrate that METCL-BERT achieves sentence-level Spearman correlations of 0.791 (en-zh),
0.803 (en-de), and 0.782 (en-ru), significantly outperforming the best baseline KIWI-22 by >7.6%. It
attains a system-level Kendall Tau of 0.832, markedly superior to COMET-22 (0.745). Crucially, its
robustness is validated by an average RDR of 18.70% across perturbation tests, substantially lower than
BERTScore (24.50%) and COMET-22 (21.20%). Further strengths include exceptional discriminative
power (OSD=2.14) with strictly increasing quality interval medians (92.5—78.0—65.0—38.0) and a
large effect size (Cohen's d=4.37). Ablation studies confirm the synergistic contribution (63%) of both
modules.

Povzetek: Raziskava predstavi metodo, ki s pomocjo naprednega jezikovnega modela bolj zanesljivo

oceni, kako dober je samodejni prevod, in je natancnejsa ter stabilnejsa od obstojecih resitev.

1 Introduction

The current research status of automatic translation
quality assessment methods for large language models
based on BERT scores and contrastive learning shows a
trend of multi-dimensional technology integration.
Zhongshui Qu et al. construct a unicentric semantic
representation space through contrastive learning [1],
providing a methodological basis for translation
representation alignment; while Min Pan et al.
demonstrate that contrastive learning can deeply mine the
semantics of irrelevant texts [2], hinting at its potential
for distinguishing subtle errors in evaluation. Shining
Wang et al. innovatively apply contrast loss to noise
robust translation [3], whose sentence/word-level
dual-granularity alignment mechanism can be directly
migrated to representation similarity computation in
evaluation. The 12-layer Transformer architecture
developed by Dan Wang [4] and Fanglin Wang et al.'s
NAT-Transformer [5] provide a more robust coding
foundation for BERT scoring through enhanced context
modelling capabilities. Zhang Fan et al.'s multi-task

comparison framework [6] reveals that the evaluation
system can collaboratively optimise the enhancement and
detection tasks. Xiong Xiaozhou et al.’s improved
GQA-SM BERT [7] and Qiao Bo et al.’s BERT-CRF [8]
enhance feature capture accuracy through attention
optimisation and sequence annotation, respectively,
which is crucial for critical information extraction in
evaluation. The core breakthroughs are embodied in
direct applications in translation scenarios: Linghui Wu
et al. fused OCR confidence and word level comparison
[9], demonstrating that auxiliary information can
strengthen representation alignment; Zhengshan Xue et
al. injected Gaussian noise in the hidden representation
layer [10], which significantly improves the sensitivity of
the robustness assessment by keeping the noise different
from clean samples through KL scatter constraints. Liu
Wuying et al.'s two-stage domain adaptation framework
[11], on the other hand, solves the domain migration
problem in evaluation.

Recent advances highlight the advantages of hybrid
architectures: Xiaohe Yuan verifies the effectiveness of
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the BERT+BP algorithm in cross-modal assessment [12];
Fida Ullah et al. enhance the performance of BERT for
low-resource languages through data augmentation [13];
while Yice Zhang et al. fuse a hybrid approach of BERT
and LLM [14] to achieve SOTA in fine-grained sentiment
analysis, the provide a new paradigm for
multi-dimensional assessment of translation quality.
Although current research has made progress in
representation  alignment, noise robustness and
cross-domain adaptation, it has not yet formed an
end-to-end evaluation framework, and there is an urgent
need to integrate the sample differentiation mechanism of
contrastive  learning with the deep semantic
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characterisation capability of BERT.

While recent metrics like COMETKiwi-23 (Rei et al.,
2023), xCOMET (Kocmi et al., 2023), and SEScore2 (Xu
et al., 2024) also integrate contrastive learning,
METCL-BERT innovates through: (1) Dual-path feature
extraction from shared encoder (vs. COMETKiwi's
separate encoders); (2) Dynamic layer weighting (layers
8-16) for granular semantic capture; (3) Unified
calibration of 0-100 scores via sigmoid mapping.
Publicly unavailable models (MetricX-24) were excluded
due to API restrictions, but we validated METCL-BERT
against XCOMET on available language pairs (Appendix
Table C).

Table 1: Comparative analysis of related works in translation quality assessment

S . Application Limitations Addressed by
Study Core Contribution Technical Approach Scope METCL-BERT
Contrastive learnin Contrastive
Unicentric semantic . g learning for . : .
Quetal. . semantic - Translation representation alignment
representation space - representation
representation space -
alignment
Deep mining of F'g:r;?;st'irfd
Pan et al. Irr:;re];/:r?tti cEsxt discrimination via Error detection X No end-to-end framework
contrastive learning
Noise-robust Sentence/word-leve Representation
Wang et al. dua_l-granular | contrastive loss similarity X Not adapted to LLM-specific errors
alignment
Enhanced context Optimized 12-layer BERT scoring . . ]
Wang et al. modeling Transformer foundation X Static layer aggregation (fixed layers)
Non-autoregressive Efficient feature . _—
Wang et al. encoding efficiency NAT-Transformer extraction X No dynamic layer weighting
. Multi-task .
Enhancement-detectio - Evaluation system . . .
Zhang et al. n co-optimization contrastive optimization X No semantic-contrastive fusion
framework
Key information Attention
Xiong et al. capture accurac optimization Feature extraction | ) Fails domain adaptation
p y (GOA-SM BERT)
. Critical
. Sequence labeling for BERT-CRF . - .
Qiao et al. feature integrity architecture |nforma_t|on X Lacks perturbation robustness
extraction
Auxiliary . .
. - OCR confidence + Representation . .
Wu et al. |nforma_t|on-enhanced word-level contrast alignment X Uncalibrated scoring
alignment
. . KL-divergence
Hidden-layer noise ; Robustness
Xue etal. injection for robustness cons_trame(_:i evaluation X No dual-module synergy
Gaussian noise
. . Two-stage domain .
. Domain adaptation - Cross-domain -
Liu et al. solution adaptation evaluation X Low efficiency (separate encoders)
framework
Cross-modal BERT+BP hybrid Multimodal . .
Yuan et al. assessment validation algorithm evaluation X Excludes LLM translation scenarios
Low-resource language | Data augmentation Low-resource . . .
Ullah et al. enhancement + BERT fine-tuning evaluation X No dynamic fusion mechanism
SOTA fine-grained BERT+LLM hybrid | Multidimensional . .
Zhang et al. sentiment analysis architecture assessment X Unnormalized scoring (non-0-100)
Shared encoder +
METCL-BER | End-to-end evaluation | dynamic weighting Full-scene LLM . .
: : - Breakthrough innovation
T framework + sigmoid translation QA
calibration
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2 Assessment framework
incorporating BERT scores and
comparative learning

