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This study presents a comprehensive intelligent framework for personalized garment creation and 

physics-based virtual fitting, incorporating conditional generative adversarial networks, high-resolution 

neural networks for human pose estimation, spatially-adaptive normalization, and a differentiable 

physical simulation engine for fabric dynamics. The system addresses critical issues in the fashion sector, 

including inadequate personalization in design and limited realism in virtual try-on technologies. User 

preferences are encoded through a pre-trained language representation model, while the system records 

body posture and simulates fabric deformation to attain high-fidelity virtual fitting. Experimental 

assessments were conducted using the DeepFashion image dataset, along with a proprietary three-

dimensional human body scanning dataset. The proposed system attained a recommendation accuracy of 

88 percent, a user satisfaction rate of 92 percent, and a novelty score of 8.9 out of 10. The pose estimation 

module achieved an accuracy of 96.8 percent according to keypoint localization benchmarks, while the 

average fabric deformation error decreased to 1.4 millimeters, signifying a 73.6 percent enhancement 

compared to conventional spring-based physical models. The results illustrate the system's ability to 

produce manufacturable, customized garment designs while providing realistic, dynamically adaptive 

virtual try-on experiences. The suggested method provides a scalable solution for innovative fashion 

design and consumer interaction. 

Povzetek: Za personalizirano oblikovanje oblačil in fizikalno realističen virtualni preizkus je predlagana 

arhitektura cGAN–HRNet–DiffCloth z jezikovnim modeliranjem uporabnikov, SPADE-normalizacijo in 

diferencabilno simulacijo tkanin. 

 

1 Introduction 
With the rapid development of information technology, 

digital transformation has become an essential trend in 

various industries, and the clothing industry is gradually 

transitioning towards intelligence and automation. 

Traditional fashion design relies on designers' experience 

and manual operation, which is inefficient and lacks 

personalization [1], [2], [3]. To solve this problem, virtual 

try-on technology has gradually become one of the key 

technologies. However, existing systems often rely on 

static human models, which make it difficult to cope with 

dynamic postures and physical characteristics of clothing, 

thus affecting the try-on effect [4], [5]. 

With the breakthroughs of deep learning technology 

in image generation, computer vision, and human pose 

estimation, intelligent clothing design and virtual fitting 

have ushered in new development opportunities. The 

excellent performance of deep learning models such as 

Convolutional Neural Networks CNN and Generative 

Adversarial Networks GAN in image processing makes 

personalized design and dynamic adaptation of clothing 

possible [6], [7], [8]. Through deep learning, design can 

achieve personalized style generation and simulate the  

 

 

wearing effect under different human postures, enhancing 

the authenticity of virtual fitting [9], [10]. 

Current research primarily focuses on styles, fabrics, 

and style transfer, but lacks joint modeling of multiple 

design elements [11]. In terms of virtual try-on 

technology, although progress has been made in 3D 

modeling and physical simulation, it has high 

computational complexity. It isn't easy to adapt to users' 

personalized needs in real time [12], [13]. The current 

challenge is achieving closed-loop optimization of design 

and fitting, ensuring both personalized effects and the 

accurate reproduction of the physical characteristics of 

clothing[5], [14], [15]. This study proposes an end-to-end 

system based on deep learning, which combines 

generative adversarial networks GANs and human pose 

estimation HRNet to achieve deep integration of clothing 

design and virtual try-on. The system considers the 

interrelationships between design elements and improves 

personalized recommendations' accuracy and user 

satisfaction through dynamic try-on algorithms and 

feedback mechanisms [16], [17]. 

This study primarily addresses the lack of an 

integrated framework that concurrently facilitates 

individualized garment creation, precise physical 

simulation, and dynamic fitting adaptability. Current 
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methodologies frequently concentrate on discrete 

elements, either visual clothing creation or physical 

authenticity, lacking a comprehensive, integrated solution. 

To address this limitation, the study is guided by three 

primary research objectives: (1) to augment design 

personalization by capturing user preferences via semantic 

encoding derived from natural language descriptions; (2) 

to enhance the realism of garment deformation during 

motion through the application of differentiable fabric 

simulation techniques; and (3) to guarantee high visual 

fidelity and structural detail in generated garments by 

integrating spatially adaptive normalization into a 

conditional generative model. The aims are achieved 

using an innovative architecture that combines conditional 

picture creation, high-resolution human posture 

estimation, language-based user modeling, and physics-

informed fabric simulation into a cohesive, real-time 

system for intelligent fashion design and virtual try-on. 

2 Related works 

2.1 Intelligent clothing design technology 

Intelligent clothing design technology has undergone 

multiple stages of evolution. Early design methods mainly 

relied on rule engines and template design, using 

parametric modeling techniques to generate clothing 

styles [18], [19] This method is based on preset parameters 

of clothing design, such as clothing size, color, style, and 

fabric. Although it can quickly generate design results, it 

lacks personalization and creativity. Therefore, the 

limitations of traditional methods mainly lie in their 

design singularity and lack of adaptability to diverse needs 

[20] 

With the development of deep learning technology, 

intelligent clothing design has gradually entered a stage 

driven by deep neural networks. Convolutional neural 

networks CNNs are widely used for clothing style 

classification, with typical models such as ResNet-50 

achieving an accuracy of 92% on the DeepFashion dataset 

[1], [7]. In addition, Generative Adversarial Networks 

GANs have also begun to be used to generate clothing 

images, where FashionGANs can generate clothing 

designs with diverse styles and details [8]. These deep 

learning-based techniques can consider more design 

elements during generation, such as changes in style and 

color combinations, greatly enriching the possibilities of 

clothing design [6], [21]. However, although GANs can 

generate diverse clothing images, their results often lack 

modeling of physical properties such as fabric elasticity 

and material performance, which still creates a gap 

between clothing design and actual manufacturing [22], 

[23]. 

2.2 Virtual try-on technology 

Research on virtual try-on technology has also evolved 

from static to dynamic. Early virtual try-on methods 

mainly relied on static images and UV mapping 

techniques, which attached 2D images of clothing to 3D 

human models and simulated wearing effects by adjusting 

the shape of the clothing [4], [24]. However, this method 

cannot consider the changes in users' dynamic postures, 

the fitting effect lacks realism, and the clothing 

deformation cannot be accurately presented in different 

postures [12], [13]. 

Dynamic fitting technology has gradually become a 

research focus with the continuous advancement of 

computing power and technology. In recent years, Long-

Short-Term Memory (LSTM) networks have been 

introduced into virtual try-ons to predict the motion 

trajectory of clothing under different actions. However, 

this method has the significant drawback of ignoring the 

physical properties of clothing, such as the elasticity and 

stretchability of the fabric, resulting in a substantial gap 

between the fitting effect and the actual wearing [5], [11]. 

In cutting-edge research, NVIDIA proposed 

PhysGAN, which combines physics engines to simulate 

fabric dynamics [12]. Considering the physical properties 

of fabrics makes virtual fitting more realistic. PhysGAN 

can calculate clothing deformation in various dynamic 

environments in real time by introducing physical 

simulation of fabrics, significantly enhancing the 

immersion and realism of virtual fitting [23]. 

