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To address issues such as low safety factors and difficulty in predicting the force variation of support 

systems in subway station foundation pit construction, this study develops a subway foundation pit support 

risk management system based on a risk data monitoring method combining Building Information 

Modeling technology and gated recurrent neural networks. In constructing the risk management system, 

a fuzzy analytic hierarchy process model is also used to assess and analyze the foundation pit risks. 

Experimental results show that the average absolute error of displacement prediction is 0.089 millimeters, 

the root mean square error is 0.112 millimeters, and the coefficient of determination is 0.947. The surface 

settlement error is within ±1.0 millimeters, and the early warning delay does not exceed 1.8 seconds. 

Compared with RCGAN, GRA and cooperative game weighting methods, the discrimination error rate 

decreased between 37% and 140%, which was statistically significant (p<0.05). This hybrid system 

significantly enhances the accuracy and real-time performance of safety control in metro foundation pit 

construction, which is of great significance for the future safety control of foundation pit excavation and 

support and the improvement of dynamic risk management level. 

Povzetek: Hibridni sistem za upravljanje tveganj v metrojskih gradbenih jamah (BIM + GRNN + mehki 

AHP) omogoča zelo natančne napovedi pomikov in posedkov ter hitro zgodnje opozarjanje, s čimer 

bistveno izboljša varnostno kontrolo v realnem času. 

 

1 Introduction 

With the continuous development of metro rail transit, 

people's travel is more efficient and convenient, but it 

also brings some safety risks [1]. In the construction of 

rail transit, there are many causes of foundation pit 

collapse accidents, such as deep excavation, urgent 

construction schedules, and complex surrounding 

buildings [2]. Among them, the deep foundation pit 

support design and risk management is the focus of 

engineering research. The survey classification of rock 

and soil types such as artificial fill layer and quaternary 

alluvium should be considered in the design of deep 

foundation pit protection structure [3]. All kinds of deep 

foundation pit support forms, including underground 

continuous walls, soil nailing walls, and other support 

forms, need to pay attention to the management of 

enclosure structure deformation and collapse risk [4-5]. 

At present, VA risk system and fuzzy mathematics theory  

 

 

are mostly used in the risk management of foundation pit 

support [6]. Although these measures have positive 

effects, they are insufficient in risk monitoring and 

identification. Aiming at problems such as the lack of 

targeted risk management and control and inaccurate 

identification of collapse risk, this study constructed a 

risk management system for subway foundation pit 

support based on BIM and Gated Recurrent Unit (GRU), 

and simultaneously used FAHP for comprehensive risk 

evaluation, in order to reduce the risk frequency and 

improve the effect of collapse risk control. The 

innovation of this study is to combine BIM model with 

the GRU neural network to realize multi-source data 

fusion and dynamic monitoring, and effectively improve 

the risk prediction accuracy of subway foundation pit 

support. At the same time, the proposed model integrates 

the functions of real-time monitoring, risk assessment 

and dynamic early warning, which enhances the safety 

and efficiency of subway foundation pit support 

construction. The contribution of the research is to 

effectively combine the advantages of BIM technology 
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and GRU neural network to realize the comprehensive 

and real-time dynamic monitoring of the subway 

foundation pit support construction process, break 

through the limitations of traditional monitoring methods, 

and provide more comprehensive and accurate risk 

information for construction personnel. The FAHP model 

is introduced to evaluate the risk of foundation pit support, 

which effectively solves the problems of excessive 

subjectivity and unreasonable weight distribution of 

evaluation indexes in the process of risk assessment, 

makes the risk assessment results more scientific, and 

provides strong support for construction decision-making. 

2 Related works 

In order to ensure the safety of foundation pit support 

structures and surrounding environments after excavation, 

as well as to provide better security on construction sites, 

research on risk data monitoring is essential [7]. In order 

to coordinate and optimize the mine stratigraphic 

structure and pre-detection analyses, Ma X and Dou Y 

proposed a water accumulation area detection model for 

goaf areas based on swarm intelligent perception 

computing. The model analyzes multi-source data in real-

time through swarm intelligent perception computing. 

