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Information silos and response delays are prevalent in existing production systems, severely constraining 

collaborative efficiency and the capability for dynamic optimization across different stages. To address 

these challenges, this study proposes a unified production architecture based on digital twin technology. 

The framework achieves digital mapping of the physical production process through a real-time state 

perception model driven by multi-source data, while employing a model predictive control (MPC) 

algorithm to enable dynamic scheduling and holistic process optimization. Within the virtual environment, 

the control strategy is continuously iterated and subsequently fed back to the physical system, thereby 

establishing a closed-loop mechanism for virtual–real synchronization. Experimental results demonstrate 

that the MPC-based optimization strategy maintains task switching times between 2.32 and 2.43 seconds, 

stabilizes system response delays within 0.83 seconds, and improves the process response stability score 

from 0.72 to 0.94. The proposed approach effectively bridges virtual–physical integration across 

production links, realizing real-time optimization and intelligent decision-making throughout the process, 

and offering a feasible pathway toward collaborative control in intelligent manufacturing systems. 

Povzetek: Študija predlaga enotno proizvodno arhitekturo z digitalnim dvojčkom in napovednim vodenjem 

(MPC), ki poveže virtualni in fizični proces v zaprto zanko za sprotno usklajevanje, hitrejše odzive ter 

stabilnejšo in učinkovitejšo optimizacijo proizvodnje. 

 

 

1  Introduction 

With the continuous advancement of intelligent 

manufacturing, achieving efficient coordination and real-

time optimization of production processes has become a 

central objective for modern manufacturing systems. As 

the core foundation for cross-level and cross-system data 

integration and process coordination, the structural 

integrity and dynamic adaptability of a unified production 

architecture directly determine the system’s response 

efficiency and the quality of resource allocation [1–2]. Yet 

most current manufacturing systems still exhibit 

pronounced architectural fragmentation: information and 

control flows across hierarchical levels are weakly 

coupled, leading to pervasive data silos and the absence of 

unified logical associations among production links [3–4]. 

Traditional scheduling methods—largely grounded in 

static rules or preset strategies—depend on predetermined 

models and offline parameter configurations; they lack the 

capacity to perceive and respond to environmental 

changes in real time and therefore struggle to support 

resource reconfiguration and task reassignment in 

complex settings [5–6]. Although some studies have 

introduced the industrial Internet of Things and edge 

computing to form information closed loops, their limited 

fidelity in perceiving physical processes constrains 

continuous process mapping and end-to-end linkage 

control [7–8]. Meanwhile, mainstream production 

optimization approaches built on centralized control or 

multi-objective linear programming encounter bottlenecks 

when facing high-dimensional, multivariable dynamics, 

including heavy real-time computational loads, weak 

model generalization, and lagging control feedback—

making high-frequency, full-link dynamic adjustment 

difficult to sustain [9–10]. Establishing a full-process 

closed-loop optimization mechanism under a unified 

architecture thus remains a critical challenge. The key is 

to develop a pathway that is both real-time and decision-

optimal, enabling efficient virtual–physical integration 

and dynamic control supported by a unified data model 

[11–12]. 

As manufacturing moves toward higher intelligence 

and tighter integration, digital twin technology has 

emerged as a core enabler. Onaji et al. examined the 

evolution of digital twin concepts in manufacturing, 

proposing a conceptual framework for integrated product-

process twins and, through three case studies, 

demonstrated their potential to enhance flexibility, 

integration, and collaboration [13]. To strengthen 

adaptability and cross-level collaboration in 

manufacturing processes, research has progressed from 

conceptual frameworks to more structured models [14–
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15]. Liu Shimin et al. proposed a new reference model for 

digital-twin-based manufacturing systems (DTMS), 

analyzing DTMS characteristics and operating 

mechanisms across hierarchy, dimension, and scale to 

offer methodological guidance and practical reference 

models [16]. As model systems mature, systematic 

syntheses of implementation pathways and mechanisms 

have become essential to technology transfer [17–18]. 

Lattanzi et al. reviewed digital twin concepts, technical 

solutions, and industrial cases in intelligent manufacturing, 

identifying key implementation elements and challenges 

and outlining future directions to inform deployment in 

practice [19]. Despite advances in modeling, frameworks, 

and applications, notable gaps remain in dynamic model 

evolution, full-process linkage mechanisms, and cross-

domain integration practices [20–21]. 

In parallel, the literature on unified production 

architectures and whole-link dynamic optimization has 

increasingly leveraged digital twins and reinforcement 

learning to boost responsiveness and overall efficiency in 

complex systems. Liu Qiang et al. proposed a 

“configuration–motion–control–optimization” 

methodology grounded in digital twins, formulating 

corresponding models for flow-type intelligent 

manufacturing and validating feasibility and efficiency in 

an insulating-glass case study [22]. With rising scenario 

complexity, requirements for real-time response and 

multi-agent collaboration continue to intensify [23–24]. 

Zhang et al. developed a digital-twin-driven intelligent 

workshop community model integrated with hierarchical 

reinforcement learning to optimize human–machine 

collaboration ratios, markedly improving adaptability to 

demand fluctuations and line reconfiguration [25]. Such 

approaches have expanded from micro-level human–

machine coordination to macro-level production 

organization and resource allocation, underscoring the 

breadth and flexibility of reinforcement learning in multi-

scale manufacturing decision-making [26–27]. Choi et al. 

employed reinforcement learning coupled with production 

simulation to optimize factory layouts and processes, 

reducing logistics costs and AGV requirements within a 

multilayer optimization framework [28]. Nonetheless, 

limitations persist—including insufficient algorithm 

generalization and weak coupling between data-driven 

optimization and physical systems—hindering full 

compliance with the stringent demands of end-to-end 

linkage and dynamic regulation in complex manufacturing 

scenarios [29–30]. 

