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Cooling systems in data centers signify a major share of overall energy consumption, making their
effectual control essential for lowering costs and reducing environmental effect. Existing Deep
Reinforcement Learning (DRL) approaches, such as Deep Deterministic Policy Gradient (DDPG), show
restrictions in flexibility under dynamic workloads and lack the capability to organize multiple cold source
units, which restricts their efficiency. The research aims to develop a hybrid optimization framework that
reduces energy consumption while preserving thermal stability in data center operations. The framework
gathers a cold source control dataset from Kaggle, which contains 3,498 hourly time-series records
covering server workload, temperature parameters, cooling power consumption, chiller and Air Handling
Unit (AHU) usage, energy cost, and temperature deviation. The proposed Artificial Gorilla Troops
Optimizer-driven Controlled Deep Q-Network (AGTO-CDQN) integrates an attention-enhanced CDQON
with the Artificial Gorilla Troops Optimization (AGTO) to strengthen feature prioritization, exploration,
and multi-unit coordination. Experimental outcomes illustrates that a target temperature of 24 °C, AGTO-
CDON achieved 77 kW IT power consumption (24% saving vs. 23% with DDPG), 45.1 kW cooling power
(15% saving vs. 10% with DDPG), and 125 kW total power (23% saving vs. 20% with DDPG), while
maintaining an average zone air temperature of 23.0 °C compared to 23.5 °C with DDPG. The results
confirm that AGTO-CDQON dependably distributes efficacy developments above 15% across all metrics,
representing higher flexibility and coordination, and highlighting its potential for practical application in
energy-efficient data center cooling management.

Povzetek: Raziskava predstavi hibridni pristop z globokim okrepljenim ucenjem in metaoptimizacijo za
usklajeno vodenje vec¢ hladilnih enot v podatkovnih centrih, ki ob ohranjanju temperaturne stabilnosti
dodatno zmanjsa porabo energije v primerjavi z obstojec¢imi DRL metodami.

1 Introduction

Cloud computing's (CC) explosive expansion has enabled
a variety of uses, such as web search, scientific
computing, and bioinformatics. Data centers (DCs) allow
effective large-scale resource management that is
accessible over the internet by centralizing computing
resources and using virtualization to create multiple
virtual machines [1]. DCs are a major source of energy
consumption and carbon emissions worldwide. Lowering
power consumption and reducing environmental impact
requires optimization of cooling and information
technology (IT) systems [2]. Large DCs' cooling systems
use between 30 and 40 percent of their energy. That is
more cost-effective to reduce cooling energy than server-
side energy use. An important, challenging industrial

problem is effectively managing air conditioners and
chillers to preserve thermal safety while conserving
energy [3]. DCs can use less energy by switching from
mechanical refrigeration to natural cooling methods like
direct or indirect evaporative cooling. The viability of the
method, which has been proven to be effective over 5500
cooling hours a year, is dependent on humidification
expenses and is less appropriate for areas with low dew
point temperatures [4]. Complex cyber-physical systems
with high power densities, such as cloud DCs, produce
enormous amounts of heat, making effective energy
management difficult. Despite possible efficiency gains,
manual tuning is impractical because of the billions of
configuration options, which complicates resource
management and affects cost savings and carbon footprint
reduction [5].
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Existing Deep Reinforcement Learning (DRL) methods,
such as Deep Deterministic Policy Gradient (DDPG),
struggle to adapt effectively to highly dynamic server
workloads, limiting their responsiveness under
fluctuating operational conditions.
It is also ineffective at coordinating between more than
two cooling units, lowering the overall potential of energy
savings. Also, the prioritization of features is inadequate
and prevents the model from concentrating on factors that
are the most important in controlling the cooling, which
limits performance further. The proposed Artificial
Gorilla Troops Optimizer-driven Controlled Deep Q-
Network (AGTO-CDQN) overcomes these limitations by
incorporating attention mechanisms and the Artificial
Gorilla Troops Optimization (AGTO) allows prioritizing
features, better exploring, and coordinating the control of
numerous cooling units. This combination provides
greater flexibility, increased thermal management, and
major energy savings to data center operations.
The aim of this research is to create an energy-efficient
cooling control approach for DCs that uses a proposed
AGTO-CDQN model to optimize cold source unit
operations. The intention is to reduce energy costs while
preserving temperature stability by using real-time and
historical sensor data to make dynamic decisions.

The research paper is organized as follows:
Section 1 deals with the introduction of research. Section
2 describes the related work. Section 3 displays a
complete methodology. Section 4 concentrates on the
experimental results and discussions, while Section 5
concludes.

