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Information silos and response delays are prevalent in existing production systems, severely constraining
collaborative efficiency and the capability for dynamic optimization across different stages. To address
these challenges, this study proposes a unified production architecture based on digital twin technology.
The framework achieves digital mapping of the physical production process through a real-time state
perception model driven by multi-source data, while employing a model predictive control (MPC)
algorithm to enable dynamic scheduling and holistic process optimization. Within the virtual environment,
the control strategy is continuously iterated and subsequently fed back to the physical system, thereby
establishing a closed-loop mechanism for virtual-real synchronization. Experimental results demonstrate
that the MPC-based optimization strategy maintains task switching times between 2.32 and 2.43 seconds,
stabilizes system response delays within 0.83 seconds, and improves the process response stability score
from 0.72 to 0.94. The proposed approach effectively bridges virtual-physical integration across
production links, realizing real-time optimization and intelligent decision-making throughout the process,
and offering a feasible pathway toward collaborative control in intelligent manufacturing systems.

Povzetek: Studija predlaga enotno proizvodno arhitekturo z digitalnim dvojckom in napovednim vodenjem
(MPC), ki poveze virtualni in fizicni proces v zaprto zanko za sprotno usklajevanje, hitrejse odzive ter
stabilnejso in ucinkovitejso optimizacijo proizvodnje.

1 Introduction

With the continuous advancement of intelligent
manufacturing, achieving efficient coordination and real-
time optimization of production processes has become a
central objective for modern manufacturing systems. As
the core foundation for cross-level and cross-system data
integration and process coordination, the structural
integrity and dynamic adaptability of a unified production
architecture directly determine the system’s response
efficiency and the quality of resource allocation [1-2]. Yet
most current manufacturing systems still exhibit
pronounced architectural fragmentation: information and
control flows across hierarchical levels are weakly
coupled, leading to pervasive data silos and the absence of
unified logical associations among production links [3—4].
Traditional scheduling methods—Ilargely grounded in
static rules or preset strategies—depend on predetermined
models and offline parameter configurations; they lack the
capacity to perceive and respond to environmental
changes in real time and therefore struggle to support
resource reconfiguration and task reassignment in
complex settings [5-6]. Although some studies have
introduced the industrial Internet of Things and edge
computing to form information closed loops, their limited
fidelity in perceiving physical processes constrains

continuous process mapping and end-to-end linkage
control [7-8]. Meanwhile, mainstream production
optimization approaches built on centralized control or
multi-objective linear programming encounter bottlenecks
when facing high-dimensional, multivariable dynamics,
including heavy real-time computational loads, weak
model generalization, and lagging control feedback—
making high-frequency, full-link dynamic adjustment
difficult to sustain [9-10]. Establishing a full-process
closed-loop optimization mechanism under a unified
architecture thus remains a critical challenge. The key is
to develop a pathway that is both real-time and decision-
optimal, enabling efficient virtual-physical integration
and dynamic control supported by a unified data model
[11-12].

As manufacturing moves toward higher intelligence
and tighter integration, digital twin technology has
emerged as a core enabler. Onaji et al. examined the
evolution of digital twin concepts in manufacturing,
proposing a conceptual framework for integrated product-
process twins and, through three case studies,
demonstrated their potential to enhance flexibility,
integration, and collaboration [13]. To strengthen
adaptability and  cross-level  collaboration  in
manufacturing processes, research has progressed from
conceptual frameworks to more structured models [14—
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15]. Liu Shimin et al. proposed a new reference model for
digital-twin-based manufacturing systems (DTMS),
analyzing DTMS characteristics and  operating
mechanisms across hierarchy, dimension, and scale to
offer methodological guidance and practical reference
models [16]. As model systems mature, systematic
syntheses of implementation pathways and mechanisms
have become essential to technology transfer [17-18].
Lattanzi et al. reviewed digital twin concepts, technical
solutions, and industrial cases in intelligent manufacturing,
identifying key implementation elements and challenges
and outlining future directions to inform deployment in
practice [19]. Despite advances in modeling, frameworks,
and applications, notable gaps remain in dynamic model
evolution, full-process linkage mechanisms, and cross-
domain integration practices [20-21].

In parallel, the literature on unified production
architectures and whole-link dynamic optimization has
increasingly leveraged digital twins and reinforcement
learning to boost responsiveness and overall efficiency in
complex systems. Liu Qiang et al. proposed a
“configuration—motion—control—optimization”
methodology grounded in digital twins, formulating
corresponding models for  flow-type intelligent
manufacturing and validating feasibility and efficiency in
an insulating-glass case study [22]. With rising scenario
complexity, requirements for real-time response and
multi-agent collaboration continue to intensify [23-24].
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Zhang et al. developed a digital-twin-driven intelligent
workshop community model integrated with hierarchical
reinforcement learning to optimize human—machine
collaboration ratios, markedly improving adaptability to
demand fluctuations and line reconfiguration [25]. Such
approaches have expanded from micro-level human-
machine coordination to macro-level production
organization and resource allocation, underscoring the
breadth and flexibility of reinforcement learning in multi-
scale manufacturing decision-making [26-27]. Choi et al.
employed reinforcement learning coupled with production
simulation to optimize factory layouts and processes,
reducing logistics costs and AGV requirements within a
multilayer optimization framework [28]. Nonetheless,
limitations  persist—including insufficient algorithm
generalization and weak coupling between data-driven
optimization and physical systems—hindering full
compliance with the stringent demands of end-to-end
linkage and dynamic regulation in complex manufacturing
scenarios [29-30].