This study addresses the shortcomings of intelligent 

clothing design and virtual try-on technologies and 

proposes an innovative method that integrates the entire 

design and try-on process. Specifically, the technical 

roadmap of this article is divided into two main stages: the 

design stage and the fitting stage, as follows: 

(1). In the design phase, this article uses Conditional 

Generative Adversarial Networks cGAN to generate 

customizable clothing designs. Unlike traditional GANs, 

cGAN can create clothing designs that conform to actual 

sewing constraints by introducing additional conditional 

constraints such as color, fabric, and other elements. This 

design method not only considers the diversity of clothing 

styles but also fully considers the feasibility of actual 

manufacturing, especially regarding sewing technology 

and fabric matching optimization. 

(2). In the fitting stage, this article combines 

differentiable physics engines such as DiffCloth to 

optimize the deformation calculation of clothing. 

DiffCloth can accurately calculate fabric deformation 

under users' dynamic posture changes through fine-

grained physical simulation. Compared with traditional 

methods, this approach improves the accuracy of virtual 

try-on. It enables real-time updates in a dynamic 

environment, making the user's try-on experience more 

realistic and natural. 

Almeida [1] examined customer adoption of AI-

driven Virtual Try-On systems, concentrating on five 

behavioral aspects.  The research revealed favorable user 

perceptions and intentions, contributing to the field by 

linking AI personalization with consumer behavior data. 

Chen et al. [2] performed a systematic review of 69 studies 

on virtual try-on technologies in fashion, identified critical 

psychological and technological factors affecting 

consumer adoption, and proposed conceptual frameworks 

connecting these factors to behavior. Their research 

progressed the field by addressing deficiencies in user 

segmentation and personalization, providing insights to 
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improve the efficacy of virtual try-on systems. Vaishnavi 

et al. [3] enhanced the state of the art by amalgamating 

deep learning-based recommendations with high-fidelity 

virtual try-on, tackling significant limitations in current 

systems, including sparse annotations and inadequate 

realism. Their employment of the DeepFashion dataset, 

ResNet50, and U2Net facilitated precise personalization 

and realistic garment visualization, establishing a new 

benchmark for immersive online fashion experiences. 

Aakash et al. [4] progressed the discipline by synthesizing 

ten essential works on AI and computer vision in fashion, 

encompassing deep learning for clothing detection, AR-

based virtual try-ons, and intelligent wardrobe systems.  

Their research presented a cohesive perspective on 

prevailing trends, difficulties, and future trajectories, 

emphasizing how integrated AI solutions might improve 

customization and user experience in fashion applications. 

In summary, this study develops an end-to-end 

intelligent framework that synergizes automated clothing 

design with high-accuracy virtual try-on, offering an 

innovative user-centric solution for personalized garment 

customization and dynamically adaptive fitting 

experiences. 

Table 1 presents a comparative overview of current 

methodologies in intelligent apparel design and virtual 

fitting. It emphasizes disparities in image quality, 

accuracy of physical simulations, capacity for 

customization, and support for dynamic fitting. The results 

underscore the overall efficacy of the proposed approach 

across all critical criteria. 

 

 

Table 1: Comparative summary of existing methods 

 

Method 
FID 

↓ 
IS ↑ 

Deformation 

Error (mm) ↓ 
Rec. Accuracy (%) ↑ Personalization 

Dynamic 

Simulation 

Physical 

Realism 

PhysGAN 25.7 7.9 2.7 — ✗ ✓ ✓ 

FashionGAN 25.1 8.1 — — ✗ ✗ ✗ 

PBD — — 3.7 — ✗ ✓ ✓ 

Traditional 

Rule 
— — — 65 ✗ ✗ ✗ 

Proposed 

Method 
12.3 9.5 1.4 88 ✓ ✓ ✓ 

 

2.3 Research gaps and novelties 

Recent breakthroughs in intelligent fashion systems have 

introduced techniques for clothing image production or 

physical simulation. Nonetheless, these methodologies 

frequently function independently and do not offer a 

cohesive solution that encompasses user personalization, 

garment physical realism, and dynamic fitting. Generative 

models, such as fashion-specific neural networks, can 

produce visually different clothing styles but often 

overlook physical attributes such as stretchability, 

bending, and drape behavior. Currently, physics-based 

fabric simulation techniques proficiently describe 

deformation during motion; nevertheless, they lack the 

integration of semantic user input and do not facilitate the 

creation of unique garments. 

Furthermore, conventional parametric design tools and 

rule-based engines depend on static templates, rendering 

them inflexible in accommodating diverse user 

preferences or dynamic body shapes. These technologies 

cannot learn from contextual feedback or read user-

defined attributes like as fabric type, color, or style intent. 

This paper provides a cohesive framework that 

amalgamates conditional generative modeling, high-

resolution human posture estimation, semantic preference 

extraction using language models, and differentiable 

fabric simulation to address these limitations. This 

thorough integration facilitates real-time, user-directed 

garment design that dynamically adjusts to movement and 

physical limitations, overcoming significant shortcomings  

 

in existing virtual fashion technologies while improving 

customization, realism, and design scalability. 

3 System architecture and algorithm 

design 

3.1 System architecture design 

The intelligent clothing design and virtual try-on system 

based on deep learning proposed in this study aims to 

achieve deep integration of clothing design and virtual try-

on. The system is divided into three parts: data layer, 

algorithm layer, and application layer [7], [10]. Each part 

complements the other and jointly promotes the 

realization of personalized clothing design and virtual try-

on. The system architecture is shown in Figure 1, and each 

layer's design and working principles will be elaborated in 

detail. 

The system comprises three components: the data 

layer, the algorithm layer, and the application layer. Each 

component enhances the others and collectively facilitates 

the achievement of customized apparel design and virtual 

fitting. To improve the clarity of information flow, the 

system architecture depicted in Figure 1 employs solid 

arrows to denote data flows (e.g., from the user design 

terminal to the parameter input module) and dashed 

arrows to signify control flows (e.g., system triggers for 

updating fitting output in response to parameter 

modifications). This labeling elucidates the interactions 

across modules, including the user design terminal, 
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parameter adjustment input, real-time interaction 

feedback, and impact display terminal.

 

Figure 1: System architecture diagram 

The data layer is the fundamental layer of the system, 

mainly responsible for integrating and processing various 

types of data. Firstly, the data layer takes the DeepFashion 

dataset as the foundation [1], [7], which contains many 

clothing images and their corresponding label 

information, covering various styles, colors, and fabric 

types of clothing [3], [8]. In addition, 3D-scanned human 

body model data is used to establish personalized body 

feature models for users. By modeling features such as 

user body size and posture, the fitting effect of clothing 

can be better simulated. Finally, user preference data is 

generated based on the user's historical clothing choices 

and wearing behavior, which can provide support for 

personalized recommendation algorithms, making the 

recommended clothing more in line with the user's 

aesthetics and needs. 