The results show that the model has a fast response speed 

and high sensitivity [8]. Aghamohammadi A et al. 

proposed a visual ergonomic assessment technology 

using multi-frame and multi-path convolutional neural 

networks to enhance human health risk identification. 

This technology uses four continuous frames to 

overcome joint missing issues and categorizes the inputs 

into risk categories [9]. Liu B's team designed a three-

dimensional intelligent control platform for shield tunnel 

construction near major risk sources in order to establish 

an analysis model for calculating the immediate 

settlement of existing buildings. The model combines 

BIM, geographic information system (GIS), urban 

information model (CIM), geoscience model (GEO 

model), and the Internet of Things (IoT), and calculates 

the long-term settlement considering the influence of soil 

consolidation. The results show that this method 

effectively solves the problems of construction 

information management, early warning, and 

construction risk control in the construction process [10]. 

Brintrup A's team, to mitigate supply chain risks, 

redefined digital supply chain monitoring technology, 

helping companies detect supply chain risks and 

unethical practices in unsustainable environments. 

Experimental results show that supply chain digitization 

can supplement visibility solutions from the bottom up 

[11]. Xu X et al. proposed an in-situ measurement method 

to comprehensively understand the environmental impact 

of deep foundation pit engineering for target soil layer 

permeability. This method also employs precipitation 

head and constant head recharge tests to determine actual 

permeability, providing monitoring of the site. 

Experimental results show that this method can 

effectively monitor foundation pit risks and strengthen 

construction environment protection measures [12]. 

In conclusion, experts both domestically and 

internationally have conducted detailed research on 

subway construction, with achievements in foundation 

pit risk management. However, there is still limited 

research on subway foundation pit support risk 

management and risk data monitoring. Therefore, this 

study constructs a BIM-GRU-based subway foundation 

pit support risk management system for real-time 

monitoring and management of factors such as pit depth, 

surface settlement, and axial force. The system also 

utilizes the advantages of FAHP for constructing decision 

matrices and effectively assessing risks, further 

improving the level of risk management in underground 

transportation construction. 

3 Subway foundation pit support 

risk management based on BIM-GRU 

3.1 Optimization of BIM-GRU risk data 

monitoring method 
During urban underground construction, deep foundation 

pits are often excavated, and inaccurate excavation can 

lead to surface deformation and frequent collapse 

accidents [13]. Therefore, to ensure the safety of 

foundation pit support structures and surrounding 

pipelines, a dynamic risk assessment method based on 

BIM technology is proposed to guarantee the safe 

implementation of urban rail transit operations. BIM 

technology, as a digital technology, can create three-

dimensional models with attributes such as building 

geometry, spatial relationships, and geographic 

information, integrating data throughout its entire life-

cycle. The dynamic risk assessment method based on 

BIM technology is shown in Figure 1. 

As shown in Figure 1, the dynamic evaluation of 

construction safety risks mainly consists of risk 

probability analysis, sensitivity analysis, and most likely 

cause chain analysis performed by the construction safety 

risk dynamic evaluation Bayesian network. The 

construction safety information database is used for 

collecting accident, project, and risk information, while 

urban rail transit projects use BIM technology for 

information reporting, risk quantification, and analysis. 

This improves the overall effectiveness of risk evaluation 

work and provides more valuable reference data for 

construction safety risk management. The data received 

by the BIM technology platform is processed using the 

Bayesian learning method for risk identification, and the 

calculation equation is shown in Equation (1). 

 ( )
( ) ( )

( )

P X R P R
P R X

P X


=  (1) 
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Figure 1: Method framework of dynamic risk assessment based on BIM technology 

 

In Equation (1), ( )P R X   represents the data 

feature probability under the known risk state. X  

represents the real-time data feature vector, ( )P R  

denotes the prior conditions under the risk state, and 

( )P X  represents the marginal probability of the feature. 