2.1 Model architecture design

The METCL-BERT framework integrates two
synergetic modules that share the XLM-RoBERTa-large
encoder. The BERTScore module is responsible for
processing the source text and hypothetical translations,
generating semantic similarity vectors by dynamically
weighting the representations from layer 8 to layer 16.
On the other hand, the contrastive learning module is
trained with hypothetical translations as input using
carefully designed positive and negative samples. The
positive samples are high-quality human references
filtered for semantic similarity. Negative samples include
human-annotated errors, word
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automatically scrambled versions, and sub-optimal
translations from seven different large language models.
In order to bring positive word pairs closer together
while pushing negative word pairs farther away, the
comparison encoder computes similarity scores using
InNfoNCE Loss with a temperature coefficient of 0.07.
Finally, the 768-dimensional vector generated by the
BERTScore module is merged with the 512-dimensional
vector generated by the comparison learning module to
form a 1280-dimensional feature vector [15-17]. This
vector is then transformed by a two-layer feed-forward
neural network with 512 hidden units and a RelLU
activation function. The output of the neural network is
normalised by a Sigmoid function and converted into a
final quality score ranging from O to 100, allowing for
accurate translation quality assessment. This approach
maintains a high degree of correlation with human
judgement and benefits from the computational
efficiency that comes from parameter sharing.

"
FFN Mapping Layer (2-
layer)

Feature Concatenatisn ~ ——» ——#  Normalized Score (0-100)
il

r//

Figure 1: Model architecture diagram

# METCL-BERT pseudocode
def evaluate_quality(src, hyp, ref):
# 1. Word Segmentation and Encoding

tokens_src = tokenize(src) # source text word segmentation
tokens_hyp = tokenize(hyp) # Assume translation word segmentation
tokens_ref = tokenize(ref) # Reference translation word segmentation

# 2. Dynamic Layer Weighting (8-16 layers)

layers = model.encoder(tokens_src, tokens_hyp, output_hidden_states=True)[8:17]
weights = softmax(learnable_weights) # learnable weights
v_bert = sum(layers[i] * weights[i] for i in range(9)) # 768D vector

# 3. Comparative Learning

pos_sim = cosine_sim(enc(hyp), enc(ref)) # Positive sample similarity
neg_sims = [cosine_sim(enc(hyp), enc(neg)) for neg in negatives] # negative sample
v_cl = InfoNCE_loss(pos_sim, neg_sims, tau=0.07) # 512D vector

# 4. Feature Fusion and Scoring
fused = concat(v_bert, v_cl) # 1280D fusion vector

score = sigmoid(FFN(fused)) * 100 # two-layer FFN mapping

return score

# Training Objective: Minimize the MSE loss of manual MQM scoring

loss = MSE(score, human_mgm_score)

2.2 Comparison learning module
2.2.1 Sample construction strategy

Sample construction is a fundamental task in
contrastive learning, aiming at guiding the model to learn
the difference between high-quality and low-quality

translations by designing pairs of positive and negative
samples. Positive samples represent high-quality
translations, such as human high-scoring reference
translations  (from  human-annotated, high-quality
translations) or high-quality machine translations (e.g.,
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GPT-4-generated  translations).  Negative  samples
represent low-quality translations, including human
low-scoring translations (translations that have been
manually rated with low scores), perturbed samples
(low-quality translations generated by various kinds of
perturbations to the positive samples), such as
substitutions, deletion (randomly removing some words
or sentence components), insertion (adding irrelevant
words or grammar to a sentence), word order disruption,
and so on. In addition, suboptimal machine translation is
also a form of negative samples [18-20].

In contrastive learning, the choice of encoder
determines how the model learns the representation of
the samples and how the similarity between them is
computed. In order to improve computational efficiency
and consistency of semantic representation, a shared
encoder is chosen. A shared encoder means that the same
pre-trained model (e.g. BERT or RoBERTa) is used in
both the contrast learning module and the BERTScore
module. This design ensures that all translation samples
are represented in the same semantic space and efficient
computation is achieved through shared parameters.
Formula (1) is as follows:

h;, = Encoder(x;) (1)

where X, is the input text (translation) and h, is

the representation of the encoder output.

(1) Independent Encoder

If an independent encoder is used, each module
(BERTScore and Comparison Learning) will use a
different encoder for feature extraction. While this
approach can improve performance in some cases, it is
less efficient due to the additional computational
resources required.

The core goal of contrast learning is to optimise the
model by designing an appropriate loss function that
allows it to distinguish between positive and negative
samples. A commonly used loss function is InfoNCE
Loss. by maximising the similarity between pairs of
positive samples and minimising the similarity between

| BERTScore module T68 dimensional semantic vectors

Contrastive learning module —3512-dimensional discriminative vector
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pairs of negative samples, the model learns how to
differentiate the quality of translations [21].

Negative sampling achieves a dynamic intra-batch
sampling ratio of 1:5, among which 3 are randomly
disturbed samples and 2 are LLM suboptimal outputs.
Through grid search, the optimal temperature coefficient
T is determined to be 0.07, at which point the InfoNCE
loss is the lowest. For difficult samples, a Top-20%
high-confidence negative sample reuse rate of 40% is
adopted. The results of the ablation experiment showed
that 7=0.07 performed best in terms of poor sample F1
(0.85) and training stability (smooth convergence),
outperforming 1=0.05 (F1=0.82, severe oscillation) and
1=0.10 (F1=0.83, slight oscillation).

2.2.2 Training Objective

The contrastive module optimizes translation
representations using InfoNCE loss with temperature

1=0.07, Formula (2) is as follows:
exp (sim(z;,2)/7)

YK | exp (sim(z;,z)/7) @
where z; =anchor translation, z, =positive sample,

{zi},.=negative samples (K=5).

2.3 Fusion Strategies

METCL-BERT adopts a dual-path fusion strategy
of feature concatenation and neural network mapping. Its
core process is shown in Figure 2.

Training configuration: 8xNVIDIA A100 (80GB),
PyTorch 2.0 + CUDA 11.8. The optimizer is AdamW
(B:=0.9, B2=0.999, e=1e-8), and the learning rate is cosine
annealing scheduling (initial 5e-5, minimum 1e-6,
warm-up 1000 steps). Batch size is 32 (including 5
negative samples/positive samples), with 50,000 training
steps (approximately 10 epochs, each epoch lasting 1.2
hours). Regularization: dropout=0.1, weight decay =0.01,
gradient clipping =1.0. Mixed-precision training (AMP
02) was adopted. Early stop: Trigger when the
verification set p drops by more than 0.5% for three
consecutive rounds.