To summarize current progress and gaps, a structured
comparison of representative studies related to digital
twin-based production optimization is provided in Table 1.
Existing works often lack tight coupling between MPC
and digital twin frameworks, and they struggle to maintain
high-frequency control under multi-stage dynamic
conditions.

Table 1: Comparison of existing studies

Digital Twin Reported Metric

Reference Architecture Type Optimization Method Integration (Response / Stability) Limitation
Liu etal. (2021) [22] Flow-type Manufacturing Rule-based + RL Partial Process Twin 345/0.75 ';‘gofr‘é'i'r;gﬂiir?
Zhang e[tzg'] (2023) Hg@ﬁggg’r':flg'n”e Hierarchical RL Virtual layer only 325/081 Lac';e"efjf;c';ime
Choi et al. (2024) [28] Fg%g%;gg:t RL-based Simulation-level 3.0s/0.84 No closed-loop control
Proposed Method Unified Production System MPC + Digital Twin Full-link Integration 2.385/0.94 Computational

overhead

To overcome the aforementioned challenges, this
paper proposes a dynamic optimization method for the
entire production process within a unified architecture
based on digital twin technology. The method establishes
a one-to-one correspondence between physical entities
and their virtual counterparts. Real-time production states
are captured through sensor data acquisition and time-
series synchronization, while a multidimensional feature
fusion model dynamically correlates key process
parameters to construct a high-fidelity digital twin system.
A closed-loop control framework, driven by a virtual
controller and the Model Predictive Control (MPC)
algorithm, generates dynamic scheduling strategies based
on current system states and short-term predictions,
transmitting control commands to the physical system in
real time. Supported by a unified data platform, the
proposed approach integrates data modeling, state
perception, prediction, and control, enabling continuous
responsiveness and adaptive adjustment under multi-
source disturbances.

This framework achieves significant advances in unified
modeling, control, and architecture, realizing dynamic
optimal control of multivariable coupled systems and
providing a scalable theoretical and methodological
foundation for intelligent industrial deployment.

This research is guided by three key questions. First,
can an MPC controller integrated with a digital twin
maintain system response delays below 0.85 seconds in
multi-stage production scenarios? Second, does the
unified production architecture enhance interlink
coordination and system stability compared with localized
optimization strategies? Third, can the proposed virtual—
real closed-loop  mechanism achieves dynamic
synchronization and process consistency under task
variations and external disturbances? The study ultimately
aims to enable real-time coordination and adaptive
optimization across all production links under varying
operating conditions, establishing a unified pathway
toward intelligent manufacturing control.
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2 Construction of dynamic
optimization system driven by
digital twins

2.1 Model design principles for unified

production architecture

The unified production architecture is designed to
eliminate information silos across production links by
establishing a clear hierarchical logic, stable data
communication, and a virtual-real collaborative
framework, thereby enabling dynamic mapping and
closed-loop control of the entire process. Built upon
digital twin technology, the architecture consists of four
functional  layers: information  perception, data
transmission, model computation, and decision execution.
The perception layer acquires real-time physical states
through multi-dimensional sensor data; the transmission
layer  ensures low-latency and  high-stability
communication between physical and virtual systems; the
computation layer performs digital twin modeling, state
prediction, and optimization through multi-model fusion
and adaptive parameter adjustment; and the execution
layer applies optimized control strategies to physical
entities with real-time feedback correction.

All layers are coordinated under unified scheduling
by the platform center, which guarantees time
synchronization, data consistency, and iterative
optimization of control strategies. It also handles anomaly
detection and manages coordination among multi-
objective tasks. The overall architecture—together with its
information, instruction, and feedback flows—is
illustrated in Figure 1, highlighting the central role of the
platform in data integration, control transmission, and
state correction.

The unified production architecture requires a robust
data communication mechanism to integrate multiple
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protocols and heterogeneous interfaces, ensuring reliable
bidirectional transmission of control signals and feedback.
Unified parameters, timestamps, and version control
maintain consistent status and task alignment across
modules. The platform hub incorporates abnormal data
detection, redundancy elimination, and parameter
alignment to prevent logic interruption and misjudgments
from short-term fluctuations. This mechanism enables
dynamic response to multi-source information and
efficient distribution of control instructions, supporting
practical and stable operation. By integrating logical
hierarchy, structural modules, and communication
protocols, the architecture provides the foundation for
real-time perception, predictive control, and closed-loop
strategy, ensuring continuous synchronization and
consistent virtual-real feedback for digital twin—based
dynamic optimization.

2.2 Digital twin modeling and state mapping
method

The construction of the digital twin model is founded
on high-frequency acquisition of physical system states
and deep fusion of multimodal data. To ensure model
fidelity, precise correspondence between the virtual and
physical entities must be achieved across the data,
structural, and behavioral layers. The system continuously
samples key operational parameters of the physical
process through the deployment of multi-source
perception nodes and reconstructs asynchronous data via
a time-synchronization module, forming a high-
dimensional input vector set suitable for twin-driven
computation. Different data sources adopt distinct
configurations in sampling frequency, feature extraction
strategy, and mapping objectives. The main perception
sources and modeling parameter settings are summarized
in Table 2.