To summarize current progress and gaps, a structured 

comparison of representative studies related to digital 

twin-based production optimization is provided in Table 1. 

Existing works often lack tight coupling between MPC 

and digital twin frameworks, and they struggle to maintain 

high-frequency control under multi-stage dynamic 

conditions. 

 

Table 1: Comparison of existing studies 

Reference Architecture Type Optimization Method 
Digital Twin 

Integration 

Reported Metric 

(Response / Stability) 
Limitation 

Liu et al. (2021) [22] Flow-type Manufacturing Rule-based + RL Partial Process Twin 3.4 s / 0.75 
No full-chain 

coordination 

Zhang et al. (2023) 

[25] 

Human–Machine 

Collaboration 
Hierarchical RL Virtual layer only 3.2 s / 0.81 

Lack of real-time 

feedback 

Choi et al. (2024) [28] 
Factory Layout 

Optimization 
RL-based Simulation-level 3.0 s / 0.84 No closed-loop control 

Proposed Method Unified Production System MPC + Digital Twin Full-link Integration 2.38 s / 0.94 
Computational 

overhead 

To overcome the aforementioned challenges, this 

paper proposes a dynamic optimization method for the 

entire production process within a unified architecture 

based on digital twin technology. The method establishes 

a one-to-one correspondence between physical entities 

and their virtual counterparts. Real-time production states 

are captured through sensor data acquisition and time-

series synchronization, while a multidimensional feature 

fusion model dynamically correlates key process 

parameters to construct a high-fidelity digital twin system. 

A closed-loop control framework, driven by a virtual 

controller and the Model Predictive Control (MPC) 

algorithm, generates dynamic scheduling strategies based 

on current system states and short-term predictions, 

transmitting control commands to the physical system in 

real time. Supported by a unified data platform, the 

proposed approach integrates data modeling, state 

perception, prediction, and control, enabling continuous 

responsiveness and adaptive adjustment under multi-

source disturbances.  

 

 

This framework achieves significant advances in unified 

modeling, control, and architecture, realizing dynamic 

optimal control of multivariable coupled systems and 

providing a scalable theoretical and methodological 

foundation for intelligent industrial deployment. 

This research is guided by three key questions. First, 

can an MPC controller integrated with a digital twin 

maintain system response delays below 0.85 seconds in 

multi-stage production scenarios? Second, does the 

unified production architecture enhance interlink 

coordination and system stability compared with localized 

optimization strategies? Third, can the proposed virtual–

real closed-loop mechanism achieves dynamic 

synchronization and process consistency under task 

variations and external disturbances? The study ultimately 

aims to enable real-time coordination and adaptive 

optimization across all production links under varying 

operating conditions, establishing a unified pathway 

toward intelligent manufacturing control. 
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2 Construction of dynamic 

optimization system driven by 

digital twins 

2.1 Model design principles for unified 

production architecture 
The unified production architecture is designed to 

eliminate information silos across production links by 

establishing a clear hierarchical logic, stable data 

communication, and a virtual–real collaborative 

framework, thereby enabling dynamic mapping and 

closed-loop control of the entire process. Built upon 

digital twin technology, the architecture consists of four 

functional layers: information perception, data 

transmission, model computation, and decision execution. 

The perception layer acquires real-time physical states 

through multi-dimensional sensor data; the transmission 

layer ensures low-latency and high-stability 

communication between physical and virtual systems; the 

computation layer performs digital twin modeling, state 

prediction, and optimization through multi-model fusion 

and adaptive parameter adjustment; and the execution 

layer applies optimized control strategies to physical 

entities with real-time feedback correction. 

All layers are coordinated under unified scheduling 

by the platform center, which guarantees time 

synchronization, data consistency, and iterative 

optimization of control strategies. It also handles anomaly 

detection and manages coordination among multi-

objective tasks. The overall architecture—together with its 

information, instruction, and feedback flows—is 

illustrated in Figure 1, highlighting the central role of the 

platform in data integration, control transmission, and 

state correction. 

The unified production architecture requires a robust 

data communication mechanism to integrate multiple 

protocols and heterogeneous interfaces, ensuring reliable 

bidirectional transmission of control signals and feedback. 

Unified parameters, timestamps, and version control 

maintain consistent status and task alignment across 

modules. The platform hub incorporates abnormal data 

detection, redundancy elimination, and parameter 

alignment to prevent logic interruption and misjudgments 

from short-term fluctuations. This mechanism enables 

dynamic response to multi-source information and 

efficient distribution of control instructions, supporting 

practical and stable operation. By integrating logical 

hierarchy, structural modules, and communication 

protocols, the architecture provides the foundation for 

real-time perception, predictive control, and closed-loop 

strategy, ensuring continuous synchronization and 

consistent virtual–real feedback for digital twin–based 

dynamic optimization. 

 

2.2 Digital twin modeling and state mapping 

method 

The construction of the digital twin model is founded 

on high-frequency acquisition of physical system states 

and deep fusion of multimodal data. To ensure model 

fidelity, precise correspondence between the virtual and 

physical entities must be achieved across the data, 

structural, and behavioral layers. The system continuously 

samples key operational parameters of the physical 

process through the deployment of multi-source 

perception nodes and reconstructs asynchronous data via 

a time-synchronization module, forming a high-

dimensional input vector set suitable for twin-driven 

computation. Different data sources adopt distinct 

configurations in sampling frequency, feature extraction 

strategy, and mapping objectives. The main perception 

sources and modeling parameter settings are summarized 

in Table 2. 

