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The timely detection and repair of defects and damages in underground drainage pipes are crucial for the 

normal operation of cities. Focusing on the defect detection and damage localization of urban 

underground drainage pipes, this paper introduced the Convolutional Block Attention Module (CBAM) 

to the You Only Look Once version 5 (YOLOv5) algorithm to enhance its ability of feature extraction. 

Then, several different loss functions were compared. Experimental analyses were carried out using the 

sewer-ML dataset. The results showed that among different versions of the model, the YOLOv5l model 

had better overall performance. Compared with the Squeeze-and-Excitation and coordinate attention 

modules, the CBAM had a better optimization effect on the YOLOv5 algorithm, bringing a 5.7% mean 

average precision improvement. The detection effect obtained when Softmax Intersection over Union 

(SIoU) was used as the loss function was better than efficient Intersection over Union (EIoU) and Focal 

EIoU. When CBAM and SIoU were used for optimization together, the improved YOLOv5 algorithm 

achieved a mean average precision of 93.37% and a frame rate of 85 frames per second, which had an 

advantage over the other algorithms. The method can be used in practice. 

Povzetek: Izboljšani YOLOv5 z modulom CBAM natančno in hitro zazna poškodbe v kanalizacijskih ceveh 

(93,37 % natančnost, 85 FPS). 

 

1  Introduction 
Underground drainage pipes play a very important role in 

the collection and transportation of rainwater and sewage. 

During long-term operation, defects and damages such as 

rupture and deposition are inevitable [1], which pose 

certain hidden dangers for urban development and may 

cause disasters such as waterlogging and collapse. 

Therefore, regular inspection and repair of underground 

drainage pipes are necessary to ensure the normal 

operation of the city [2]. Manual pipe inspection is less 

efficient and prone to errors. If the defects and damages of 

drainage pipes can be detected more intelligently and 

automatically, the efficiency and quality of inspection can 

be greatly improved. Therefore, it is necessary to study the 

detection of defects and damages in urban underground 

drainage pipes. Most of the current drainage pipe 

inspections are carried out by filming the interior of the 

pipe through closed-circuit television and combining 

methods such as image processing and machine learning 

[3]. You Only Look Once version 5 (YOLOv5) is 

currently a widely used deep learning algorithm in defect 

detection. In terms of its improvement, its combination 

with the Convolutional Block Attention Module (CBAM) 

mechanism is relatively common.  

 

 

 

 

Fu et al. [4] introduced the CBAM mechanism into the 

backbone part of YOLOv5 for the helmet monitoring of 

electric bicycle riders. On a self-built dataset, they found 

that compared with the original YOLOv5s model, the 

proposed model achieved an improvement of 1.89% in the 

overall mean average precision (mAP). Pang et al. [5] also 

found that combining the CBAM mechanism with 

YOLOv5 can significantly improve the efficiency and 

accuracy of the model in solar cell defect detection. Lv et 

al. [6] also used the CBAM-combined YOLOv5 structure 

in the disease detection of apple tree leaves and achieved 

an improvement in the detection effect. In order to further 

improve the detection accuracy and speed of defects and 

damages in urban underground drainage pipes, this paper 

designed a detection method based on a deep learning 

algorithm. The CBAM mechanism and Softmax 

Intersection over Union (SIoU) loss function were 

introduced into the YOLOv5 algorithm. It is assumed that 

this improvement can enhance the detection performance 

of the YOLOv5 algorithm and improve the detection 

accuracy and speed. The assumption was verified through 

experiments on the dataset, with the expectation of 

providing a new available method for the management and 

construction of urban drainage systems. 
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2  Related works 
Table 1: Related works 

 Method Dataset Detection performance 

Xiao et al. 

[4]  

The improved 

cumulative sum model  

Laboratory indoor 

simulation 

The method had a relatively fast detection speed 

for defects in urban drainage pipes, which can 

reduce the detection costs. 

Wang [5] An improved detection 

method based on 

semantic segmentation 

labeling 

Self-built datasets The method had a mean average precision of 72.8, 

a precision of 84.0%, and a recall rate of 63.7%. 