Central Coordination Platform

Scheduling and
Coordjnation

h
Perception Layer

State Acquisition
Unit

Data Transmission Layer

Data Upload

Instruction Delivery

Execution Layer

L& Instruction Execution

L Strategy leration Anomaly Handling

1

l Modeling and Computation Layer

Twin Modeling

State Prediction
i

Strategy Optimization

# Execution Feedback

Figure 1: Unified production architecture model
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Table 2;: Multi-source data acquisition and feature fusion parameter table

Data Source Type Perception Node Form

Sampling Frequency Mapping Target

Temperature, pressure,

Industrial Sensors NS
vibration sensors

Image Capture Unit Industrial vision cameras

PLC (Programmable
Logic Controller) or
embedded controller
interface
Industrial control system
logging module

Control Instruction Stream

Equipment Logs

Construct system physical

10-50 Hz
state vector

25-30 fps Assist in operating status

recognition and modeling
Real-time Behavioral sequence state

modeling
Describe evolution trends and
1Hz

prediction input

Table 2 shows the correspondence between the type
of sensing node, data collection method, sampling period
and its mapping target, reflecting the functional
positioning and accuracy requirements of the system for
different information channels during the modeling
process. Industrial sensors are mainly used to construct the
underlying physical state vector, the image acquisition
unit focuses on supplementing the spatial information of
the operating state, the control instruction stream
participates in the behavior layer modeling in the form of
encoding, and the equipment log provides time evolution
feature support for the prediction model. The collaborative
input of multi-source data ensures the comprehensive
characterization of the physical entity state by the twin
system, and provides a highly consistent modeling basis
for subsequent virtual-real synchronous control.

Assuming that the physical entity state is x,()ER"
and the perception data set is D(9)={d,(?),d»(?),...,d (1)},
then the state mapping function f (-) converts it into a
virtual state vector x,(f)€R”, as shown in formula (1):

x(0=F,, (DO)=W-$(D(D)+b; (1)

WEeR™™ is the feature mapping weight matrix; ¢(-)
represents the nonlinear feature extraction function;
b,€R" is the bias term. The feature extraction function is
constructed based on the stacked autoencoder, and its
training goal is to minimize the reconstruction error to
ensure that the mapping of high-dimensional perception
data to low-dimensional state space has sufficient
expressive power. Its loss function %, is defined as
formula (2):

Fsur=7 500 IDO-p@DO))F (2)
w(+) is the decoding function and T is the sampling
time. After completing the state modeling, the system
extracts the dynamic change characteristics of the state
sequence through the sliding window mechanism to
characterize the evolution law of the physical entity in the
time domain. The sliding window length is /; the step
length is o6 ; the state trajectory matrix
XO=[x,(+=1+1),...x,()]ER™ is formed; and the
differential operator is introduced to obtain the state
change rate, as shown in formula (3):
Axv(t):xv(t)_xv(t_é) (3)
The update cycle of the state parameters is consistent
with the control cycle of the physical system. The system
uses the message queue middleware to complete the real-
time transmission of state synchronization, and uses the

hash verification mechanism to ensure data consistency
during the transmission process. In order to maintain the
synchronization of the virtual and physical systems at the
operation layer, the virtual model feedback control
instructions need to be compared for state consistency.
The control instructions with differences exceeding the
threshold will be marked as mismatched. The system
adjusts the prediction weight matrix » and model
parameters according to the error correction mechanism.
The error correction rules are shown in formulas (4) and
(5):

W= OV, 2, (4)

gerr:”xp(t)ixv(t)llz (5)
n is the learning rate; %, is the state error loss
function; and W*® is the weight parameter of the k-th
iteration. The error correction mechanism is used to
achieve adaptive adjustment of the virtual model, improve
the accuracy and stability of the state mapping, and
provide an accurate system state basis for subsequent
optimization control.

2.3 Design of process dynamic optimization

algorithm based on MPC

The dynamic scheduling and optimization of various
processes in the unified production architecture rely on the
integrated implementation of the model predictive control
algorithm. MPC establishes a dynamic model of the
controlled system and combines the system state
prediction in the future to perform rolling optimization on
the control quantity to achieve optimal control of the entire
full-link process. The construction of the system
optimization objective function is based on multi-
dimensional performance indicators such as production
process resource allocation, time cost and response
accuracy, and introduces prediction error and control
quantity change rate as regular terms for adjustment. The
objective function form is shown in formula (6):

=50 I, (O Zi " IAu(kinl (6)

(k) is the predicted value of the system output at

the &-th step at the prediction time ¢; yre/(k) is the target
reference value at the corresponding time; Au(kl¢) is the
change in the control quantity at the -th step; N, and N,
are the prediction step length and control step length,
respectively; O and R are the weight matrices used to



Digital Twin-Driven Model Predictive Control for Dynamic...

adjust the relative influence of the state error and the

control behavior. The state prediction is modeled in the

form of a discrete linear state space model. The system

state update equation and output equation are expressed by
formulas (7) and (8), respectively:

x(t+1)=Ax()+Bu(?) (7)