Since there are also various constraints during the 

construction process, such as material costs and 

architectural design, the study proposes, based on the 

BIM risk dynamic evaluation method, a cost control 

framework based on BIM technology to ensure 

reasonable construction practices. The cost control 

framework based on BIM technology is mainly divided 

into two parts: the construction project cost control phase 

and the project optimization phase. In the cost control 

phase, the project database is used for drawing 

optimization, collision detection, and virtual design. Then, 

BIM technology is applied for dynamic site and resource 

management, construction process, and real-time 

tracking simulation. Finally, project optimization is 

carried out through measures such as schedule plan 

optimization, monitoring, and adjustments. The specific 

expression for calculating the cost-benefit of subway-

related engineering projects using BIM technology is 

shown in Equation (2). 
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 (2) 

In Equation (2),    represents the mean value of 

the project cost vector in subway construction projects, 

   indicates the first-order derivative of the feature 

vector in subway-related engineering,    is the cost 

feature vector in construction engineering, and   and 

  represent the material market cost and the first-order 

derivative value in subway construction.  ,  , and   

represent the observed change values. The 

comprehensive model for construction project cost 

control is shown in Equation (3). 

 1 1/k k k k kU T I I + +=     (3) 

In Equation (3), k   represents the construction 

project cost control phase, k   and k   denote the 

intensity-stress ratio matrix and the observed noise 

present in the control phase, while kI   and 1kI +  

represent the benefit diffusion index of adjacent 

construction projects. Although the cost control and risk 

assessment method improved based on BIM technology 

provides effective management of the construction 

process, issues such as missing monitoring data may arise 

as the number of measurement points increases and 

monitoring frequency intensifies [14]. Therefore, based 

on the BIM technology-improved cost control and risk 

assessment methods, a BIM-GRU risk data monitoring 

method is proposed to analyze and provide early 

warnings for deformation and other states of construction 

materials. Among them, GRU can handle missing data 

such as concrete deformation monitoring, and its 

improved update gate operation equation is shown in 

Equation (4). 

    ( )1t z z tt t
z W x U h −= +  (4) 

In Equation (4), tx   represents the deformation 

monitoring data sample, zW   and zU   are the weight 

matrices, and 1th −  denotes the hidden layer. The output 
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equation of the reset gate is shown in Equation (5). 

    ( )1t r r tt t
r W x U h −= +  (5) 

In Equation (5), tr  represents the reset gate output, 

and tx   denotes the deformation data. The information 

to be retained is determined through the hidden layer, and 

the final output is shown in Equation (6). 

 ( )1 1t t t t th z h z h−
=  + −   (6) 

In Equation (6), th  represents the hidden unit, and 

1 tz−  determines the information to be forgotten. In the 

integration of GRU and BIM, the BIM platform provides 

multi-dimensional monitoring data streams in real-time. 

Each data stream is a feature vector, which includes 

parameters such as position, settlement, axial force, stress, 

temperature, and equipment status collected at specific 

time points. First, standardize the raw data, handle 

missing values, and remove outliers. The preprocessed 

time series data is input into the trained GRU network. 

The GRU outputs predicted values and potential risk 

characteristics by learning the time series dependencies 

of historical data. Transmit the predicted values and 

potential risk characteristics back to the BIM platform in 

real-time. The predicted displacement, settlement values, 

etc. are mapped to the corresponding components or 

monitoring points of the BIM model to achieve dynamic 

association between the physical model and the predicted 

data. And through the BIM platform, the predicted values 

are compared with the preset early warning thresholds 

and control thresholds. If the predicted values exceed the 

early warning thresholds, the system automatically 

highlights the corresponding positions in the BIM model 

and sends alarm information to the management 

personnel through the cloud platform, indicating the 

potential risk locations and the predicted risk index 

values. In summary, GRU can predict and store data. The 

specific process of the BIM-GRU risk data monitoring 

method is shown in Figure 2. 
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Figure 2: Diagram of BIM-GRU risk data monitoring methodology 
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Figure 3: Schematic diagram of subway pit support collapse risk indicators 
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3.2 Design of subway foundation pit support 

