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This study presents a comprehensive intelligent framework for personalized garment creation and
physics-based virtual fitting, incorporating conditional generative adversarial networks, high-resolution
neural networks for human pose estimation, spatially-adaptive normalization, and a differentiable
physical simulation engine for fabric dynamics. The system addresses critical issues in the fashion sector,
including inadequate personalization in design and limited realism in virtual try-on technologies. User
preferences are encoded through a pre-trained language representation model, while the system records
body posture and simulates fabric deformation to attain high-fidelity virtual fitting. Experimental
assessments were conducted using the DeepFashion image dataset, along with a proprietary three-
dimensional human body scanning dataset. The proposed system attained a recommendation accuracy of
88 percent, a user satisfaction rate of 92 percent, and a novelty score of 8.9 out of 10. The pose estimation
module achieved an accuracy of 96.8 percent according to keypoint localization benchmarks, while the
average fabric deformation error decreased to 1.4 millimeters, signifying a 73.6 percent enhancement
compared to conventional spring-based physical models. The results illustrate the system's ability to
produce manufacturable, customized garment designs while providing realistic, dynamically adaptive
virtual try-on experiences. The suggested method provides a scalable solution for innovative fashion
design and consumer interaction.

Povzetek: Za personalizirano oblikovanje oblacil in fizikalno realisticen virtualni preizkus je predlagana
arhitektura cGAN-HRNet-DiffCloth z jezikovnim modeliranjem uporabnikov, SPADE-normalizacijo in

diferencabilno simulacijo tkanin.

1 Introduction

With the rapid development of information technology,
digital transformation has become an essential trend in
various industries, and the clothing industry is gradually
transitioning towards intelligence and automation.
Traditional fashion design relies on designers' experience
and manual operation, which is inefficient and lacks
personalization [1], [2], [3]. To solve this problem, virtual
try-on technology has gradually become one of the key
technologies. However, existing systems often rely on
static human models, which make it difficult to cope with
dynamic postures and physical characteristics of clothing,
thus affecting the try-on effect [4], [5].

With the breakthroughs of deep learning technology
in image generation, computer vision, and human pose
estimation, intelligent clothing design and virtual fitting
have ushered in new development opportunities. The
excellent performance of deep learning models such as
Convolutional Neural Networks CNN and Generative
Adversarial Networks GAN in image processing makes
personalized design and dynamic adaptation of clothing
possible [6], [7], [8]. Through deep learning, design can
achieve personalized style generation and simulate the

wearing effect under different human postures, enhancing
the authenticity of virtual fitting [9], [10].

Current research primarily focuses on styles, fabrics,
and style transfer, but lacks joint modeling of multiple
design elements [11]. In terms of virtual try-on
technology, although progress has been made in 3D
modeling and physical simulation, it has high
computational complexity. It isn't easy to adapt to users'
personalized needs in real time [12], [13]. The current
challenge is achieving closed-loop optimization of design
and fitting, ensuring both personalized effects and the
accurate reproduction of the physical characteristics of
clothing[5], [14], [15]. This study proposes an end-to-end
system based on deep learning, which combines
generative adversarial networks GANs and human pose
estimation HRNet to achieve deep integration of clothing
design and virtual try-on. The system considers the
interrelationships between design elements and improves
personalized recommendations' accuracy and user
satisfaction through dynamic try-on algorithms and
feedback mechanisms [16], [17].

This study primarily addresses the lack of an
integrated framework that concurrently facilitates
individualized garment creation, precise physical
simulation, and dynamic fitting adaptability. Current
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methodologies frequently concentrate on discrete
elements, either visual clothing creation or physical
authenticity, lacking a comprehensive, integrated solution.
To address this limitation, the study is guided by three
primary research objectives: (1) to augment design
personalization by capturing user preferences via semantic
encoding derived from natural language descriptions; (2)
to enhance the realism of garment deformation during
motion through the application of differentiable fabric
simulation techniques; and (3) to guarantee high visual
fidelity and structural detail in generated garments by
integrating spatially adaptive normalization into a
conditional generative model. The aims are achieved
using an innovative architecture that combines conditional
picture creation, high-resolution human posture
estimation, language-based user modeling, and physics-
informed fabric simulation into a cohesive, real-time
system for intelligent fashion design and virtual try-on.

2 Related works

2.1 Intelligent clothing design technology

Intelligent clothing design technology has undergone
multiple stages of evolution. Early design methods mainly
relied on rule engines and template design, using
parametric modeling techniques to generate clothing
styles [18], [19] This method is based on preset parameters
of clothing design, such as clothing size, color, style, and
fabric. Although it can quickly generate design results, it
lacks personalization and creativity. Therefore, the
limitations of traditional methods mainly lie in their
design singularity and lack of adaptability to diverse needs
[20]

With the development of deep learning technology,
intelligent clothing design has gradually entered a stage
driven by deep neural networks. Convolutional neural
networks CNNs are widely used for clothing style
classification, with typical models such as ResNet-50
achieving an accuracy of 92% on the DeepFashion dataset
[1], [7]. In addition, Generative Adversarial Networks
GANs have also begun to be used to generate clothing
images, where FashionGANs can generate clothing
designs with diverse styles and details [8]. These deep
learning-based techniques can consider more design
elements during generation, such as changes in style and
color combinations, greatly enriching the possibilities of
clothing design [6], [21]. However, although GANSs can
generate diverse clothing images, their results often lack
modeling of physical properties such as fabric elasticity
and material performance, which still creates a gap
between clothing design and actual manufacturing [22],
[23].

2.2 Virtual try-on technology

Research on virtual try-on technology has also evolved
from static to dynamic. Early virtual try-on methods
mainly relied on static images and UV mapping
techniques, which attached 2D images of clothing to 3D
human models and simulated wearing effects by adjusting
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the shape of the clothing [4], [24]. However, this method
cannot consider the changes in users' dynamic postures,
the fitting effect lacks realism, and the clothing
deformation cannot be accurately presented in different
postures [12], [13].

Dynamic fitting technology has gradually become a
research focus with the continuous advancement of
computing power and technology. In recent years, Long-
Short-Term Memory (LSTM) networks have been
introduced into virtual try-ons to predict the motion
trajectory of clothing under different actions. However,
this method has the significant drawback of ignoring the
physical properties of clothing, such as the elasticity and
stretchability of the fabric, resulting in a substantial gap
between the fitting effect and the actual wearing [5], [11].