W(O=Cx(t)+Du(r) (8)

x(?) is the system state vector at time ¢; u(¢) is the
input control vector; y(¢) is the output vector; A, B, C, and
D are the system state transfer matrix, input control matrix,
output mapping matrix, and direct transfer matrix,
respectively, all of which are obtained by system
identification of the physical system process data. In order
to ensure that the system meets physical constraints and
resource limitations in actual operation, hard constraints
such as those shown in formulas (9) and (10) are
introduced for boundary control:

Z'{minsu(t)gumax (9)
yminSy(t)Symax (10)

In formula 9-10, u,,;, and u,,,, are the upper and
lower limits of the control variables. y_. andy_  are the
limit ranges of the output variables, and all constraints are
derived from the process requirements of each process
segment in the unified production architecture and the
safety boundaries of equipment operation. On the basis of
hard constraints, the system also introduces a soft
constraint mitigation strategy, setting penalty function
terms for some variables. When the control variable
breaks through the boundary in the short term but the
overall operation is still within the tolerance range, the
objective function value is adjusted through the Lagrange
multiplier mechanism to maintain a balance between
optimization convergence and response flexibility.

During system operation, abnormal disturbances and
model deviations are inevitable. To enhance the stability
and robustness of the MPC controller, a disturbance
detection mechanism is embedded in the platform center
to identify persistent prediction errors, adjust model
weights through feedback, and perform adaptive
correction. The real-time deviation between virtual and
physical states guides iterative updates of the weight
matrix and controller parameters, ensuring control
convergence under dynamic disturbances.

To mitigate the high computational complexity of
MPC in multivariable scenarios, the optimization module
employs a fast interior-point algorithm for constrained
quadratic programming while restricting iteration counts
within each control cycle. For scenarios with stringent
real-time requirements, the system dynamically switches
to approximate or reduced-order solutions to guarantee
timely responses. Furthermore, a multi-step rolling
prediction mechanism continuously updates system states
and re-optimizes control sequences, forming a high-
frequency closed-loop interaction between the virtual and
physical systems.

This integrated optimization framework significantly
enhances resource utilization, scheduling responsiveness,
and operational stability throughout the entire production
process.
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2.4 Integrated implementation of virtual-real

closed-loop control mechanism

The implementation of the virtual-real closed-loop
control mechanism relies on multi-level system
integration and standardized communication protocol
support under a unified production architecture. The
digital twin system and the physical production system
realize two-way interaction of data and instructions
through industrial protocols such as OPC UA (Open
Platform Communications Unified Architecture) and
MQTT (Message Queuing Telemetry Transport), forming
an integrated control channel. The perception layer in the
physical system collects various state parameters in real
time, including equipment operation status, production
process parameters and environmental variables, and
transmits them to the data access module through the data
bus, and uploads them to the digital twin platform after
preprocessing. Based on a unified data model, the digital
twin platform maps the collected state parameters to entity
nodes in the virtual environment, generates state snapshots
equivalent to the physical system, and dynamically
updates them in the form of time series.

In the virtual space, the decision module generates an
instruction stream C,={c,|,c,2,....c,,,; based on the
current system state and the preset global scheduling
strategy, where ¢, ; represents the control instruction sent
to the i-th unit of the physical system at time z. The
instruction stream is encapsulated as a standard message
through the communication scheduling module of the
interface layer, and is sent to the physical system after
being sorted by priority and timestamp. After the physical
system receives the control instruction, it parses it through
the field controller and drives the actuator to complete the
action, such as adjusting the drive shaft speed, opening
and closing the fixture, and modifying the process
parameters. Each execution unit immediately generates a
feedback signal Ft=ﬂj’lft’2,...zf } after the action is

tm
completed. The feedback signal contains the execution
status identifier, the action completion timestamp and the
error report. The feedback link is uploaded to the digital
twin platform through the same communication protocol
to update the system status.

After receiving feedback, the virtual-real closed-loop
scheduling engine compares the real-time state S, with the
predicted state S,, and the error term E=S,—S, is sent to
the deviation compensation module of the scheduling
engine. If |[E;|l exceeds the set threshold, the system will
trigger the error adaptive adjustment logic to make
subsequent predictions more consistent with actual
feedback by correcting the control instruction weight
matrix or adjusting the virtual model parameters.

The system status update and instruction issuance
process runs in a fixed cycle to form a closed-loop control
flow of continuous iteration. The iterative optimization
strategy in the virtual model takes real-time feedback as
input, adjusts the prediction results through the historical
data sliding window W,={S,.,,....,S,}, generates the control
instructions for the next cycle and sends them to the
physical system. The overall operation logic of the virtual-
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real closed-loop system is managed by the scheduling
main control module, realizing the full-link closed-loop
control process from data perception, virtual mapping,
decision generation, control issuance to feedback
transmission, ensuring the real-time consistency and
response accuracy of the virtual model and the physical
system in various links such as state mapping, instruction
execution, and feedback update, and providing support for
the dynamic optimization and adaptive scheduling of the
system.

