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Cooling systems in data centers signify a major share of overall energy consumption, making their 

effectual control essential for lowering costs and reducing environmental effect. Existing Deep 

Reinforcement Learning (DRL) approaches, such as Deep Deterministic Policy Gradient (DDPG), show 

restrictions in flexibility under dynamic workloads and lack the capability to organize multiple cold source 

units, which restricts their efficiency. The research aims to develop a hybrid optimization framework that 

reduces energy consumption while preserving thermal stability in data center operations. The framework 

gathers a cold source control dataset from Kaggle, which contains 3,498 hourly time-series records 

covering server workload, temperature parameters, cooling power consumption, chiller and Air Handling 

Unit (AHU) usage, energy cost, and temperature deviation. The proposed Artificial Gorilla Troops 

Optimizer-driven Controlled Deep Q-Network (AGTO-CDQN) integrates an attention-enhanced CDQN 

with the Artificial Gorilla Troops Optimization (AGTO) to strengthen feature prioritization, exploration, 

and multi-unit coordination. Experimental outcomes illustrates that a target temperature of 24 °C, AGTO-

CDQN achieved 77 kW IT power consumption (24% saving vs. 23% with DDPG), 45.1 kW cooling power 

(15% saving vs. 10% with DDPG), and 125 kW total power (23% saving vs. 20% with DDPG), while 

maintaining an average zone air temperature of 23.0 °C compared to 23.5 °C with DDPG. The results 

confirm that AGTO-CDQN dependably distributes efficacy developments above 15% across all metrics, 

representing higher flexibility and coordination, and highlighting its potential for practical application in 

energy-efficient data center cooling management. 

Povzetek: Raziskava predstavi hibridni pristop z globokim okrepljenim učenjem in metaoptimizacijo za 

usklajeno vodenje več hladilnih enot v podatkovnih centrih, ki ob ohranjanju temperaturne stabilnosti 

dodatno zmanjša porabo energije v primerjavi z obstoječimi DRL metodami. 

 

1 Introduction 

Cloud computing's (CC) explosive expansion has enabled 

a variety of uses, such as web search, scientific 

computing, and bioinformatics. Data centers (DCs) allow 

effective large-scale resource management that is 

accessible over the internet by centralizing computing 

resources and using virtualization to create multiple 

virtual machines [1]. DCs are a major source of energy 

consumption and carbon emissions worldwide. Lowering 

power consumption and reducing environmental impact 

requires optimization of cooling and information 

technology (IT) systems [2]. Large DCs' cooling systems 

use between 30 and 40 percent of their energy. That is 

more cost-effective to reduce cooling energy than server-

side energy use. An important, challenging industrial 

problem is effectively managing air conditioners and 

chillers to preserve thermal safety while conserving 

energy [3]. DCs can use less energy by switching from 

mechanical refrigeration to natural cooling methods like 

direct or indirect evaporative cooling. The viability of the 

method, which has been proven to be effective over 5500 

cooling hours a year, is dependent on humidification 

expenses and is less appropriate for areas with low dew 

point temperatures [4]. Complex cyber-physical systems 

with high power densities, such as cloud DCs, produce 

enormous amounts of heat, making effective energy 

management difficult. Despite possible efficiency gains, 

manual tuning is impractical because of the billions of 

configuration options, which complicates resource 

management and affects cost savings and carbon footprint 

reduction [5].  
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Existing Deep Reinforcement Learning (DRL) methods, 

such as Deep Deterministic Policy Gradient (DDPG), 

struggle to adapt effectively to highly dynamic server 

workloads, limiting their responsiveness under 

fluctuating operational conditions. 

It is also ineffective at coordinating between more than 

two cooling units, lowering the overall potential of energy 

savings. Also, the prioritization of features is inadequate 

and prevents the model from concentrating on factors that 

are the most important in controlling the cooling, which 

limits performance further. The proposed Artificial 

Gorilla Troops Optimizer-driven Controlled Deep Q-

Network (AGTO-CDQN) overcomes these limitations by 

incorporating attention mechanisms and the Artificial 

Gorilla Troops Optimization (AGTO) allows prioritizing 

features, better exploring, and coordinating the control of 

numerous cooling units. This combination provides 

greater flexibility, increased thermal management, and 

major energy savings to data center operations. 

The aim of this research is to create an energy-efficient 

cooling control approach for DCs that uses a proposed 

AGTO-CDQN model to optimize cold source unit 

operations. The intention is to reduce energy costs while 

preserving temperature stability by using real-time and 

historical sensor data to make dynamic decisions. 