Research question
1. Can the proposed AGTO-CDQN framework
achieve higher energy efficiency than
conventional DRL approaches such as DDPG
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while ensuring stable thermal conditions in data
centers?

2. Does the integration of the AGTO with an
attention-enhanced CDQN improve exploration
dynamics and adaptability under variable
workloads and environmental conditions?

3. Can AGTO-CDQN effectively coordinate
multiple cold source units simultaneously to
optimize system-wide cooling performance and
energy savings?

2 Related work

Zhu et al. optimized DCs' chillers and cold-water storage
systems to maximize cooling energy efficiency while
lowering expenses and electricity usage. Utilizing mixed-
integer linear programming (MILP), a sophisticated
model predictive control (MPC) was created to control
chillers and cold-water storage; that was verified through
yearly simulations and field testing. The MPC approach
decreased cooling energy by 5.8%, decreased power
usage effectiveness (PUE) by 0.013, increased coefficient
of performance (COP) by 1.96, and decreased annual
power expenses by 21%; however, the result was sensitive
to partial load variations and model mismatches [6]. Lee
et al. created a thermal management plan that makes use
of overhead cooling and cold aisle confinement; verify
that using computational fluid dynamics (CFD) and
airflow measurements; and assess cooling effectiveness
for energy-efficient container DCs in tropical and
subtropical areas. Achieved a low average PUE of 1.38,
surpassing industry standards; showed efficient thermal
and airflow control; however, model reliance on precise
CFD inputs and site-specific environmental variables
were limitations [7]. Table 1 shows the summary of the
literature review.

Table 1: Comparative overview of optimization approaches for data center management

Reference Objective Dataset Method Results Limitations
Improve Machine Learning
P . (ML)-based Increased workload Hardware integration
., performance and High-Performance . . .
Dakic¢ et . . dynamic scheduling speed and complexity; need for
al. [8] energy efficiency of Computing (HPC) schedulin cluster placement additional ML model
’ HPC workload workload traces N P .
Jacement automatic accuracy; tuning
P Kubernetes setup
Meta-learning,
attentlon-l.aa.sed Outperforms Content- High complexity;
. Solve cold-start L feature mining, . . .
Liu et al. . Tourist city . Based Recommendation requires careful tuning;
recommendation in . dynamically . .
[9] R recommendation datasets . (CBR), Collaborative computationally
tourist cities weighted o . .
. Filtering (CF), intensive
collaborative
filtering
Minimize Simulation-onl
virtualized cloud Adaptive Genetic L S o
. . Reduced execution time, validation; practical
data centre energy Simulated cloud DC Algorithm (GA) . o
Mehor et . . energy consumption, SLA scalability and
consumption and workloads with SLA and threshold- . o
al. [10] . . breach, and cooling heterogeneity issues
reduce Service metrics based . . .
. energy requirement with real cooling system
Level Agreement preprocessing; inteeration
(SLA) breaches g
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Obtimize pH Adaptive Neuro- Based on
rep ulati(fnpin Fuzzy Inference Achieved RMSE = analytical/simulation
. °8 . Cooling tower System (ANFIS) 0.0081; rise time = studies; requires
Al-Najari | cooling towers with . . . . L S
. . experimental/simulated with Particle 0.5863 s; settling time = validation in real-world
etal. [11] improved transient .
response and data Swarm 1.4867 s; overshoot = cooling towers;
azcurac Optimization 2.7958%; peak = 7.6548 dependent on data
Y (PSO) quality
Evaluate adoption . . Hybrid DC model | Effective cooling setpoint Inconsistent
. . Tropical-region data center . R . .
Lietal. of energy-saving . with Deep optimization; green implementation; lack of
T environmental and . .
[12] technologies in data Reinforcement technology adoption long-term performance
workload data . . .
centers Learning (DRL) beneficial statistics
Reduce energy Data center workload Model-free RL Achieved 3-5.5% energy | Limited generalization;
Mahbod et . . . . . . . . .
al. [13] expenses with traces with cooling energy with adaptive savings, mainly via dependency on specific
) dynamic cooling measurements cooling setpoints reduced server fan usage hybrid model
Compared six
Predict temperature . . ML-based thermal XGBoost and LightGBM | Not designed for multi-
. . CFD (Computational Fluid models: Process . . L.
Lin et al. in steady and . . . . achieved robust unit coordination;
. Dynamics) simulation data Regression L . T
[14] transient data center predictions with RMSE < evaluation limited to
. for DC thermal profiles (GPR), Extreme o . .
settings . . 1°C CFD simulations
Gradient Boosting
(XGBoost),
Enhanced total power
savings up to 18-26.6%
. Deep ; ..
Enhance efficiency . . . relative to traditional
Operating history trace and reinforcement Leverages correct
of data-center . . control; cut safety i,
. data center trace of chilled learning (DRL) L thermal transition
cooling and thermal . . . violations by 94.5-99% . ..
Wang et - water and direct architecture that is . modelling; additional
safety in the process . . relative to reward . .
al. [15] . expansion-cooled systems safety conscious, . computational cost is
of exploring . . . . shaping; enhanced 14% . .
. with two climate which combines . associated with
reinforcement . S more than Proportional- . .
. conditions. offline imitation .. rectification;
learning. . Integral-Derivative (PID)
learning
control under non-
uniform temperatures.