In cutting-edge research, NVIDIA proposed
PhysGAN, which combines physics engines to simulate
fabric dynamics [12]. Considering the physical properties
of fabrics makes virtual fitting more realistic. PhysGAN
can calculate clothing deformation in various dynamic
environments in real time by introducing physical
simulation of fabrics, significantly enhancing the
immersion and realism of virtual fitting [23].

This study addresses the shortcomings of intelligent
clothing design and virtual try-on technologies and
proposes an innovative method that integrates the entire
design and try-on process. Specifically, the technical
roadmap of this article is divided into two main stages: the
design stage and the fitting stage, as follows:

(1). In the design phase, this article uses Conditional
Generative Adversarial Networks cGAN to generate
customizable clothing designs. Unlike traditional GANS,
cGAN can create clothing designs that conform to actual
sewing constraints by introducing additional conditional
constraints such as color, fabric, and other elements. This
design method not only considers the diversity of clothing
styles but also fully considers the feasibility of actual
manufacturing, especially regarding sewing technology
and fabric matching optimization.

(2). In the fitting stage, this article combines
differentiable physics engines such as DiffCloth to
optimize the deformation calculation of clothing.
DiffCloth can accurately calculate fabric deformation
under users' dynamic posture changes through fine-
grained physical simulation. Compared with traditional
methods, this approach improves the accuracy of virtual
try-on. It enables real-time updates in a dynamic
environment, making the user's try-on experience more
realistic and natural.

Almeida [1] examined customer adoption of Al-
driven Virtual Try-On systems, concentrating on five
behavioral aspects. The research revealed favorable user
perceptions and intentions, contributing to the field by
linking Al personalization with consumer behavior data.
Chen et al. [2] performed a systematic review of 69 studies
on virtual try-on technologies in fashion, identified critical
psychological and technological factors affecting
consumer adoption, and proposed conceptual frameworks
connecting these factors to behavior. Their research
progressed the field by addressing deficiencies in user
segmentation and personalization, providing insights to
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improve the efficacy of virtual try-on systems. Vaishnavi
et al. [3] enhanced the state of the art by amalgamating
deep learning-based recommendations with high-fidelity
virtual try-on, tackling significant limitations in current
systems, including sparse annotations and inadequate
realism. Their employment of the DeepFashion dataset,
ResNet50, and U2Net facilitated precise personalization
and realistic garment visualization, establishing a new
benchmark for immersive online fashion experiences.
Aakash et al. [4] progressed the discipline by synthesizing
ten essential works on Al and computer vision in fashion,
encompassing deep learning for clothing detection, AR-
based virtual try-ons, and intelligent wardrobe systems.
Their research presented a cohesive perspective on
prevailing trends, difficulties, and future trajectories,
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emphasizing how integrated Al solutions might improve
customization and user experience in fashion applications.

In summary, this study develops an end-to-end
intelligent framework that synergizes automated clothing
design with high-accuracy virtual try-on, offering an
innovative user-centric solution for personalized garment
customization and dynamically adaptive fitting
experiences.

Table 1 presents a comparative overview of current
methodologies in intelligent apparel design and virtual
fitting. It emphasizes disparities in image quality,
accuracy of physical simulations, capacity for
customization, and support for dynamic fitting. The results
underscore the overall efficacy of the proposed approach
across all critical criteria.

Table 1: Comparative summary of existing methods

FID Deformation 0 N Dynamic Physical
Method l IS 1 Etror (mm) | Rec. Accuracy (%) 1 Personalization Simulation  Realism
PhysGAN 257 7.9 2.7 — X V4 v
FashionGAN 25.1 8.1 — — X X X
PBD — — 3.7 — X V4 v
Traditional
Rule o o o 65 X X X
Proposed
Method 123 95 14 88 v v v

2.3 Research gaps and novelties

Recent breakthroughs in intelligent fashion systems have
introduced techniques for clothing image production or
physical simulation. Nonetheless, these methodologies
frequently function independently and do not offer a
cohesive solution that encompasses user personalization,
garment physical realism, and dynamic fitting. Generative
models, such as fashion-specific neural networks, can
produce visually different clothing styles but often
overlook physical attributes such as stretchability,
bending, and drape behavior. Currently, physics-based
fabric simulation techniques proficiently describe
deformation during motion; nevertheless, they lack the
integration of semantic user input and do not facilitate the
creation of unique garments.

Furthermore, conventional parametric design tools and
rule-based engines depend on static templates, rendering
them inflexible in accommodating diverse user
preferences or dynamic body shapes. These technologies
cannot learn from contextual feedback or read user-
defined attributes like as fabric type, color, or style intent.
This paper provides a cohesive framework that
amalgamates conditional generative modeling, high-
resolution human posture estimation, semantic preference
extraction using language models, and differentiable
fabric simulation to address these limitations. This
thorough integration facilitates real-time, user-directed
garment design that dynamically adjusts to movement and
physical limitations, overcoming significant shortcomings

in existing virtual fashion technologies while improving
customization, realism, and design scalability.

3 System architecture and algorithm
design
3.1 System architecture design

The intelligent clothing design and virtual try-on system
based on deep learning proposed in this study aims to
achieve deep integration of clothing design and virtual try-
on. The system is divided into three parts: data layer,
algorithm layer, and application layer [7], [10]. Each part
complements the other and jointly promotes the
realization of personalized clothing design and virtual try-
on. The system architecture is shown in Figure 1, and each
layer's design and working principles will be elaborated in
detail.

The system comprises three components: the data
layer, the algorithm layer, and the application layer. Each
component enhances the others and collectively facilitates
the achievement of customized apparel design and virtual
fitting. To improve the clarity of information flow, the
system architecture depicted in Figure 1 employs solid
arrows to denote data flows (e.g., from the user design
terminal to the parameter input module) and dashed
arrows to signify control flows (e.g., system triggers for
updating fitting output in response to parameter
modifications). This labeling elucidates the interactions
across modules, including the user design terminal,
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parameter adjustment input,
feedback, and impact display terminal.
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Figure 1: System architecture diagram

The data layer is the fundamental layer of the system,
mainly responsible for integrating and processing various
types of data. Firstly, the data layer takes the DeepFashion
dataset as the foundation [1], [7], which contains many
clothing images and their corresponding label
information, covering various styles, colors, and fabric
types of clothing [3], [8]. In addition, 3D-scanned human
body model data is used to establish personalized body
feature models for users. By modeling features such as
user body size and posture, the fitting effect of clothing
can be better simulated. Finally, user preference data is
generated based on the user's historical clothing choices
and wearing behavior, which can provide support for
personalized recommendation algorithms, making the
recommended clothing more in line with the user's
aesthetics and needs.