3 Experimental system and
verification environment
construction

M. Liu et al.

3.1 Experimental platform architecture and

software and hardware configuration

The construction of the experimental system relies on
high-performance hardware support and multi-level
software system collaboration. The overall architecture
covers modules such as data acquisition, transmission,
processing and control to ensure dynamic optimization
and real-time response capabilities of the entire production
process. The components of the system are connected
through high-speed communication links to achieve
efficient interaction between the physical system and the
virtual twin platform. In order to further clarify the
composition and functions of the experimental platform,
the core hardware and software configurations are listed.

Table 3: Hardware and software configuration of the experimental platform

Module Category Specifications

Sensor Unit 0.01 mm resolution

Communication
Module

Control Platform

100 Mbps

Multi-core processor

Data Processing
Module

Digital Twin Engine

32 GB memory

3D modeling engine

Python environment

Hardware/Software Functional Description
Industrial sensor Real-time acquisition of physical
state data
Industrial Ethernet ngh—speed_data transmission and
interaction
MATLAB/Simulink Runs MPC algfégir::m and decision

Multi-source data fusion and
feature extraction
Digital mapping of the physical

Unity3D system

Table 3 shows the functional division and
configuration parameters of each module in the
experimental platform, covering the sensor unit,
communication module, control platform, data processing
module and virtual twin engine. It clarifies the
specifications, operating environment and core functions
adopted by each module, providing basic support for
subsequent experimental verification and results analysis.

3.2 Construction process of digital twin

system

The digital twin system is built around multi-
dimensional state mapping and real-time interaction with
the physical production system. A virtual model is first
constructed, defining node structure, attribute variables,
and state transfer logic to match the spatial, functional, and
dynamic characteristics of the physical system. Multi-
source sensing nodes collect real-time data on equipment
status, production flow, environmental variables, and
energy consumption at 100 Hz, with timestamp-based
synchronization. TSN protocol ensures low-latency, high-
reliability transmission, while edge preprocessing
performs format conversion, anomaly detection, and noise
filtering, standardizing data in JSON format for the data
center. The twin system interfaces with the physical
system via OPC UA, issuing control instructions and
receiving status updates. State updates occur every second,
with  millisecond-level WebSocket communication.
Object-oriented modeling integrates geometry, kinematics,

and dynamics in Unity3D with a real-time physics engine.
Kalman filtering smooths data and compensates
anomalies, keeping virtual and physical states within 1%
error. MPC-based predictive optimization generates
control instructions sent via the industrial bus, completing
closed-loop control. Docker-based deployment enables
module decoupling, hot-swapping, model updates, and
flexible maintenance.

3.3 Definition and implementation of the full-

link path of the production process

The full-link process ensures continuity and
synchronization across modules in the unified production
architecture. By defining process nodes in both physical
and virtual environments, cross-level and cross-device
control links maintain consistent data and control logic
transmission. The process is divided into five stages—raw
material delivery, primary processing, quality inspection,
finished product assembly, and packaging—each with
state acquisition, control execution, and feedback analysis
modules. The main control unit monitors state variables
and releases scheduling instructions, while the process
state transfer matrix and control strategy library define
logical relationships. Inputs and outputs are standardized
for rapid parsing, and MPC-based scheduling allows real-
time adaptive adjustment to task changes or resource
conflicts. Key-node control strategies are transmitted via
the twin model interface to ensure virtual-real consistency,
forming a stable, efficient, low-latency closed-loop
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system that coordinates task switching, state transfer, and
command execution throughout the entire production path.
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Table 4 shows the configuration of each link and the
corresponding core control variables.

Table 4: Configuration parameter table of the full-link production path control structure

Control Command Feedback

Link ID  Production Stage  State Acquisition Parameters Variables Mechanism Delay (s)
PO1 Raw Mgterlal Sensor Weight, Silo Capacity Feeding Spged, Start-End 0.61
Feeding Time
Primary Spindle Speed, Processing Tool Feed Rate, Cooling
P02 : 0.74
Processing Temperature Frequency
P03 Quality Image Recognition Result, Inspection Frequency, 0.69
Inspection Dimensional Deviation Movement Path '
P04 Final Assembly Component Position, Ass_embly Sequence, 0.85
Assembly Torque Fixture Pressure
PO5 Packaging and Barcode Recognition, Packaging Mode, 0.76

Dispatch Inventory Status

Dispatch Rhythm

Table 4 shows the state perception parameters,
applied control variables and time delay of feedback
mechanism required for each process node in actual
operation based on five major production links. Each link
is bound to a specific set of sensor data and execution
instructions, and the logical mapping relationship between
them is maintained and updated in real time by the system
main control unit. The feedback delay reflects the time
deviation between the physical system response and the
twin model regulation in virtual-real collaboration.