2.1 Research gap

Previous researches, such as Li et al. [12] did not provide
uniform execution and long-term statistics of the
performance of the hybrid DRL-based cooling
optimization. Mahbod et al. [13] were uncertain in
generalization and relied on a particular hybrid model. Lin
et al. [14] concentrated on single-unit temperature
prediction without coordinate action and the evaluation
using CFD simulations only. Wang et al. [15] framework
is very reliant on the quality and accessibility of the safe
historical operation data which might not be available in
all data centers. Comprehensively, this research is
incomplete to cover flexible, multi-unit cold source
control under dynamic workloads. This research fails to
provide dynamic workload multi-unit DRL framework
flexibility. Therefore, this research addresses these gaps
by introducing the AGTO-CDQN approach that provides
coordinated control of multiple cold source units and able
to flexibly respond to changing workloads.

3 Methodology

This section gives a detailed description of data collection
consisting of time-series temperature readings from
multiple zones of the DC site, where cooling source unit
power consumption and server workload data with CPU
utilization are also recorded. There are two cooling
systems with separate cooling units, a chiller system (C2)
and a direct expansion (DX) system (C1), both of which
use a cooling tower. Similar to most energy optimization
problem formulations, the focus is essentially to minimize
energy usage while ensuring thermal stability is
maintained within DC constraints. The AGTO-CDQN
model proposed in this research addresses cold source and
thermal control using dynamic optimization techniques,
with a specific emphasis on DRL and AGTO to achieve
energy savings and stabilized temperature. Figure 1
shows the overall structure of the suggested approach.
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Problem formulation

The cooling system’s control problem involves strict
temperature stability restrictions for energy cost
minimization, aiming to lower cooling units' usage while
maintaining optimal server performance and hardware
dependability

Performance evaluation
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Figure 1: Architecture of suggested method

3.1 Data collection

The data center cold source control dataset obtained from
Kaggle
(https://www.kaggle.com/datasets/programmer3/data-
center-cold-source-control-dataset), shows the
operational environment of a modern data center's cooling
system. It focuses on cold source group control, which
includes chillers and air handling units (AHUs), with the
goal of maximizing energy usage while preserving
temperature stability. The collection includes 3,498 time-
series data points, each representing one hour of
operation, with attributes such as server workload (%),
inlet and outlet temperatures (°C), ambient temperature
(°C), cooling unit power consumption (kW), chiller and
AHU usage percentages, energy cost ($), and temperature
deviation (°C).

3.2 Cooling system

Action Space: C1 and C2 in the target simulation model
include separate cooling systems: a chilled water (chiller)
for C2 and a DX for C1. The cooling tower provides cool
water to both cooling systems, although they use it
differently. The airflow in the DX system over the coils is
cooled by the cool water that flows through them. The
chiller system’s cool water is initially utilized to cool a
second stream of water, which cools the airflow that is
provided to the DC. Two different kinds of evaporative
coolers (EC): directive EC (DEC) and indirect EC (IEC)
cool the intake ambient airflow in the DX cooling system
before it overtakes the DX cooling coils and is sent to the
DC.

N. Lin et al.

3.3 Problem formulation

Strict temperature (T) stability restrictions are applied to
the control problem of the cooling system (C1 and C2),
which is presented as an energy (E) cost minimization
assignment. The objective is to lower the cooling units'
overall E usage while maintaining the DC environment
within the specified thermal range required for optimal
server performance and hardware dependability. The
dynamic and complex nature of the DC workloads and
environmental conditions means that traditional static or
rule-based control systems frequently fall short in terms
of efficiency and adaptability. This research suggests a
DRL based AGTO-CDQN approach to overcome this
difficulty. Using historical and real-time sensor data to
learn optimal actions, this method allows for intelligent,
real-time control of cold source groups, reducing energy
costs without sacrificing temperature regulation.