He et al. [9] AlexNet and ResNet50 Self-built datasets The two methods achieved an accuracy of 92.00% 

and 96.50% respectively for the test set and an 

accuracy of 85.41% and 87.94% respectively for 

real cases. 

Huang et al. 

[10] 

An improved 

convolutional neural 

network 

The pipeline defect 

dataset collected in 

real scenarios 

The method achieved an accuracy of 90.2%. 

3  Design of an algorithm for detecting 

defects and damages in underground 

drainage pipes 

 3.1  YOLOv5 algorithm 

Among deep learning algorithms, the YOLO series 

algorithms have good applications in target detection, 

including face recognition and autonomous driving [11]. 

YOLOv5 is the mainstream model. Compared with 

versions like YOLOv4, YOLOv5 is simpler to use and can 

achieve multi-scale detection, which is more efficient. 

Based on these advantages, YOLOv5 is a preferred 

algorithm for many targets detection tasks [12]. After 

YOLOv5, YOLOv7 and YOLOv8 introduced some new 

complex modules, which have a higher computational 

complexity and also place higher demands on computing 

resources and memory. As a well-verified benchmark, 

YOLOv5 has already gained a wide consensus on its 

performance. Moreover, due to a mature and stable 

codebase and community ecosystem, YOLOv5 has a clear 

modular design that makes it easy to modify. Therefore, 

this paper designed a defect detection and damage 

localization method for underground drainage pipes based 

on the YOLOv5 algorithm. The YOLOv5 algorithm 

mainly consists of the following parts. 

(1) Input: The image to be detected is divided into 

four feature maps, and they are concatenated in the 

channel dimension to reduce the number of parameters. 

(2) Feature extraction: it includes three modules: CBS, 

C3, and Spatial Pyramid Pooling Fast (SPPF). 

① CBS: it consists of a Convolution (Conv), a Batch 

Normalization (BN), and a Sigmoid Linear Unit (SiLU) 

activation function, and their respective functions are 

extracting image features, preventing overfitting, and 

learning more complex features. 

② C3: Three CBS modules + one BottleNeck module 

for extracting more detailed features; 

 

③ SPPF: it is used to combine local and global 

features. 

(3) Feature fusion: Use the Feature Pyramid Network 

(FPN) + Path Aggregation Network (PAN) structure to 

fuse shallow graphic features with deep semantic features 

and; 

(4) Head: it includes three convolutional modules 

corresponding to three feature layers. 

3.2  An improved YOLOv5 algorithm 

Considering the complexity of actual drainage pipe 

images, in order to further meet the needs of defect loss 

detection, this paper improved the YOLOv5 algorithm by 

introducing a CBAM after the C3 module and optimizing 

the loss function of the bounding box to enhance the 

detection effect. The details are as follows. 

(1) CBAM 

The attention mechanism enables models to focus 

more on the important information in the input, thereby 

achieving higher performance, and has good applications 

in many areas of research such as speech recognition [13] 

and image processing [14]. The environment of urban 

underground drainage pipes is very complex, which 

increases the difficulty of feature extraction. Therefore, 

the attention mechanism can be applied to focus more on 

the information useful for defect loss detection. The 

CBAM is a lightweight structure [15] that can be quickly 

embedded into many models, and it combines two 

modules for precise feature extraction as follows. 

① Channel attention module (CAM): Features of 

different channels can be weighted to enhance the 

representation of important features, calculated as follows: 

 

MC(F)=σ(MLP(AP(F))+MLP(MP(F)))=σ(W1 (W0(Favg
c ))+W1(W0(Fmax

c ))) 

 

where MC denotes the channel attention feature map, σ is 

the sigmoid function, MLP is the shared neural network, 

AP  denotes the mean feature point, MP  denotes the 
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maximum feature point, Favg
c  is the mean-pooling feature, 

and Fmax
c  is the max-pooling feature. 

② Spatial attention module (SAM): The spatial 

dimension of the feature map can be weighted to enhance 

attention to important features at different positions, 

complementing the feature information focused on by 

CAM. The final feature map is obtained after integration. 

The calculation formula is: 

 

MS(F)=σ (f
7×7([(F);MP(F)]))=f

7×7([Favg
c ;Fmax

c ]), 

 

where MS represents a spatial attention feature map and 

f
7×7

 represents convolution operation. 