The algorithm layer is the system's core, divided into 

the design and try-on modules. The design module 

generates and optimizes clothing styles through 

StyleGAN2 and Conditional GAN CGAN. In this process, 

StyleGAN2 is responsible for developing style in clothing 

design. At the same time, the conditional constraint 

network restricts the specific attributes of the generated 

clothing by inputting features such as color and fabric. 

Specifically, assuming that the generation process of 

clothing design can be expressed as: 

 

𝑥 = 𝐺(𝑧, 𝑐) (1) 

 

Where x is the generated clothing image, G is the 

generator network, z is the random noise vector, and c is 

the condition vector, which includes constraints such as 

color and fabric. The system can generate clothing designs 

with specific attributes based on user needs through this 

generation method. 

To incorporate user-specified design limitations like 

color and fabric, these categorical attributes are initially 

subjected to one-hot encoding. Each one-hot vector is 

further processed through a trainable embedding layer to 

get a compact feature representation. The embedded 

condition vector is combined with the latent noise vector 

before being fed into the generator, allowing the model to 

produce clothes that align with the designated qualities. 
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The try-on module uses HRNet for human pose 

estimation, which detects the user's real-time pose and 

provides the necessary information for virtual try-on. 

HRNet is an efficient human pose estimation network that 

improves the recognition accuracy of human keypoints 

through multi-resolution feature fusion. Specifically, 

assuming the input image has a resolution of 256×256 

pixels. HRNet calculates the human body keypoints 𝑃 =
𝐻𝑅𝑁𝑒𝑡𝐼2𝑖𝑛 through the following process, where 𝑃 =
𝑝1, 𝑝2, 𝑑𝑜𝑡𝑠, 𝑝1 represents the position coordinates of n 

keypoints in the human body image. Next, the DiffCloth 

physical simulation module simulates the physical 

changes of clothing on the human body, ensuring the 

dynamic adaptation of apparel in various postures. 

DiffCloth accurately calculates clothing deformation by 

simulating clothing materials and human movements. The 

following physical equation can describe the final shape F 

of the clothing: 

 

𝐹 = DiffCloth(𝑀, 𝑃) (2) 

 

Where M is the physical model of the clothing, P is 

the posture information of the human body, and the final 

obtained F is the shape of the clothing after trying it on. 

To guarantee precise modeling of garment 

deformation, the output from the human pose estimation 

module must be flawlessly connected with the fabric 

simulation engine. Following the extraction of two-

dimensional keypoints from input photos by HRNet, these 

keypoints are subsequently mapped onto a three-

dimensional human mesh through a parametric body 

modeling method utilizing the Skinned Multi-Person 

Linear (SMPL) model. The resultant 3D mesh 

encapsulates both body morphology and joint 

configurations. This mesh is synchronized between frames 

and utilized as input for the DiffCloth simulation engine.  

The joint positions and skeletal movements are 

represented as vertex displacement data, which facilitates 

the deformation of the virtual garment in the simulation.  

This synchronization facilitates real-time alignment 

between projected body movement and fabric reaction, 

enabling DiffCloth to produce physically credible garment 

dynamics during user engagement. 

The application layer is the front-end part of the 

system, mainly implementing real-time virtual try-on 

interaction through WebGL technology. WebGL allows 

users to render 3D clothing models in the browser directly, 

achieving real-time feedback on virtual try-on effects. At 

the application layer, users can adjust clothing styles, 

colors, fabrics, etc., according to their personal 

preferences, and the system updates the fitting effect in 

real time through feedback from the algorithm layer. 

Assuming the user's adjustment input is 𝑢𝑖𝑛𝑝𝑢𝑡 and the 

system's output is 𝑆𝑜𝑢𝑡 i.e., the updated try-on effect, the 

real-time interaction process of the system can be 

described by the following formula (3): 

𝑆𝑜𝑢𝑡 = 𝑓(𝑢𝑖𝑛𝑝𝑢𝑡 , 𝐺, 𝐻𝑅𝑁𝑒𝑡, 𝐷𝑖𝑓𝑓𝐶𝑙𝑜𝑡ℎ) (3) 

where f represents the interaction function and G, 

HRNet, and DiffCloth represent the outputs of the clothing 

design, pose estimation, and physical simulation modules, 

respectively. This method allows users to instantly see the 

adjusted clothing effect during the interaction process, 

improving the accuracy and experience of virtual fitting. 

This system establishes a three-layer architecture 

(data-algorithm-application) via deep learning, 

synergizing GANs, pose estimation, and physical 

simulation to bridge personalized design with high-

fidelity virtual try-on. The multimodal collaboration 

enables user-centric customization while ensuring 

dynamically adaptive garment realism, demonstrating 

scalable potential for fashion industry applications. 

3.2 Generative adversarial network 

optimization 

Improving network structure is the key to optimizing 

generative adversarial networks (GANs) and enhancing 

the quality of clothing design generation. In traditional 

GAN models, the game process between the generator and 

discriminator is usually optimized step by step, but the 

generated results often lack sufficient details and global 

consistency [6], [24]. To effectively address these issues, 

this study introduced different optimization strategies in 

the generator and discriminator to enhance the model's 

generation capability. 

Firstly, in the generator section, this paper introduces 

the Spatial Adaptive Normalization SPADE layer to 

enhance the control of local details. The core idea of 

SPADE is to adaptively adjust different regions in the 

input image through conditional normalization operations, 

thereby effectively improving the detail representation in 

clothing images. This way, the generator can generate 

more accurate patterns in different regions, especially in 

complex clothing textures and detailed designs. The 

introduction of SPADE makes the generated clothing 

designs more aligned with practical needs and can 

simulate richer fabric details and texture effects. 

The SPADE module was incorporated into the 

StyleGAN2 framework by substituting traditional 

normalization layers with spatially adaptive normalization 

blocks, enabling semantic maps (e.g., fabric type, color) to 

direct the generation process across various resolutions for 

improved control over local clothing attributes. A multi-

scale PatchGAN discriminator, functioning at resolutions 

of 64×64, 128×128, and 256×256, was utilized to 

simultaneously capture global structural coherence and 

intricate texture details, enhancing the visual realism and 

consistency of the generated outputs. 

In terms of discriminators, this article uses a multi-

scale PatchGAN structure to improve global consistency. 

The PatchGAN discriminator can better capture local 

texture features by determining the authenticity of 

multiple small regions in an image. However, a single-

scale PatchGAN may ignore the global information of the 

picture. Therefore, this paper introduces multiple scales of 

discriminators in a multi-scale PatchGAN, which can be 

compared at different scales to more accurately evaluate 

the quality of the generated image. Through multi-scale 

processing, the discriminator can simultaneously rate the 

generated clothing at multiple scales, thereby improving 

the global consistency of the generated clothing images 
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and avoiding the situation where the generator only 

optimizes local details and ignores the overall structure. 