3.4 Controlled using Artificial Gorilla
Troops Optimizer-driven Controlled Deep Q-

Network (AGTO-CDQN)

The control strategy is based on an AGTO-CDQN, which
adds the AGTO to the CDQN, which integrates with DQN
and a revised action space output layer (discrete to
continuous). The hybrid approach also included the
attention mechanism in DQN, which helps the DQN focus
on the various relevant features of the states. The AGTO
can optimize coordination between all the cold source
units, while the attention-enhanced CDQN will maximize
control of power-saving cooling in a data center
application.

3.5 Controlled Deep Q-Network (CDQN)
The provided DC cooling control framework models cold
source group regulation as a Markov Decision Process
(MDP), defined by (r, b, Q, q, y). r indicates system
parameters (e.g., temperature, stress), b is the control
action set, Q reflects transition probability, g is the reward
(energy savings and temperature stability), and vy is the
discount factor. The action space b often includes the list
of activities that the agent can perform, such as altering
cooling units, turning on/off certain chillers, or changing
fan speeds. Improvement: By allowing the agent to select
between more discrete or continuous actions, the
granularity of actions could be increased. Instead of
simply turning on or off a cooling unit, could make room
for temperature and fan speed modifications. Using
continuous action spaces, which allow the agent to make
finer adjustments to the cooling settings, potentially
leading to a more effective control technique. A CDQN
represents the optimal action-value operating P(r, b) by
applying Deep Learning (DL) to high-dimensional state
spaces according to the Bellman Eq. (1).
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P(r,b) = Flg +y Q(r,r) max P(r',s")] )

The agent chooses behaviors that maximize
P(r,b) to conserve energy while maintaining thermal
thresholds efficiently. Where 7’ is the working state, b’ is
the next action, and the expected outcome is calculated
using the transition probabilities, q is reward and s is next
state, F represents function approximator,  produces
Probability of state transition, r defines system
parameters. Traditional Q-learning has scalability
concerns in significant state-action spaces, which are
characteristic of DC contexts. The solution integrates
deep learning into the Q-learning framework, resulting in
a parameterized approximationP(r,b | 8), where8
represents the neural network parameters. The
architecture of CDQN is a multi-layer neural network
with the input layer encoding the current condition,
including real-time heat, workload, and energy statistics.
Hidden Layers extract nonlinear features from complex
state-action mappings. The output layer provides P-
values for all conceivable control actions, with a
dimensionality equal to the action space. The agent selects
the action that yields the highest P-value in Eq. (2).

b, = arg max P(r, b|0) 2)

Here r , represents current state, b, stands action set, and
0 are network weights. To train the network, implement
the following loss function O in Eq. (3).

Ocoon(8;) = F[(x”%" — P(r,b16))?] 3)

Where Ocpgy loss minimizes the squared difference

N and predicted value, P, giving loss,

between target ijD
guiding parameter updates for accurate

approximation, 6 is set of trainable parameters.

Q-value

Attention layer: The CDQN framework uses an attention
mechanism to dynamically prioritize essential features
like temperature deviations, workload increases, and
cooling unit performance. This is achieved by providing
attention weights, which represent the significance of
each input in control decisions. These weights are learned
during training and applied to input data before further
processing. A common technique computes attention as
follows in Eq. (4).

Attention(P,],U) = softmax (\I;L_t) U 4
j

Where P is the query vector, | is the set of key vectors,
U is the set of value

vectors, and ¢;: the key vector dimension. PJ ¢ presents
the transformed interaction between the input feature
matrix P and the learned weight matrix J, producing
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attention scores before normalization. The technique
improves the CDQN's ability to focus on context-relevant
inputs, resulting in higher control precision and energy
efficiency in DC cooling. AGTO-CDQN optimizes cold
source group control by merging deep Q-learning,
attention, and AGTO, resulting in adaptive, energy-
efficient decisions based on a dynamic DC environment.

Artificial Gorilla Troops Optimizer (AGTO)

AGTO 1is used to optimize exploration and feature
priorities, allowing successful coordination of a variety of
cooling units. It achieves the optimal use of energy and
helps to sustain the thermal stability, enhancing the
efficiency and reliability of data center cooling in general.
The proposed intelligent control method combines DLR
and AGTO to reduce energy usage in DC cooling systems.
AGTO, inspired by gorillas' social behavior, encourages
exploration and exploitation. The actor-critic architecture
dynamically regulates cold source units, such as chillers
and air handling systems to maintain consistent thermal
stability.