 The research paper is organized as follows: 

Section 1 deals with the introduction of research. Section 

2 describes the related work. Section 3 displays a 

complete methodology. Section 4 concentrates on the 

experimental results and discussions, while Section 5 

concludes. 

 

Research question 
1. Can the proposed AGTO-CDQN framework 

achieve higher energy efficiency than 

conventional DRL approaches such as DDPG 

while ensuring stable thermal conditions in data 

centers? 

2.  Does the integration of the AGTO with an 

attention-enhanced CDQN improve exploration 

dynamics and adaptability under variable 

workloads and environmental conditions?  

3. Can AGTO-CDQN effectively coordinate 

multiple cold source units simultaneously to 

optimize system-wide cooling performance and 

energy savings? 

 

2 Related work 
Zhu et al. optimized DCs' chillers and cold-water storage 

systems to maximize cooling energy efficiency while 

lowering expenses and electricity usage. Utilizing mixed-

integer linear programming (MILP), a sophisticated 

model predictive control (MPC) was created to control 

chillers and cold-water storage; that was verified through 

yearly simulations and field testing. The MPC approach 

decreased cooling energy by 5.8%, decreased power 

usage effectiveness (PUE) by 0.013, increased coefficient 

of performance (COP) by 1.96, and decreased annual 

power expenses by 21%; however, the result was sensitive 

to partial load variations and model mismatches [6]. Lee 

et al. created a thermal management plan that makes use 

of overhead cooling and cold aisle confinement; verify 

that using computational fluid dynamics (CFD) and 

airflow measurements; and assess cooling effectiveness 

for energy-efficient container DCs in tropical and 

subtropical areas. Achieved a low average PUE of 1.38, 

surpassing industry standards; showed efficient thermal 

and airflow control; however, model reliance on precise 

CFD inputs and site-specific environmental variables 

were limitations [7]. Table 1 shows the summary of the 

literature review. 

 

Table 1: Comparative overview of optimization approaches for data center management 

Reference Objective Dataset Method Results Limitations 

Dakić et 

al. [8] 

Improve 

performance and 

energy efficiency of 

HPC workload 

placement 

 High-Performance 

Computing (HPC) 

workload traces 

Machine Learning 

(ML)-based 

dynamic 

scheduling, 

automatic 

Kubernetes setup 

Increased workload 

scheduling speed and 

cluster placement 

accuracy; 

Hardware integration 

complexity; need for 

additional ML model 

tuning 

Liu et al. 

[9] 

Solve cold-start 

recommendation in 

tourist cities 

Tourist city 

recommendation datasets 

Meta-learning, 

attention-based 

feature mining, 

dynamically 

weighted 

collaborative 

filtering 

Outperforms Content-

Based Recommendation 

(CBR), Collaborative 

Filtering (CF), 

High complexity; 

requires careful tuning; 

computationally 

intensive 

Mehor et 

al. [10] 

Minimize 

virtualized cloud 

data centre energy 

consumption and 

reduce Service 

Level Agreement 

(SLA) breaches 

Simulated cloud DC 

workloads with SLA 

metrics 

Adaptive Genetic 

Algorithm (GA) 

and threshold-

based 

preprocessing; 

Reduced execution time, 

energy consumption, SLA 

breach, and cooling 

energy requirement 

Simulation-only 

validation; practical 

scalability and 

heterogeneity issues 

with real cooling system 

integration 
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Al-Najari 

et al. [11] 

Optimize pH 

regulation in 

cooling towers with 

improved transient 

response and 

accuracy 

Cooling tower 

experimental/simulated 

data 

Adaptive Neuro-

Fuzzy Inference 

System (ANFIS) 

with Particle 

Swarm 

Optimization 

(PSO) 

Achieved RMSE = 

0.0081; rise time = 

0.5863 s; settling time = 

1.4867 s; overshoot = 

2.7958%; peak = 7.6548 

Based on 

analytical/simulation 

studies; requires 

validation in real-world 

cooling towers; 

dependent on data 

quality 

Li et al. 

[12] 

Evaluate adoption 

of energy-saving 

technologies in data 

centers 

Tropical-region data center 

environmental and 

workload data 

Hybrid DC model 

with Deep 

Reinforcement 

Learning (DRL) 

Effective cooling setpoint 

optimization; green 

technology adoption 

beneficial 

Inconsistent 

implementation; lack of 

long-term performance 

statistics 

Mahbod et 

al. [13] 

Reduce energy 

expenses with 

dynamic cooling 

Data center workload 

traces with cooling energy 

measurements 

Model-free RL 

with adaptive 

cooling setpoints 

Achieved 3–5.5% energy 

savings, mainly via 

reduced server fan usage 

Limited generalization; 

dependency on specific 

hybrid model 

Lin et al. 