The design of the loss function is crucial for further 

optimizing the generation effect. This study divides the 

loss function into adversarial, perceptual, and physical 

constraint loss[22].Adversarial loss 𝐿𝑎𝑑𝑣 approximates the 

actual data distribution through the game process between 

the generator and discriminator, while the perceptual loss 

𝐿𝑝𝑒𝑟𝑐 enhances the perceptual quality of the generated 

image based on high-level features extracted by pre-

trained convolutional neural networks(such as 

VGG)[[21], [25], thereby improving the naturalness and 

detail of the image. Physical constraint loss L_ {physics} 

constrains the generated clothing design by considering 

the physical properties of the clothing fabric, making it 

more in line with actual wearability. The physical 

constraint loss considers explicitly the physical properties 

of fabrics such as stretching, folding, and bending. It 

optimizes the generation process by calculating the 

differences between the visual effects caused by these 

deformations and the real fabric. 𝜆𝑎𝑑𝑣 ,𝜆𝑝𝑒𝑟𝑐, 𝐿𝑝ℎ𝑦𝑠 

The overall form of the loss function can be expressed 

as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 + 𝜆𝑝𝑒𝑟𝑐𝐿𝑝𝑒𝑟𝑐

+ 𝜆𝑝ℎ𝑦𝑠𝐿𝑝ℎ𝑦𝑠 

(4) 

Where 𝜆𝑎𝑑𝑣, 𝜆𝑝𝑒𝑟𝑐, and 𝐿𝑝ℎ𝑦𝑠   are the weight 

coefficients corresponding to the adversarial loss (𝐿𝑎𝑑𝑣), 

perceptual loss (𝐿𝑝𝑒𝑟𝑐), and physical constraint loss 

(𝐿𝑝ℎ𝑦𝑠), respectively. This study can use this weighted 

combination to balance the generated image's realism and 

physical feasibility while ensuring its quality. 

In the personalized recommendation strategy, user 

preference coding is used further to enhance the level of 

personalization in clothing design. To extract users' 

natural language descriptive information, this paper 

adopts the BERT model for semantic feature extraction. 

BERT learns contextual information through pre-trained 

large-scale corpora, which can effectively capture users' 

specific preferences for clothing, such as color, style, 

material, etc. These semantic features are encoded in 

vector form and added as conditional inputs to the 

generator to guide the generation of clothing designs that 

meet user needs. 

The multi-objective optimization technique utilizes 

Bidirectional Encoder Representations from Transformers 

to derive semantic embeddings from user design inputs.  

The characteristics are encoded numerically utilizing the 

final-layer embedding vectors of the pre-trained 

transformer model. All feature vectors are adjusted using 

L2 normalization to ensure comparability between 

samples. The novelty score is calculated by assessing the 

cosine distance between the embedding of the generated 

item and the centroid of previously recommended items in 

the feature space, so quantifying the distinctiveness of a 

new design relative to prior outputs. Satisfaction is 

evaluated according to the resemblance to user-preferred 

attributes, enabling the system to reconcile inventiveness 

with adherence to user purpose. 

To enhance the effectiveness of personalized clothing 

recommendations, this study proposes a multi-objective 

optimization approach that jointly optimizes design 

novelty and user satisfaction (e.g., click-through rate 

prediction). Specifically, the Novelty Score quantifies the 

creativity and differentiation level of clothing designs, 

while user satisfaction is evaluated through a click-

through rate prediction model to assess users' potential 

acceptance of design proposals. Multi-objective 

optimization problems can be formulated as max_θ 

[α‧Novelty(θ)+β‧Satisfaction(θ)], where θ is a parameter 

for clothing design, and 𝑎 and β are weight coefficients for 

novelty and user satisfaction, respectively. Through this 

joint optimization strategy, the generated clothing design 

can meet users' personalized needs and ensure novelty and 

attractiveness, enhancing user experience and satisfaction. 

Based on the above design, the generative adversarial 

network optimization method proposed in this article has 

successfully improved intelligent clothing design's quality 

and personalization level through multiple innovative 

means. Introducing SPADE to enhance local detail control 

in the generator, using multi-scale PatchGAN in the 

discriminator to improve global consistency, and further 

optimizing the generation effect by integrating adversarial 

loss, perceptual loss, and physical constraint loss[24], 

[26].In terms of personalized recommendations, 

combining the BERT model for user preference encoding 

and using multi-objective optimization strategies to 

enhance design novelty and user satisfaction provides 

adequate technical support for optimizing intelligent 

clothing design and virtual try-on systems. 

3.3 Dynamic try-on algorithm design 

Designing a dynamic try-on algorithm is key to achieving 

a precise virtual try-on experience. This system integrates 

multiple aspects, such as human pose estimation, clothing 

deformation modeling, and real-time optimization, into 

the algorithm design to ensure the authenticity and 

dynamism of the try-on effect. 

The system incorporates a pose estimate module 

utilizing the High-Resolution Network to precisely 

identify human keypoints across various body types. A 

lightweight version was constructed by knowledge 

distillation, utilizing the HRNet-W48 model as the 

instructor, to save computing costs while maintaining 

accuracy.  The student network preserved multi-resolution 

features while reducing channel size by fifty percent. A 

dual-loss technique utilizing mean squared error for 

feature alignment and cross-entropy for pose prediction 

was implemented, with training conducted over 50 epochs 

using the Adam optimizer (learning rate: 0.001).  This 

method attained comparable accuracy (96.0% versus 

96.8%) while minimizing runtime and parameter size, 

facilitating fast real-time virtual fitting. 

Firstly, human pose estimation is the first step in 

virtual fitting. To accurately capture the user's body 

dynamics, this study employed the HRNet-W48 High-

Resolution Network model, which can effectively extract 

2D keypoint information of the human body. HRNet-W48 

extracts features from various parts of the human body 
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using multi-resolution methods, particularly in presenting 

details, which offers significant advantages. Based on 

these 2D keypoint data, the system uses the SMPL 

Skinned Multi Person Linear model to fit the 3D human 

body mesh. The SMPL model parametrically associates 

the 3D human pose and shape with the movements of each 

joint and muscle, providing a more accurate 3D human 

form for dynamic fitting. 

To enable the algorithm to run in a real-time 

environment, this study adopted knowledge distillation 

technology to compress the model. The core idea of 

knowledge distillation is to train a smaller student model 

to mimic the output of a larger teacher model, thereby 

reducing computational complexity and improving 

running speed. The system can optimize the model to a 

processing speed of 30 frames per second FPS through 

knowledge distillation techniques, ensuring that real-time 

requirements are met. This optimization enables seamless 

tracking of human posture changes during virtual try-on, 

significantly improving the user experience. 

Physical simulation is one of the key technologies in 

clothing deformation modeling. The dynamic movement 

of fabrics requires precise physical simulation, and the 

Position Based Dynamics PBD method is one of the 

widely used techniques for fabric simulation. In PBD, 

each particle of the fabric is represented by a mass and 

position attribute, and each particle is connected to other 

particles through physical constraints such as springs and 

damping. In the simulation of fabric motion, the updated 

formula is as follows: 

 

𝛥𝑥𝑖 =
1

𝑚𝑖

∑ 𝑓𝑖𝑗

𝑗

𝛥𝑡2 (5) 

Boundary constraints and collision management were 

implemented after the position update in Eq. (5) to 

improve physical realism. Anchor points on the garment 

were preserved by fixed vertex constraints. Moreover, 

constant collision detection and reaction methodologies 

were employed to avert interpenetration with the human 

body mesh, hence providing stable and visually credible 

fabric behavior in dynamic scenarios. 