L=-log

Feature stitching }—1 080-dimensional fusion vector— FFN fusion layer
Mass fraction Fractional
0-100 mapping MLP

Figure 2: Flowchart of the dual-path fusion strategy

The algorithm flow is as follows:

(1) Concatenation As shown in Formula (3)
Vfused = [Vbert' Vcl] 3)
Among them, wvpe iS the BERTScore feature

vector and v, is the contrastive learning feature vector.
(2) FFN fusion layer as shown in Formula (4)
h = ReLU(W, Vfyseq + b1) 4)
W, is the weight matrix,b, is the bias term.

(3) Score Mapping As shown in Formula (5)

Sraw = Wzh + b, )

W, is the weight matrix, b,is the bias term.

(4) Score normalization as shown in Formula (6)

Score = 100 : 6(Spaw) (6)

Here, o(-) is the Sigmoid function, ensuring that the
output falls within the range of [0,100].
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2.4 Final assessment score generation

The output of the final evaluation is a single score,
usually in the range [0, 100], indicating the quality of the
translation. Higher values indicate better translation
quality. This score is the combined result of the model by
fusing multiple sources of information (BERTScore and
the Comparative Learning Module) [24-25].

The output score Sy, is determined by the fusion

of the following two main components:

F1 score of BERTScore: indicates the semantic
similarity between the translation and the reference
translation, focusing on the accuracy of the translation.

The similarity score of the comparison learning
module: indicates the similarity between the translation
and the generated translation, focusing on the quality of
the translation and its relation to the high-quality
reference translation.

With the designed mapping function f ., these

two sources of information are fused into a final
evaluation score.
With the above feature and score fusion strategy, the

final generated evaluation score S, can be expressed

as Formula (7):
Score = Sigmoid(FFN (Vyert, Ver)) @)

ReLU is the activation function, which is
responsible for introducing non-linear properties.

The process, through backpropagation and
optimisation, enables the model to generate an accurate
translation quality assessment score that matches the
human rating.
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3 Experimental design and dataset

3.1 Evaluation objectives

METCL-BERT aims to comprehensively assess the
translation quality of LLMS. Its performance evaluation
focuses on three key goals: Validity, that is, accurately
distinguishing translation quality levels in multilingual
and diverse texts, and the correlation is significantly
better than the existing baseline; Robustness, that is, the
ability to resist typical LLM errors (such as
lexical/syntactic confusion, semantic distortion, domain
drift), while the decline rate of test set relevance does not
exceed 10%; And Human Consistency (Human
Consistency), that is, highly consistent with manual
evaluation in fine-grained error identification and quality
interval distinction, achieving frage-level Spearman's p >
0.75 and ANOVA p <0.01.

To address the targeted advances, we explicitly
propose three research hypotheses: H1: Contrastive
learning  significantly  enhances  sensitivity  to
LLM-specific ~ errors  (e.g., factual tampering,
over-translation) beyond COMET-22-level detection. H2:
The dual-module synergy reduces correlation decline rate
(RDR) to <10% under combined perturbations,
outperforming SOTA robustness. H3: METCL-BERT
achieves Cohen's d >4.0 in quality interval differentiation,
enabling actionable error diagnosis.

3.2 Data set construction

In order to comprehensively verify the performance
of METCL-BERT in LLM translation evaluation, a
multi-dimensional dataset is designed, covering
mainstream language pairs, text types and typical error
patterns:

Table 1: Core data composition

Data _ Sources & Notes sc:ample Manual  labelling Uses
Categories size scheme
Baseline WMT22/23 English — MQM  annotation:
. German/Chinese/Russian - A .
Translation 18,000 error type | Training/Verification/Testing
X (one-way) + TED-MT —
Pairs localisation
(lecture texts)
ainstream model
(I;algrl?grate q generation: GPT-4/3.5
; Claude-2 32,000 Severity Grading Training/Testing
Translation -
Library Gemini-Pro
LLaMA-2-70B
Automatic generation of
Perturbation perturbation types: . .
Adversary Set | Lexical Perturbation, 5,000 DA score (0-100): Robustness Testing
Syntactic Perturbation,
3-member
Domain Semantic Perturbation independent
Miaration Set Specialised domain texts: | 3,000 annotation Cross-domain testing
g medical, legal, financial Krippendorff's o >
0.75
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Table 2: Data segmentation strategy

Sjg:ets sBeize“ne data II::BE/;ryGeneration perturbation set Domain migration set | (grand) total
LG 19600 (70%) | 22400 (10%) | - - 35,000
Jalidation | 1 800 (10%) | 3,200 (10%) - - 5,000
TestSet | 3,600 (20%) | 6,400 (20%) 5,000 3,000 18,000

The benchmark dataset and the LLM generation
library strictly follow the 7:1:2 ratio allocation, where the
training set contains 12600 benchmark data and 22400
generated data, respectively, the validation set
incorporates 1800 benchmark data and 3200 generated
data, respectively, and the test set is configured with
3600 benchmark data and 6400 generated data. Notably,
5000 samples from the perturbation set and 3000 samples
from the domain migration set were kept intact for the
test set and were not involved in any training or
validation phase. This design ensures that the test set
comprehensively evaluates the model's ability to
generalise in the face of unknown perturbations and
cross-domain scenarios. The final size of the training set
reaches 35,000 samples, the validation set 5,000 samples,
and the test set 18,000 samples, forming a strictly
isolated three-stage evaluation system.

The MQM annotation is completed by three
certified translators (with 40 hours of training), using the
official WMT classification method. The marking units

are at the sentence level. The error weights are as follows:

critical error -25 points, major error -5 points, and minor
error -1 point. Domain set annotation consistency.

LLM output uses: GPT-4-0613,
GPT-3.5-turbo-0125, Claude-2.1, Gemini-Pro-1.0,
LLaMA-2-70B-chat. Decoding parameters:

temperature=0.7, top p=0.9, max length=512. Hint
template: Translate this English text to {lang}: {text}
Severity classification criteria: Critical errors (factual
distortions) are deducted 25 to 50 points, major errors
(semantic deviations) are deducted 10 to 24 points, minor
errors (10 to 24 points, minor errors (grammatical issues)
are deducted 1 to 9 points, and the inter-rater k=0.65.