 

(2) Loss function 

The complete Intersection over Union (CIoU) damage 

function [16] is used in YOLOv5, which has better 

stability compared to the traditional IoU but also has 

problems such as high computational complexity and poor 

performance in small target boxes. Therefore, the 

following improved versions of IoU are used in this paper. 

① Efficient Intersection over Union (EIoU) [17]: 

Considering the position and shape of the of the target box 

and depth features, it can more accurately reflect the 

differences between the target box and the real box. The 

calculation formula is: 

 

LEIoU=1-IoU+
ρ2(b,b

gt)

c2
+ (

v

(1-IoU)+v
) v, 

v=
4

π2
(arctan

wgt

h
gt - arctan

w

h
)

2

, 

 

where ρ(b,b
gt)  is the Euclidean distance between the 

center points of the real box and the predicted box, c is the 

diagonal length of the minimum bounding rectangle, wgt 

and h
gt

 are the length and width values of the real box, and 

w are the length and width values of the predicted box. 

② Focal EIoU: It is based on EIoU and combined 

with the Focal Loss function [18]. It can pay more 

attention to difficult-to-classify samples: 

 

LFocalEIoU=IoUγLEIoU, 

 

where γ  is a hyperparameter controlling the curve 

curvature, usually 0.5-2.0. 

③ SIoU: Based on IoU, combined with the Softmax 

loss function, it can compare multiple categories of 

detection boxes to obtain the optimal detection box: 

 

LSIoU=1-IoU+
∆+Ω

2
, 

where ∆  is distance cost, exploring the distances of 

different bounding boxes from different centers as much 

as possible: 

∆=∑ (1-e-γρt)t=x,y =2-e-γρx-e
-γρy, 

ρ
x
= (

bcx
gt

-bcx

cw
)

2

, 

ρ
y
=(

bcy
gt

-bcy

ch
)

2

, 

 

where cw and ch are the width and height of the minimum 

bounding rectangle, bcx

gt
 and bcy

gt
 are the coordinates of the 

real box center, bcx  and bcy  are the coordinates of the 

predicted box center, γ : γ=2-Λ , Λ  is the angle cost, 

Λ=1-2sin2 (arcsin (
ch

σ
) -

π

4
) , minimizing the number of 

distance-related variables to the greatest extent, and Ω is 

the shape cost, which is used to penalize the difference in 

the aspect ratio between the real box and the predicted box. 

 

Ω=∑ (1-e-ωt)θ
t=w,h , 

ωw=
|w-wgt|

max(w,wgt)
, 

ωh=
|h-h

gt|

max(h,h
gt)

, 

 

where θ  is the sensitivity controlling the shape cost, 

usually 4. 

 

4  Results and analysis 

4.1 Experimental settings 

The experiment was conducted in a Windows 10 

environment, and the specific configuration is presented 

in Table 2. 

 

Table 2: Experimental configuration.1 

Central processing unit 

(CPU) 

Intel TM i5-11400F CPU 

Graphics processing unit 

(GPU) 

GeForce RTX1080TI 

GPU 

Acceleration module CUDA 11.1 

Deep learning 

framework 

PyTorch 1.7.0 

 

For the underground drainage pipe defect damage 

detection algorithm, the parameters are set as Table 3. 

 

Table 3: Parameter settings. 

Epochs 300 

Batch size 16 

Image size 640 × 640 

Optimizer Stochastic gradient 

descent 

Initial learning rate 0.001 

 

The experiment used the Sewer-ML dataset [16], with 

images from actual drainage pipe inspection projects. Data 

distributions in the dataset are shown in Table 4. 

 

Table 4: Data distributions in the Sewer-ML dataset. 

 Trainin

g 

Validation Test Total 

Normal 552,820 68,681 69,221 690,722 

Defecti

ve 

487,309 61,365 60,805 609,479 

Total 1,040,12

9 

130,046 130,02

6 

1,300,20

1 
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The Sewer-ML dataset included 18 different types of 

defect and damage, five of which were selected in this 

paper. 