The algorithm layer is the system'’s core, divided into
the design and try-on modules. The design module
generates and optimizes clothing styles through
StyleGAN2 and Conditional GAN CGAN. In this process,
StyleGAN2 is responsible for developing style in clothing
design. At the same time, the conditional constraint

network restricts the specific attributes of the generated
clothing by inputting features such as color and fabric.
Specifically, assuming that the generation process of
clothing design can be expressed as:
x=G(z0c) Q)

Where x is the generated clothing image, G is the
generator network, z is the random noise vector, and c is
the condition vector, which includes constraints such as
color and fabric. The system can generate clothing designs
with specific attributes based on user needs through this
generation method.

To incorporate user-specified design limitations like
color and fabric, these categorical attributes are initially
subjected to one-hot encoding. Each one-hot vector is
further processed through a trainable embedding layer to
get a compact feature representation. The embedded
condition vector is combined with the latent noise vector
before being fed into the generator, allowing the model to
produce clothes that align with the designated qualities.
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The try-on module uses HRNet for human pose
estimation, which detects the user's real-time pose and
provides the necessary information for virtual try-on.
HRNet is an efficient human pose estimation network that
improves the recognition accuracy of human keypoints
through multi-resolution feature fusion. Specifically,
assuming the input image has a resolution of 256x256
pixels. HRNet calculates the human body keypoints P =
HRNetl2in through the following process, where P =
p1,p2,dots,pl represents the position coordinates of n
keypoints in the human body image. Next, the DiffCloth
physical simulation module simulates the physical
changes of clothing on the human body, ensuring the
dynamic adaptation of apparel in various postures.
DiffCloth accurately calculates clothing deformation by
simulating clothing materials and human movements. The
following physical equation can describe the final shape F
of the clothing:

F = DiffCloth(M, P) )

Where M is the physical model of the clothing, P is
the posture information of the human body, and the final
obtained F is the shape of the clothing after trying it on.

To guarantee precise modeling of garment
deformation, the output from the human pose estimation
module must be flawlessly connected with the fabric
simulation engine. Following the extraction of two-
dimensional keypoints from input photos by HRNet, these
keypoints are subsequently mapped onto a three-
dimensional human mesh through a parametric body
modeling method utilizing the Skinned Multi-Person
Linear (SMPL) model. The resultant 3D mesh
encapsulates both  body morphology and joint
configurations. This mesh is synchronized between frames
and utilized as input for the DiffCloth simulation engine.
The joint positions and skeletal movements are
represented as vertex displacement data, which facilitates
the deformation of the virtual garment in the simulation.
This synchronization facilitates real-time alignment
between projected body movement and fabric reaction,
enabling DiffCloth to produce physically credible garment
dynamics during user engagement.

The application layer is the front-end part of the
system, mainly implementing real-time virtual try-on
interaction through WebGL technology. WebGL allows
users to render 3D clothing models in the browser directly,
achieving real-time feedback on virtual try-on effects. At
the application layer, users can adjust clothing styles,
colors, fabrics, etc., according to their personal
preferences, and the system updates the fitting effect in
real time through feedback from the algorithm layer.
Assuming the user's adjustment input is u;yy,.and the
system's output is Sout i.e., the updated try-on effect, the
real-time interaction process of the system can be
described by the following formula (3):

Sout = f (Winpur, G, HRNet, Dif fCloth) (3)

where f represents the interaction function and G,
HRNet, and DiffCloth represent the outputs of the clothing
design, pose estimation, and physical simulation modules,
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respectively. This method allows users to instantly see the
adjusted clothing effect during the interaction process,
improving the accuracy and experience of virtual fitting.
This system establishes a three-layer architecture
(data-algorithm-application) ~ via  deep learning,
synergizing GANs, pose estimation, and physical
simulation to bridge personalized design with high-
fidelity virtual try-on. The multimodal collaboration
enables user-centric customization while ensuring
dynamically adaptive garment realism, demonstrating
scalable potential for fashion industry applications.

3.2 Generative adversarial network
optimization

Improving network structure is the key to optimizing
generative adversarial networks (GANSs) and enhancing
the quality of clothing design generation. In traditional
GAN models, the game process between the generator and
discriminator is usually optimized step by step, but the
generated results often lack sufficient details and global
consistency [6], [24]. To effectively address these issues,
this study introduced different optimization strategies in
the generator and discriminator to enhance the model's
generation capability.

Firstly, in the generator section, this paper introduces
the Spatial Adaptive Normalization SPADE layer to
enhance the control of local details. The core idea of
SPADE is to adaptively adjust different regions in the
input image through conditional normalization operations,
thereby effectively improving the detail representation in
clothing images. This way, the generator can generate
more accurate patterns in different regions, especially in
complex clothing textures and detailed designs. The
introduction of SPADE makes the generated clothing
designs more aligned with practical needs and can
simulate richer fabric details and texture effects.

The SPADE module was incorporated into the
StyleGAN2 framework by substituting traditional
normalization layers with spatially adaptive normalization
blocks, enabling semantic maps (e.g., fabric type, color) to
direct the generation process across various resolutions for
improved control over local clothing attributes. A multi-
scale PatchGAN discriminator, functioning at resolutions
of 64x64, 128x128, and 256x256, was utilized to
simultaneously capture global structural coherence and
intricate texture details, enhancing the visual realism and
consistency of the generated outputs.

In terms of discriminators, this article uses a multi-
scale PatchGAN structure to improve global consistency.
The PatchGAN discriminator can better capture local
texture features by determining the authenticity of
multiple small regions in an image. However, a single-
scale PatchGAN may ignore the global information of the
picture. Therefore, this paper introduces multiple scales of
discriminators in a multi-scale PatchGAN, which can be
compared at different scales to more accurately evaluate
the quality of the generated image. Through multi-scale
processing, the discriminator can simultaneously rate the
generated clothing at multiple scales, thereby improving
the global consistency of the generated clothing images
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and avoiding the situation where the generator only
optimizes local details and ignores the overall structure.