Exploration: In the AGTO, each gorilla represents a
possible cooling unit control method. The best-
performing solution serves as the silverback. During
exploration, potential solutions (gorillas) adapt by
migrating to new or recognized regions or merging with
others, increasing search diversity. The position of a
gorilla is changed HY (t + 1) using the following rule in

Eq. (5).

HY(t+1) =
(VA — 04) x 5, + OA. ifrand < P
(s, = D) x Ys(t) + 0 X G, ifrand = 0.5
Y(£) - 0 x (0 x (Y(6) — HYs(8) + 55 x (Y(£) — HYS(t))),ifrand <05
&)
Where: HY (t + 1):  Updated position vector.Y (t):
Current  location.VA,0A:  Upper and  lower

boundaries.Y; (t), HY, (t): Locations of randomly selected
gorillas,s;, 5,53 rand [0, 1]: Random values, D, O, and G
are calculated as Egs. (6-7).

It
maxIt

D=1Lx(1-=2),6 = cos(2s) +1 (6)

O0=Dxo0,G=XxY(t),Xe[-D,D],0e[—1,1] (7

D: control Parameter, L: fluctuating factor calculated from
a cosine function and influenced by the random variable
s4€[0,1]. It: Current iteration of the optimization process.
MaxlIt: Total current number of iterations. O: Direction
and magnitude adjustment term from D, G: Applying a
perturbation factor to position Y (t) could help diversify
search pathways.o: A randomly determined scalar is used
to compute O. while X scales the movement of the current
solutionY (t). This phase ensures a wide range of control
options for optimal energy-saving cooling arrangements.
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Exploitation: The AGTO-CDQN for DC Cooling Control
in the AGTO exploitation phase, two strategies are used
to fine-tune control actions for cold source units:
following the silverback (best current solution) and
competing for leadership (intensified search). The
coefficient D affects the actions of gorilla groups and can
be calculated as follows in Eq. (10). If C = Z, gorilla
agents (control candidates) follow the silverback (current
optimal control policy) in Eq. (8).

HY(t + 1) =0.N. (Y(t) - Ysilverback) + Y(t) )

Ysitvervack: The best-performing control policy. O =
D.o, withoe[-1,1].N = %Z};l HY;(t): The average
influence of all control agents.C < Z, competition arises

to question the best strategy and investigate alternatives
in Eq. (9).

HY () = Ysiwervack — YVsiwerback-P — Y¢- P). B, P =
2ss—1,B=¢.F )

In Equation (9), HY(j) is the updated position of a
candidate solution relative to the best solution Yg;perback
, adjusted by the difference in positions and scaled by
factor B. Here, P = 2ss5 — 1 introduces randomness Sg
, and B = €. F represents a scaling term with €as a
random coefficient and F as the control factor guiding
exploration.

The proposed AGTO-CDQN hybrid model integrates a
CDQN with AGTO to enhance energy-efficient cooling
control in DC. CDQN uses DQN and attention
mechanisms to make precise control decisions, while
AGTO optimizes exploration and hyperparameters. This
hybrid approach dynamically manages cooling units,
significantly reducing energy consumption and ensuring
temperature stability under varying workloads for
improved DC performance. Algorithm 1 represents the
working procedure of proposed AGTO-CDQN model.
Table 2 defines the hyperparameters of the AGTO-CDQN
method.

Table 2: Configuration of hyperparameters

N. Lin et al.

Number of convolutional | 2,3

layers

Attention heads 4,8
Population size (AGTO) 20, 30, 50
Maximum iterations (AGTO) | 50, 100

Algorithm 1: AGTO-CDQN

Step 1: Initialize Environment
Load DC simulator
Normalize inputs to [0,1].
Step 2: Define Action Space
Discrete: {chiller on/off, fan states}.
Continuous: {fan speed, temperature setpoints}.
Step 3: Initialize CDQN and AGTO
Initialize Q-network P(r, b|6;)), target network, replay
buffer B.
Define hyperparameters «, y, €.
Initialize gorilla population, silverback = best candidate.
Step 4: Training Loop
For each episode:
Observe state r
If rand < &: choose random action
Else: choose b, = arg ml?xP(rt, b|8)

Execute action, get reward
CDQN Update
Compute target:
y Q(r, 1) rr%axP(r’, s)]
Update loss: Ocpon(6;) = F[(x]-DDQN — P(r,b]6)))?]
Apply Attention(P,],U) =
Pt
softmax (—) U
femax (G
AGTO Update
If rand < 0.5:update HY (t + 1)

D:Lx(l— It ),G=cos(254)+1

maxIt

P(r,b) = F[q +

attention ~ weighting:

Else:

IfHY (t+1) = 0.N.(Y(t) = Ysiwervack) + Y (£)
Update silverback = best-performing solution.
Step 5: Termination

Stop when loss converges or MaxIt reached.