3.3 Baseline method

In order to comprehensively verify the advancement
of METCL-BERT, six classes of representative baseline
methods are selected, covering traditional statistics,
pre-trained models and the latest fusion methods, with
the following configurations:

Table 3: Classification and configuration of baseline methods

Category methodologies Core Principle Implementation version/configuration
Statlst[cal BLEU Based_ on n-gram - surface SacreBLEU (signature: nrefs:1)
Matching matching accuracy
chrF++ Character n-gram + F1 weighting | chrFpp (B=2.0, max-gram=6)
Semantlt_: BERTScore BERT _ word  vector cosine | XLM-R-large (layer aggregation: 8-12
Embedding similarity layers)
Pre-training BLEURT BERT-based regression model BLEURT-20 (WMT data fine-tuning)
Fine-tuning COMET Mult_l-task encoder-decoder COMET-22 (wmt21-comet-da)
architecture
Multidimensional . Multi-granularity  encoding + | UniTE-MUP  (Unified  Translation
. UniTE - - .
Fusion reference translation fusion Evaluation)
LLM Specialised | KIWI-Eval paversarial training against LLM | i jyi-xxL (WM T22 Winner)

3.4 Assessment indicators

In order to balance rigour and readability, a table of

core indicators is used in conjunction with structured

textual descriptions, four main

assessment dimensions:

focusing on the
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Table 4: Summary table of core indicators

dimensionality | Core metrics notation Definition
Sentence-level Spearman correlation coefficient | p seg
Relevance
System-level Kendall Tau T_SyS
N
RDR:lZ M x100%
Correlation Decline Rate RDR N& py, °
i= an
P e tO Clean the data, Spearman p
RR P 100%
[ ——Y 0
Robustness _ © TP+FN .
TP: The number of samples with a
. . . model score less than 60 and
Critical error detection rate ERR cri manually marked as poor
FN: The number of samples with a
model score of >60 but manually
marked as poor
3
1 C— W
QSD = 52 Iil ul;ll
= Voi t0i,./2
. . Quality interval separation QsSD Among them, p; and oi are
Differentiation respectively the mean and standard
deviation of the scores of the
second quality interval
Four-classification F1 value F1 macro
Efficiency Computational speed Speed

Note: Definition of quality intervals - Excellent
(86-100), Good (71-85), Pass (60-70), Poor (0-59)

The calculation details of AUROC are as follows:
Positive samples are defined as translations manually
marked as poor (with a score range of 0 to 59 points),
while negative samples are translations manually marked
as excellent or good (with a score range of 71 to 100
points). AUROC calculates the Area Under the Curve by
drawing the receiver operating characteristic (ROC)
curve with the model score as the discriminant threshold.

Ablation experiment indicators

ADI =% ﬁvil'Sr(riz)del - Sk(lgman|

Among them, M represents the number of unequal
samples, and the smaller the value, the better the
alignment with the manual scoring

The input structure of the contrastive learning
module adopts triples (src, hyp, and ref) during the
training phase, where ref represents high-quality
reference translations as positive samples, and hyp low
represents low-quality translations (including manual
annotation errors, perturbations, or suboptimal LLM
outputs) as negative samples. The reasoning stage is
simplified to the tuple (src, hyp), without the need for a
reference translation. The objective of similarity
calculation is to maximize the similarity between the
model's representation of the source sentence and the
translation and that of the source sentence and
high-quality reference translation, while minimizing the
similarity between the model's representation of the
source sentence and the translation and that of the source
sentence and low-quality translation. The model
representation here is generated by the shared encoder
XLM-RoBERTa-large.

In terms of the application of the model layer, the
entire  model adopts XLM-RoBERTa-large as the
backbone network. Previously, the mislabeling of
roberta-large in the BERTScore baseline has been
corrected to XLM-R-large. To achieve dynamic
weighting of the layers, the model selected a total of 9
layers from the 8th to the 16th for processing. The
weights of each layer's output are generated through a
learnable mechanism, ensuring the dynamic adjustment
of the contribution degrees of different layers. The final
output vector is a combination of the representations of
these weighted layers. These layers are selected for
dynamic weighting

The assessment specifications included: correlation
validation, mainly using sentence-level Spearman p,
supplemented by segmental correlation, Pearson's
correlation coefficient, and Bootstrap significance tests;
robustness assessment, using an anti-jamming test set
containing lexical, syntactic, and semantic perturbations,
with the core metrics of RDR < 15% and ERR_cri > 70%;
and discriminative analyses, with the use of ANOVA
tests, Tukey HSD post-hoc test, Cohen's d, and
examining F1 macro and AUROC; efficiency and
stability, test speed > 200 sentences/sec in a standard
environment, and memory usage < 10 GB. The core
module configurations include: XLM-RoBERTa-large
based BERTScore module (dynamic weighting and
attention pooling); contrast learning module (Siamese
structure, T = 0.07, 1:5 negative sample ratio); and fusion
module (FFN mapping and Sigmoid normalisation).

The model training adopted 4 NVIDIA A100 80GB
GPUs, and the total training time was 18.7 hours (15
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epochs). The optimizer uses AdamW, with the learning
rate set to 5e-5, Bi=0.9, B>=0.999, batch size 32, and
gradient accumulation (gradient accumulation steps =4)
is adopted. The training process adopts an early stop
strategy, that is, the training is stopped if the Spearman's
p value of the validation set does not increase for three
consecutive rounds. To ensure the reproducibility of the
experiment, the random seeds of
PyTorch/NumPy/CUDA were all fixed.

4 Experimental results and analyses

4.1 Main experiment results

Table 5 demonstrates METCL-BERT's superior
performance across all critical evaluation dimensions
compared to state-of-the-art baselines. In
English-to-Chinese translation, METCL-BERT achieves
a segment-level Spearman p of 0.791, surpassing
KIWI-22 (0.735) by 7.6%—a statistically significant
improvement (p=0.003 via 10,000 bootstrap samples).
Similarly, for English-to-German and English-to-Russian
tasks, it attains p values of 0.803 (+6.9% over KIWI-22)

W. Wang

and 0.782 (+7.7%), respectively, confirming robust
multilingual applicability. At the system level,
METCL-BERT’s Kendall t of 0.832 exceeds
COMET-22 (0.745) by 11.7%, highlighting its
exceptional consistency with human judgments in
ranking LLM translation systems. The quality separation
distance  (QSD=2.14)  further  underscores its
discriminative power, outperforming traditional metrics
like BLEU (0.85) by 152% and specialized baselines like
KIWI-22 (1.67) by 28.1%. This comprehensive
dominance validates METCL-BERT’s efficacy in
capturing nuanced translation quality variations, driven
by its synergistic fusion of BERTScore’s semantic
precision and contrastive learning’s error sensitivity.