The design of the loss function is crucial for further
optimizing the generation effect. This study divides the
loss function into adversarial, perceptual, and physical
constraint loss[22].Adversarial loss L, ;,, approximates the
actual data distribution through the game process between
the generator and discriminator, while the perceptual loss
Lyerc €nhances the perceptual quality of the generated
image based on high-level features extracted by pre-
trained  convolutional  neural networks(such as
VGG)[[21], [25], thereby improving the naturalness and
detail of the image. Physical constraint loss L_ {physics}
constrains the generated clothing design by considering
the physical properties of the clothing fabric, making it
more in line with actual wearability. The physical
constraint loss considers explicitly the physical properties
of fabrics such as stretching, folding, and bending. It
optimizes the generation process by calculating the
differences between the visual effects caused by these
deformations and the real fabric. 4,4, Apercs Lpnys

The overall form of the loss function can be expressed
as:

Ltotal = ladeadv + lpercherc (4)
+ Aphysthys

Where Agaqy, Aperc: and Lyp,s are the weight
coefficients corresponding to the adversarial 10ss (Lg4,),
perceptual loss (L,erc), and physical constraint loss
(Lpnys), respectively. This study can use this weighted
combination to balance the generated image's realism and
physical feasibility while ensuring its quality.

In the personalized recommendation strategy, user
preference coding is used further to enhance the level of
personalization in clothing design. To extract users'
natural language descriptive information, this paper
adopts the BERT model for semantic feature extraction.
BERT learns contextual information through pre-trained
large-scale corpora, which can effectively capture users'
specific preferences for clothing, such as color, style,
material, etc. These semantic features are encoded in
vector form and added as conditional inputs to the
generator to guide the generation of clothing designs that
meet user needs.

The multi-objective optimization technique utilizes
Bidirectional Encoder Representations from Transformers
to derive semantic embeddings from user design inputs.
The characteristics are encoded numerically utilizing the
final-layer embedding vectors of the pre-trained
transformer model. All feature vectors are adjusted using
L2 normalization to ensure comparability between
samples. The novelty score is calculated by assessing the
cosine distance between the embedding of the generated
item and the centroid of previously recommended items in
the feature space, so quantifying the distinctiveness of a
new design relative to prior outputs. Satisfaction is
evaluated according to the resemblance to user-preferred
attributes, enabling the system to reconcile inventiveness
with adherence to user purpose.
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To enhance the effectiveness of personalized clothing
recommendations, this study proposes a multi-objective
optimization approach that jointly optimizes design
novelty and user satisfaction (e.g., click-through rate
prediction). Specifically, the Novelty Score quantifies the
creativity and differentiation level of clothing designs,
while user satisfaction is evaluated through a click-
through rate prediction model to assess users' potential
acceptance of design proposals. Multi-objective
optimization problems can be formulated as max 6
[a-Novelty(0)+p-Satisfaction(8)], where 8 is a parameter
for clothing design, and a and f are weight coefficients for
novelty and user satisfaction, respectively. Through this
joint optimization strategy, the generated clothing design
can meet users' personalized needs and ensure novelty and
attractiveness, enhancing user experience and satisfaction.

Based on the above design, the generative adversarial
network optimization method proposed in this article has
successfully improved intelligent clothing design's quality
and personalization level through multiple innovative
means. Introducing SPADE to enhance local detail control
in the generator, using multi-scale PatchGAN in the
discriminator to improve global consistency, and further
optimizing the generation effect by integrating adversarial
loss, perceptual loss, and physical constraint loss[24],
[26].In  terms of personalized recommendations,
combining the BERT model for user preference encoding
and using multi-objective optimization strategies to
enhance design novelty and user satisfaction provides
adequate technical support for optimizing intelligent
clothing design and virtual try-on systems.

3.3 Dynamic try-on algorithm design

Designing a dynamic try-on algorithm is key to achieving
a precise virtual try-on experience. This system integrates
multiple aspects, such as human pose estimation, clothing
deformation modeling, and real-time optimization, into
the algorithm design to ensure the authenticity and
dynamism of the try-on effect.

The system incorporates a pose estimate module
utilizing the High-Resolution Network to precisely
identify human keypoints across various body types. A
lightweight version was constructed by knowledge
distillation, utilizing the HRNet-W48 model as the
instructor, to save computing costs while maintaining
accuracy. The student network preserved multi-resolution
features while reducing channel size by fifty percent. A
dual-loss technique utilizing mean squared error for
feature alignment and cross-entropy for pose prediction
was implemented, with training conducted over 50 epochs
using the Adam optimizer (learning rate: 0.001). This
method attained comparable accuracy (96.0% versus
96.8%) while minimizing runtime and parameter size,
facilitating fast real-time virtual fitting.

Firstly, human pose estimation is the first step in
virtual fitting. To accurately capture the user's body
dynamics, this study employed the HRNet-W48 High-
Resolution Network model, which can effectively extract
2D keypoint information of the human body. HRNet-W48
extracts features from various parts of the human body
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using multi-resolution methods, particularly in presenting
details, which offers significant advantages. Based on
these 2D keypoint data, the system uses the SMPL
Skinned Multi Person Linear model to fit the 3D human
body mesh. The SMPL model parametrically associates
the 3D human pose and shape with the movements of each
joint and muscle, providing a more accurate 3D human
form for dynamic fitting.

To enable the algorithm to run in a real-time
environment, this study adopted knowledge distillation
technology to compress the model. The core idea of
knowledge distillation is to train a smaller student model
to mimic the output of a larger teacher model, thereby
reducing computational complexity and improving
running speed. The system can optimize the model to a
processing speed of 30 frames per second FPS through
knowledge distillation techniques, ensuring that real-time
requirements are met. This optimization enables seamless
tracking of human posture changes during virtual try-on,
significantly improving the user experience.

Physical simulation is one of the key technologies in
clothing deformation modeling. The dynamic movement
of fabrics requires precise physical simulation, and the
Position Based Dynamics PBD method is one of the
widely used techniques for fabric simulation. In PBD,
each particle of the fabric is represented by a mass and
position attribute, and each particle is connected to other
particles through physical constraints such as springs and
damping. In the simulation of fabric motion, the updated
formula is as follows:

1
Axi :EZﬁ‘jdtz (5)
J

Boundary constraints and collision management were
implemented after the position update in Eqg. (5) to
improve physical realism. Anchor points on the garment
were preserved by fixed vertex constraints. Moreover,
constant collision detection and reaction methodologies
were employed to avert interpenetration with the human
body mesh, hence providing stable and visually credible
fabric behavior in dynamic scenarios.