Sediment: Impurities and silt settle at the bottom of 

the drainage pipe to form sediment. As the volume 

expands, the area of water flow through the pipe decreases, 

weakening the pipe’s ability to transport rainwater and 

sewage. 

Crack: When a pipe breaks due to external forces such 

as compression, rainwater and sewage will seep out and 

pollute the water environment. 

Cut: The cut at the connection of the branch pipe and 

the main pipe is uneven, with gaps appearing at the edge 

of the cut. This causes rainwater and sewage to seep out, 

polluting the groundwater. Soil also flows in, forming 

sediment. 

Disconnection: The joints of the two ends of the pipe 

are not fully joined, causing the joints to shift and create a 

gap, which will allow rainwater and sewage to seep out 

and pollute the water environment. 

Obstacle: They may be foreign matters carried in by 

rainwater or sewage, or other material that fall off and 

block in the pipe, resulting in a reduction in water flow 

area. 

The five selected types exhibit a high degree of 

diversity in visual characteristics, covering various 

challenges ranging from slender small targets (cracks), 

complex texture targets (tree roots) to large-area irregular 

targets (sediments). This provides a testing benchmark for 

comprehensively evaluating the generalization and 

robustness of the model. Moreover, these five types of 

defects have sufficient and high-quality annotation data, 

ensuring the effectiveness of model training and the 

statistical reliability of the evaluation results. The images 

in the dataset were enhanced using operations such as 

translation, rotation, and cropping to obtain 3,000 images 

of each type. Image quality was improved through 

histogram equalization and sharpening. They were labeled 

using the LabelImg tool [20]. Moreover, ten-fold cross-

validation method [21] was used to divide the dataset into 

a training set, a validation set, and a test set. For the 

detection effect of the algorithm, the IoU threshold value 

was set as 0.5, and samples below 0.5 were considered 

negative cases. The following evaluation indicators were 

used: 

(1) precision: Precision=
TP

TP+FP
 

 

(2) recall rate: Recall=
TP

TP+FN
 

 

 

(3) average precision (AP): area under the precision-

recall curve, AP=∫ P(R)dR
1

0
, 

 

(4) mAP: mAP=
∑ APi

N
i=1

N
, 

 

 

(5) frames per second (FPS) [22]: the number of 

images detected per second, which is used to reflect the 

detection speed of a model. 

In the above equations, TP is the number of positive 

samples detected as positive, FP is the number of negative 

samples detected as positive, and FN  is the number of 

positive samples detected as negative. 

4.2  Result analysis 

The YOLOv5 algorithm was divided into different 

versions based on network width and depth. Experiments 

were conducted on different versions. The obtained mAP 

and FPS are shown in Table 5 and Figure 1. 

 

Table 5: Comparison of different versions of YOLOv5.2 

 mAP/% FPS Parameter 

quantity 

YOLOv5n 78.12 93 1.90×106 

YOLOv5s 81.77 90 7.20×106 

YOLOv5m 83.94 82 2.12×107 

YOLOv5l 85.51 81 4.65×107 

 

 
Figure 1: Comparison of different versions of YOLOv5. 

As shown in Table 5 and Figure 1, with the expansion 

of model size, the mAP  for the defect detection and 

damage localization also increased. The mAP  of the 

YOLOv5n algorithm was 78.12%, and the mAP of the 

YOLOv5l algorithm was 85.51%, which was 7.39% 

higher than the YOLOv5n algorithm. However, the 

increase in scale also affected the detection speed; the 

larger the scale, the slower the detection speed. The 

comparison between YOLOv5m and YOLOv5l showed 

an increase of 1.57% in mAP and a decrease of one in FPS, 

indicating that the difference in detection speed between 

them was not significant. Therefore, in the subsequent 

experiments, the YOLOv5l version was used. 

The effects of different attention mechanisms on 

detection results were compared (Table 6, Figure 2). 

 

Table 6: Comparison of different attention mechanisms 

(Unit: %).3 
 Baselin

e 

Squeeze-

and-

Excitatio

n (SE) 

Coordina

te 

Attention 

(CA) 

CBA

M 

Sediment 85.33 87.64 88.46 90.88 

Crack 71.21 73.36 74.41 81.21 

Cut 94.56 95.16 96.77 98.97 

Disconnecti

on 

95.19 96.93 96.14 97.43 

Obstacle 81.26 83.56 85.57 87.56 

mAP 85.51 87.33 88.27 91.21 
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Figure 2: Comparison of different attention mechanisms. 