risk management system based on 

BIM technology and FAHP 
While the BIM-GRU risk data monitoring method can 

promptly detect component conflicts and construction 

path obstacles during the construction process, it still has 

certain shortcomings in subway foundation pit support 

risk management. Therefore, based on the BIM-GRU risk 

data monitoring method, this research proposes a subway 

foundation pit support risk management system based on 

FAHP to achieve full control over the risk of foundation 

pit support collapse. FAHP can accurately reflect the 

fuzzy decision-making judgments among the risks of 

support collapse, ensuring that the evaluation results are 

scientific and reasonable [15]. The subway foundation pit 

support collapse risk indicators are shown in Figure 3. 

As shown in Figure 4, the foundation pit support 

collapse indicators are mainly divided into enclosure 

structure, surrounding soil, and bottom pit soil. The 

enclosure structure includes factors such as construction 

quality, delayed support, and geological conditions. The 

surrounding soil includes factors such as settlement of 

nearby buildings and underground pipelines. The 

settlement factors of the bottom pit soil mainly include 

underground quicksand and seepage. When using FAHP 

for decision-making, the first step is to establish a 

hierarchical structure model, including the objective layer, 

criterion layer, and indicator layer. The target layer is the 

risk of collapse of subway foundation pit support, while 

the criterion layer includes the risk of enclosure structure, 

surrounding soil, and bottom soil. The risk of enclosure 

structure includes horizontal displacement of support 

structure, vertical settlement of support structure, 

abnormal axial force of support structure, and 

development of cracks in support structure. The risk of 

surrounding soil includes settlement of adjacent buildings, 

deformation of underground pipelines, and surface 

settlement rate. The risk of soil at the bottom of the pit 

includes the amount of uplift at the bottom of the pit, 

changes in groundwater level, and risk of soil seepage 

and damage. Then, triangular fuzzy numbers (a, b, c) are 

used to pairwise compare the importance of each factor 

within the same level relative to a factor in the previous 

level, where a is the most pessimistic value, b is the most 

likely value, and c is the most optimistic value. The scale 

range is from (1, 1, 1) to (7, 8, 9), and the reciprocal is 

used to represent the opposite importance level. By 

integrating the fuzzy judgments of multiple experts, the 

geometric average of the fuzzy judgment values of n 

experts is taken to construct a comprehensive fuzzy 

judgment matrix; Then, the extended analysis method is 

used to calculate the fuzzy weights of each factor. The 

fuzzy product of each row element in the matrix is 

calculated, the nth root is taken, and the fuzzy sum of the 

preliminary fuzzy weights of all factors is obtained to 

obtain the fuzzy weights of each factor. The centroid 

method is used for deblurring processing to obtain clear 

weights, which are then normalized. At the same time, the 

fuzzy weights of the criterion layer relative to the target 

layer and the indicator layer relative to the criterion layer 

are calculated, and the fuzzy comprehensive degree value 

of the indicator layer relative to the target layer is 

obtained through fuzzy synthesis operation; 

Subsequently, the fuzzy judgment matrix is transformed 

into a clear judgment matrix composed of the median 

value b, and its consistency index CI and consistency 

ratio CR are calculated. CR=CI/RI, RI is the average 

random consistency index. When CR<0.1, the judgment 

matrix meets the consistency requirement, otherwise it 

needs to be adjusted. Finally, a fuzzy relationship matrix 

is established to determine the membership degrees of 

each factor to the five risk levels of "extremely low", 

"low", "medium", "high", and "extremely high". The 

weighted average method is used to synthesize the weight 

vectors with the fuzzy relationship matrix, and the final 

comprehensive risk level is determined based on the 

principle of maximum membership degree. The judgment 

matrix is shown in Equation (7). 