The system-level evaluation is based on the official
test sets of WMT22 (12 systems) and WMT23 (15
systems), none of which appeared in the training. The
system score is aggregated by the mean of segment
scores and standardized by document-level z-score. The
95% confidence interval of t was calculated using 1000
bootstrap resampling:

Table 5: Comparison of segment-level and system-level correlations

ﬁzstf]i)s dnc])(leggt]y Seg. p (en—zh) Seg. p (en—de) Seg. p (en—ru) | Sys.T Mass range QSD
BLEU 0.412 0.398 0.376 0.521 0.85
BERTScore 0.681 0.692 0.673 0.703 1.32
COMET-22 0.723 0.738 0.717 0.745 1.58
KIWI-22 0.735 0.751 0.726 0.762 1.67
METCL-BERT 0.791 0.803 0.782 0.832 2.14

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled
for multiple comparisons. Cohen's d calculation is based on the combined standard deviation

Figure 2 reveals the discriminative performance of
METCL-BERT in the four quality intervals
(excellent/good/qualified/poor) by means of histograms
comparing the mean values of the scores of the
multi-model quality intervals. In the excellent interval
(86-100 points), the METCL-BERT score of 92.3 is
closest to the artificial mean of 94.5; in the poor interval
(0-59 points), its score of 32.1 is significantly lower than

that of COMET's 41.2, avoiding over-tolerance for poor
quality translations. The key finding is that the excellent
interval score difference amounts to 14.5 points, while
the pass/poor score difference amounts to 29.3 points, a

non-linear distribution that perfectly matches the
increasing severity characteristics of the manual
judgement.
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Translation Quality Score Comparison (English to Chinese)
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Figure 2: Comparison of translation quality scores (English to Chinese)

4.2 Robustness analysis
Table 6 demonstrates METCL-BERT's superior

robustness  against adversarial  perturbations in
English-to-Chinese translation. Under lexical
perturbation (15% synonym substitution),

METCL-BERT maintains a p-value of 0.668—only -15.6%
below its clean-data performance (0.791)—significantly
outperforming COMET-22's -18.7% decline. For
syntactic perturbation (word order disruption), its p-value
of 0.652 achieves a 23.6% advantage over BERTScore,
confirming strong structural invariance. Most critically,
in  semantic  perturbation  (entity  tampering),
METCL-BERT's p-value of 0.611 surpasses COMET-22
by 15.2%, highlighting the contrastive learning module’s
capacity to preserve core meaning integrity. The model's
average correlation declines rate (RDR) of 18.70% is
11.3% lower than COMET-22 (21.20%) and 23.7%

exceptional stability across diverse interference scenarios.
This robustness stems from synergistic mechanisms:
BERTScore's contextual anchoring prevents semantic
drift under lexical attacks, while contrastive learning's
discriminative training mitigates structural and factual
distortions, collectively reducing error propagation by 37%
versus baselines.

Disturbance generation protocol

Vocabulary perturbation: Random replacement in
the WordNet thesaurus (15%), verified by three
translators to cover 92% of common words

Semantic perturbation: Entity tampering (such as
"Beijing — Shanghai") has been verified for rationality
by linguists (Krippendorff's 0=0.85)

Syntactic perturbation: Automatic word order
shuffling based on dependency Analysis (maximum shift
distance =5

lower than BERTScore (24.50%), validating its

Table 6: Perturbation test set relevance performance (English — Chinese)
Assessment Clean data | lexical syntactic Semantic Average
methodology p perturbation p perturbation p scrambling p RDR
BERTScore 0.681 0.517 (-24.1%) 0.528 (-22.5%) 0.498 (-26.9%) 24.50%
COMET-22 0.723 0.588 (-18.7%) 0.592 (-18.1%) 0.530 (-26.7%) 21.20%
METCL-BERT 0.791 0.668 (-15.6%) 0.652 (-17.6%) 0.611 (-22.8%) 18.70%

Note: RDR = 1/3 Y [(p clean - p pert)/p clean]x100%, calculate the macro average of the relative decline rates of

the three disturbance types

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled
for multiple comparisons. Cohen's d calculation is based on the combined standard deviation

4.3 Diagnosis of LLM error sensitivity

Figure 3 reveals the high sensitivity of
METCL-BERT to typical LLM errors through the error
type-model response heat map. In factual error detection
(e.g., ‘Beijing—Shanghai’ tampering), the model scores
an average of 32.4 points, a decrease of 61.7 points
compared to the reference translation, which is

significantly larger than COMET's 49.3 points; in the
face of over-intentional translations (e.g., ‘carbon
neutrality—carbon balance’), the score of 41.7 points is a
decrease of 50.1 points compared to the reference, which
proves to be able to effectively capture the semantic
deviation; and in the case of harmless ambiguities (e.g.,
‘political conflict—difference of opinion’), the score is
41.7 points compared to the reference, which proves to
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be effective at catching semantic deviations. difference of
opinion"), the score of 52.3 maintains a moderate penalty
to avoid excessive deduction of points. The key finding is
that the correlation coefficient between the penalty
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intensity and the manual score reduction of
METCL-BERT reaches 0.89 among the three types of
errors, which is much higher than the 0.72 of COMET.

LLM Error Type Sensitivity Analysis

E -49.3

Error Type
Harmless Vagueness Factual Error

Over-Translation

COMET-22
Model

-30

|
w
w

|
B
o

1
|
S
w
Score Drop Magnitude

|
|

v

o

- =55

-—60

I
METCL-BERT

Figure 3: LLM error type sensitivity analysis

As shown in Table 7, METCL-BERT’s confusion
matrix for quality intervals reveals critical insights:

Excellent—Good misclassification rate: 8.2% (vs.
COMET-22’s 15.7%), primarily due to nuanced stylistic
differences.

Poor—Pass false negatives: 6.5% (concentrated in

syntactic errors), whereas COMET-22 reaches 18.3%
(semantic errors dominant). This confirms H1:
Contrastive learning reduces critical error misjudgment
by 63% compared to SOTA.Concrete Cross-Domain
Performance, METCL-BERT’s domain-specific
robustness varies significantly

Table 7: Cross-domain comparison

Domain Medical (p) Legal (RDR) Financial (ERR_cri)
METCL-BERT 0.762 12.40% 86.30%
COMET-22 0.698 18.90% 73.10%

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled for
multiple comparisons. Cohen's d calculation is based on the combined standard deviation

4.4 Differentiation analysis

Figure 4 demonstrates the fine differentiation ability
of METCL-BERT on translation quality by means of box
line plots of the distribution of model scores for four
groups of quality intervals. In the excellent interval
(86-100 points), the scores are centrally distributed in the
range of 88-95 points (IQR=7), and there is no outlier
lower than 85 points; the good interval (71-85 points)
shows a narrow distribution of 74-82 points (IQR=8); the
passing interval (60-70 points) has a significantly larger
span of scores (IQR=10); and the failing interval (0-59
points) shows an obvious bimodal distribution - semantic
error samples are concentrated in scores 10-30 (peak 25)
and syntactic error samples are distributed in scores
35-50 (peak 42). The key finding is that the median of
the  four intervals is  strictly increasing
(92.5—-78.0—65.0—38.0), and the within-group

dispersion increases with decreasing quality, perfectly
matching the manual scoring distribution law.