[14] 

Predict temperature 

in steady and 

transient data center 

settings 

CFD (Computational Fluid 

Dynamics) simulation data 

for DC thermal profiles 

Compared six 

ML-based thermal 

models: Process 

Regression 

(GPR), Extreme 

Gradient Boosting 

(XGBoost), 

XGBoost and LightGBM 

achieved robust 

predictions with RMSE < 

1 °C 

Not designed for multi-

unit coordination; 

evaluation limited to 

CFD simulations 

Wang et 

al. [15] 

Enhance efficiency 

of data-center 

cooling and thermal 

safety in the process 

of exploring 

reinforcement 

learning. 

Operating history trace and 

data center trace of chilled 

water and direct 

expansion-cooled systems 

with two climate 

conditions. 

Deep 

reinforcement 

learning (DRL) 

architecture that is 

safety conscious, 

which combines 

offline imitation 

learning  

Enhanced total power 

savings up to 18-26.6% 

relative to traditional 

control; cut safety 

violations by 94.5-99% 

relative to reward 

shaping; enhanced 14% 

more than Proportional-

Integral-Derivative (PID) 

control under non-

uniform temperatures. 

Leverages correct 

thermal transition 

modelling; additional 

computational cost is 

associated with 

rectification;  

  

2.1  Research gap 
Previous researches, such as Li et al. [12] did not provide 

uniform execution and long-term statistics of the 

performance of the hybrid DRL-based cooling 

optimization. Mahbod et al. [13] were uncertain in 

generalization and relied on a particular hybrid model. Lin 

et al. [14] concentrated on single-unit temperature 

prediction without coordinate action and the evaluation 

using CFD simulations only. Wang et al. [15] framework 

is very reliant on the quality and accessibility of the safe 

historical operation data which might not be available in 

all data centers. Comprehensively, this research is 

incomplete to cover flexible, multi-unit cold source 

control under dynamic workloads. This research fails to 

provide dynamic workload multi-unit DRL framework 

flexibility. Therefore, this research addresses these gaps 

by introducing the AGTO-CDQN approach that provides 

coordinated control of multiple cold source units and able 

to flexibly respond to changing workloads. 

 

 

 

 

 

 

 

 

 

 

3 Methodology 
This section gives a detailed description of data collection 

consisting of time-series temperature readings from 

multiple zones of the DC site, where cooling source unit 

power consumption and server workload data with CPU 

utilization are also recorded. There are two cooling 

systems with separate cooling units, a chiller system (C2) 

and a direct expansion (DX) system (C1), both of which 

use a cooling tower. Similar to most energy optimization 

problem formulations, the focus is essentially to minimize 

energy usage while ensuring thermal stability is 

maintained within DC constraints. The AGTO-CDQN 

model proposed in this research addresses cold source and 

thermal control using dynamic optimization techniques, 

with a specific emphasis on DRL and AGTO to achieve 

energy savings and stabilized temperature. Figure 1 

shows the overall structure of the suggested approach.  
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Figure 1: Architecture of suggested method 

 

3.1  Data collection 
The data center cold source control dataset obtained from 

Kaggle 

(https://www.kaggle.com/datasets/programmer3/data-

center-cold-source-control-dataset), shows the 

operational environment of a modern data center's cooling 

system. It focuses on cold source group control, which 

includes chillers and air handling units (AHUs), with the 

goal of maximizing energy usage while preserving 

temperature stability. The collection includes 3,498 time-

series data points, each representing one hour of 

operation, with attributes such as server workload (%), 

inlet and outlet temperatures (°C), ambient temperature 

(°C), cooling unit power consumption (kW), chiller and 

AHU usage percentages, energy cost ($), and temperature 

deviation (°C). 

 

3.2  Cooling system  
Action Space: C1 and C2 in the target simulation model 

include separate cooling systems: a chilled water (chiller) 

for C2 and a DX for C1. The cooling tower provides cool 

water to both cooling systems, although they use it 

differently. The airflow in the DX system over the coils is 

cooled by the cool water that flows through them. The 

chiller system’s cool water is initially utilized to cool a 

second stream of water, which cools the airflow that is 

provided to the DC. Two different kinds of evaporative 

coolers (EC): directive EC (DEC) and indirect EC (IEC) 

cool the intake ambient airflow in the DX cooling system 

before it overtakes the DX cooling coils and is sent to the 

DC. 