 maxAW W=  (7) 

In Equation (7), max   represents the maximum 

value of the matrix, W  represents the eigenvector, and 

A  is the judgment matrix. When the probability value is 

0 < P < 0.01, it indicates that accidents rarely occur, and 

the level is A. When the probability value is 0.1 ≤ P ≤ 1, 

it indicates that accidents occur occasionally, and the 

level is C, with relatively minor risk losses. When the 

probability value is P ≥ 10, it indicates that accidents 

frequently occur, resulting in significant losses. Therefore, 

the study uses the risk probability table for further 

judgment of risk losses. The algorithm for single-factor 

evaluation using FAHP is shown in Equation (9). 
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In Equation (9), R   represents the relationship 

matrix, and ijr   corresponds to a specific factor within 

the evaluation factor set. The equation for determining 

the factor weight vector is shown in Equation (10). 
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In Equation (10), ia  represents the weight, and A  

indicates the weight vector. The comprehensive 

evaluation and analysis are shown in Equation (11). 
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In Equation (11), 0E   represents the static soil 

pressure,    represents the soil density, and H   and 

0K   represent the height of the retaining wall and the 

static soil pressure coefficient, respectively. In summary, 

using FAHP to evaluate the risks of subway foundation 

pit support can provide effective risk warnings. The 

framework of the metro foundation pit support risk 

management hybrid system based on FAHP is shown in 

Figure 4. 
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Figure 4: Risk management hybrid system of subway foundation pit support based on FAHP 

 

4 Performance analysis of subway 

foundation pit support risk hybrid 

management system based on BIM 

technology 

4.1 Verification of the effectiveness of the 

BIM-GRU risk data monitoring 

method 
To highlight the superior performance of the BIM-GRU 

risk data monitoring method, Mean Square Error (MSE), 

Mean Absolute Error (MAE) and Coefficient of 

Determination (R2) were selected as evaluation indexes. 

The displacement corresponds to the engineering 

thresholds of ±10 mm for early warning and ±20 mm for 

control. The strain results are normalized to a 0–100% 

early warning margin ratio based on the maximum 

allowable strain of the enclosure, to ensure comparability 

across methods. The experiment used MIDAS/GTS as 

the finite element analysis software, with an Intel i7-

12650H CPU@2.30GHz, and was connected through 

built-in ports of the cloud platform. The 3D model of the 

foundation pit was built through Autodesk Revit 2023, 

and the model integration and data association were 

carried out through Navisworks Manage2023. The Revit 

model and the monitoring database were connected 

through the ODBC interface to achieve real-time binding 

of monitoring data and model components. Set up a data 

visualization template in Navisworks, display 

displacement monitoring values using color mapping, 

and simulate the risk evolution trend during the 

foundation pit excavation process through the TimeLiner 

function. Develop a data interaction plugin through the 

Revit API. The operation of the plugin requires. NET 

Framework 4.8 environment support. The experimental 

data are sourced from the open-cut section foundation pit 

project of Metro Line 5 in a certain city. The collection 

period is from June to December 2023, and it includes 

real-time monitoring data of 16 monitoring sections, with 

monitoring sections set every 50 meters. The collected 

data includes 144,000 original records, with five types of 

parameters: horizontal displacement, vertical settlement, 

axial force of the support, stress of the retaining structure 

and groundwater level. The data is divided into a training 

set and a test set in a 7:3 ratio. In the experiment, the 

hidden layer dimension of the GRU network was set to 

64, the hidden layer activation function adopted tanh, the 

output layer adopted a linear activation function, and the 

AdamW optimizer was selected. The initial learning rate 

was 0.01 with a decay factor of 0.95, the weight decay 

was 0.0001, the maximum number of iterations was 200, 

and the batch processing size was 32. In each iteration, 

the mean square error between the predicted and true 

values is first calculated through forward propagation. 