Where Ax; is the position update of particle i, m; is
the mass of particle i, f;; is the interaction force between
particles i and j, and A4t is the time step. This formula
allows PBD to accurately simulate the deformation of
fabrics under different external forces, ensuring the
dynamic and natural appearance of clothing.

The accuracy of clothing deformation depends on
physical simulation and requires the introduction of
deformation constraints, primarily through adversarial
training techniques. Through the game between the
generator and discriminator, adversarial training can make
the generated fabric deformation approach real data. For
example, the generator optimizes the generated fabric
deformation, while the discriminator determines the
difference between the generated deformation and the real
data. The loss function of adversarial training is usually:
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Lagy = EX~Pyata [lOgD €3]
+ Ez~p, [log (1 (6)

-D(6(2))]

Where L,4,,is the adversarial loss, Dx is the output of
the discriminator, representing the probability that the
input data x comes from real data, Gz is the fabric
deformation output by the generator, and p;,:, and p,
display the distributions of real data and generated data,
respectively. Through adversarial training, the generator
can gradually learn fabric deformations similar to real
data, making the clothing in virtual try-ons more realistic.

In the process of virtual fitting, in addition to dealing
with the interaction between clothing and the human body,
it is also necessary to consider the wearability and comfort
of the fabric. To this end, this study also introduced
physical constraints on clothing fabrics by restricting the
fabric's stretching, folding, and other behaviors to ensure
that the generated clothing design has sound visual effects
and meets the requirements of actual wearing. Physical
constraints can be expressed in the following ways:

Lpnys = D A ([0 = x| - axre) ™)
i

Where Lyp,sis the physical constraint loss, A;is the

weight coefficient of each particle, x™*¥and x?'are the

new and old positions of the particle, respectively, and
Ax™**is the maximum displacement allowed by the
particle. This loss penalizes excessive deformation by
encouraging particle movements to remain within
physically plausible bounds defined by Ax[™**.

Through this constraint, the system can effectively
avoid unnatural clothing deformation during wearing,
thereby enhancing the practicality and comfort of
clothing.

Through the above design, the dynamic try-on
algorithm constructed in this article combines technigues
such as human pose estimation, physical simulation, and
adversarial training, improving the real-time performance
and accuracy of the virtual try-on process, while
effectively enhancing both personalization and the
physical realism of garment behavior. The comprehensive
application of these technologies enables the virtual try-on
system to achieve a high degree of visual realism and
simulate clothing forms that conform to ergonomic and
physical laws, providing technical support for intelligent
clothing design and personalized recommendations.

4 Experimental and simulation

analysis

4.1 Experimental design and dataset
construction

This experiment aims to design and train an advanced
clothing recommendation and pose estimation model by
combining the Deep Fashion dataset with the 3D human
scanning dataset. The dataset contains 100000 diverse
clothing images and 5000 sets of corresponding human
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pose data to ensure the capture of complex relationships
between different clothing and human poses. To improve
the model's generalization ability, data augmentation
techniques such as rotation, cropping, and lighting
adjustment will be used during the training process to
ensure the robustness of the model in different
environments and poses.

Alongside the DeepFashion collection, a unique
Human 3D Scanning collection was developed, consisting
of 5,000 high-resolution body scans of participants aged
18 to 50, utilizing a structured-light scanning technique.
Body meshes were standardized utilizing the SMPL
approach to guarantee uniformity. To facilitate virtual try-
on, garments from DeepFashion were correlated with 3D
models according to annotated size and style metadata,
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assuring  accurate  alignment  between  garment
measurements and body forms.
The augmentations comprised random rotation

(x15°), horizontal flipping, random cropping and resizing,
and modifications to brightness and contrast. These were
implemented on both DeepFashion apparel photos and the
projected 3D position data to replicate various real-world
scenarios. The enhanced dataset mitigated overfitting and
enhanced generalization. Empirically, the model
augmented with these enhancements attained a 4.3%
improvement in pose estimation accuracy (PCKh@0.5)
and a 2.7-point decrease in FID relative to the baseline,
thereby augmenting both fitting precision and visual
realism.

Table 2: Parameter configuration of experimental dataset

Dataset Name Dataset Description

Data volume Dataset partitioning

DeepFashion
types of clothing, including labels,
categories, accessories, and other
information

3D Human

Scanning Dataset
poses

Contains 5000 sets of 3D human pose
data, designed to simulate real human

A dataset of images containing multiple

Training set: 80000 Test
set: 20000

100000 clothing
images

5000 sets of
posture data

Training set: 4000 Test
set: 1000

This experiment will use an NVIDIA A100 GPU for
training and the PyTorch framework to utilize hardware

performance fully. Here are the specific training
configurations:

Table 3: Network and training parameter configuration

parameter Set value
Periodization 200 epochs
Batch size 32
optimizer AdamW

Learning rate
Learning rate decay strategy

loss function

Initial learning rate: 1e-4

Decay to 0.8 of the original value every 30 epochs

A weighted combination of the cross-entropy loss function and the mean
square error loss function

During the training process, the model will iteratively
update using the training set, optimize hyperparameters
through cross-validation, and evaluate its accuracy and
generalization ability. A test set evaluation will be
conducted every 20 epochs to monitor changes in model
performance. In the final stage of training, evaluation
metrics will include accuracy, recall, F1 score, and mean
square error MSE to ensure the model performs well in
clothing recommendation and pose estimation tasks.

Based on the above parameters and experimental
design, this experiment can effectively test the model's
performance in processing complex clothing images and
3D human pose data, laying a solid foundation for
subsequent optimization and practical applications.

An A/B testing strategy was implemented to assess
user satisfaction with tailored apparel recommendations
and the virtual try-on experience, using 500 participants
(ages 18-45, 52% female, 48% male), recruited through
an online crowdsourcing platform. Participants were

randomly assigned to two groups: one engaged with the
suggested system utilizing SPADE-GAN and BERT-
based multi-objective optimization (Group A), while the
other employed a baseline rule-based recommendation
system (Group B).

Both groups were presented with 10 outfit styles
created according to specified user profiles (e.g., casual,
business, sports). Following each session, participants
evaluated the designs using a 1-10 Likert scale across
three dimensions: (1) aesthetic appeal, (2) accuracy of
personalization, and (3) perceived functionality. The
ultimate satisfaction score was calculated as the mean of
these three ratings.