Hyperparameters Typical values Return optimized control policy for real-time

Hidden units per dense layer 128, 256, 512 deployment.

Epochs 100, 200

Dropout rate 03,05 4 Result and discussion

Optimizer Adam, AGTO Compare the results with existing methods vs proposed

Batch size 32, 64,128 methods to optimize important parameters IT Power

Learning rate 0.001, 0.0005, consumption, cooling power consumption, total power
0.0001 consumption, average Zone air Temperature and savings,

Discount factor (y) 0.95,0.99 while maintaining acceptable temperature restrictions and

Exploration rate (¢) 0.1 — 0.01 (decay) efficient operation throughout the monitoring period.

Number of convolutional | 32, 64

filters

Activation function ReLU, Leaky ReLU
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4.1 Experimental setup

The AGTO-CDQN framework was developed effectively
that optimizing cold source control for energy-efficient,
thermally stable data centers and the framework is
implemented in Python 3.11. All experiments were
performed on a work station with the NVIDIA RTX 3090
GPU, 64 GB of RAM, and an Intel Core i9-12900K
processor. To reproducibly and reliably obtain
performance evaluation, the model training and
evaluation had been conducted under various conditions.

4.2 Comparative performance evaluation
The performance of the AGTO-CDQN model was
compared with the deep deterministic policy gradient
(DDPG) [15] algorithm based on four performance
indicators. Utilized together, these performance
indicators assess the AGTO-CDQN model's ability to
minimize energy consumption while working to maintain
thermal stability within the data center. The results of this
comparison indicate that the proposed AGTO-CDQN
model improves energy efficiency and successfully
controls data center temperatures. In Figure (1-4), the
proposed AGTO-CDQN method is represented as blue,
and the DDPG represents green. Triangles with lines
represent the saving percentages.

Table 3 shows the amount of electricity used by IT at
various target temperatures (TC). At TC = 24°C, the
AGTO-CDQN uses 77 kW and saves 24% of the energy,
whereas DDPG uses 79 kW and saves 23%. All
temperature settings reveal that the suggested approach is
consistently marginally more efficient, demonstrating its
capacity to lower server-side energy use without
sacrificing performance. These comparisons were
graphically illustrated in Figure 2.

=DDPG [15] IT Power Consumption

ZAGTO-CDQN [Proposed] IT Power Consumption
DDPG [15] Power Saving

-+AGTO-CDQN [proposed] Power Saving

g 100 30
S 80 _ 25 o
§ 60 % % ’20 g
o 40 é o f10 8
g )
= 0 __ é 2 L o

20 22 24

Target Setpoint (°C)

Figure 2: IT power consumption and savings
comparison of models
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Table 3: IT power consumption and savings

TC | DDPQ[1 AGTO- | DDPQ[1 AGTO-
(°C 5] CDQN 5] CDQN
) (kW) [Propose Saving [Propose
d] (%) d]
kW) Saving
(%0)

20 | 76 74 25 28.5

21 | 74 70 26.5 25.5

22 |75 73 27 25

23 | 77 75 26 24.5

24 | 79 77 23 24

AGTO-CDQN performs better than DDPG in terms of
cooling power consumption (Table 2). In contrast to
DDPG, which uses 47.1 kW and saves 10%, the suggested
model uses 45.1 kW of cooling electricity at TC = 24°C,
saving 15%. This illustrates how well the model works to
dynamically control the cold source units for the best
possible energy use. Figure 3 and table 4 give the
comparison of the models for these metrics.

mDDPG [15] Cooling Power Consumption
ZAGTO-CDQN [Proposed] Cooling Power Consumption
DDPG [15] Power Saving

§ -+AGTO-CDQN [Proposed] Power Saving

<100 50

c

8

B 80 -4
3 x
5 e
c 60 - 30
9 5
4] ]
§ 40 L2 @
H ]
Q 3
o 20 -0 £
£

S 9 / / /A

0 20 21 2 3 24

Target Setpoint (°C)
Figure 3: Cooling Power consumption and savings
comparison of models