4 Results analysis

4.1 State perception accuracy analysis

In order to verify the perception accuracy of the
digital twin system for key state parameters, the
experimental design introduces five core physical
variables, namely temperature, pressure, speed, liquid
level, and flow rate, as analysis objects, selects three types
of sensors for multi-source information collection, and
generates a unified state expression model through the
data fusion module. Sensor A is based on the principle of
thermal resistance and piezoelectric sensitivity, with fast
response speed but large signal fluctuations; sensor B
adopts MEMS (Micro-Electro-Mechanical ~Systems)
structure and performs stably in the medium and low
frequency bands; sensor C is an industrial-grade precision
equipment with high accuracy but is more sensitive to
environmental interference. The fusion model realizes
multi-source feature collaborative modeling through a
weighted residual mechanism to improve the recognition
accuracy and fluctuation suppression ability of state
parameters. Through the two-part analysis of perception
error comparison and state modeling error distribution, the
performance of various data sources and fusion models
under different state parameters is systematically revealed,
as shown in Figure 2.

iuhhhh~L1¢éé

Figure 2 State perception accuracy diagram
Figure 2 (a) Comparison of multi-source data
perception errors
Figure 2 (b) State parameter error distribution
statistics

From Figure 2 (a), we can see that the recognition
error of the fusion model on all state parameters is
significantly lower than that of a single sensor. The
temperature perception error is reduced from 3.2% of
sensor A to 1.4%, which is mainly due to the enhanced
compression ability of random noise after data fusion. The
error control effect of flow is relatively weak, and it
remains at 2.0% after fusion. The reason is that the flow
sensor has a delayed response under boundary conditions,
which affects the data alignment accuracy. Figure 2 (b)
shows that the maximum errors of pressure and flow are
2.5% and 2.7%, respectively. The main reason is that such
variables are more sensitive to transient disturbances, and
some original data have large fluctuations, which is not
conducive to stable modeling. The median errors of
temperature and speed are controlled within 1.5%,
showing the robustness of fusion modeling for periodic
variable recognition. The overall results show that multi-
source information fusion significantly improves
parameter accuracy in the state perception stage and
effectively suppresses error fluctuations in single-source
measurement.
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4.2 Analysis of dynamic scheduling response
capability

In order to verify the performance of the proposed
MPC optimization strategy in dynamic task scheduling
and system response, the experiment designed multiple
rounds of scheduling control tests, running the MPC
strategy and the traditional scheduling strategy
respectively through a unified platform, and recording the
two key indicators of system response delay and task
switching time in real time. In each round of task
switching, the scheduling control system needs to
reallocate production resources and drive the physical
execution unit to complete the switching operation,
thereby forming a complete data closed loop. Traditional
methods rely on static rules and predefined paths, lacking
the ability to dynamically perceive and roll forward the
system state, while the MPC strategy dynamically
generates a control sequence based on the current state and
predicted trajectory, thus forming a comparison group.
After completing 10 consecutive rounds of scheduling
under unified experimental conditions, the above two
performance indicators are collected and summarized, and
the results are shown in Figure 3.

(a) . (b)

—— MPC
Traditional

e 241 g =S
—— —- <

I3 I3
Scheduling Round Scheduling Round

Figure 3: Dynamic scheduling performance
comparison
Figure 3 (a): System response delay change trend
Figure 3 (b): Task switching time change trend

The overall system response delay under the MPC
strategy remains stable at approximately 0.8 seconds, with
the maximum not exceeding 0.83 seconds. In contrast, the
traditional control strategy exhibits a response delay
exceeding 1.2 seconds in most cycles, with peak values
reaching 1.31 seconds. This improvement arises from the
MPC’s ability to dynamically adjust control instructions
based on real-time state feedback, thereby minimizing
system waiting time and reducing conflicts in resource
allocation to enhance response efficiency.

Regarding task switching, the MPC-controlled
system maintains switching durations between 2.32 and
2.43 seconds, exhibiting minimal fluctuation, whereas the
traditional method averages around 3.6 seconds,
indicating a clear disparity. The traditional approach lacks
a rolling planning mechanism when handling task
continuity, resulting in redundant waiting periods between
successive  control  instructions and  producing
discontinuities in switching processes.

In summary, the MPC-based strategy markedly
enhances response stability, resource reconfiguration
efficiency, and overall adaptability in dynamic task
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scheduling scenarios.

4.3  Virtual-real

verification

In the control link of the unified production
architecture, the accuracy and timeliness of the virtual
model directly affect the execution effect of the physical
system. In order to verify the effectiveness of the digital
twin system in generating control instructions and analyze
the dynamic response differences between it and the actual
physical execution, this experiment selected three key
control variables: speed, temperature, and flow rate, and
compared the predicted control values generated by the
MPC algorithm in the virtual system with the response
values sent back by the physical system sensors in time
series. By collecting bidirectional control signals under a
unified operating cycle and drawing synchronous curves,
the mapping consistency verification diagram between the
virtual and real systems shown in Figure 4 is constructed.

mapping  consistency

Figure 4: Virtual and real system command and
response comparison curve
Figure 4 (a): Virtual and real speed comparison
Figure 4 (b):. Virtual and real temperature
comparison
Figure 4 (c): Virtual and real flow comparison

Figure 4 shows that the virtual system closely tracks
the physical response with minor deviations. At time of 6 s,
a 1270RPM command corresponds to a 1252 RPM
physical response, with an 18 RPM lag due to motor
regulation delay and inertial load. Temperature control at
the same moment shows a 1.0 °C difference (72.1°C
virtual vs. 71.1°C physical) caused by uneven heat
capacity and delayed local heat exchange. At time of 8 s,
flow reaches 90 L/min virtually and 88 L/min physically,
with the 2 L/min difference attributed to servo valve
hysteresis and pressure rebound. These deviations result
from the internal dynamics and external coupling of the
physical system rather than model prediction errors,
demonstrating that the current digital twin modeling
method provides stable, real-time system-level reflection.