The user interface displayed each design in a
simulated virtual fitting environment with the same 3D
avatar to maintain consistency. The cited 92% satisfaction
rate pertains to the percentage of participants in Group A
whose mean satisfaction score surpassed 8.0. This
methodology guarantees that the satisfaction indicator
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encompasses both subjective user experience and
systematic feedback collection. A total of 45 individuals,
predominantly graduate students and young professionals
aged 22 to 35, were recruited to conduct A/B testing for
assessing user satisfaction. A web-based interface was
created to display two garment design outputs
concurrently one produced by the suggested method and
the other by a baseline model. Participants were instructed
to select the more preferable design and evaluate their
preference using a 5-point Likert scale, with 1 signifying
"very unsatisfactory" and 5 denoting "very satisfactory."
The satisfaction rate was calculated as the percentage of
participants who endorsed the recommended strategy,
resulting in a score of 92%.

4.2 Indicator and comparison algorithm
selection

In terms of generating quality evaluation, this article
selects Fréchet Inception Distance (FID) and Inception
Score IS as core indicators. FID measures the realism of
generated images by comparing the distribution
differences between generated and authentic images in the
feature space; lower values are better, while 1S evaluates
the diversity and recognizability of generated images
through classification models; higher values are better.
Simultaneously, innovative physical constraint error
indicators are introduced to quantitatively assess the
design's manufacturability by calculating the mean square
error between the physical parameters of the generated
clothing, such as fabric stretch rate, bending stiffness, and
the real fabric. The user satisfaction index is obtained
through A/B testing, with 500 participants rating the
generated design's aesthetic, practical, and innovative
aspects on a scale of 0-100%.In the virtual try on module,
pose estimation accuracy is used (PCKh@0.5) As akey
indicator, it is defined as the proportion where the
predicted key points have an error of less than 50% from
the proper position of the skull length, with a focus on
monitoring core joints such as shoulders, elbows, and
wrists that affect the fitting effect. The accuracy of
physical simulation is evaluated by the deformation error
of the fabric unit: mm, and a high-precision motion
capture system is used to obtain the real motion trajectory
of the fabric as a reference. The effectiveness of the
recommendation system adopts three indicators:
recommendation accuracy, Top-5 hit rate in the test set,
novelty score calculated based on cosine similarity of
design feature vectors, user click-through rate, and online
experiment conversion rate. Real-time performance
evaluation includes two hardware performance indicators:
frame rate FPS and end-to-end delay ms.

To improve localized control over garment attributes,
the SPADE module was incorporated into the cGAN
generator by substituting conventional normalizing layers
with spatially adaptive normalization. Semantic condition
maps denoting fabric type, style, and color were integrated
at various resolutions to modify feature activations,
facilitating precise and uniform management of apparel
properties during the synthesis process.
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def SPADE_cGAN_Generator(z,
condition_map):
x = Dense(...)(concat(z, condition_vector))
for i in range(num_blocks):
x = Conv2D(...)(SPADE(x,
condition_map))
x = Activation('ReLU")(x)
output = FinalConv2D(...)(x)
return output

The selection of comparative algorithms follows the
principles of cutting-edge fields and technological
representativeness. In the clothing generation task,
StyleGAN?2 is selected as the basic comparison model,
which serves as the benchmark algorithm for current
image generation and can verify the effectiveness of
SPADE layer improvement; Compare cGAN Conditional
Generative  Adversarial Network to confirm the
superiority of multi constraint mechanisms; Introducing
Fashion GAN as the benchmark for clothing generation
specialized models; Retain traditional parametric design
methods as non-deep learning reference frames. The pose
estimation module selects Open Pose, a classic algorithm
based on Part Affinity Fields, and Alpha Pose, an
improved multi-person pose estimation framework, to
compare bottom-up and top-down technology routes.
Regarding physical simulation, NVIDIA Phys GAN
combined with a physics engine will be compared with
position dynamics PBD and traditional spring particle
models, covering two mainstream methods based on
learning and physics simulation. Recommendation system
comparison algorithms include collaborative filtering,
conventional methods based on user behavior, CNN
feature matching, deep methods based on visual similarity,
and traditional rule engines, forming a complete
comparison spectrum from experience-driven to data-
driven. Specifically, ablation experiments are set up in the
personalized recommendation stage to verify the
contribution of each technical component by removing the
BERT encoder or the multi-objective optimization
module.

The baseline models were chosen for their pertinence
to the job, the availability of open-source
implementations, and their consistency with the study's
emphasis on conditional generation and the realism of
virtual try-on. FashionGAN was selected for its specific
design for apparel development based on stance and
garment properties, rendering it more directly equivalent
to our method than StyleGAN3, which, although robust in
general image generation, lacks precise control methods.
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4.3 Experiment and results analysis

Firstly, this article analyzes the algorithm's training
process. SPADE-GAN quickly converges to an FID of
12.3 after 50 epochs. Figure 2 illustrates that the cGAN
model attained an FID of roughly 19.8 at around epoch
100 and further improved, obtaining reduced FID values
by epoch 120. This pattern illustrates consistent
convergence and enhanced image quality over time,
proving that spatial adaptive normalization accelerates
model convergence.

An ablation study was conducted to evaluate the
distinct influence of each loss component, with a focus on
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the physical simulation loss term. The model's
performance was evaluated with and without the
incorporation of physical consistency loss. The findings
demonstrated that integrating physical loss enhanced the
realism and manufacturability of simulated clothes,
especially in maintaining material deformation during
motion. Without this word, the produced fabric exhibited
heightened interpenetration and implausible folding,
particularly during dynamic poses. These findings
underscore the essential function of physical loss in
facilitating physically realistic outcomes.

FID Convergence Comparison
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Figure 2: FID variation curves of different GAN models with training epochs

Comparative analysis shows that the generator with
the SPADE layer significantly reduces FID from 23.4 to
12.3, indicating that the generated images are closer to the
actual distribution. At the same time, the physical
constraint error was reduced to 0.08, proving that the
physical loss function effectively improved manufacturing
ability. The user satisfaction rate reached 92%, verifying
the effectiveness of multi-objective optimization. The
results are shown in Table 4 below.

The "user click-through rate" presented in Table 4 was
obtained via a simulated interaction model utilizing user
preference prediction algorithms instead of empirical user
surveys. This round of evaluation did not involve human
participants, so ethical clearance was unnecessary. The
simulation was calibrated using historical behavior
patterns derived from publicly accessible datasets to
approximate realistic degrees of engagement.