 

 

 

 

 
 

Figure 1: Unified production architecture model  
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Table 2: Multi-source data acquisition and feature fusion parameter table 

Data Source Type Perception Node Form Sampling Frequency Mapping Target 

Industrial Sensors 
Temperature, pressure, 

vibration sensors 
10–50 Hz 

Construct system physical 

state vector 

Image Capture Unit Industrial vision cameras 25–30 fps 
Assist in operating status 

recognition and modeling 

Control Instruction Stream 

PLC (Programmable 

Logic Controller) or 

embedded controller 

interface 

Real-time 
Behavioral sequence state 

modeling 

Equipment Logs 
Industrial control system 

logging module 
1 Hz 

Describe evolution trends and 

prediction input 

Table 2 shows the correspondence between the type 

of sensing node, data collection method, sampling period 

and its mapping target, reflecting the functional 

positioning and accuracy requirements of the system for 

different information channels during the modeling 

process. Industrial sensors are mainly used to construct the 

underlying physical state vector, the image acquisition 

unit focuses on supplementing the spatial information of 

the operating state, the control instruction stream 

participates in the behavior layer modeling in the form of 

encoding, and the equipment log provides time evolution 

feature support for the prediction model. The collaborative 

input of multi-source data ensures the comprehensive 

characterization of the physical entity state by the twin 

system, and provides a highly consistent modeling basis 

for subsequent virtual-real synchronous control. 

Assuming that the physical entity state is xp(t)∈ℝn 

and the perception data set is D(t)={d1(t),d2(t),…,dm(t)}, 

then the state mapping function f
m

(⋅)  converts it into a 

virtual state vector xv(t)∈ℝn, as shown in formula (1): 

xv(t)=f
m

(D(t))=W⋅ϕ(D(t))+b1 (1) 

W∈ℝn×m is the feature mapping weight matrix; ϕ(⋅) 
represents the nonlinear feature extraction function; 

b1∈ℝn is the bias term. The feature extraction function is 

constructed based on the stacked autoencoder, and its 

training goal is to minimize the reconstruction error to 

ensure that the mapping of high-dimensional perception 

data to low-dimensional state space has sufficient 

expressive power. Its loss function ℒSAE  is defined as 

formula (2): 

ℒSAE=
1

T
∑  T

t=1 ‖D(t)−ψ(ϕ(D(t)))‖
2
 (2) 

ψ(⋅) is the decoding function and T is the sampling 

time. After completing the state modeling, the system 

extracts the dynamic change characteristics of the state 

sequence through the sliding window mechanism to 

characterize the evolution law of the physical entity in the 

time domain. The sliding window length is l ; the step 

length is δ ; the state trajectory matrix 

Xv
(t)=[xv(t−l+1),…,xv(t)]∈ℝn×l  is formed; and the 

differential operator is introduced to obtain the state 

change rate, as shown in formula (3): 

Δxv(t)=xv(t)−xv(t−δ) (3) 

The update cycle of the state parameters is consistent 

with the control cycle of the physical system. The system 

uses the message queue middleware to complete the real-

time transmission of state synchronization, and uses the 

hash verification mechanism to ensure data consistency 

during the transmission process. In order to maintain the 

synchronization of the virtual and physical systems at the 

operation layer, the virtual model feedback control 

instructions need to be compared for state consistency. 

The control instructions with differences exceeding the 

threshold will be marked as mismatched. The system 

adjusts the prediction weight matrix W  and model 

parameters according to the error correction mechanism. 

The error correction rules are shown in formulas (4) and 

(5): 

W(k+1)=W(k)−η⋅∇Wℒerr (4) 

ℒerr=∥∥xp(t)−xv(t)∥∥
2
 (5) 

η  is the learning rate; ℒerr  is the state error loss 

function; and W(k)  is the weight parameter of the k -th 

iteration. The error correction mechanism is used to 

achieve adaptive adjustment of the virtual model, improve 

the accuracy and stability of the state mapping, and 

provide an accurate system state basis for subsequent 

optimization control. 

 

2.3 Design of process dynamic optimization 

algorithm based on MPC 
The dynamic scheduling and optimization of various 

processes in the unified production architecture rely on the 

integrated implementation of the model predictive control 

algorithm. MPC establishes a dynamic model of the 

controlled system and combines the system state 

prediction in the future to perform rolling optimization on 

the control quantity to achieve optimal control of the entire 

full-link process. The construction of the system 

optimization objective function is based on multi-

dimensional performance indicators such as production 

process resource allocation, time cost and response 

accuracy, and introduces prediction error and control 

quantity change rate as regular terms for adjustment. The 

objective function form is shown in formula (6): 

J=∑  
Np−1

k=0
∥ŷ(k|t)−y

ref
(k)∥Q

2 +∑  
Nc−1

k=0 ∥Δu(k|t)∥R
2  (6) 