 

3.3  Problem formulation 
Strict temperature (T) stability restrictions are applied to 

the control problem of the cooling system (C1 and C2), 

which is presented as an energy (E) cost minimization 

assignment. The objective is to lower the cooling units' 

overall E usage while maintaining the DC environment 

within the specified thermal range required for optimal 

server performance and hardware dependability. The 

dynamic and complex nature of the DC workloads and 

environmental conditions means that traditional static or 

rule-based control systems frequently fall short in terms 

of efficiency and adaptability. This research suggests a 

DRL based AGTO-CDQN approach to overcome this 

difficulty. Using historical and real-time sensor data to 

learn optimal actions, this method allows for intelligent, 

real-time control of cold source groups, reducing energy 

costs without sacrificing temperature regulation. 

 

3.4  Controlled using Artificial Gorilla 

Troops Optimizer-driven Controlled Deep Q-

Network (AGTO-CDQN) 
The control strategy is based on an AGTO-CDQN, which 

adds the AGTO to the CDQN, which integrates with DQN 

and a revised action space output layer (discrete to 

continuous). The hybrid approach also included the 

attention mechanism in DQN, which helps the DQN focus 

on the various relevant features of the states. The AGTO 

can optimize coordination between all the cold source 

units, while the attention-enhanced CDQN will maximize 

control of power-saving cooling in a data center 

application. 

 

3.5  Controlled Deep Q-Network (CDQN) 
The provided DC cooling control framework models cold 

source group regulation as a Markov Decision Process 

(MDP), defined by ⟨r, b, Q, q, γ⟩. 𝑟 indicates system 

parameters (e.g., temperature, stress), 𝑏 is the control 

action set, 𝑄 reflects transition probability, 𝑞 is the reward 

(energy savings and temperature stability), and γ is the 

discount factor. The action space 𝑏 often includes the list 

of activities that the agent can perform, such as altering 

cooling units, turning on/off certain chillers, or changing 

fan speeds. Improvement: By allowing the agent to select 

between more discrete or continuous actions, the 

granularity of actions could be increased. Instead of 

simply turning on or off a cooling unit, could make room 

for temperature and fan speed modifications. Using 

continuous action spaces, which allow the agent to make 

finer adjustments to the cooling settings, potentially 

leading to a more effective control technique. A CDQN 

represents the optimal action-value operating 𝑃(𝑟, 𝑏) by 

applying Deep Learning (DL) to high-dimensional state 

spaces according to the Bellman Eq. (1). 

 

 

https://www.kaggle.com/datasets/programmer3/data-center-cold-source-control-dataset
https://www.kaggle.com/datasets/programmer3/data-center-cold-source-control-dataset
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𝑃(𝑟, 𝑏) = 𝐹[𝑞 + 𝛾 𝑄(𝑟, 𝑟′) max
𝑏′

𝑃(𝑟′, 𝑠′)]               (1) 

 

 The agent chooses behaviors that maximize 

𝑃(𝑟, 𝑏) to conserve energy while maintaining thermal 

thresholds efficiently. Where 𝑟′ is the working state, 𝑏′ is 

the next action, and the expected outcome is calculated 

using the transition probabilities, 𝑞 is reward and 𝑠 is next 

state, 𝐹 represents function approximator, 𝑄 produces 

Probability of state transition, 𝑟 defines system 

parameters. Traditional Q-learning has scalability 

concerns in significant state-action spaces, which are 

characteristic of DC contexts. The solution integrates 

deep learning into the Q-learning framework, resulting in 

a parameterized approximation𝑃(𝑟, 𝑏 | 𝜃), where 𝜃 

represents the neural network parameters. The 

architecture of CDQN is a multi-layer neural network 

with the input layer encoding the current condition, 

including real-time heat, workload, and energy statistics. 

Hidden Layers extract nonlinear features from complex 

state-action mappings. The output layer provides 𝑃-

values for all conceivable control actions, with a 

dimensionality equal to the action space. The agent selects 

the action that yields the highest 𝑃-value in Eq. (2). 

 

𝑏𝑡 = 𝑎𝑟𝑔 max
𝑏

𝑃(𝑟𝑡 , 𝑏|𝜃)                 (2) 

 

Here 𝑟 𝑡 represents current state, 𝑏𝑡 stands action set, and 

θ are network weights.  To train the network, implement 

the following loss function 𝑂 in Eq. (3). 