Where 𝛥𝑥𝑖 is the position update of particle i, 𝑚𝑖 is 

the mass of particle i, 𝑓𝑖𝑗 is the interaction force between 

particles i and j, and 𝛥𝑡 is the time step. This formula 

allows PBD to accurately simulate the deformation of 

fabrics under different external forces, ensuring the 

dynamic and natural appearance of clothing. 

The accuracy of clothing deformation depends on 

physical simulation and requires the introduction of 

deformation constraints, primarily through adversarial 

training techniques. Through the game between the 

generator and discriminator, adversarial training can make 

the generated fabric deformation approach real data. For 

example, the generator optimizes the generated fabric 

deformation, while the discriminator determines the 

difference between the generated deformation and the real 

data. The loss function of adversarial training is usually: 

 

𝐿𝑎𝑑𝑣 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝑥)]

+ 𝔼𝑧~𝑝𝑧 [𝑙𝑜𝑔 (1

− 𝐷(𝐺(𝑧)))] 

(6) 

 

Where 𝐿𝑎𝑑𝑣is the adversarial loss, 𝐷𝑥 is the output of 

the discriminator, representing the probability that the 

input data x comes from real data, 𝐺𝑧 is the fabric 

deformation output by the generator, and 𝑝𝑑𝑎𝑡𝑎  and 𝑝𝑧 

display the distributions of real data and generated data, 

respectively. Through adversarial training, the generator 

can gradually learn fabric deformations similar to real 

data, making the clothing in virtual try-ons more realistic. 

In the process of virtual fitting, in addition to dealing 

with the interaction between clothing and the human body, 

it is also necessary to consider the wearability and comfort 

of the fabric. To this end, this study also introduced 

physical constraints on clothing fabrics by restricting the 

fabric's stretching, folding, and other behaviors to ensure 

that the generated clothing design has sound visual effects 

and meets the requirements of actual wearing. Physical 

constraints can be expressed in the following ways: 

 

𝐿𝑝ℎ𝑦𝑠 = ∑ 𝜆𝑖

𝑖

(|𝑥𝑖
𝑛𝑒𝑤 − 𝑥𝑖

𝑜𝑙𝑑| − 𝛥𝑥𝑖
𝑚𝑎𝑥) (7) 

 

Where 𝐿𝑝ℎ𝑦𝑠is the physical constraint loss, 𝜆𝑖is the 

weight coefficient of each particle, 𝑥𝑖
𝑛𝑒𝑤𝑎𝑛𝑑 𝑥𝑖

𝑜𝑙𝑑are the 

new and old positions of the particle, respectively, and 

𝛥𝑥𝑖
𝑚𝑎𝑥is the maximum displacement allowed by the 

particle. This loss penalizes excessive deformation by 

encouraging particle movements to remain within 

physically plausible bounds defined by 𝛥𝑥𝑖
𝑚𝑎𝑥 . 

Through this constraint, the system can effectively 

avoid unnatural clothing deformation during wearing, 

thereby enhancing the practicality and comfort of 

clothing. 

Through the above design, the dynamic try-on 

algorithm constructed in this article combines techniques 

such as human pose estimation, physical simulation, and 

adversarial training, improving the real-time performance 

and accuracy of the virtual try-on process, while 

effectively enhancing both personalization and the 

physical realism of garment behavior. The comprehensive 

application of these technologies enables the virtual try-on 

system to achieve a high degree of visual realism and 

simulate clothing forms that conform to ergonomic and 

physical laws, providing technical support for intelligent 

clothing design and personalized recommendations. 

4 Experimental and simulation 

analysis 

4.1 Experimental design and dataset 

construction 

This experiment aims to design and train an advanced 

clothing recommendation and pose estimation model by 

combining the Deep Fashion dataset with the 3D human 

scanning dataset. The dataset contains 100000 diverse 

clothing images and 5000 sets of corresponding human 
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pose data to ensure the capture of complex relationships 

between different clothing and human poses. To improve 

the model's generalization ability, data augmentation 

techniques such as rotation, cropping, and lighting 

adjustment will be used during the training process to 

ensure the robustness of the model in different 

environments and poses. 

Alongside the DeepFashion collection, a unique 

Human 3D Scanning collection was developed, consisting 

of 5,000 high-resolution body scans of participants aged 

18 to 50, utilizing a structured-light scanning technique.  

Body meshes were standardized utilizing the SMPL 

approach to guarantee uniformity. To facilitate virtual try-

on, garments from DeepFashion were correlated with 3D 

models according to annotated size and style metadata, 

assuring accurate alignment between garment 

measurements and body forms. 

The augmentations comprised random rotation 

(±15°), horizontal flipping, random cropping and resizing, 

and modifications to brightness and contrast. These were 

implemented on both DeepFashion apparel photos and the 

projected 3D position data to replicate various real-world 

scenarios. The enhanced dataset mitigated overfitting and 

enhanced generalization. Empirically, the model 

augmented with these enhancements attained a 4.3% 

improvement in pose estimation accuracy (PCKh@0.5) 

and a 2.7-point decrease in FID relative to the baseline, 

thereby augmenting both fitting precision and visual 

realism. 

 

Table 2: Parameter configuration of experimental dataset 

 

Dataset Name Dataset Description Data volume Dataset partitioning 

DeepFashion A dataset of images containing multiple 

types of clothing, including labels, 

categories, accessories, and other 

information 

100000 clothing 

images 

Training set: 80000 Test 

set: 20000 

3D Human 

Scanning Dataset 

Contains 5000 sets of 3D human pose 

data, designed to simulate real human 

poses 

5000 sets of 

posture data 

Training set: 4000 Test 

set: 1000 

This experiment will use an NVIDIA A100 GPU for 

training and the PyTorch framework to utilize hardware 

performance fully. Here are the specific training 

configurations: 

 

Table 3: Network and training parameter configuration 

 

parameter Set value 

Periodization 200 epochs 

Batch size 32 

optimizer AdamW 

Learning rate Initial learning rate: 1e-4 

Learning rate decay strategy Decay to 0.8 of the original value every 30 epochs 

loss function 
A weighted combination of the cross-entropy loss function and the mean 

square error loss function 

During the training process, the model will iteratively 

update using the training set, optimize hyperparameters 

through cross-validation, and evaluate its accuracy and 

generalization ability. A test set evaluation will be 

conducted every 20 epochs to monitor changes in model 

performance. In the final stage of training, evaluation 

metrics will include accuracy, recall, F1 score, and mean 

square error MSE to ensure the model performs well in 

clothing recommendation and pose estimation tasks. 

Based on the above parameters and experimental 

design, this experiment can effectively test the model's 

performance in processing complex clothing images and 

3D human pose data, laying a solid foundation for 

subsequent optimization and practical applications. 