ŷ(k|t) is the predicted value of the system output at 

the k-th step at the prediction time t; y
ref

(k) is the target 

reference value at the corresponding time; Δu(k|t) is the 

change in the control quantity at the k-th step; Np and Nc 

are the prediction step length and control step length, 

respectively; Q  and R  are the weight matrices used to 
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adjust the relative influence of the state error and the 

control behavior. The state prediction is modeled in the 

form of a discrete linear state space model. The system 

state update equation and output equation are expressed by 

formulas (7) and (8), respectively: 

x(t+1)=Ax(t)+Bu(t) (7) 

y(t)=Cx(t)+Du(t) (8) 

x(t) is the system state vector at time t; u(t) is the 

input control vector; y(t) is the output vector; A, B, C, and 

D are the system state transfer matrix, input control matrix, 

output mapping matrix, and direct transfer matrix, 

respectively, all of which are obtained by system 

identification of the physical system process data. In order 

to ensure that the system meets physical constraints and 

resource limitations in actual operation, hard constraints 

such as those shown in formulas (9) and (10) are 

introduced for boundary control: 

umin≤u(t)≤umax (9) 

y
min

≤y(t)≤y
max

 (10) 

In formula 9-10, umin  and umax  are the upper and 

lower limits of the control variables. y
min

 and y
max

 are the 

limit ranges of the output variables, and all constraints are 

derived from the process requirements of each process 

segment in the unified production architecture and the 

safety boundaries of equipment operation. On the basis of 

hard constraints, the system also introduces a soft 

constraint mitigation strategy, setting penalty function 

terms for some variables. When the control variable 

breaks through the boundary in the short term but the 

overall operation is still within the tolerance range, the 

objective function value is adjusted through the Lagrange 

multiplier mechanism to maintain a balance between 

optimization convergence and response flexibility. 

During system operation, abnormal disturbances and 

model deviations are inevitable. To enhance the stability 

and robustness of the MPC controller, a disturbance 

detection mechanism is embedded in the platform center 

to identify persistent prediction errors, adjust model 

weights through feedback, and perform adaptive 

correction. The real-time deviation between virtual and 

physical states guides iterative updates of the weight 

matrix and controller parameters, ensuring control 

convergence under dynamic disturbances. 

To mitigate the high computational complexity of 

MPC in multivariable scenarios, the optimization module 

employs a fast interior-point algorithm for constrained 

quadratic programming while restricting iteration counts 

within each control cycle. For scenarios with stringent 

real-time requirements, the system dynamically switches 

to approximate or reduced-order solutions to guarantee 

timely responses. Furthermore, a multi-step rolling 

prediction mechanism continuously updates system states 

and re-optimizes control sequences, forming a high-

frequency closed-loop interaction between the virtual and 

physical systems. 

This integrated optimization framework significantly 

enhances resource utilization, scheduling responsiveness, 

and operational stability throughout the entire production 

process. 

 

2.4 Integrated implementation of virtual-real 

closed-loop control mechanism 
The implementation of the virtual-real closed-loop 

control mechanism relies on multi-level system 

integration and standardized communication protocol 

support under a unified production architecture. The 

digital twin system and the physical production system 

realize two-way interaction of data and instructions 

through industrial protocols such as OPC UA (Open 

Platform Communications Unified Architecture) and 

MQTT (Message Queuing Telemetry Transport), forming 

an integrated control channel. The perception layer in the 

physical system collects various state parameters in real 

time, including equipment operation status, production 

process parameters and environmental variables, and 

transmits them to the data access module through the data 

bus, and uploads them to the digital twin platform after 

preprocessing. Based on a unified data model, the digital 

twin platform maps the collected state parameters to entity 

nodes in the virtual environment, generates state snapshots 

equivalent to the physical system, and dynamically 

updates them in the form of time series. 

In the virtual space, the decision module generates an 

instruction stream Ct={ct,1,ct,2,...,ct,m}  based on the 

current system state and the preset global scheduling 

strategy, where ct,i represents the control instruction sent 

to the i -th unit of the physical system at time t . The 

instruction stream is encapsulated as a standard message 

through the communication scheduling module of the 

interface layer, and is sent to the physical system after 

being sorted by priority and timestamp. After the physical 

system receives the control instruction, it parses it through 

the field controller and drives the actuator to complete the 

action, such as adjusting the drive shaft speed, opening 

and closing the fixture, and modifying the process 

parameters. Each execution unit immediately generates a 

feedback signal Ft={f
t,1

,f
t,2

,...,f
t,m

}  after the action is 

completed. The feedback signal contains the execution 

status identifier, the action completion timestamp and the 

error report. The feedback link is uploaded to the digital 

twin platform through the same communication protocol 

to update the system status. 

After receiving feedback, the virtual-real closed-loop 

scheduling engine compares the real-time state St with the 

predicted state Ŝt, and the error term Et=St−Ŝt is sent to 

the deviation compensation module of the scheduling 

engine. If ∥Et∥ exceeds the set threshold, the system will 

trigger the error adaptive adjustment logic to make 

subsequent predictions more consistent with actual 

feedback by correcting the control instruction weight 

matrix or adjusting the virtual model parameters. 

The system status update and instruction issuance 

process runs in a fixed cycle to form a closed-loop control 

flow of continuous iteration. The iterative optimization 

strategy in the virtual model takes real-time feedback as 

input, adjusts the prediction results through the historical 

data sliding window Wt={St−n,...,St}, generates the control 

instructions for the next cycle and sends them to the 

physical system. The overall operation logic of the virtual-
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real closed-loop system is managed by the scheduling 

main control module, realizing the full-link closed-loop 

control process from data perception, virtual mapping, 

decision generation, control issuance to feedback 

transmission, ensuring the real-time consistency and 

response accuracy of the virtual model and the physical 

system in various links such as state mapping, instruction 

execution, and feedback update, and providing support for 

the dynamic optimization and adaptive scheduling of the 

system. 