 

𝑂𝐶𝐷𝑄𝑁(𝜃𝑗) = 𝐹[(𝑥𝑗
𝐷𝐷𝑄𝑁 − 𝑃(𝑟, 𝑏|𝜃𝑗))2]   (3) 

 

Where 𝑂𝐶𝐷𝑄𝑁 loss minimizes the squared difference 

between target 𝑥𝑗
𝐷𝐷𝑄𝑁  and predicted value, 𝑃𝑟  giving loss, 

guiding parameter updates for accurate Q-value 

approximation, 𝜃𝑗 is set of trainable parameters.  

Attention layer: The CDQN framework uses an attention 

mechanism to dynamically prioritize essential features 

like temperature deviations, workload increases, and 

cooling unit performance. This is achieved by providing 

attention weights, which represent the significance of 

each input in control decisions. These weights are learned 

during training and applied to input data before further 

processing. A common technique computes attention as 

follows in Eq. (4). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑃, 𝐽, 𝑈) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑃𝐽𝑡

√𝑐𝑗
) 𝑈                     (4) 

 

Where 𝑃 is the query vector, 𝐽 is the set of key vectors, 

𝑈 is the set of value 

 vectors, and 𝑐𝐽: the key vector dimension.  𝑃𝐽𝑡 presents 

the transformed interaction between the input feature 

matrix 𝑃  and the learned weight matrix 𝐽, producing 

attention scores before normalization. The technique 

improves the CDQN's ability to focus on context-relevant 

inputs, resulting in higher control precision and energy 

efficiency in DC cooling. AGTO-CDQN optimizes cold 

source group control by merging deep Q-learning, 

attention, and AGTO, resulting in adaptive, energy-

efficient decisions based on a dynamic DC environment. 

 

Artificial Gorilla Troops Optimizer (AGTO) 

AGTO is used to optimize exploration and feature 

priorities, allowing successful coordination of a variety of 

cooling units. It achieves the optimal use of energy and 

helps to sustain the thermal stability, enhancing the 

efficiency and reliability of data center cooling in general. 

The proposed intelligent control method combines DLR 

and AGTO to reduce energy usage in DC cooling systems. 

AGTO, inspired by gorillas' social behavior, encourages 

exploration and exploitation. The actor-critic architecture 

dynamically regulates cold source units, such as chillers 

and air handling systems to maintain consistent thermal 

stability. 

Exploration: In the AGTO, each gorilla represents a 

possible cooling unit control method. The best-

performing solution serves as the silverback. During 

exploration, potential solutions (gorillas) adapt by 

migrating to new or recognized regions or merging with 

others, increasing search diversity. The position of a 

gorilla is changed 𝐻𝑌(𝑡 + 1) using the following rule in 

Eq. (5). 

 
𝐻𝑌(𝑡 + 1) =

{

(𝑉𝐴 − 𝑂𝐴) × 𝑠1 + 𝑂𝐴.                                                                        𝑖𝑓𝑟𝑎𝑛𝑑 < 𝑃
(𝑠2 − 𝐷) × 𝑌𝑠(𝑡) + 𝑂 × 𝐺,                                                                𝑖𝑓𝑟𝑎𝑛𝑑 ≥ 0.5

𝑌(𝑡) − 𝑂 × (𝑂 × (𝑌(𝑡) − 𝐻𝑌𝑠(𝑡)) + 𝑠3 × (𝑌(𝑡) − 𝐻𝑌𝑠(𝑡))) , 𝑖𝑓𝑟𝑎𝑛𝑑 < 0.5

 

      (5) 

 

Where: 𝐻𝑌(𝑡 + 1): Updated position vector.𝑌(𝑡): 

Current location.𝑉𝐴, 𝑂𝐴: Upper and lower 

boundaries.𝑌𝑠(𝑡), 𝐻𝑌𝑠(𝑡): Locations of randomly selected 

gorillas,𝑠1, 𝑠2𝑠3 rand [0, 1]: Random values, 𝐷, 𝑂, and G 

are calculated as Eqs. (6-7). 

 

𝐷 = 𝐿 × (1 −
𝐼𝑡

𝑚𝑎𝑥𝐼𝑡
) , 𝐺 = cos(2𝑠4) + 1   (6) 

 

𝑂 = 𝐷 × 𝑜, 𝐺 = 𝑋 × 𝑌(𝑡), 𝑋𝜖[−𝐷, 𝐷], 𝑜𝜖[−1,1]  (7) 

 

D: control Parameter, 𝐿: fluctuating factor calculated from 

a cosine function and influenced by the random variable 

𝑠4𝜖[0,1]. 𝐼𝑡: Current iteration of the optimization process. 