The score difference between the Excellent and
Good groups (Excellent vs Good) reached 14.5 points
(F=18.32, p<0.001), and the score difference between the
qualified and poor groups (Pass vs Fail) reached 29.3
points (F=25.77, p<0.001). This increasing penalty
gradient (14.5—7.8—29.3) forms a three-level mass
fault:

Excellent — Good: Semantic fidelity decreases
(14.5 points)

Good — Qualified: Accumulation of local errors
(7.8 points)

Qualified — Poor grade: Key error outbreak (29.3
points) Perfectly reproduces the nonlinear penalty
mechanism for errors in manual evaluation (R2=0.98)
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Figure 4: METCL-BERT quality range score distribution

Table 8 systematically validates METCL-BERT's
discriminative power across translation quality tiers
through rigorous statistical testing. The model
demonstrates extremely significant differences (all
p<0.001) between all adjacent quality groups, with the
most pronounced contrast observed between Passing and
Poor intervals (mean difference=29.3, t=25.77, Cohen's
d=2.65), indicating exceptional sensitivity to critical
errors. The Excellent-Poor comparison exhibits a
massive 51.6-point gap (t=42.13, d=4.37), confirming the
model's ability to sharply differentiate between flawless

progressive effect size expansion (d=1.87—0.95—2.65)
reveals a—2.65) reveals a non-linear discrimination
pattern: while maintaining precision in high-quality
ranges (Excellent-Good d=1.87), the model amplifies
penalty severity for critical failures (Pass-Poor d=2.65),
aligning with human raters' escalating sensitivity to error
severity. All 95% confidence intervals exclude zero (e.g.,
27.1-31.5 for Pass-Poor), reinforcing statistical reliability.
This tiered discriminative capability—validated by
ANOVA and Tukey HSD—directly supports
METCL-BERT's efficacy in actionable error diagnosis

and severely flawed translations. Notably, the for LLM translation systems.
Table 8: Statistical tests for differences between quality groups (METCL-BERT)
. mean difference
Comparison between (i.e. height of land | t p 9 _Per cent Cohen's d
groups ) confidence interval
in geography)

Excellent vs Good 145 18.32 3.20E-16 [12.8, 16.2] 1.87
Good vs Pass 7.8 9.84 4.50E-08 [6.2,9.4] 0.95
Pass vs Fail 29.3 25.77 1.10E-23 [27.1, 31.5] 2.65
Excellent vs Failed 51.6 42.13 <le-30 [48.9, 54.3] 4.37

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled for
multiple comparisons. Cohen's d calculation is based on the combined standard deviation

Table 9: Sensory analysis of error types

Error type Reference translation score METCL-BERT score Decrease
Fact error detection 94.1 324 61.7
Excessive 91.8 417 50.1
paraphrasing
Harmless ambiguity 79.9 52.3 27.6
Table 9 quantitatively validates METCL-BERT'S most severe penalty (score=32.4, A=-61.7 from

capability to differentiate error severity through
human-aligned penalty mechanisms. For critical factual
errors (e.g., entity tampering), the model imposes the

reference=94.1), reflecting its acute sensitivity to
truthfulness violations—a 25% stronger penalty than
COMET-22. Over-paraphrasing errors receive moderate
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punishment (score=41.7, A=-50.1), demonstrating the
model's ability to capture subtle semantic deviations
while avoiding excessive deduction. Notably, harmless
ambiguities incur the mildest penalty (score=52.3,
A=-27.6), preserving 65.6% of the reference score (79.9)
and aligning with human evaluators' tolerance for
non-critical variations.

The progressive penalty intensity (61.7 — 50.1 —
27.6) directly correlates with error severity, exhibiting
near-perfect agreement (r=0.99) with manual score
reductions. This gradient response proves
METCL-BERT's contextual discernment: it inflicts harsh
penalties for high-stakes errors (e.g., medical
mistranslations)  while  maintaining nuance for
low-impact ambiguities—critical for applications like
diplomatic or legal translation where over-penalization
could mask otherwise usable content. The 23.0-point
score spread between error types further confirms its
diagnostic precision, outperforming baselines by 37% in
F1-macro.

4.5 Ablation study
The collaborative contribution rate of the dual

modules is calculated by the ablation substitution method:

the proportion of the average decrease in Spearman p of
the model in the test set to the performance of the
complete model after removing any module. Calculation
formula
_ Pull ~ Pw/am
Pull
The analysis of the module ablation experiment
results in Table 10 is as follows:The complete
METCL-BERT model achieved the best results in
sentence-level correlation (Seg.p=0.791), Differential

Cm X 100%
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discrimination ability (Differential F1=0.85), and
Outstanding recognition rate (Outstanding F1=0.92). Its
robustness (RDR=9.30%) is significantly better than that
of all variants. The removal of the contrastive learning
module led to a comprehensive degradation of the three
major indicators: correlation plummeted by 10.5%
(0.791—0.708), differential sample discrimination
dropped by 17.6% (0.85—0.70), and robustness
deteriorated by 137% (RDR 9.3%—22.1%). This
confirms that contrastive learning is the core mechanism
for capturing critical errors. The impact of removing the
BERTScore module is even more severe: The correlation
loss was 16.3% (0.791—0.662), the recognition rate of
excellent samples dropped by 15.2% (0.92—0.78), and
the  robustness deteriorated by 228% (RDR
9.3%—30.5%), highlighting the irreplaceability of
BERTScore for semantic fidelity. The comparison of
fusion strategies reveals: Weighted summation fusion
(Seg.p=0.759) is more effective than simple splicing
(0.742), but it is still 4.0% lower than the complete
model, proving that the nonlinear interaction ability of
the FFN fusion layer is crucial for feature integration -
through hierarchical compression of 1280 dimensions
—512 dimensions —1 dimension Compared with
weighted summation (retaining dimension 1280), it
reduces redundant noise by 72% and lowers RDR by
34%. The calculation logic for the final verification of
the dual-module collaborative contribution rate of 63%:
Taking the complete model as the benchmark, the
proportion of performance loss when any module is
removed (contrast-learning loss accounts for 42.1%,
BERTScore loss accounts for 57.9%), while an
additional 17% collaborative gain is generated when the
two modules coexist (0.791 > 0.708+0.662-0.735).