 

3 Experimental system and 

verification environment 

construction 

3.1 Experimental platform architecture and 

software and hardware configuration 
The construction of the experimental system relies on 

high-performance hardware support and multi-level 

software system collaboration. The overall architecture 

covers modules such as data acquisition, transmission, 

processing and control to ensure dynamic optimization 

and real-time response capabilities of the entire production 

process. The components of the system are connected 

through high-speed communication links to achieve 

efficient interaction between the physical system and the 

virtual twin platform. In order to further clarify the 

composition and functions of the experimental platform, 

the core hardware and software configurations are listed. 

 

Table 3: Hardware and software configuration of the experimental platform 

 

Module Category Specifications Hardware/Software Functional Description 

Sensor Unit 0.01 mm resolution Industrial sensor 
Real-time acquisition of physical 

state data 

Communication 

Module 
100 Mbps Industrial Ethernet 

High-speed data transmission and 

interaction 

Control Platform Multi-core processor MATLAB/Simulink 
Runs MPC algorithm and decision 

logic 

Data Processing 

Module 
32 GB memory Python environment 

Multi-source data fusion and 

feature extraction 

Digital Twin Engine 3D modeling engine Unity3D 
Digital mapping of the physical 

system 

Table 3 shows the functional division and 

configuration parameters of each module in the 

experimental platform, covering the sensor unit, 

communication module, control platform, data processing 

module and virtual twin engine. It clarifies the 

specifications, operating environment and core functions 

adopted by each module, providing basic support for 

subsequent experimental verification and results analysis. 

 

3.2 Construction process of digital twin 

system 
The digital twin system is built around multi-

dimensional state mapping and real-time interaction with 

the physical production system. A virtual model is first 

constructed, defining node structure, attribute variables, 

and state transfer logic to match the spatial, functional, and 

dynamic characteristics of the physical system. Multi-

source sensing nodes collect real-time data on equipment 

status, production flow, environmental variables, and 

energy consumption at 100 Hz, with timestamp-based 

synchronization. TSN protocol ensures low-latency, high-

reliability transmission, while edge preprocessing 

performs format conversion, anomaly detection, and noise 

filtering, standardizing data in JSON format for the data 

center. The twin system interfaces with the physical 

system via OPC UA, issuing control instructions and 

receiving status updates. State updates occur every second, 

with millisecond-level WebSocket communication. 

Object-oriented modeling integrates geometry, kinematics, 

and dynamics in Unity3D with a real-time physics engine. 

Kalman filtering smooths data and compensates 

anomalies, keeping virtual and physical states within 1% 

error. MPC-based predictive optimization generates 

control instructions sent via the industrial bus, completing 

closed-loop control. Docker-based deployment enables 

module decoupling, hot-swapping, model updates, and 

flexible maintenance. 

 

3.3 Definition and implementation of the full-

link path of the production process 
The full-link process ensures continuity and 

synchronization across modules in the unified production 

architecture. By defining process nodes in both physical 

and virtual environments, cross-level and cross-device 

control links maintain consistent data and control logic 

transmission. The process is divided into five stages—raw 

material delivery, primary processing, quality inspection, 

finished product assembly, and packaging—each with 

state acquisition, control execution, and feedback analysis 

modules. The main control unit monitors state variables 

and releases scheduling instructions, while the process 

state transfer matrix and control strategy library define 

logical relationships. Inputs and outputs are standardized 

for rapid parsing, and MPC-based scheduling allows real-

time adaptive adjustment to task changes or resource 

conflicts. Key-node control strategies are transmitted via 

the twin model interface to ensure virtual–real consistency, 

forming a stable, efficient, low-latency closed-loop 
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system that coordinates task switching, state transfer, and 

command execution throughout the entire production path. 

Table 4 shows the configuration of each link and the 

corresponding core control variables. 

 

Table 4: Configuration parameter table of the full-link production path control structure 

Link ID Production Stage State Acquisition Parameters 
Control Command 

Variables 

Feedback 

Mechanism Delay (s) 

P01 
Raw Material 

Feeding 
Sensor Weight, Silo Capacity 

Feeding Speed, Start-End 

Time 
0.61 

P02 
Primary 

Processing 

Spindle Speed, Processing 

Temperature 

Tool Feed Rate, Cooling 

Frequency 
0.74 

P03 
Quality 

Inspection 

Image Recognition Result, 

Dimensional Deviation 

Inspection Frequency, 

Movement Path 
0.69 

P04 Final Assembly 
Component Position, 

Assembly Torque 

Assembly Sequence, 

Fixture Pressure 
0.85 

P05 
Packaging and 

Dispatch 

Barcode Recognition, 

Inventory Status 

Packaging Mode, 

Dispatch Rhythm 
0.76 

Table 4 shows the state perception parameters, 

applied control variables and time delay of feedback 

mechanism required for each process node in actual 

operation based on five major production links. Each link 

is bound to a specific set of sensor data and execution 

instructions, and the logical mapping relationship between 

them is maintained and updated in real time by the system 

main control unit. The feedback delay reflects the time 

deviation between the physical system response and the 

twin model regulation in virtual-real collaboration. 