An A/B testing strategy was implemented to assess 

user satisfaction with tailored apparel recommendations 

and the virtual try-on experience, using 500 participants 

(ages 18–45, 52% female, 48% male), recruited through 

an online crowdsourcing platform.  Participants were 

randomly assigned to two groups: one engaged with the 

suggested system utilizing SPADE-GAN and BERT-

based multi-objective optimization (Group A), while the 

other employed a baseline rule-based recommendation 

system (Group B). 

 Both groups were presented with 10 outfit styles 

created according to specified user profiles (e.g., casual, 

business, sports).  Following each session, participants 

evaluated the designs using a 1–10 Likert scale across 

three dimensions: (1) aesthetic appeal, (2) accuracy of 

personalization, and (3) perceived functionality. The 

ultimate satisfaction score was calculated as the mean of 

these three ratings. 

 The user interface displayed each design in a 

simulated virtual fitting environment with the same 3D 

avatar to maintain consistency.  The cited 92% satisfaction 

rate pertains to the percentage of participants in Group A 

whose mean satisfaction score surpassed 8.0. This 

methodology guarantees that the satisfaction indicator 
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encompasses both subjective user experience and 

systematic feedback collection. A total of 45 individuals, 

predominantly graduate students and young professionals 

aged 22 to 35, were recruited to conduct A/B testing for 

assessing user satisfaction. A web-based interface was 

created to display two garment design outputs 

concurrently one produced by the suggested method and 

the other by a baseline model.  Participants were instructed 

to select the more preferable design and evaluate their 

preference using a 5-point Likert scale, with 1 signifying 

"very unsatisfactory" and 5 denoting "very satisfactory."  

The satisfaction rate was calculated as the percentage of 

participants who endorsed the recommended strategy, 

resulting in a score of 92%. 

4.2 Indicator and comparison algorithm 

selection 

In terms of generating quality evaluation, this article 

selects Fréchet Inception Distance (FID) and Inception 

Score IS as core indicators. FID measures the realism of 

generated images by comparing the distribution 

differences between generated and authentic images in the 

feature space; lower values are better, while IS evaluates 

the diversity and recognizability of generated images 

through classification models; higher values are better. 

Simultaneously, innovative physical constraint error 

indicators are introduced to quantitatively assess the 

design's manufacturability by calculating the mean square 

error between the physical parameters of the generated 

clothing, such as fabric stretch rate, bending stiffness, and 

the real fabric. The user satisfaction index is obtained 

through A/B testing, with 500 participants rating the 

generated design's aesthetic, practical, and innovative 

aspects on a scale of 0-100%.In the virtual try on module, 

pose estimation accuracy is used（PCKh@0.5）As a key 

indicator, it is defined as the proportion where the 

predicted key points have an error of less than 50% from 

the proper position of the skull length, with a focus on 

monitoring core joints such as shoulders, elbows, and 

wrists that affect the fitting effect. The accuracy of 

physical simulation is evaluated by the deformation error 

of the fabric unit: mm, and a high-precision motion 

capture system is used to obtain the real motion trajectory 

of the fabric as a reference. The effectiveness of the 

recommendation system adopts three indicators: 

recommendation accuracy, Top-5 hit rate in the test set, 

novelty score calculated based on cosine similarity of 

design feature vectors, user click-through rate, and online 

experiment conversion rate. Real-time performance 

evaluation includes two hardware performance indicators: 

frame rate FPS and end-to-end delay ms. 

To improve localized control over garment attributes, 

the SPADE module was incorporated into the cGAN 

generator by substituting conventional normalizing layers 

with spatially adaptive normalization. Semantic condition 

maps denoting fabric type, style, and color were integrated 

at various resolutions to modify feature activations, 

facilitating precise and uniform management of apparel 

properties during the synthesis process. 

 

def SPADE_cGAN_Generator(z, 

condition_map): 

    x = Dense(...)(concat(z, condition_vector)) 

    for i in range(num_blocks): 

        x = Conv2D(...)(SPADE(x, 

condition_map)) 

        x = Activation('ReLU')(x) 

    output = FinalConv2D(...)(x) 

    return output 

 

The selection of comparative algorithms follows the 

principles of cutting-edge fields and technological 

representativeness. In the clothing generation task, 

StyleGAN2 is selected as the basic comparison model, 

which serves as the benchmark algorithm for current 

image generation and can verify the effectiveness of 

SPADE layer improvement; Compare cGAN Conditional 

Generative Adversarial Network to confirm the 

superiority of multi constraint mechanisms; Introducing 

Fashion GAN as the benchmark for clothing generation 

specialized models; Retain traditional parametric design 

methods as non-deep learning reference frames. The pose 

estimation module selects Open Pose, a classic algorithm 

based on Part Affinity Fields, and Alpha Pose, an 

improved multi-person pose estimation framework, to 

compare bottom-up and top-down technology routes. 

Regarding physical simulation, NVIDIA Phys GAN 

combined with a physics engine will be compared with 

position dynamics PBD and traditional spring particle 

models, covering two mainstream methods based on 

learning and physics simulation. Recommendation system 

comparison algorithms include collaborative filtering, 

conventional methods based on user behavior, CNN 

feature matching, deep methods based on visual similarity, 

and traditional rule engines, forming a complete 

comparison spectrum from experience-driven to data-

driven. Specifically, ablation experiments are set up in the 

personalized recommendation stage to verify the 

contribution of each technical component by removing the 

BERT encoder or the multi-objective optimization 

module.  

The baseline models were chosen for their pertinence 

to the job, the availability of open-source 

implementations, and their consistency with the study's 

emphasis on conditional generation and the realism of 

virtual try-on. FashionGAN was selected for its specific 

design for apparel development based on stance and 

garment properties, rendering it more directly equivalent 

to our method than StyleGAN3, which, although robust in 

general image generation, lacks precise control methods. 
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4.3 Experiment and results analysis 

Firstly, this article analyzes the algorithm's training 

process. SPADE-GAN quickly converges to an FID of 

12.3 after 50 epochs. Figure 2 illustrates that the cGAN 

model attained an FID of roughly 19.8 at around epoch 

100 and further improved, obtaining reduced FID values 

by epoch 120. This pattern illustrates consistent 

convergence and enhanced image quality over time, 

proving that spatial adaptive normalization accelerates 

model convergence. 

An ablation study was conducted to evaluate the 

distinct influence of each loss component, with a focus on 

the physical simulation loss term. The model's 

performance was evaluated with and without the 

incorporation of physical consistency loss. The findings 

demonstrated that integrating physical loss enhanced the 

realism and manufacturability of simulated clothes, 

especially in maintaining material deformation during 

motion. Without this word, the produced fabric exhibited 

heightened interpenetration and implausible folding, 

particularly during dynamic poses. These findings 

underscore the essential function of physical loss in 

facilitating physically realistic outcomes.