 

From Table 6 and Figure 2, it can be seen that among 

different types of defect detection and damage localization, 

the detection of cuts and disconnections was more 

accurate. This may be because the characteristics of 

disconnections and cuts are more obvious and easier to 

identify. Cracks vary in size and direction and are easily 

confused with the background, making detection difficult. 

Similarly, sediments are located at the bottom of the pipe 

with blurred boundaries and are not easy to detect, and 

obstacles are also easily confused with sediment. The 

mAP was improved after the addition of different attention 

mechanisms compared to the baseline, and the CBAM had 

the best performance. SE only considered the importance 

of channel pixels and lacked attention to channel positions. 

CA performed limited on complex tasks. CBAM 

combined channel attention and spatial attention and 

achieved high accuracy in the detection of complex 

defects (cracks and obstacles), demonstrating its 

advantages. 

The effects of different loss functions on the detection 

results were compared (Table 7, Figures 3 and 4). 

 

Table 7: Comparison of different loss functions 

(unit: %).4 
 Baseline EIoU Focal 

EIoU 

SIoU 

Sediment 85.33 86.16 86.89 87.03 

Crack 71.21 72.64 72.23 73.07 

Cut 94.56 96.17 96.68 97.03 

Disconnection 95.19 96.55 96.91 97.28 

Obstacle 81.26 82.33 82.94 83.19 

mAP 85.51 86.77 87.13 87.52 

 

 
Figure 3: Loss value curve comparison chart. 

 
Figure 4: Comparison of different loss functions. 

 

From Table 7 and Figures 3 and 4, it can be seen that 

after improving the loss function, the convergence of the 

network became faster, the detection performance was 

improved to a certain extent, but to a small extent. Among 

the three loss functions, SIoU exhibited the greatest 

improvement in detection performance and had the best 

convergence effect, and its mAP had an improvement of 

2.01% compared to the baseline. Therefore, SIoU can be 

used instead of the original CIoU in YOLOv5 to achieve 

performance improvement. 

The effect of the improvement on the detection results 

was determined by the ablation experiment (Table 8, 

Figure 5). 

Table 8: Ablation experiments.5 

 mAP/% FPS 

Baseline 85.51±2.16 81±1.21 

YOLOv5+CBAM 91.21±3.33 79±0.77 

YOLOv5+SIoU 87.52±2.77 83±1.45 

YOLOv5+CBAM+SIoU 93.37±3.56* 85±1.17* 

Note:* indicates p < 0.05 compared to the other method 

 

 
Figure 5: Ablation experiments. 

 

According to Table 8 and Figure 5, the introduction of 

CBAM brought a 5.7% mAP improvement, and the FPS 

dropped from 81 to 79, indicating that the introduction of 

CBAM was beneficial to the improvement of detection 

accuracy, but it affected the detection speed to some extent. 

From this perspective, CBAM could effectively enhance 

the feature extraction ability, but it increased the 

computational load. The introduction of SIoU brought a 

2.01% mAP improvement, and the FPS increased from 81 

to 83, possibly because SIoU had a fast convergence speed. 

By introducing structural priors (angles and shapes), SIoU 

guided the model to converge to a state with greater 

“geometric regularity” during the training process, 

providing higher-quality predicted bounding box 

proposals, thus significantly reduced the computational 
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latency and achieved an improvement in throughput. The 

combined use of CBAM and SIoU achieved the best 

results, achieving a mAP of 93.37% and a FPS of 85. 

Moreover, the statistical significance results showed that 

compared the results of YOLOv5+CBAM+SIoU with the 

other methods, the p value was less than 0.05, 

demonstrating the reliability of the improvement to the 

YOLOv5 algorithm. 

The method proposed was compared with some other 

deep learning-based detection methods (Table 9 and 

Figure 6). 