Table 4: Comparison of clothing generation quality between different GAN models

Model FID| IS1 Physical constraint error(mm) | User satisfaction 1
StyleGAN2 234 8.2 0.15 82%

cGAN 19.8 8.7 0.12 85%
SPADE-GAN 12.3 9.5 0.08 92%

Traditional =~ 35.6 6.1 0.21 68%

parametric design

Fashion GAN 25.7 7.9 0.18 79%

HRNet-W48 performs the best in joint localization,
with an average of 96.8%, with a wrist accuracy of 95.2%,
meeting the requirements of dynamic fitting. After
knowledge distillation, the model only lost 0.8% accuracy,
but the inference speed increased by approximately 1.67
times, rising from 18 FPS to 30 FPS after applying

knowledge distillation, see Table 5, balancing accuracy
and efficiency. As shown in Fig. 3, the overall comparison
shows that HRNet after knowledge distillation maintains
96% accuracy while improving FPS to 30, which is at the
Pareto front and superior to other algorithms.
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Accuracy vs. Speed Trade-off
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Table 5: Comparison of accuracy in virtual fitting pose estimation (PCKh@0.5)

Algorithm SHOULDER Elbow Wrist Hip Average
HRNet-W48 98.3% 96.7% 95.2% 97.1% 96.8%
OpenPose 94.2% 91.5% 89.8% 93.4% 92.2%
AlphaPose 96.1% 93.8% 92.6% 95.3% 94.4%
Knowledge 97.5% 95.9% 94.3% 96.5% 96.0%

Distillation HRNet

DiffCloth's error in silk fabric simulation is only
0.8mm, 57.9% lower than PhysGAN's. Its differentiable
characteristics allow for end-to-end optimization,

especially when dealing with nonlinear deformations such
as denim folds, which have significant advantages.

Table 6: Comparison of physical simulation errors (unit: mm)

Fabric type DiffCloth PhysGAN PBD Traditional spring model
Cotton 1.2 25 3.8 5.6

Silk 0.8 1.9 2.7 4.3

Denim 21 34 4.9 6.2

Knit 15 2.8 3.2 5.1

Synthetic Fiber 1.0 2.3 35 4.8

Average value 1.32 2.58 3.62 5.24

As shown in Figure 4, DiffCloth's error is less than
1mm on thin fabrics such as silk, but it increases to 2.1mm

on high-stretch denim, which

PhysGAN's 3.4 mm.

is still better than
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Physical Simulation Accuracy by Fabric Type
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Figure 4: Physical simulation error varies with fabric complexity

After encoding user semantics with BERT, the
recommendation accuracy increased to 88%, and the
novelty score reached 8.9 out of 10, proving that multi-

objective optimization effectively balances practicality
and creativity.

Table 7: Comparison of personalized recommendation effects

Recommendation accuracy T  Novelty score 1

User click-through rate 1

Method

Collaborative Filtering 2%
CNN feature matching 78%
BER'I’_+myIU-ob1ectwe 88%
optimization

Traditional rule engine 65%

6.3 68%
7.1 73%
8.9 91%
5.2 61%

Further analysis of its relationship is shown in Figure
5, where user satisfaction is positively correlated with
design novelty, Rz = 0.72. Still, excessive pursuit of
novelty >9.5 may lead to decreased satisfaction, which
needs to be balanced in multi-objective optimization.

Figure 5 illustrates a favorable association between
user happiness and design innovation (R? = 0.72), derived
from user ratings obtained via a 1-10 Likert scale instead

of a percentage. The y-axis in the graphic represents
average satisfaction scores. Significantly, as originality
scores surpass 9.5, satisfaction starts to diminish,
indicating that designs regarded as excessively innovative
may be deemed too avant-garde, strange, or impractical
for practical use. This trade-off underscores the necessity
for equilibrium in multi-objective optimization between
innovation and consumer choice.
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Trade-off between Novelty and Satisfaction
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Figure 5: Relationship between user satisfaction and design novelty

Knowledge distillation and model quantification have
increased attitude estimation FPS by 66.7%, reducing end-

to-end latency to 28ms. Meeting real-time interaction
requirements >25FPS is considered a smooth standard.

Table 8: System real-time performance test (resolution 1920 x 1080)

Module

Original model FPS

Optimized FPS

Memory usage MB |

Attitude estimation HRNet
Physical simulation DiffCloth
GAN reasoning

end-to-end delay

18
22
12
52ms

1200—850
980—620
2100—1500

Through

probability  distribution

visualization

interaction requirements <33ms corresponds to 30FPS,

analysis, as shown in Figure 6, the delay is concentrated
between 25- 31ms p=28ms, 6=3.5, meeting real-time

with only 1.2% of samples exceeding the limit.

Latency Distribution of Real-Time System
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Figure 6: System end-to-end delay distribution, 1000 tests

innovation  of
networks,

Based on the above experimental analysis, the
experimental results of this article show that through the

systematic
adversarial

integrating  generative
human pose estimation, and
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physical simulation technology, the performance of
intelligent clothing design and virtual fitting systems has
achieved breakthrough improvements in multiple
dimensions. In terms of generation quality, the improved
GAN model with SPADE layer significantly reduces the
FID index from 23.4 of the benchmark models
StyleGAN2 to 12.3, due to the fine control ability of the
spatial adaptive normalization mechanism on local details
of clothing, such as texture wrinkles and decorative
patterns. Meanwhile, the physical constraint loss function
reduces the manufacturability error of the design by 62%
by quantifying parameters such as fabric stretch rate 0.08
vs. 0.21 in the traditional method 0.21 and bending
stiffness, effectively bridging the gap between virtual
design and physical manufacturing. This technological
breakthrough has increased user satisfaction to 92%,
verifying the effectiveness of multi-objective optimization
strategies in balancing design novelty and practicality.
The cosine similarity calculation shows that the novelty
score of the recommended design, 8.9, has increased by
71% compared to the traditional parametric design, 5.2.
The user click-through rate remains at 91%, revealing that
consumers strongly demand designs that combine
creativity and practicality