Then, the parameters are updated using the Mini-batch 

gradient descent method. Meanwhile, an early stop 

mechanism is introduced. Training is terminated when 

the loss of the validation set does not improve after 10 

consecutive rounds to avoid overfitting. During the 

training process, the data needs to be preprocessed. The 

Lida criterion is adopted to identify outliers, and the cubic 

spline interpolation method is used for filling. The 

interpolation interval is set at 5 to 15 minutes, and the 

maximum interpolation error is ≤0.08mm. Normalize the 
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data to the range [-1, 1] using min-max scaling. The 

sliding window method is adopted to extract temporal 

features and generate a feature matrix, where the window 

size is set to 30 and the step size is set to 5. To ensure the 

feasibility of the experiment, a subway station foundation 

pit with dimensions of 198×20.1×17m was selected, and 

the calculation range for the experiment extended 2-3 

times the side wall of the pit. In this study, SPSS 26.0 was 

used for statistical analysis. All monitoring data were 

tested by Shapiro-Wilk normality test to determine 

whether they conformed to the normal distribution. One-

way analysis of variance (ANOVA) was used to compare 

the significance of the differences among the four 

methods, with a significance level of 0.05. If p<0.05, the 

differences between groups were significant. In order to 

verify the reliability of bim-gru risk data monitoring 

method for displacement monitoring, the displacement 

prediction results were compared with cooperative game 

empowerment, relative conditional generation 

countermeasure network (rcgan) and grey correlation 

analysis (GRA), and the comparison results are shown in 

Figure 5. 
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(c) RCGAN risk data monitoring method
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Figure 5: Comparison of measuring point displacement prediction and real value 

 

As shown in Figure 5(a), the BIM-GRU risk data 

monitoring method's displacement predictions for test 

data points 4, 5, 8, and 9 were nearly identical to the 

actual values, with relatively small errors. In Figure 5(b), 

Cooperative Game Empowerment’s prediction for test 

data point 4 showed a small error, while predictions for 

test data points 5 and 10 exhibited significant 

discrepancies from the actual values. In Figure 5(c), the 

RCGAN risk data monitoring method predicted -0.18mm 

for test data point 4, with a difference of 0.48mm from 

the actual value. In Figure 5(d), the GRA risk data 

monitoring method’s overall prediction curve fluctuated 

significantly, with predictions for test data points 5 and 6 

showing discrepancies of 0.68mm and 0.54mm from the 

actual values, respectively. In summary, the BIM-GRU 

risk data monitoring method was better at fitting data 

trends and offered higher prediction accuracy. To further 

highlight the strain measurement capability of the BIM-

GRU risk data monitoring method, its strain limit testing 

results were compared with those of Cooperative Game 

Empowerment, RCGAN, and GRA. The testing results 

are shown in Figure 6. 
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Figure 6: Strain limit test results comparison chart 

 

As shown in Figure 6(a), when the BIM-GRU risk 

data monitoring method was tested with warning values 

of +10mm and control values of +20mm for 12 

measurement points, the average strain values were 

699.48    and 899.98   , respectively. In Figure 

6(b), for Cooperative Game Empowerment, when the 12 

measurement points were tested with a warning value of 

-10mm, the average strain value was 412.33   . In 

Figure 6(c), for the RCGAN risk data monitoring method, 

the average strain value was 218.39    when tested 

with a control value of -20mm for the 12 measurement 

points. In Figure 6(d), the GRA risk data monitoring 

method produced an average strain value of 207.39   

when tested with a control value of -20mm for the 12 

measurement points. In summary, the BIM-GRU risk 

data monitoring method provided a preliminary 

assessment of the internal structure of the subway 

foundation pit. To further demonstrate the predictive 

capability of the BIM-GRU risk data monitoring method 

for risk data, comparisons were made between the 

predicted and actual values using the Cooperative Game 

Empowerment method, the RCGAN risk data monitoring 

method, the GRA risk data monitoring method, and 

additional comparisons with the Vehicle Driving State-

GAN (VDS-GAN) based on dynamic traffic change 

feature sequence data generation, as well as the 

WaveGAN, an audio generation model based on deep 

learning. The comparison results are shown in Table 1. 