 

Figure 2: FID variation curves of different GAN models with training epochs 

Comparative analysis shows that the generator with 

the SPADE layer significantly reduces FID from 23.4 to 

12.3, indicating that the generated images are closer to the 

actual distribution. At the same time, the physical 

constraint error was reduced to 0.08, proving that the 

physical loss function effectively improved manufacturing 

ability. The user satisfaction rate reached 92%, verifying 

the effectiveness of multi-objective optimization. The 

results are shown in Table 4 below. 

The "user click-through rate" presented in Table 4 was 

obtained via a simulated interaction model utilizing user 

preference prediction algorithms instead of empirical user 

surveys. This round of evaluation did not involve human 

participants, so ethical clearance was unnecessary. The 

simulation was calibrated using historical behavior 

patterns derived from publicly accessible datasets to 

approximate realistic degrees of engagement.

 

Table 4: Comparison of clothing generation quality between different GAN models 

 

Model FID↓ IS↑ Physical constraint error(mm) ↓ User satisfaction ↑ 

StyleGAN2 23.4 8.2 0.15 82% 

cGAN 19.8 8.7 0.12 85% 

SPADE-GAN 12.3 9.5 0.08 92% 

Traditional 

parametric design 
35.6 6.1 0.21 68% 

Fashion GAN 25.7 7.9 0.18 79% 

HRNet-W48 performs the best in joint localization, 

with an average of 96.8%, with a wrist accuracy of 95.2%, 

meeting the requirements of dynamic fitting. After 

knowledge distillation, the model only lost 0.8% accuracy, 

but the inference speed increased by approximately 1.67 

times, rising from 18 FPS to 30 FPS after applying 

knowledge distillation, see Table 5, balancing accuracy 

and efficiency. As shown in Fig. 3, the overall comparison 

shows that HRNet after knowledge distillation maintains 

96% accuracy while improving FPS to 30, which is at the 

Pareto front and superior to other algorithms. 
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Figure 3: Accuracy velocity trade-off of different attitude estimation algorithms 

Table 5: Comparison of accuracy in virtual fitting pose estimation（PCKh@0.5） 
 

Algorithm SHOULDER Elbow Wrist Hip Average 

HRNet-W48 98.3% 96.7% 95.2% 97.1% 96.8% 

OpenPose 94.2% 91.5% 89.8% 93.4% 92.2% 

AlphaPose 96.1% 93.8% 92.6% 95.3% 94.4% 

Knowledge 

Distillation HRNet 
97.5% 95.9% 94.3% 96.5% 96.0% 

DiffCloth's error in silk fabric simulation is only 

0.8mm, 57.9% lower than PhysGAN's. Its differentiable 

characteristics allow for end-to-end optimization, 

especially when dealing with nonlinear deformations such 

as denim folds, which have significant advantages. 

Table 6: Comparison of physical simulation errors (unit: mm) 

Fabric type DiffCloth PhysGAN PBD Traditional spring model 

Cotton 1.2 2.5 3.8 5.6 

Silk 0.8 1.9 2.7 4.3 

Denim 2.1 3.4 4.9 6.2 

Knit 1.5 2.8 3.2 5.1 

Synthetic Fiber 1.0 2.3 3.5 4.8 

Average value 1.32 2.58 3.62 5.24 

As shown in Figure 4, DiffCloth's error is less than 

1mm on thin fabrics such as silk, but it increases to 2.1mm 

on high-stretch denim, which is still better than 

PhysGAN's 3.4 mm. 

mailto:PCKh@0.5
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Figure 4: Physical simulation error varies with fabric complexity 

After encoding user semantics with BERT, the 

recommendation accuracy increased to 88%, and the 

novelty score reached 8.9 out of 10, proving that multi-

objective optimization effectively balances practicality 

and creativity. 

Table 7: Comparison of personalized recommendation effects 

Method Recommendation accuracy ↑ Novelty score ↑ User click-through rate ↑ 

Collaborative Filtering 72% 6.3 68% 

CNN feature matching 78% 7.1 73% 

BERT+multi-objective 

optimization 
88% 8.9 91% 

Traditional rule engine 65% 5.2 61% 

Further analysis of its relationship is shown in Figure 

5, where user satisfaction is positively correlated with 

design novelty, R² = 0.72. Still, excessive pursuit of 

novelty >9.5 may lead to decreased satisfaction, which 

needs to be balanced in multi-objective optimization. 

Figure 5 illustrates a favorable association between 

user happiness and design innovation (R² = 0.72), derived 

from user ratings obtained via a 1–10 Likert scale instead 

of a percentage. The y-axis in the graphic represents 

average satisfaction scores.  Significantly, as originality 

scores surpass 9.5, satisfaction starts to diminish, 

indicating that designs regarded as excessively innovative 

may be deemed too avant-garde, strange, or impractical 

for practical use. This trade-off underscores the necessity 

for equilibrium in multi-objective optimization between 

innovation and consumer choice.
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Figure 5: Relationship between user satisfaction and design novelty 

Knowledge distillation and model quantification have 

increased attitude estimation FPS by 66.7%, reducing end-

to-end latency to 28ms. Meeting real-time interaction 

requirements >25FPS is considered a smooth standard. 

Table 8: System real-time performance test (resolution 1920 × 1080) 

Module Original model FPS Optimized FPS Memory usage MB ↓ 

Attitude estimation HRNet 18 30 1200→850 

Physical simulation DiffCloth 22 45 980→620 

GAN reasoning 12 25 2100→1500 

end-to-end delay 52ms 28ms - 

Through probability distribution visualization 

analysis, as shown in Figure 6, the delay is concentrated 

between 25- 31ms μ=28ms, σ=3.5, meeting real-time 

interaction requirements <33ms corresponds to 30FPS, 

with only 1.2% of samples exceeding the limit. 

 

Figure 6: System end-to-end delay distribution, 1000 tests 

Based on the above experimental analysis, the 

experimental results of this article show that through the 

systematic innovation of integrating generative 

adversarial networks, human pose estimation, and 



366   Informatica 49 (2025) 349–368                                                                                                                                 L. Zang et al. 

physical simulation technology, the performance of 

intelligent clothing design and virtual fitting systems has 

achieved breakthrough improvements in multiple 

dimensions. In terms of generation quality, the improved 

GAN model with SPADE layer significantly reduces the 

FID index from 23.4 of the benchmark models 

StyleGAN2 to 12.3, due to the fine control ability of the 

spatial adaptive normalization mechanism on local details 

of clothing, such as texture wrinkles and decorative 

patterns. Meanwhile, the physical constraint loss function 

reduces the manufacturability error of the design by 62% 

by quantifying parameters such as fabric stretch rate 0.08 

vs. 0.21 in the traditional method 0.21 and bending 

stiffness, effectively bridging the gap between virtual 

design and physical manufacturing. This technological 

breakthrough has increased user satisfaction to 92%, 

verifying the effectiveness of multi-objective optimization 

strategies in balancing design novelty and practicality. 

The cosine similarity calculation shows that the novelty 

score of the recommended design, 8.9, has increased by 

71% compared to the traditional parametric design, 5.2. 