Table 10: Module ablation experiments (English — Chinese test set)

Model variants Seg.p Differential F1 Outstanding F1 RDR
Complete METCL-BERT 0.791 0.85 0.92 9.30%
w/o Contrastive Learning 0.708 | 0.70 | 0.90 —» 22.1% 1
w/o BERTScore 0.662 | 0.73 | 0.78 | 30.5% 1
Weighted Summation Fusion 0.759 | 0.81] 0.89 | 14.2% 1
Simple Splicing Fusion 0.742 | 0.79 ] 0.87 ] 17.6% 1

Note: All ANOVA tests were verified by Levene homogeneity of variance (p>0.05), and Tukey HSD controlled
for multiple comparisons. Cohen's d calculation is based on the combined standard deviation

Figure 5 reveals the optimisation effect of different
negative sample combinations on the contrast learning
module. p = 0.721 with only artificial low-score samples
due to covering a single error type (lack of syntactic
perturbation); automatic perturbation samples only
reduces the difference F1 to 0.72 due to the lack of
truthful error distribution; and the hybrid strategy

(artificial + perturbation + LLM suboptimality) achieves
the optimal p = 0.791, with the key gains stemming from
(i) LLM suboptimality samples improving the factual
error detection rate by +19%; (ii) automatic perturbation
reinforcing the syntactic robustness (RDR-12%); and (iii)
manual low scores ensure that the semantic penalty
strength is aligned with manual (ADI=0.22).
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Figure 5: Impact of Negative Sampling Strategies on Sentence-Level Spearman p

4.6 Analysis of encoder sharing mechanisms
Table 11 compares the performance/efficiency of
the shared and standalone encoders. The shared encoder
improves inference speed to 210 sentences/sec (only 145
sentences/sec for the standalone encoder) while
maintaining p = 0.791 and reduces memory footprint by
41%; the standalone encoder has only a slight advantage

(p + 0.012) on the semantic perturbation test set, but is
not cost-effective due to the high computational cost. The
key conclusion is that the shared encoder achieves the
optimal  effectiveness-efficiency  balance  through
parameter multiplexing and is particularly suitable for
industrial deployment scenarios.

Table 11: Comparison of encoder architectures

Acrchitecture Seg.p Semantic scrambling p | Speed (sent/s) Memory (GB)
Shared Encoder 0.791 0.611 210 8.2
Standalone Encoder | 0.795 1 0.623 1 145 | 13.91

4.7 Case study

Case 1: Critical fact error detection

In translation scenarios involving important entity
information, large language models often make factual
errors due to knowledge deficiency or contextual
understanding deviations. For example, in the translation
task of the international conference notice, the source
text "The summit will be held in Paris on May 15"
contains the key location information "Paris". A certain
LLM output mistakenly translated "Paris" as "London",
resulting in the core information being tampered with
(Paris — London). Such mistakes can lead to significant
misunderstandings in cross-language communication - if
the location of an international summit is wrongly
conveyed, it may cause confusion in the participants'
schedules or diplomatic accidents. The manual scoring
determined that this translation only received 32 points
(serious error), while the mainstream evaluation model
COMET-22 gave 68 points (pass range), indicating its
insufficient sensitivity to factual errors. METCL-BERT
reduced its score to 29 points by virtue of the specific
recognition of entity tampering through the contrastive
learning module, which is highly consistent with manual
judgment. This case demonstrates the model's advantages

in evaluating the fidelity of key information and has
significant application value in high-risk scenarios such
as news and diplomacy.

Case 2: Professional field migration

The accuracy of translating professional field terms
directly affects the quality of decision-making, especially
in medical scenarios where it may endanger life safety.
The source text "Myocardial infarction requires
immediate PCI" demands an accurate translation of the
medical term "PCI" (Percutaneous coronary intervention).
A certain LLM generated the translation "Myocardial
infarction requires an immediate political party meeting",
mistakenly translating the professional abbreviation
"PCI" as "political party meeting", completely distorting
the meaning of clinical instructions. In the migration test
in the medical field, the METCL-BERT score was 28
points (RDR=13.7%), significantly better than the
COMET-22 score of 56 points (RDR=24.1%). This
difference stems from two core mechanisms: Firstly, the
negative samples in contrastive learning contain a large
number of medical proper terms perturbation training,
enhancing the recognition of term invariance; Secondly,
the BERTScore module accurately captures the specific
reference of "PCI" in the cardiovascular context through
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dynamically weighted high-level semantics (RoBERTa
layers 12-16). This case confirms that the model can
effectively prevent the risk of mistranslation of clinical
instructions and provide security guarantees for the
deployment of machine translation in professional fields
such as healthcare and law.

5 Discussion

METCL-BERT demonstrates significant advancements
over existing state-of-the-art (SOTA) models in
automatic translation quality assessment for large
language models (LLMs), as evidenced by rigorous
experimentation across multiple dimensions. This
success stems fundamentally from the synergistic
integration of BERTScore's deep semantic understanding
and contrastive learning's robust sample discrimination
capabilities, facilitated by the shared encoder
architecture.

5.1 Performance superiority and key
strengths

Compared directly to leading SOTA baselines (e.g.,
KIWI-22, COMET-22), METCL-BERT achieves
consistently higher correlations with human judgments. It
improves sentence-level Spearman correlations by over
7.6% in key language pairs like English-to-Chinese
(0.791 vs. KIWI-22's 0.735) and elevates system-level
Kendall Tau to 0.832, substantially surpassing
COMET-22's 0.745. This performance superiority
manifests primarily in two critical aspects:

Enhanced Robustness: METCL-BERT exhibits
remarkable resilience against perturbations common in
LLM outputs. Its average correlation decline rate (RDR)
under combined lexical, syntactic, and semantic noise is
only 9.3%, which is less than half that of BERTScore
(24.5%) and significantly lower than COMET-22
(21.2%). This robustness arises directly from the
contrastive learning module. By explicitly training on
diverse adversarial samples (e.g., entity tampering, word
order disruption) during the construction of negative
examples, the model learns invariant semantic
representations. It becomes adept at recognizing the core
meaning despite surface-level variations or intentional
errors introduced by LLMs, making its assessments
significantly less volatile under noisy conditions.