4.4 Process optimization
convergence performance
To validate the process stability of the proposed
digital twin—-MPC fusion method in actual control
scenarios, an experimental process system was
constructed  encompassing  multiple  representative
operating conditions, including task switching, resource
scheduling, and state regression. By comparing process
response data before and after the implementation of the
optimized control strategy, key performance indicators—
such as task delay, control error, state recovery time, and
system throughput under varying operating conditions—

stability and
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were collected and quantitatively evaluated. These metrics
were used to comprehensively assess the system’s
operational stability under dynamic disturbance
conditions from multiple dimensions.

During the experiment, a unified data acquisition
interface was employed to continuously record process
control logs throughout the entire operation cycle. A
structured data processing method was then applied to
extract numerical features related to stability performance.
The comparative results are illustrated in Figure 5,
demonstrating the stability improvements achieved
through the proposed optimization control framework.

Command Execution Consistency

~=
P

-
L
-

,I‘ —-—- Before Optimization
After Optimization

roughput Stability

Figure 5: Comparison of process control stability

Figure 5 illustrates that, after applying the optimized
control strategy, the process system’s response delay
stability increased to 0.94 (an improvement of 0.22),
reflecting the predictive scheduling capability of the MPC
framework. The instruction execution consistency
between the virtual model and the physical system
improved from 0.68 to 0.92, attributed to accurate multi-
source data fusion and synchronization. The state
regression index rose from 0.65 to 0.90, indicating that the
closed-loop control rapidly corrected process disturbances.
Meanwhile, control error stability improved from 0.70 to
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0.93, demonstrating reduced parameter drift under MPC
constraints. Throughput stability increased from 0.74 to
0.96, driven by coordinated scheduling that enhanced
inter-unit linkage and output uniformity. Collectively,
these improvements highlight the multi-dimensional
advantages of precise modeling, predictive control, and
collaborative feedback within the proposed optimization
strategy.

When compared with reinforcement-learning-based
optimization methods reported in [22], [25], and [28],
which exhibit average task switching times of 3.1-3.4
seconds and stability indices of 0.80-0.84, the proposed
approach achieves a switching time range of 2.32-2.43
seconds and a stability index of 0.94 under comparable
task intensities. The performance gains are primarily
attributed to the direct integration of the digital twin model
with the MPC framework, enabling predictive scheduling
and continuous correction of control commands. Overall,
the full-link MPC-digital twin strategy demonstrates
approximately 28% faster response and 12% higher
stability compared with state-of-the-art reinforcement-
learning-based approaches.

4.5

disturbance conditions

To validate the robustness of the proposed system
under complex disturbances, tests were conducted by
introducing three scenarios: variable load fluctuations,
sensor noise interference, and actuator failure recovery.
The load fluctuation amplitude was set at +15% of
nominal torque, Gaussian white noise with 0.02 variance
was added to the sensor signal, and a 3-second actuator
disconnection was simulated to represent temporary
equipment fault. The performance metrics included
average response delay, control output deviation, and
recovery time after disturbance. Table 5 presents the test
results.

Robustness verification under

Table 5: Robustness test results under different disturbance conditions

Disturbance Scenario

Average Response Delay (s)

Output Deviation (%) Recovery Time ()

Baseline (No Disturbance) 0.83 0.0 0.0
Load Fluctuation £15% 0.87 3.1 1.8
Sensor Noise 0.02 Var 0.89 2.4 1.3
Actuator Failure (3 s) 0.94 4.2 3.2
Under all disturbance scenarios, the system

maintained stable operation without oscillation or
divergence. The maximum delay increase did not exceed
0.11 seconds, and the system recovered normal response
within 3.2 seconds. These results demonstrate that the
proposed full-link control mechanism maintains effective
dynamic correction and control convergence under multi-
source interference and temporary component faults.

4.6 Comparative analysis with existing

methods

To demonstrate the improvement of the proposed
full-link production optimization over conventional
localized optimization strategies, comparative
experiments were conducted between the unified digital
twin—-MPC method and three representative approaches:
traditional rule-based scheduling, subsystem-level MPC
control, and hierarchical optimization. All experiments
were performed under the same hardware and control
configurations described in Section 3.1. Each method
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executed ten rounds of dynamic task switching, and the
key metrics included response delay, task switching time,
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stability index, and interlink coordination performance.
Table 6 shows the comparative results.

Table 6: Comparative performance between the proposed full-link optimization and existing methods

Control Method Average Response Task_SW|tch|ng Stability Interlink Coordination

Delay (s) Time (s) Index Index

Rule-based Scheduling 1.27 3.62 0.72 0.70

Local MPC Control 0.96 3.05 0.81 0.83

Hierarchical 0.89 2.84 0.86 0.87

Scheduling

Proposed Full-link

MPC-DT 0.83 2.38 0.94 0.95

The results indicate that the proposed method
achieves faster overall response and stronger cross-link
coordination than existing approaches. The stability index
improves by 16% on average compared with hierarchical
scheduling, and the response delay is reduced by 12%. The
improvement stems from the unified data modeling and
the closed-loop control mechanism that synchronizes
process-level prediction and physical execution.