The user click-through rate remains at 91%, revealing that 

consumers strongly demand designs that combine 

creativity and practicality 

In the dynamic fitting stage, knowledge distillation 

technology enabled the HRNet-W48 model to maintain 

96% pose estimation accuracy while increasing inference 

speed to 30FPS, successfully breaking through the 

performance bottleneck of real-time interaction. This is 

mainly due to the guidance of the teacher model on the 

feature distillation process, which reduces the parameter 

size of the student model by 42% while retaining the 

multi-scale feature fusion ability. In the physical 

simulation module, DiffCloth achieves end-to-end 

optimization through differentiable characteristics, 

reducing the deformation error of silk fabric to 0.8mm, 

which is 57.9% lower than PhysGAN's. Its core advantage 

lies in embedding the fabric dynamics equation into the 

backpropagation process of the neural network, enabling 

nonlinear deformation, such as wrinkle formation in 

denim fabric, to be automatically optimized through 

gradient descent. But the experiment also exposed the 

limitations of existing methods: when dealing with high-

stiffness materials, the deformation error of DiffCloth still 

reaches 2.1mm, which may be due to insufficient 

modeling of the anisotropic characteristics of the fabric in 

the current physical model. In addition, user research data 

shows that when the design novelty score exceeds 9.5, 

satisfaction decreases, R² = 0.72, indicating that excessive 

pursuit of creativity may deviate from public aesthetics. 

This provides a quantitative basis for adjusting weight 

coefficients in personalized recommendation algorithms. 

These findings collectively demonstrate that systematic 

innovation driven by multi-technology integration is the 

key path to breaking through the digital bottleneck of the 

clothing industry. 

4.4 Discussion 

This study sought to establish a cohesive framework that 

addresses the fragmentation prevalent in virtual fashion 

research, where personalization, physical realism, and 

dynamic fitting are often considered in isolation. The 

suggested system offers a comprehensive solution for 

intelligent garment design and interactive virtual try-on by 

incorporating a conditional generative model, high-

resolution human posture estimation, semantic preference 

encoding, and differentiable fabric simulation. This 

approach's usefulness is evidenced across various 

performance metrics, indicating its potential to enhance 

both theoretical comprehension and practical applications 

in intelligent fashion technology. 

 In comparison to the cutting-edge methodologies 

examined in Section 2, the suggested framework presents 

notable benefits regarding realism and personalization. 

The incorporation of DiffCloth markedly enhanced 

simulation precision, particularly for delicate and highly 

malleable textiles like silk, resulting in an average 

deformation error of 0.8 millimeters, surpassing 

PhysGAN by 57.9 percent. This enhancement is ascribed 

to DiffCloth’s differentiable simulation, facilitating 

precise optimization via gradient descent and superior 

modeling of fabric dynamics during motion. The 

incorporation of spatially-adaptive normalization in the 

generator network facilitated enhanced retention of 

clothing texture and structural information relative to 

Fashion GAN. This was evidenced by the diminished 

Fréchet Inception Distance, signifying improved visual 

authenticity of the created designs. 

 Notwithstanding these enhancements, the system 

possesses significant shortcomings that warrant 

recognition. The simulation inaccuracy escalates for high-

stiffness fabrics like denim, attaining 2.1 millimeters in 

the instance of DiffCloth. The observed performance 

degradation is likely attributable to two factors: (1) the 

constraints of the fundamental physical model, which 

presumes isotropic material behavior and lacks 

sophisticated modeling of non-linear tension or stiffness 

anisotropy; and (2) inadequate parameter calibration for 

rigid fabrics within the existing dataset, which skews the 

model towards more pliable materials. A further constraint 

pertains to the trade-off between innovation and customer 

happiness. Although the suggestion module attained a 

substantial novelty score (8.9 out of 10), subsequent 

analysis indicated that designs exhibiting overly high 

originality (>9.5) frequently had poorer user satisfaction 

ratings. This indicates that expanding creative limits 

without regard for user familiarity may result in a decrease 

in perceived practicality or wearability. 

 These findings highlight the necessity of harmonizing 

creativity, realism, and usability in intelligent fashion 

systems. Future investigations should examine hybrid 

physical-neural models adept at learning stiffness-

sensitive fabric characteristics, potentially by integrating 

material testing data into the simulation framework. 

Further efforts are required to enhance personalization 

tactics by dynamically modifying novelty weights in 

accordance with user behavior patterns or preference 

feedback. Broadening the user evaluation study to 

encompass a wider range of participant demographics 

would enhance the system's generalizability. Finally, 

refining the system for deployment on mobile and 
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embedded platforms could enhance its applicability in 

virtual fitting rooms, intelligent retail settings, and home-

based fashion customization applications. 

Despite the inability to maintain sample photos for 

inclusion, visual assessments during testing revealed that 

SPADE-GAN outputs consistently demonstrated better 

textures, smoother garment shapes, and more coherent 

structural details than the baseline StyleGAN2 findings.  

These discoveries correspond with the quantitative 

enhancements in FID and user happiness, indicating that 

SPADE integration improves both numerical quality and 

perceptual realism. Although several performance 

metrics, including FID variation, end-to-end delay, and 

physical error trends, were examined throughout the 

experimentation, their respective plots are omitted in this 

version due to spatial limitations and an emphasis on 

summarizing principal findings. Nonetheless, these 

visualizations underwent comprehensive scrutiny during 

assessment and validated the indicated trends.  They can 

be provided upon reasonable request for academic and 

verification purposes, if necessary. 

The deformation error metric was utilized to 

objectively evaluate simulation realism; nevertheless, the 

study lacked a perceptual assessment from actual users. 

The model's visual realism has not been validated by 

subjective evaluation. The lack of a user research or inter-

rater reliability analysis hinders the validation of the 

realism of garment simulations for end users. Future 

endeavors will focus on incorporating qualitative 

assessments or small-scale user surveys to enhance 

objective measures and more accurately reflect user-

perceived realism. 

5 Conclusion 
This study innovatively integrates intelligent clothing 

design and virtual try-on technology through deep 

learning methods and constructs an end-to-end, complete 

process intelligent system. At the clothing design level, by 

improving the generative adversarial network architecture 

and multi-objective optimization strategies, creative 

design generation that balances personalized needs and 

physical manufacturability has been achieved; At the level 

of virtual try on, the integration of high-precision pose 

estimation and differentiable physical simulation 

technology has broken through the technical bottleneck of 

realistic restoration of clothing deformation in dynamic 

environments, significantly improving the immersion and 

practicality of virtual try on. The research results provide 

intelligent solutions for the digital transformation of the 

clothing industry, effectively shortening the design cycle 

and optimizing the user experience. 

The future research can focus on multimodal human-

computer interaction scenarios, combining augmented 

reality AR and haptic feedback technology to construct a 

more three-dimensional virtual try-on perception system. 

In response to the needs of sustainable fashion 

development, intelligent generation algorithms that 

integrate environmentally friendly material attribute 

modeling and circular design concepts can be studied [11], 

lightweight models can be developed to adapt to real-time 

deployment on mobile devices [8,15], and multi-user 

collaborative design functions can be strengthened to 

explore the co creation mode of artificial intelligence and 

designers. 
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