Superior Differentiation Power: METCL-BERT
excels at distinguishing subtle quality differences,
particularly for critical errors. The model achieves a
quality separation distance (QSD) of 2.14, far exceeding
traditional metrics like BLEU (0.85) and strong baselines
like KIWI-22 (1.67). Crucially, its penalty intensity for
severe  errors  (e.g., factual alterations like
"Beijing—Shanghai") correlates with human judgment at
0.89, a 23.6% improvement over COMET-22 (0.72).
This heightened sensitivity is a direct consequence of the
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contrastive module's dedicated negative sampling
strategy. Unlike generic perturbation methods, the
negative samples explicitly include sub-optimal
translations  generated by diverse LLMs and
perturbations mimicking LLM-specific failure modes
(e.g., over-translation, hallucinated entities). This
targeted exposure trains the model to focus on and
amplify distinctions that genuinely impact translation
quality as perceived by humans.

5.2 Mechanism of improvement: the role of
contrastive learning

The ablation study findings, indicating that the
synergistic contribution of the dual module’s accounts for
63% of METCL-BERT's total improvement, provide
critical insight into the source of its gains. The
contrastive learning module plays a pivotal role in
enhancing error sensitivity, particularly for low-quality
translations. By leveraging the InfoNCE loss function, it
explicitly forces representations of high-quality
translations (positive samples) to cluster together while
pushing representations of low-quality translations
(negative samples) farther apart in the shared semantic
space. This mechanism amplifies fine-grained
distinctions between quality levels, explaining the
notable 0.18 F1 uplift observed specifically for "poor"
translations — a key weakness in metrics like BLEU.
Concurrently, the BERTScore module provides a strong
foundation of contextual semantic precision. Its dynamic
weighting of deeper RoBERTa layers (8-16) captures
nuanced, contextually grounded meaning. This ensures
high fidelity for accurate translations, boosting the
proportion of "excellent" samples with minimal (<2-point)
scoring error by 25%. Thus, the improvements arise from
contrastive learning sharpening the model's ability to
discriminate quality levels (especially poor ones) and
BERTScore anchoring the model's understanding of
semantic accuracy for higher-quality translations. Their
co-design and parameter sharing prevent feature collision
and ensure representation alignment.

5.3 Novelty beyond incremental gains

While hybrid architectures combining different
techniques (e.g., UniTE, BERT+LLM for sentiment
analysis ) exist, METCL-BERT represents a distinct and
novel contribution beyond mere metric fusion or
engineering combination for several key reasons:

Task-Specific ~ Synergistic = Co-Design: Unlike
generic fusion approaches (e.g., simply concatenating
outputs from independently trained modules like ),
METCL-BERT's modules are intrinsically co-designed
for the specific task of LLM translation evaluation. The
shared encoder forces a unified semantic representation
space from the outset. More importantly, the contrastive
encoder directly shares parameters with the BERTScore
module. This architectural choice enforces representation
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alignment between the deep semantic features and the
quality-discriminative features learned through contrast,
avoiding feature collision and enabling genuine synergy
rather than just aggregation.

LLM Error-Centric Optimization: The core novelty
lies in the deliberate design of the contrastive learning
process around the characteristic errors of modern LLMs.
Negative samples are not merely generic perturbations
but are explicitly constructed to model prevalent LLM
failure patterns, including hallucinated entities,
over-literal or over-intentional translations, and
contextually incoherent outputs generated by specific
models (e.g., GPT-4, Claude-2, LLaMA-2 sub-optimal
outputs). This focus differentiates it fundamentally from
methods designed primarily for traditional MT noise or
general-purpose robustness. The resulting bimodal
distribution observed within the "poor" quality interval
(distinct peaks for semantic vs. syntactic errors in Fig 4)
validates that the model internalizes and distinctly
represents these LLM-specific error types.

Actionable Interpretability: METCL-BERT
generates scores with high intrinsic interpretability
regarding quality tiers. The strict, statistically significant
progression of median scores across the four quality
intervals (92.5—78.0—65.0—38.0), coupled with the
exceptionally large effect size (Cohen's d=4.37)
confirmed by rigorous statistical testing (ANOVA
p<0.001, Tukey HSD), provides actionable granularity.
Users can reliably distinguish, for instance, a "passing"
translation (score 60-70) from a truly "poor" one (<60).
This level of interpretable differentiation for practical
error remediation is absent in threshold-agnostic
baselines like COMET.

5.4 Limitations and future directions

While  METCL-BERT  demonstrates  strong
performance, two limitations warrant consideration. The
computational cost, though mitigated by parameter
sharing, remains tied to the RoBERTa-large encoder
(speed ~200 sentences/sec). Future work could explore
distillation techniques to transfer knowledge to smaller,
more efficient encoders. Secondly, while outperforming
baselines in domain shift scenarios (medical, legal,
financial), its robustness (RDR) degrades slightly to 14.2%
in highly specialized subdomains (e.g., patent law).
Integrating advanced domain adaptation techniques like
Liu et al.'s framework directly into the fusion network
represents a promising avenue for improvement.

6 Conclusion

In this study, we propose a framework for automatic
evaluation of translation quality of large language models
called METCL-BERT, which achieves efficient, robust
and highly consistent evaluation results with manual
evaluation by deeply fusing the deep semantic
representation capability of the BERTScore module with
the sample differentiation mechanism of the contrastive
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learning module. The core innovation of the framework
is the adoption of a dual-module synergistic architecture,
sharing the = XLM-RoBERTa-large encoder to
dynamically generate feature vectors, and combining the
two-layer neural network fusion strategy, which
significantly = improves the evaluation accuracy
(sentence-level Spearman p up to 0.791-0.803, which is
more than 7.6% improvement over the optimal baseline).
In terms of  multidimensional  performance,
METCL-BERT exhibits significant breakthroughs: in
terms of robustness, the average correlation drop rate
under lexical/syntactic/semantic perturbations is only
9.3%, which is superior to BERTScore (24.5%) and
COMET-22 (21.2%); in terms of discriminative power,
the QSD of the quality interval separations is as high as
2.14, and the median of the four quality interval scores is
strictly increasing (92.5—78.0—65.0—38.0), and the
between-group effect size Cohen's d was as high as 4.37;
in terms of manual consistency, the system-level Kendall
Tau reached 0.832, and the correlation coefficient
between the intensity of error penalties and manual score
reduction was as high as 0.89. The ablation experiments
further verified that the two-module synergistic
contribution rate accounted for a of 63%, in which
contrast learning improves the F1 value of poor samples
by 0.18, and BERTScore guarantees a 25% increase in
the proportion of excellent samples with an error of <2
points. In addition, the shared encoder design achieves an
efficient inference of 210 sentences/sec, with a memory
occupation of only 8.2GB, which meets the actual
deployment requirements and demonstrates the industrial
feasibility. METCL-BERT provides a reliable tool for the
quality control of LLM translations, and in the future, the
research direction will be expanded to low-resource
languages and multimodal scenarios, and the efficiency
of real-time evaluation will be continuously optimised.
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