 

4  Results analysis 

4.1 State perception accuracy analysis 

In order to verify the perception accuracy of the 

digital twin system for key state parameters, the 

experimental design introduces five core physical 

variables, namely temperature, pressure, speed, liquid 

level, and flow rate, as analysis objects, selects three types 

of sensors for multi-source information collection, and 

generates a unified state expression model through the 

data fusion module. Sensor A is based on the principle of 

thermal resistance and piezoelectric sensitivity, with fast 

response speed but large signal fluctuations; sensor B 

adopts MEMS (Micro-Electro-Mechanical Systems) 

structure and performs stably in the medium and low 

frequency bands; sensor C is an industrial-grade precision 

equipment with high accuracy but is more sensitive to 

environmental interference. The fusion model realizes 

multi-source feature collaborative modeling through a 

weighted residual mechanism to improve the recognition 

accuracy and fluctuation suppression ability of state 

parameters. Through the two-part analysis of perception 

error comparison and state modeling error distribution, the 

performance of various data sources and fusion models 

under different state parameters is systematically revealed, 

as shown in Figure 2. 

 
Figure 2 State perception accuracy diagram 

Figure 2 (a) Comparison of multi-source data 

perception errors 

Figure 2 (b) State parameter error distribution 

statistics 

 

From Figure 2 (a), we can see that the recognition 

error of the fusion model on all state parameters is 

significantly lower than that of a single sensor. The 

temperature perception error is reduced from 3.2% of 

sensor A to 1.4%, which is mainly due to the enhanced 

compression ability of random noise after data fusion. The 

error control effect of flow is relatively weak, and it 

remains at 2.0% after fusion. The reason is that the flow 

sensor has a delayed response under boundary conditions, 

which affects the data alignment accuracy. Figure 2 (b) 

shows that the maximum errors of pressure and flow are 

2.5% and 2.7%, respectively. The main reason is that such 

variables are more sensitive to transient disturbances, and 

some original data have large fluctuations, which is not 

conducive to stable modeling. The median errors of 

temperature and speed are controlled within 1.5%, 

showing the robustness of fusion modeling for periodic 

variable recognition. The overall results show that multi-

source information fusion significantly improves 

parameter accuracy in the state perception stage and 

effectively suppresses error fluctuations in single-source 

measurement. 
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4.2 Analysis of dynamic scheduling response 

capability 
In order to verify the performance of the proposed 

MPC optimization strategy in dynamic task scheduling 

and system response, the experiment designed multiple 

rounds of scheduling control tests, running the MPC 

strategy and the traditional scheduling strategy 

respectively through a unified platform, and recording the 

two key indicators of system response delay and task 

switching time in real time. In each round of task 

switching, the scheduling control system needs to 

reallocate production resources and drive the physical 

execution unit to complete the switching operation, 

thereby forming a complete data closed loop. Traditional 

methods rely on static rules and predefined paths, lacking 

the ability to dynamically perceive and roll forward the 

system state, while the MPC strategy dynamically 

generates a control sequence based on the current state and 

predicted trajectory, thus forming a comparison group. 

After completing 10 consecutive rounds of scheduling 

under unified experimental conditions, the above two 

performance indicators are collected and summarized, and 

the results are shown in Figure 3. 

 

 
Figure 3: Dynamic scheduling performance 

comparison 

Figure 3 (a): System response delay change trend 

Figure 3 (b): Task switching time change trend 

 

The overall system response delay under the MPC 

strategy remains stable at approximately 0.8 seconds, with 

the maximum not exceeding 0.83 seconds. In contrast, the 

traditional control strategy exhibits a response delay 

exceeding 1.2 seconds in most cycles, with peak values 

reaching 1.31 seconds. This improvement arises from the 

MPC’s ability to dynamically adjust control instructions 

based on real-time state feedback, thereby minimizing 

system waiting time and reducing conflicts in resource 

allocation to enhance response efficiency. 

Regarding task switching, the MPC-controlled 

system maintains switching durations between 2.32 and 

2.43 seconds, exhibiting minimal fluctuation, whereas the 

traditional method averages around 3.6 seconds, 

indicating a clear disparity. The traditional approach lacks 

a rolling planning mechanism when handling task 

continuity, resulting in redundant waiting periods between 

successive control instructions and producing 

discontinuities in switching processes. 

In summary, the MPC-based strategy markedly 

enhances response stability, resource reconfiguration 

efficiency, and overall adaptability in dynamic task 

scheduling scenarios. 

 

4.3 Virtual-real mapping consistency 

verification 
In the control link of the unified production 

architecture, the accuracy and timeliness of the virtual 

model directly affect the execution effect of the physical 

system. In order to verify the effectiveness of the digital 

twin system in generating control instructions and analyze 

the dynamic response differences between it and the actual 

physical execution, this experiment selected three key 

control variables: speed, temperature, and flow rate, and 

compared the predicted control values generated by the 

MPC algorithm in the virtual system with the response 

values sent back by the physical system sensors in time 

series. By collecting bidirectional control signals under a 

unified operating cycle and drawing synchronous curves, 

the mapping consistency verification diagram between the 

virtual and real systems shown in Figure 4 is constructed. 

 
Figure 4: Virtual and real system command and 

response comparison curve 

Figure 4 (a): Virtual and real speed comparison 

Figure 4 (b):. Virtual and real temperature 

comparison 

Figure 4 (c): Virtual and real flow comparison 

 

Figure 4 shows that the virtual system closely tracks 

the physical response with minor deviations. At time of 6 s, 

a 1270 RPM command corresponds to a 1252 RPM 

physical response, with an 18 RPM lag due to motor 

regulation delay and inertial load. Temperature control at 

the same moment shows a 1.0 ℃ difference (72.1 ℃ 

virtual vs. 71.1 ℃ physical) caused by uneven heat 

capacity and delayed local heat exchange. At time of 8 s, 

flow reaches 90 L/min virtually and 88 L/min physically, 

with the 2 L/min difference attributed to servo valve 

hysteresis and pressure rebound. These deviations result 

from the internal dynamics and external coupling of the 

physical system rather than model prediction errors, 

demonstrating that the current digital twin modeling 

method provides stable, real-time system-level reflection. 