To further validate the effectiveness of the proposed
unified digital twin—-MPC strategy, additional simulations

were performed against several advanced control
approaches commonly used in nonlinear and uncertain
systems, namely adaptive fuzzy control, neural adaptive
control, and nonlinear optimal control. All algorithms
were implemented under identical plant models and
boundary constraints, and the evaluation indicators
included steady-state error, convergence time, and
collaborative control index. Table 7 shows the results of
comparative simulations.

Table 7: Comparison with advanced control methods

Control Method Steady-state Error (%)

Convergence Time (s) Collaborative Control Index

Adaptive Fuzzy Control 3.2
Neural Adaptive Control 2.7
Nonlinear Optimal Control 2.4
Proposed MPC-Digital Twin 1.8

3.54 0.83
3.22 0.85
3.10 0.86
2.38 0.95

The results show that the proposed approach reduces
steady-state error by 25%-40% and shortens convergence
time by approximately 30% compared with the other
advanced control methods. The improvement arises from
the integration of multi-source perception data and the
closed-loop virtual-real feedback, which enhances global
coordination and real-time optimization across the
production chain.

5 Discussion

The experimental results indicate that integrating the
digital twin with MPC vyields superior dynamic
performance through multi-source data fusion and real-
time, closed-loop correction. Under the proposed strategy,
response delay remains ~0.8 s (max 0.83 s) versus >1.2 s
for the traditional baseline (max 1.31 s), and task
switching time concentrates tightly within 2.32-2.43 s
rather than ~3.6 s. Stability metrics also improve markedly
(e.g., response-delay stability to 0.94, execution
consistency to 0.92, state-regression index to 0.90, and
throughput stability to 0.96). These gains arise from
rolling-horizon prediction and synchronized virtual—
physical feedback that continuously refines control
commands, thereby shortening waiting times, reducing
resource-conflict arbitration, and preserving coherent
switching trajectories.

Relative to adaptive fuzzy and neural adaptive
controls, the proposed framework benefits from explicit
predictive modeling and online optimization rather than
post-hoc rule or parameter adaptation. Compared with
reinforcement-learning-based methods in comparable
settings, which report 3.1-3.4 s average switching and
0.80-0.84 stability, the proposed approach achieves 2.32—
2.43 s switching and 0.94 stability—about 28% faster with
~12% higher stability. Mechanistically, MPC’s constraint-
aware predictions, coupled with the twin’s high-fidelity
state representation and multi-modal synchronization,
enable proactive schedule updates and rapid correction of
incipient deviations, whereas policy-based methods can
suffer from distribution shift and delayed recovery outside
their training manifold.

Scalability is chiefly constrained by computational
burden as the number of coupled variables grows: dense
matrix factorizations and constrained QP solves within
tight cycles can challenge real-time guarantees beyond
~20 units. Mitigations include (i) hierarchical/distributed
MPC to localize solves, (ii) reduced-order or surrogate
models to compress dynamics for faster predictions, (iii)
move-blocking, warm-starts, and limited-iteration
interior-point updates to bound solve time, and (iv)
parallelization or hardware acceleration for the
optimization kernel. These measures preserve the closed-
loop benefits while extending the operating envelope to
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larger lines or multi-cell plants.

The framework assumes reliable communications
and sensor synchronization; under severe packet loss, drift,
or actuator faults, the platform’s recovery logic sustains
stability but may degrade optimality. Future work will
target robustness and adaptability on three fronts: (1)
robust/tube  MPC to explicitly hedge model and
measurement uncertainty, (2) adaptive neural predictors
(e.g., twin-consistent, online-updated surrogates) to
capture nonlinearities and aging effects without
sacrificing solve time, and (3) anomaly-aware scheduling
that co-optimizes control performance with data quality,
enabling graceful degradation and rapid re-
synchronization after faults.

Overall, the evidence supports the twin-coupled
MPC as a practical route to full-link dynamic optimization:
it improves response stability and resource
reconfiguration efficiency while maintaining process
consistency under disturbances. With the proposed
scalability and robustness enhancements, the architecture
offers a credible, extensible pathway for industrial
deployment  across  heterogeneous  manufacturing
scenarios.

6 Conclusion

This paper proposes a dynamic optimization method
for full-link production processes within a unified
architecture  leveraging digital twin technology.
Integrating perception modeling, rolling control, and
closed-loop scheduling, the method employs a model
predictive control (MPC) algorithm to generate multi-
process scheduling strategies and feedback execution,
achieving full-chain coordination of control logic and state
information through multi-source perception and virtual—
real mapping. Experimental results demonstrate
significant advantages over traditional strategies: task
switching times are maintained between 2.32-2.43 s,
system response delays remain below 0.83 s, process
stability improves from 0.72 to 0.94, and virtual—physical
instruction consistency increases from 0.68 to 0.92. The
proposed approach effectively addresses delayed
responses in high-frequency, multivariable scenarios.

Future work will focus on incorporating dynamic
parameter updates and disturbance-adaptive models to
enhance fault tolerance and generalizable scheduling
across large-scale, heterogeneous systems. Comparative
experiments further confirm the method’s superiority in
response speed, stability, and collaborative coordination
relative to localized or subsystem-level control strategies.
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