Table 4: Cooling Power consumption and savings

TC | DDPG[15] AGTO- DDPG[15] AGTO-
(°0) (kW) CDQN Saving CDQN
[Proposed] (%) [Proposed]
(kW) Saving (%)
20 48 46 24.5 30
21 47 45 20.1 25
22 46.5 44.5 10.8 15.8
23 46.8 44.8 10.3 15.5
24 47.1 45.1 10 15
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When combining cooling and IT energy (Total power
consumption), the AGTO-CDQN uses 125 kW of power
at 24°C, saving 23%, more than DDPG, which uses 130
kW and saves 20%. The overall reduction is consistent,
demonstrating the AGTO-CDQN's comprehensive
strategy for system-wide energy optimization (Table 4).
Figure 4 and table 5 provide the comparison of the model
with these metrics.

=IDDPG [15] Total Power Consumption
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Figure 4: Total power consumption and savings
comparison of models

Table 5: Total power consumption and savings

AGTO- DDPG AGTO-
TC D[Il);)]G CDQN [15] CDQN
(°0O) (kW) [Proposed] | Saving | [Proposed]
(kW) (%) Saving (%)
20 123 120 23 25
21 120 115 25 30
22 121 118 23 25
23 128 120 21.1 24
24 130 125 20 23

AGTO-CDQN maintains an average zone air temperature
of 23.0°C, which is closer to the objective than DDPG's
23.5°C, demonstrating the thermal regulation capability
at TC = 24°C (Table 4). This suggests better temperature
stability and more accurate environmental condition
control in the data center. The comparison was
graphically illustrated in Figure 5 and Table 6.
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Figure 5: Average zone air temperature between models

Table 6: Average zone air temperature

TC o AGTO-CDQN [Proposed]
°0) DDPG[15] (°C) ¢0)
20 19.8 19.5
21 21.2 20.0
22 21.8 21.5
23 23.2 22.8
24 23.5 23.0

4.3 Dataset comparison

The AGTO-CDQN framework was tested on the Data
Center Cold Source Control dataset and the Chiller
Energy Data dataset [16], which tests the generalization
between various cooling environments. Both datasets
have been divided into 20% testing and 80% training sets
to support robustness. The utilized metrics are IT power,
the cooling power, the total power, and the average zone
temperature. Table 7 provides the comparative dataset
performance.

Table 7: Performance comparison of AGTO-CDQN
across two datasets

. Cold Source Control Chiller Energy
Metrics Data Dataset
Dataset [Proposed]
[16]
IT Power
Consumption (kW) 70 %0
Cooling Power
(kW) 50 75
Total Power (kW) 110 160
Average Zone
Temperature (°C) 230 233
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Table 7 reveals that Data Center Cold Source Control
dataset has an IT power consumption of 70 kW and
cooling power of 50 kW on the Cold Source Control
dataset, which is against 90 kW and 75 kW respectively,
on the Chiller Energy Data dataset [16]. The Cold Source
Control dataset and Chiller Energy Data dataset [16] have
a total power usage of 110 and 160 kW. The average zone
temperature provides 23.0 °C and 23.5 °C. Therefore, the
proposed Data Center Cold Source Control dataset
performance is significantly lowered in all metrics
compared to the Chiller Energy Data dataset [16].

4.4 Training stability

It is the convergence of this model among several runs
without significant variation in loss or reward. It
guarantees healthy energy optimization and consistent
cooling in the data centers. The model converges stable
with reducing residual error and increases stability with
an increase in iteration, as seen in Figure 6.
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Figure 6: Convergence behavior of AGTO-CDQN
across training episodes.

The convergence plot shows that the AGTO-CDQN
model continuously reduces loss and gradually increases
the average reward and remaining stable across various
random seeds. This indicates stable learning and strong
performance throughout the training episodes.

Training the AGTO-CDQN model is computationally
intensive and require more time to converge when
performed offline. However, once trained, the inference
pipeline is light-weight, as only forward passes through
the neural network are required to choose actions. This
makes the model suitable for real-time in the data center
environment.

4.5 Statistical analysis

The research additionally provides the statistical analysis
that concentrates on the comparison between the
effectiveness of the AGTO-CDQN framework and the
baseline DDPG technique. A paired-sample t-test was
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implemented to test the same workload and temperature
condition.