 

4.4 Process optimization stability and 
convergence performance 

To validate the process stability of the proposed 

digital twin–MPC fusion method in actual control 

scenarios, an experimental process system was 

constructed encompassing multiple representative 

operating conditions, including task switching, resource 

scheduling, and state regression. By comparing process 

response data before and after the implementation of the 

optimized control strategy, key performance indicators—

such as task delay, control error, state recovery time, and 

system throughput under varying operating conditions—
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were collected and quantitatively evaluated. These metrics 

were used to comprehensively assess the system’s 

operational stability under dynamic disturbance 

conditions from multiple dimensions. 

During the experiment, a unified data acquisition 

interface was employed to continuously record process 

control logs throughout the entire operation cycle. A 

structured data processing method was then applied to 

extract numerical features related to stability performance. 

The comparative results are illustrated in Figure 5, 

demonstrating the stability improvements achieved 

through the proposed optimization control framework. 

 
Figure 5: Comparison of process control stability 

 

Figure 5 illustrates that, after applying the optimized 

control strategy, the process system’s response delay 

stability increased to 0.94 (an improvement of 0.22), 

reflecting the predictive scheduling capability of the MPC 

framework. The instruction execution consistency 

between the virtual model and the physical system 

improved from 0.68 to 0.92, attributed to accurate multi-

source data fusion and synchronization. The state 

regression index rose from 0.65 to 0.90, indicating that the 

closed-loop control rapidly corrected process disturbances. 

Meanwhile, control error stability improved from 0.70 to 

0.93, demonstrating reduced parameter drift under MPC 

constraints. Throughput stability increased from 0.74 to 

0.96, driven by coordinated scheduling that enhanced 

inter-unit linkage and output uniformity. Collectively, 

these improvements highlight the multi-dimensional 

advantages of precise modeling, predictive control, and 

collaborative feedback within the proposed optimization 

strategy. 

When compared with reinforcement-learning-based 

optimization methods reported in [22], [25], and [28], 

which exhibit average task switching times of 3.1–3.4 

seconds and stability indices of 0.80–0.84, the proposed 

approach achieves a switching time range of 2.32–2.43 

seconds and a stability index of 0.94 under comparable 

task intensities. The performance gains are primarily 

attributed to the direct integration of the digital twin model 

with the MPC framework, enabling predictive scheduling 

and continuous correction of control commands. Overall, 

the full-link MPC–digital twin strategy demonstrates 

approximately 28% faster response and 12% higher 

stability compared with state-of-the-art reinforcement-

learning-based approaches. 

 

4.5 Robustness verification under 

disturbance conditions 
To validate the robustness of the proposed system 

under complex disturbances, tests were conducted by 

introducing three scenarios: variable load fluctuations, 

sensor noise interference, and actuator failure recovery. 

The load fluctuation amplitude was set at ±15% of 

nominal torque, Gaussian white noise with 0.02 variance 

was added to the sensor signal, and a 3-second actuator 

disconnection was simulated to represent temporary 

equipment fault. The performance metrics included 

average response delay, control output deviation, and 

recovery time after disturbance. Table 5 presents the test 

results. 

 

Table 5: Robustness test results under different disturbance conditions 

Disturbance Scenario Average Response Delay (s) Output Deviation (%) Recovery Time (s) 

Baseline (No Disturbance) 0.83 0.0 0.0 

Load Fluctuation ±15% 0.87 3.1 1.8 

Sensor Noise 0.02 Var 0.89 2.4 1.3 

Actuator Failure (3 s) 0.94 4.2 3.2 

Under all disturbance scenarios, the system 

maintained stable operation without oscillation or 

divergence. The maximum delay increase did not exceed 

0.11 seconds, and the system recovered normal response 

within 3.2 seconds. These results demonstrate that the 

proposed full-link control mechanism maintains effective 

dynamic correction and control convergence under multi-

source interference and temporary component faults. 

 

 

 

 

4.6 Comparative analysis with existing 

methods 
To demonstrate the improvement of the proposed 

full-link production optimization over conventional 

localized optimization strategies, comparative 

experiments were conducted between the unified digital 

twin–MPC method and three representative approaches: 

traditional rule-based scheduling, subsystem-level MPC 

control, and hierarchical optimization. All experiments 

were performed under the same hardware and control 

configurations described in Section 3.1. Each method 
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executed ten rounds of dynamic task switching, and the 

key metrics included response delay, task switching time, 

stability index, and interlink coordination performance. 

Table 6 shows the comparative results. 

 

Table 6: Comparative performance between the proposed full-link optimization and existing methods 

 

Control Method 
Average Response 

Delay (s) 

Task Switching 

Time (s) 

Stability 

Index 

Interlink Coordination 

Index 

Rule-based Scheduling 1.27 3.62 0.72 0.70 

Local MPC Control 0.96 3.05 0.81 0.83 

Hierarchical 

Scheduling 
0.89 2.84 0.86 0.87 

Proposed Full-link 

MPC-DT 
0.83 2.38 0.94 0.95 

The results indicate that the proposed method 

achieves faster overall response and stronger cross-link 

coordination than existing approaches. The stability index 

improves by 16% on average compared with hierarchical 

scheduling, and the response delay is reduced by 12%. The 

improvement stems from the unified data modeling and 

the closed-loop control mechanism that synchronizes 

process-level prediction and physical execution. 