𝑀𝑎𝑥𝐼𝑡: Total current number of iterations. 𝑂: Direction 

and magnitude adjustment term from 𝐷, G: Applying a 

perturbation factor to position 𝑌(𝑡) could help diversify 

search pathways.𝑜: A randomly determined scalar is used 

to compute O. while 𝑋  scales the movement of the current 

solution𝑌(𝑡). This phase ensures a wide range of control 

options for optimal energy-saving cooling arrangements. 
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Exploitation: The AGTO-CDQN for DC Cooling Control 

in the AGTO exploitation phase, two strategies are used 

to fine-tune control actions for cold source units: 

following the silverback (best current solution) and 

competing for leadership (intensified search). The 

coefficient 𝐷 affects the actions of gorilla groups and can 

be calculated as follows in Eq. (10). If 𝐶 ≥ 𝑍, gorilla 

agents (control candidates) follow the silverback (current 

optimal control policy) in Eq. (8). 

 

𝐻𝑌(𝑡 + 1) = 𝑂. 𝑁. (𝑌(𝑡) − 𝑌𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) + 𝑌(𝑡)             (8) 

 

𝑌𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 : The best-performing control policy. 𝑂 =

 𝐷. 𝑜, with𝑜𝜖[−1,1]. 𝑁 =
1

𝑛
∑ 𝐻𝑌𝑗(𝑡)𝑛

𝑗=1 : The average 

influence of all control agents.𝐶 < 𝑍, competition arises 

to question the best strategy and investigate alternatives 

in Eq. (9). 

 

𝐻𝑌(𝑗) = 𝑌𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 − (𝑌𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 . 𝑃 − 𝑌𝑡 . 𝑃). 𝐵, 𝑃 =

2𝑠5 − 1, 𝐵 = 𝜀. 𝐹     (9) 

 

In Equation (9), 𝐻𝑌(𝑗) is the updated position of a 

candidate solution relative to the best solution 𝑌𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘

, adjusted by the difference in positions and scaled by 

factor 𝐵. Here, 𝑃 =  2𝑠₅ −  1 introduces randomness 𝑠5 

, and 𝐵 = 𝜀. 𝐹 represents a scaling term with 𝜀 as a 

random coefficient and 𝐹 as the control factor guiding 

exploration. 

 The proposed AGTO-CDQN hybrid model integrates a 

CDQN with AGTO to enhance energy-efficient cooling 

control in DC. CDQN uses DQN and attention 

mechanisms to make precise control decisions, while 

AGTO optimizes exploration and hyperparameters. This 

hybrid approach dynamically manages cooling units, 

significantly reducing energy consumption and ensuring 

temperature stability under varying workloads for 

improved DC performance. Algorithm 1 represents the 

working procedure of proposed AGTO-CDQN model. 

Table 2 defines the hyperparameters of the AGTO-CDQN 

method. 

Table 2: Configuration of hyperparameters  

Hyperparameters Typical values 

Hidden units per dense layer 128, 256, 512 

Epochs 100, 200 

Dropout rate 0.3, 0.5 

Optimizer Adam, AGTO 

Batch size 32, 64, 128 

Learning rate 0.001, 0.0005, 

0.0001 

Discount factor (γ) 0.95, 0.99 

Exploration rate (ε) 0.1 → 0.01 (decay) 

Number of convolutional 

filters 

32, 64 

Activation function ReLU, Leaky ReLU 

Number of convolutional 

layers 

2, 3 

Attention heads 4, 8 

Population size (AGTO) 20, 30, 50 

Maximum iterations (AGTO) 50, 100 

 

Algorithm 1: AGTO-CDQN 

Step 1: Initialize Environment 

Load DC simulator  

 Normalize inputs to [0,1]. 

Step 2: Define Action Space 

 Discrete: {chiller on/off, fan states}. 

Continuous: {fan speed, temperature setpoints}. 

Step 3: Initialize CDQN and AGTO 

 Initialize 𝑄-network 𝑃(𝑟, 𝑏|𝜃𝑗)), target network, replay 

buffer B. 

Define hyperparameters 𝛼, 𝛾, 𝜀. 

Initialize gorilla population, silverback = best candidate. 