4.6 Paired sample t-test

The paired sample t-test compares the average of two
related groups with the same conditions to test whether
there is significant variation. It compares AGTO-CDQN
with DDPG to directly support the goal of optimizing data
center cooling directly. The mathematical representation

of paired sample t-test is represented in equation (1).
D

LTS

_ M
Where D =mean of the differences between paired
values, SD= standard deviation of the differences, n =
number of paired samples. The results of the comparative
statistics of AGTO-CDQN and DDPG are presented in
Table 8.

Table 8: Comparative performance with statistical
significance testing

Std Std
Metric | Mea | - [ 95% | Mea | . | 95% V‘;“
n De CI n De CI R
V. V.
101.
IT Power [78.0 104, [ 8, <00
Consumpt | 80.2 | 6.1 s 7 7.5 107 01
ion (kW) 82.4] 6] '

Cooling [46.0 [50.8 0.00
Power 475 | 42 R 52.8 | 5.0 R '2
(kW) 49.0] 54.8]

[126. [156.
PTOO\:/*:r 128 | o | O [ 159 [ (| 3 | <00
(W) 5 131. 6 162. 01
0] 9]
Avg. Zone [22.7 [23.3 0.00
Temperatu | 22.9 | 0.6 N 236 | 0.9 ) '3
re (°C) 23.1] 23.9]

As seen in the table 8, AGTO-CDQN can significantly
decrease both IT power, cooling power and the total
power consumption relative to the baseline and all p-
values are less than 0.05. The confidence intervals show
that there are uninterrupted enhancements of energy
metrics. Furthermore, AGTO-CDQN has a reduced and
more constant average zone temperature, which
guarantees thermal security as well as energy efficiency.

4.7 Ablation study

The ablation study is performed to show the performance
of the data, CDQN and AGTO. The accuracy of the
methods in the ablation study is presented in Table 9. The
combination of AGTO-CDQN has the best accuracy,
which proves the complementary power of both elements.
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Table 9: Ablation study showing accuracy improvements
across methods

Method Accuracy
(%)

Data Center Cold Source Control | 85.0
dataset
Data Center Cold Source Control | 87.5
dataset + CDQN
Data Center Cold Source Control | 88.2
dataset + CDQN + attention mechanism
Data Center Cold Source Control | 91.5
dataset + CDQN + attention mechanism
+ AGTO [Proposed]

The outcomes indicate that the accuracy is increased from
85.0% to 91.5%, and the highest accuracy is 91.5%
attained for a combined whole approach. This shows that
the combined proposed AGTO-CDQN provides the best
performance.

S Discussion

The research developed a hybrid AGTO-CDQN
framework that reduces the energy usage in cooling data
centers and maintains constant thermal conditions. DDPG
[15] has some drawbacks, such as limited exploration
power resulting in early convergence, non-hierarchical
weights on input features, prerecorded priority on key
variables such as workload peaks or temperature
variations, limited scalability to highly dynamic
workloads, and limited co-ordination of multiple cold
source units. The proposed AGTO-CDQN approach
solves these gaps with the improvement of exploration via
AGTO, an attention mechanism dedicated to prioritizing
important features, and coordination of several cold
sources to control the system-wide performance. The
AGTO-CDQN was always able to perform better than
DDPG because it was more adaptive, and more accurate
temperature control, along with consumes less energy. In
practical considerations, the framework gives data center
operators a rational method to reduce the cost of operation
and environmental impact; it offers deployment in a
variety of workloads and environmental circumstances
and offers a scaling entry to sustainable and energy
efficient data center management.

6 Conclusion

The proposed AGTO-CDQN method intends to reduce
energy consumption in DC cooling systems by
dynamically optimizing control actions while maintaining
temperature restrictions through DRL. The results show
that AGTO-CDQN considerably increases the power
saving above 15% for IT power consumption, cooling
power consumption, total power consumption, and
average zone air temperature. The AGTO-CDQN
approach includes disadvantages, such as high processing
needs, susceptibility to noisy or missing data, difficulties
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with real-time deployment, and potential performance
degradation in highly dynamic or previously unplanned
DC operating circumstances. Future directions for
AGTO-CDQN include generalizing the approach to a
multi-objective optimization framework, aimed not only
at maximizing energy efficiency, but also at minimizing
cooling latency, component wear, and carbon footprint.
Trade-offs among those can be explored systematically
by use of the Pareto front analysis. This will increase the
strength and practical applicability of the model to real
world data centers. It has potential applications in future
work to optimize training efficiency and to lower the cost
of computation to increase scalability.
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