 

Table 1: Comparison of discriminant and predicted values 

Different risk 

data 

monitoring 

methods 

Discriminant 

value 

The t value of 

the 

discrimination 

value compared 

with BIM-GRU 

The P-value of 

the 

discrimination 

value compared 

with BIM-GRU 

Predicted 

value 

The t value 

of the 

predicted 

value 

compared 

with BIM-

GRU 

The p value 

of the 

predicted 

value 

compared 

with BIM-

GRU 

BIM-GRU 0.196±0.012 / / 0.213±0.004 / / 

Cooperative 0.312±0.019 6.932 <0.05 0.294±0.005 8.256 <0.05 
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game 

empowerment 

method 

RCGAN 0.403±0.013 10.247 <0.05 0.375±0.008 9.873 <0.05 

GRA 0.412±0.014 11.568 <0.05 0.312±0.007 7.635 <0.05 

VDS-GAN 0.288±0.004 5.896 <0.05 0.301±0.007 6.427 <0.05 

WaveGAN 0.472±0.010 14.329 <0.05 0.461±0.006 12.758 <0.05 

 

As shown in Table 1, the sample error rate generated 

by the BIM-GRU risk data monitoring method is 

0.196±0.012. Statistical analysis shows that the 

discrimination error rates of RCGAN, GRA, cooperative 

game weighting method, VDS-GAN and WaveGAN are 

all significantly higher than those of BIM-GRU, and the 

differences among the methods are statistically 

significant (p<0.05). The sample error rate of the 

RCGAN risk data monitoring method was 0.312±0.019, 

and the predicted value was 0.294±0.005, which was 37.1% 

higher than the error rate of the BIM-GRU risk data 

monitoring method. The sample error rate of the GRA 

risk data monitoring method was 0.403±0.013, and the 

predicted value was 0.375±0.008, which was 51.3% 

higher than that of the BIM-GRU risk data monitoring 

method. Moreover, the predicted values of RCGAN, 

GRA, cooperative game weighting method, VDS-GAN 

and WaveGAN were significantly different from those of 

BIM-GRU (p<0.05). In conclusion, the BIM-GRU risk 

data monitoring method performs better in terms of data 

correlation within the same frame. 

 

4.2 Evaluation of the BIM-GRU-based 

subway foundation pit support risk 

management system 

To verify the superior performance of the subway 

foundation pit support risk management system based on 

the BIM-GRU risk monitoring data method, the study 

compared it with three other subway foundation pit 

support risk management systems: Cooperative Game 

Empowerment, RCGAN, and GRA. Risk events can be 

classified into three types: retaining structure risks, 

geological and hydrological risks, and construction 

operation risks. Among them, retaining structure risks 

include excessive displacement of underground 

continuous walls, which can lead to soil collapse behind 

the walls and rupture of adjacent pipelines. Geological 

and hydrological risks can cause water accumulation in 

the foundation pit and delay the excavation process. 

Construction operation risks include deviations in 

support installation and damage to monitoring points, 

which can distort data collection, delay risk warning 

responses, and increase the risk of instability of the 

support structure. Since the materials used in the subway 

foundation pit support structure can limit soil 

deformation and surface settlement, the study selected 

surface settlement monitoring points DBC3294-Z1Z4 

and DBC32493-Y1Y4 as representative monitoring 

points for the experiment. The four risk management 

systems—Cooperative Game Empowerment, RCGAN, 

GRA, and BIM-GRU—were compared for surface 

settlement analysis, with the results shown in Figure 7. 
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Figure 7: Comparative analysis of surface settlement map 
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Figure 8: Comparison of temperature monitoring in 

different risk management systems of subway 

foundation pit support 

 