Step 4: Training Loop 

 For each episode: 

Observe state 𝑟 

  If rand <  𝜀: choose random action  

Else: choose 𝑏𝑡 = 𝑎𝑟𝑔 max
𝑏

𝑃(𝑟𝑡 , 𝑏|𝜃) 

  Execute action, get reward  

CDQN Update 

  Compute target: 𝑃(𝑟, 𝑏) = 𝐹[𝑞 +

𝛾 𝑄(𝑟, 𝑟′) max
𝑏′

𝑃(𝑟′, 𝑠′)] 

 Update loss: 𝑂𝐶𝐷𝑄𝑁(𝜃𝑗) = 𝐹[(𝑥𝑗
𝐷𝐷𝑄𝑁 − 𝑃(𝑟, 𝑏|𝜃𝑗))2] 

Apply attention weighting: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑃, 𝐽, 𝑈) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑃𝐽𝑡

√𝑐𝑗
) 𝑈       

AGTO Update 

 If 𝑟𝑎𝑛𝑑 <  0.5: update 𝐻𝑌(𝑡 + 1)  

𝐷 = 𝐿 × (1 −
𝐼𝑡

𝑚𝑎𝑥𝐼𝑡
) , 𝐺 = cos(2𝑠4) + 1   

     

 Else: 

 If 𝐻𝑌(𝑡 + 1) = 𝑂. 𝑁. (𝑌(𝑡) − 𝑌𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) + 𝑌(𝑡)     

Update silverback = best-performing solution. 

Step 5: Termination 

Stop when loss converges or 𝑀𝑎𝑥𝐼𝑡 reached. 

Return optimized control policy for real-time 

deployment. 

 

4 Result and discussion 
Compare the results with existing methods vs proposed 

methods to optimize important parameters IT Power 

consumption, cooling power consumption, total power 

consumption, average Zone air Temperature and savings, 

while maintaining acceptable temperature restrictions and 

efficient operation throughout the monitoring period. 
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4.1  Experimental setup 
The AGTO-CDQN framework was developed effectively 

that optimizing cold source control for energy-efficient, 

thermally stable data centers and the framework is 

implemented in Python 3.11. All experiments were 

performed on a work station with the NVIDIA RTX 3090 

GPU, 64 GB of RAM, and an Intel Core i9-12900K 

processor. To reproducibly and reliably obtain 

performance evaluation, the model training and 

evaluation had been conducted under various conditions.  

 

4.2  Comparative performance evaluation 
The performance of the AGTO-CDQN model was 

compared with the deep deterministic policy gradient 

(DDPG) [15] algorithm based on four performance 

indicators. Utilized together, these performance 

indicators assess the AGTO-CDQN model's ability to 

minimize energy consumption while working to maintain 

thermal stability within the data center. The results of this 

comparison indicate that the proposed AGTO-CDQN 

model improves energy efficiency and successfully 

controls data center temperatures. In Figure (1-4), the 

proposed AGTO-CDQN method is represented as blue, 

and the DDPG represents green. Triangles with lines 

represent the saving percentages. 

Table 3 shows the amount of electricity used by IT at 

various target temperatures (TC).  At TC = 24°C, the 

AGTO-CDQN uses 77 kW and saves 24% of the energy, 

whereas DDPG uses 79 kW and saves 23%. All 

temperature settings reveal that the suggested approach is 

consistently marginally more efficient, demonstrating its 

capacity to lower server-side energy use without 

sacrificing performance. These comparisons were 

graphically illustrated in Figure 2. 

 

 
Figure 2:  IT power consumption and savings 

comparison of models 

 

 

 

 

Table 3:  IT power consumption and savings 

TC 

(°C

) 

DDPG[1

5] 

(kW) 

AGTO-

CDQN 

[Propose

d]  

(kW) 

DDPG[1

5] 

Saving 

(%) 

AGTO-

CDQN 

[Propose

d] 

Saving 

(%) 

20 76 74 25 28.5 

21 74 70 26.5 25.5 

22 75 73 27 25 

23 77 75 26 24.5 

24 79 77 23 24 

 

AGTO-CDQN performs better than DDPG in terms of 

cooling power consumption (Table 2). In contrast to 

DDPG, which uses 47.1 kW and saves 10%, the suggested 

model uses 45.1 kW of cooling electricity at TC = 24°C, 

saving 15%. This illustrates how well the model works to 

dynamically control the cold source units for the best 

possible energy use. Figure 3 and table 4 give the 

comparison of the models for these metrics.  

 

 
Figure 3: Cooling Power consumption and savings 

comparison of models 

 

Table 4: Cooling Power consumption and savings 
TC 

(°C) 

DDPG[15] 

(kW) 

AGTO-

CDQN 

[Proposed] 

(kW) 

DDPG[15] 

Saving 

(%) 

AGTO-

CDQN 

[Proposed] 

Saving (%) 

20 48 46 24.5 30 

21 47 45 20.1 25 

22 46.5 44.5 10.8 15.8 

23 46.8 44.8 10.3 15.5 

24 47.1 45.1 10 15 
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When combining cooling and IT energy (Total power 

consumption), the AGTO-CDQN uses 125 kW of power 

at 24°C, saving 23%, more than DDPG, which uses 130 

kW and saves 20%. The overall reduction is consistent, 

demonstrating the AGTO-CDQN's comprehensive 

strategy for system-wide energy optimization (Table 4). 