 

Table 9: Comparison with other detection methods.6 

 mAP/% FPS 

Single-Shot 

Multibox 

Detection (SSD) 

[23] 

59.87 54 

YOLOv3 [24] 75.59 68 

YOLOv4 [25] 81.21 72 

Faster regional-

based 

convolutional 

neural network 

(R-CNN) [26] 

84.93 38 

The improved 

YOLOv5 

93.37 85 

 

 
Figure 6: Comparison with other detection methods. 

From Table 9 and Figure 6, it can be seen that the SSD 

performed poorly in drainage pipe defect detection and 

damage localization, with a mAP of 59.87% only and an 

FPS of 54. The feature fusion of SSD was relatively 

simple, while the proposed method realized the 

bidirectional fusion of deep and shallow features. When 

facing defects of different scales, the proposed method 

was more robust. Although the Faster R-CNN algorithm 

had high accuracy (mAP = 84.93), this came at the 

expense of speed. Its FPS was only 38. Faster R-CNN is a 

two-stage detector. Its serial process is computationally 

complex and the inference speed is slow, while YOLOv5 

can achieve end-to-end fast inference. Compared with 

YOLOv3 and YOLOv4, the improved YOLOv4 algorithm 

proposed in this paper is advanced in terms of network 

architecture and data augmentation. The introduced 

CBAM and SIoU also bring significant performance 

improvements. Generally speaking, the proposed method 

was significantly superior to the other methods in terms of 

both precision and speed. 

5 Discussion 
 

In the detection of defects and damages in urban 

underground drainage pipes, this paper designed a 

YOLOv5 algorithm improved by combining the CBAM 

mechanism and SIoU, and verified its detection 

performance of using the sewer-ML dataset. The results 

showed that compared with other attention mechanisms or 

other loss functions, the selected CBAM and SIoU both 

had advantages. Comparisons with other deep learning 

detection methods showed that as a single-stage detector, 

SSD has insufficient ability to extract the diverse defect 

features of the pipes, resulting in many false detections 

and missed detections. As a two-stage detector, Faster R-

CNN has many calculation steps and takes a long time, 

failing to meet the requirements of rapid response and 

efficient inspection. As early versions of the YOLO series, 

YOLOv3 and YOLOv4 are also inferior to YOLOv5 in 

terms of precision and speed. The combination of the 

CBAM mechanism with YOLOv5 can help the YOLOv5 

network focus more accurately on the key features of the 

defects, providing the subsequent detection head with 

more informative and less noisy features. SIoU 

reconsiders the cost of bounding box regression, which 

helps the model generate prediction boxes with a higher 

degree of fit with the real boxes, bringing faster 

convergence and better convergence effects to the model. 

Under the synergistic effect of CBAM and SIoU, the 

precision and speed of the improved YOLOv5 algorithm 

for the detection of defects and damages in urban 

underground drainage pipes were improved. 

Based on the research results, the designed algorithm 

can be applied in the detection of defects and damages in 

actual urban underground drainage pipes. For example, it 

can be applied in inspection robots to detect complex 

underground drainage pipes, process video streams in real 

time, and accurately locate and quantify defects, which 

makes it possible to formulate point-to-point repair plans 

and greatly saves the costs of excavation and repair. For 

the municipal system, the intelligent detection is 

conducive to the municipal department in formulating 

predictive maintenance plans. According to the detection 

results, priority maintenance can be carried out on high-

risk pipe sections, thus avoiding accidents such as road 

collapse and urban waterlogging, and having a profound 

impact on enhancing urban safety and reducing operation 

and maintenance costs. 

In future actions, experiments will be carried out on a 

more diverse dataset of underground drainage pipe defects 

and tested under more realistic conditions, such as 

occluded defects and noisy images. Meanwhile, further 

research will also be conducted on the deployment of the 

algorithm in the actual environment. 

6 Conclusion 
This paper designed a method based on the YOLOv5 

algorithm for defect damage detection of urban 

underground drainage pipes. Through experiments on the 

dataset, it was found that the proposed method effectively 
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balanced accuracy and speed. The detection accuracy for 

different defect loss types was above 80%, mAP reached 

93.37%, and the FPS was 85. It can be applied in actual 

urban sewage management to achieve better detection of 

defects and damages in underground drainage pipes. 
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