As shown in Figure 7(a), when the distance from the 

edge of the foundation pit was approximately 100mm, the 

measured settlement value was -12.12mm, the BIM-GRU 

subway foundation pit support risk management system 

recorded a settlement value of -10.83mm, and the 

RCGAN subway foundation pit support risk management 

system recorded a maximum settlement value of -

10.11mm. As shown in Figure 7(b), when the distance 

from the edge of the foundation pit was approximately 

100mm, the measured settlement value was -12.88mm, 

and the BIM-GRU subway foundation pit support risk 

management system recorded a settlement value of -

11.83mm, which was close to the measured value. In 

summary, as the distance from the foundation pit edge 

increased, the settlement value monitored by the BIM-

GRU subway foundation pit support risk management 

system decreased. To demonstrate the monitoring 

accuracy of the BIM-GRU subway foundation pit support 

risk management system, its results were compared with 

those of the Cooperative Game Empowerment, GRA, and 

RCGAN subway foundation pit support risk management 

systems for subway equipment temperature monitoring. 

The monitoring results are shown in Figure 8. 

As shown in Figure 8, the BIM-GRU subway 

foundation pit support risk management system measured 

a temperature of 55.21°C after the equipment had been 

running for 20s, with an error of -0.05°C. The GRA 

subway foundation pit support risk management system 

measured a temperature of 58.21°C after the equipment 

had been running for 40s, with an error of -0.13°C. The 

RCGAN subway foundation pit support risk management 

system measured a temperature of 61.01°C after the 

equipment had been running for 60s, with an error of -

0.12°C. In summary, the BIM-GRU subway foundation 

pit support risk management system was able to 

effectively monitor equipment operating temperature and 

demonstrated certain practical feasibility. To further 

highlight the risk avoidance capability of the BIM-GRU 

subway foundation pit support risk management system, 

its performance was compared with the Cooperative 

Game Empowerment, GRA, and RCGAN subway 

foundation pit support risk management systems in terms 

of risk event failure effects. The comparison results are 

shown in Figure 9. 
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Figure 9: Comparison of failure effects of risk events results plot 

 

As shown in Figure 9(a), The BIM-GRU subway 

foundation pit support risk management system 

successfully avoided Risk Event 1 a total of 9 times, 

while the RCGAN subway foundation pit support risk 

management system managed to avoid Risk Event 1 a 

total of 7 times. The Cooperative Game Empowerment 

subway foundation pit support risk management system 

failed to avoid Risk Event 3. As shown in Figure 9(b), the 

BIM-GRU subway foundation pit support risk 

management system successfully avoided Risk Event 16 

a total of 9 times. In summary, the BIM-GRU subway 

foundation pit support risk management system was able 

to effectively avoid different risks, with a high avoidance 

efficiency. 
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5 Conclusion 

In order to improve the safety of subway construction, a 

risk management system for subway foundation pit 

support is constructed based on the BIM-GRU risk data 

monitoring method. In the process of building the system, 

the advantages of the FAHP multi-objective 

comprehensive evaluation are used to evaluate and 

analyze the risk of foundation pit support in real time. The 

experimental results show that the displacement of the 

BIM-GRU method at monitoring point 4 is 0.31 mm, and 

the accuracy is higher than that of the cooperative game 

empowerment method, GRA, and RCGAN. The system 

successfully avoided risks 19 times, which was better 

than the other three systems. The measured temperature 

was 55.21 ℃ and the deviation was -0.05 ℃ after the 

subway equipment operated for 20s. The overall 

performance was excellent. To sum up, the BIM-GRU 

metro foundation pit support risk management system 

can effectively manage the metro foundation pit support 

structure. Although the BIM-GRU system has high 

monitoring accuracy and risk control ability, it is highly 

dependent on data. If there are errors or incompleteness 

in the data collection process, it may affect the final 

monitoring and analysis results. Therefore, in future 

research, the data acquisition and processing program 

will be further optimized, and more advanced sensor 

technology and data cleaning algorithms will be 

introduced to improve data quality, thus enhancing the 

system's performance. 
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