In the dynamic fitting stage, knowledge distillation
technology enabled the HRNet-W48 model to maintain
96% pose estimation accuracy while increasing inference
speed to 30FPS, successfully breaking through the
performance bottleneck of real-time interaction. This is
mainly due to the guidance of the teacher model on the
feature distillation process, which reduces the parameter
size of the student model by 42% while retaining the
multi-scale feature fusion ability. In the physical
simulation module, DiffCloth achieves end-to-end
optimization through differentiable characteristics,
reducing the deformation error of silk fabric to 0.8mm,
which is 57.9% lower than PhysGAN's. Its core advantage
lies in embedding the fabric dynamics equation into the
backpropagation process of the neural network, enabling
nonlinear deformation, such as wrinkle formation in
denim fabric, to be automatically optimized through
gradient descent. But the experiment also exposed the
limitations of existing methods: when dealing with high-
stiffness materials, the deformation error of DiffCloth still
reaches 2.1mm, which may be due to insufficient
modeling of the anisotropic characteristics of the fabric in
the current physical model. In addition, user research data
shows that when the design novelty score exceeds 9.5,
satisfaction decreases, R? = 0.72, indicating that excessive
pursuit of creativity may deviate from public aesthetics.
This provides a quantitative basis for adjusting weight
coefficients in personalized recommendation algorithms.
These findings collectively demonstrate that systematic
innovation driven by multi-technology integration is the
key path to breaking through the digital bottleneck of the
clothing industry.

4.4 Discussion

This study sought to establish a cohesive framework that
addresses the fragmentation prevalent in virtual fashion
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research, where personalization, physical realism, and
dynamic fitting are often considered in isolation. The
suggested system offers a comprehensive solution for
intelligent garment design and interactive virtual try-on by
incorporating a conditional generative model, high-
resolution human posture estimation, semantic preference
encoding, and differentiable fabric simulation. This
approach's usefulness is evidenced across various
performance metrics, indicating its potential to enhance
both theoretical comprehension and practical applications
in intelligent fashion technology.

In comparison to the cutting-edge methodologies
examined in Section 2, the suggested framework presents
notable benefits regarding realism and personalization.
The incorporation of DiffCloth markedly enhanced
simulation precision, particularly for delicate and highly
malleable textiles like silk, resulting in an average
deformation error of 0.8 millimeters, surpassing
PhysGAN by 57.9 percent. This enhancement is ascribed
to DiffCloth’s differentiable simulation, facilitating
precise optimization via gradient descent and superior
modeling of fabric dynamics during motion. The
incorporation of spatially-adaptive normalization in the
generator network facilitated enhanced retention of
clothing texture and structural information relative to
Fashion GAN. This was evidenced by the diminished
Fréchet Inception Distance, signifying improved visual
authenticity of the created designs.

Notwithstanding these enhancements, the system
possesses  significant shortcomings that warrant
recognition. The simulation inaccuracy escalates for high-
stiffness fabrics like denim, attaining 2.1 millimeters in
the instance of DiffCloth. The observed performance
degradation is likely attributable to two factors: (1) the
constraints of the fundamental physical model, which
presumes isotropic material behavior and lacks
sophisticated modeling of non-linear tension or stiffhess
anisotropy; and (2) inadequate parameter calibration for
rigid fabrics within the existing dataset, which skews the
model towards more pliable materials. A further constraint
pertains to the trade-off between innovation and customer
happiness. Although the suggestion module attained a
substantial novelty score (8.9 out of 10), subsequent
analysis indicated that designs exhibiting overly high
originality (>9.5) frequently had poorer user satisfaction
ratings. This indicates that expanding creative limits
without regard for user familiarity may result in a decrease
in perceived practicality or wearability.

These findings highlight the necessity of harmonizing
creativity, realism, and usability in intelligent fashion
systems. Future investigations should examine hybrid
physical-neural models adept at learning stiffness-
sensitive fabric characteristics, potentially by integrating
material testing data into the simulation framework.
Further efforts are required to enhance personalization
tactics by dynamically modifying novelty weights in
accordance with user behavior patterns or preference
feedback. Broadening the user evaluation study to
encompass a wider range of participant demographics
would enhance the system's generalizability. Finally,
refining the system for deployment on mobile and
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embedded platforms could enhance its applicability in
virtual fitting rooms, intelligent retail settings, and home-
based fashion customization applications.

Despite the inability to maintain sample photos for
inclusion, visual assessments during testing revealed that
SPADE-GAN outputs consistently demonstrated better
textures, smoother garment shapes, and more coherent
structural details than the baseline StyleGAN2 findings.
These discoveries correspond with the quantitative
enhancements in FID and user happiness, indicating that
SPADE integration improves both numerical quality and
perceptual realism. Although several performance
metrics, including FID variation, end-to-end delay, and
physical error trends, were examined throughout the
experimentation, their respective plots are omitted in this
version due to spatial limitations and an emphasis on
summarizing principal findings. Nonetheless, these
visualizations underwent comprehensive scrutiny during
assessment and validated the indicated trends. They can
be provided upon reasonable request for academic and
verification purposes, if necessary.

The deformation error metric was utilized to
objectively evaluate simulation realism; nevertheless, the
study lacked a perceptual assessment from actual users.
The model's visual realism has not been validated by
subjective evaluation. The lack of a user research or inter-
rater reliability analysis hinders the validation of the
realism of garment simulations for end users. Future
endeavors will focus on incorporating qualitative
assessments or small-scale user surveys to enhance
objective measures and more accurately reflect user-
perceived realism.

5 Conclusion

This study innovatively integrates intelligent clothing
design and virtual try-on technology through deep
learning methods and constructs an end-to-end, complete
process intelligent system. At the clothing design level, by
improving the generative adversarial network architecture
and multi-objective optimization strategies, creative
design generation that balances personalized needs and
physical manufacturability has been achieved; At the level
of virtual try on, the integration of high-precision pose
estimation and differentiable physical simulation
technology has broken through the technical bottleneck of
realistic restoration of clothing deformation in dynamic
environments, significantly improving the immersion and
practicality of virtual try on. The research results provide
intelligent solutions for the digital transformation of the
clothing industry, effectively shortening the design cycle
and optimizing the user experience.

The future research can focus on multimodal human-
computer interaction scenarios, combining augmented
reality AR and haptic feedback technology to construct a
more three-dimensional virtual try-on perception system.
In response to the needs of sustainable fashion
development, intelligent generation algorithms that
integrate environmentally friendly material attribute
modeling and circular design concepts can be studied [11],
lightweight models can be developed to adapt to real-time
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deployment on mobile devices [8,15], and multi-user
collaborative design functions can be strengthened to
explore the co creation mode of artificial intelligence and
designers.
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