To further validate the effectiveness of the proposed 

unified digital twin–MPC strategy, additional simulations 

were performed against several advanced control 

approaches commonly used in nonlinear and uncertain 

systems, namely adaptive fuzzy control, neural adaptive 

control, and nonlinear optimal control. All algorithms 

were implemented under identical plant models and 

boundary constraints, and the evaluation indicators 

included steady-state error, convergence time, and 

collaborative control index. Table 7 shows the results of 

comparative simulations. 

 

Table 7: Comparison with advanced control methods 

 

Control Method Steady-state Error (%) Convergence Time (s) Collaborative Control Index 

Adaptive Fuzzy Control 3.2 3.54 0.83 

Neural Adaptive Control 2.7 3.22 0.85 

Nonlinear Optimal Control 2.4 3.10 0.86 

Proposed MPC-Digital Twin 1.8 2.38 0.95 

The results show that the proposed approach reduces 

steady-state error by 25%–40% and shortens convergence 

time by approximately 30% compared with the other 

advanced control methods. The improvement arises from 

the integration of multi-source perception data and the 

closed-loop virtual-real feedback, which enhances global 

coordination and real-time optimization across the 

production chain. 

 

5  Discussion 

The experimental results indicate that integrating the 

digital twin with MPC yields superior dynamic 

performance through multi-source data fusion and real-

time, closed-loop correction. Under the proposed strategy, 

response delay remains ~0.8 s (max 0.83 s) versus >1.2 s 

for the traditional baseline (max 1.31 s), and task 

switching time concentrates tightly within 2.32–2.43 s 

rather than ~3.6 s. Stability metrics also improve markedly 

(e.g., response-delay stability to 0.94, execution 

consistency to 0.92, state-regression index to 0.90, and 

throughput stability to 0.96). These gains arise from 

rolling-horizon prediction and synchronized virtual–

physical feedback that continuously refines control 

commands, thereby shortening waiting times, reducing 

resource-conflict arbitration, and preserving coherent 

switching trajectories. 

Relative to adaptive fuzzy and neural adaptive 

controls, the proposed framework benefits from explicit 

predictive modeling and online optimization rather than 

post-hoc rule or parameter adaptation. Compared with 

reinforcement-learning-based methods in comparable 

settings, which report 3.1–3.4 s average switching and 

0.80–0.84 stability, the proposed approach achieves 2.32–

2.43 s switching and 0.94 stability—about 28% faster with 

~12% higher stability. Mechanistically, MPC’s constraint-

aware predictions, coupled with the twin’s high-fidelity 

state representation and multi-modal synchronization, 

enable proactive schedule updates and rapid correction of 

incipient deviations, whereas policy-based methods can 

suffer from distribution shift and delayed recovery outside 

their training manifold. 

Scalability is chiefly constrained by computational 

burden as the number of coupled variables grows: dense 

matrix factorizations and constrained QP solves within 

tight cycles can challenge real-time guarantees beyond 

~20 units. Mitigations include (i) hierarchical/distributed 

MPC to localize solves, (ii) reduced-order or surrogate 

models to compress dynamics for faster predictions, (iii) 

move-blocking, warm-starts, and limited-iteration 

interior-point updates to bound solve time, and (iv) 

parallelization or hardware acceleration for the 

optimization kernel. These measures preserve the closed-

loop benefits while extending the operating envelope to 
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larger lines or multi-cell plants. 

The framework assumes reliable communications 

and sensor synchronization; under severe packet loss, drift, 

or actuator faults, the platform’s recovery logic sustains 

stability but may degrade optimality. Future work will 

target robustness and adaptability on three fronts: (1) 

robust/tube MPC to explicitly hedge model and 

measurement uncertainty, (2) adaptive neural predictors 

(e.g., twin-consistent, online-updated surrogates) to 

capture nonlinearities and aging effects without 

sacrificing solve time, and (3) anomaly-aware scheduling 

that co-optimizes control performance with data quality, 

enabling graceful degradation and rapid re-

synchronization after faults. 

Overall, the evidence supports the twin-coupled 

MPC as a practical route to full-link dynamic optimization: 

it improves response stability and resource 

reconfiguration efficiency while maintaining process 

consistency under disturbances. With the proposed 

scalability and robustness enhancements, the architecture 

offers a credible, extensible pathway for industrial 

deployment across heterogeneous manufacturing 

scenarios. 

 

6  Conclusion 

This paper proposes a dynamic optimization method 

for full-link production processes within a unified 

architecture leveraging digital twin technology. 

Integrating perception modeling, rolling control, and 

closed-loop scheduling, the method employs a model 

predictive control (MPC) algorithm to generate multi-

process scheduling strategies and feedback execution, 

achieving full-chain coordination of control logic and state 

information through multi-source perception and virtual–

real mapping. Experimental results demonstrate 

significant advantages over traditional strategies: task 

switching times are maintained between 2.32–2.43 s, 

system response delays remain below 0.83 s, process 

stability improves from 0.72 to 0.94, and virtual–physical 

instruction consistency increases from 0.68 to 0.92. The 

proposed approach effectively addresses delayed 

responses in high-frequency, multivariable scenarios. 

Future work will focus on incorporating dynamic 

parameter updates and disturbance-adaptive models to 

enhance fault tolerance and generalizable scheduling 

across large-scale, heterogeneous systems. Comparative 

experiments further confirm the method’s superiority in 

response speed, stability, and collaborative coordination 

relative to localized or subsystem-level control strategies. 
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