Figure 4 and table 5 provide the comparison of the model 

with these metrics. 

 
Figure 4: Total power consumption and savings 

comparison of models 

 

Table 5: Total power consumption and savings 

TC 

(°C) 

DDPG 

[15] 

(kW) 

AGTO-

CDQN 

[Proposed] 

(kW) 

DDPG 

[15] 

Saving 

(%) 

AGTO-

CDQN 

[Proposed] 

Saving (%) 

20 123 120 23 25 

21 120 115 25 30 

22 121 118 23 25 

23 128 120 21.1 24 

24 130 125 20 23 

AGTO-CDQN maintains an average zone air temperature 

of 23.0°C, which is closer to the objective than DDPG's 

23.5°C, demonstrating the thermal regulation capability 

at TC = 24°C (Table 4). This suggests better temperature 

stability and more accurate environmental condition 

control in the data center. The comparison was 

graphically illustrated in Figure 5 and Table 6.  

 
Figure 5: Average zone air temperature between models 

Table 6: Average zone air temperature 

TC 

(°C) 
DDPG[15] (°C) 

AGTO-CDQN [Proposed] 

(°C) 

20 19.8 19.5 

21 21.2 20.0 

22 21.8 21.5 

23 23.2 22.8 

24 23.5 23.0 

 

4.3 Dataset comparison 
The AGTO-CDQN framework was tested on the Data 

Center Cold Source Control dataset and the Chiller 

Energy Data dataset [16], which tests the generalization 

between various cooling environments. Both datasets 

have been divided into 20% testing and 80% training sets 

to support robustness. The utilized metrics are IT power, 

the cooling power, the total power, and the average zone 

temperature. Table 7 provides the comparative dataset 

performance. 

 

Table 7: Performance comparison of AGTO-CDQN 

across two datasets 

Metrics 
Cold Source Control 

Dataset [Proposed] 

Chiller Energy 

Data Dataset 

[16] 

IT Power 

Consumption (kW) 
70 90 

Cooling Power 

(kW) 
50 75 

Total Power (kW) 110 160 

Average Zone 

Temperature (°C) 
23.0 23.5 
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Table 7 reveals that Data Center Cold Source Control 

dataset has an IT power consumption of 70 kW and 

cooling power of 50 kW on the Cold Source Control 

dataset, which is against 90 kW and 75 kW respectively, 

on the Chiller Energy Data dataset [16]. The Cold Source 

Control dataset and Chiller Energy Data dataset [16] have 

a total power usage of 110 and 160 kW. The average zone 

temperature provides 23.0 °C and 23.5 °C. Therefore, the 

proposed Data Center Cold Source Control dataset 

performance is significantly lowered in all metrics 

compared to the Chiller Energy Data dataset [16].    

 

4.4  Training stability 
It is the convergence of this model among several runs 

without significant variation in loss or reward. It 

guarantees healthy energy optimization and consistent 

cooling in the data centers. The model converges stable 

with reducing residual error and increases stability with 

an increase in iteration, as seen in Figure 6. 

 

 
Figure 6: Convergence behavior of AGTO-CDQN 

across training episodes. 

 

The convergence plot shows that the AGTO-CDQN 

model continuously reduces loss and gradually increases 

the average reward and remaining stable across various 

random seeds. This indicates stable learning and strong 

performance throughout the training episodes. 

Training the AGTO-CDQN model is computationally 

intensive and require more time to converge when 

performed offline. However, once trained, the inference 

pipeline is light-weight, as only forward passes through 

the neural network are required to choose actions. This 

makes the model suitable for real-time in the data center 

environment. 

 

4.5  Statistical analysis 
The research additionally provides the statistical analysis 

that concentrates on the comparison between the 

effectiveness of the AGTO-CDQN framework and the 

baseline DDPG technique. A paired-sample t-test was 

implemented to test the same workload and temperature 

condition.  

 

4.6  Paired sample t-test 
The paired sample t-test compares the average of two 

related groups with the same conditions to test whether 

there is significant variation.  It compares AGTO-CDQN 

with DDPG to directly support the goal of optimizing data 

center cooling directly. The mathematical representation 

of paired sample t-test is represented in equation (1). 

 𝑡 =
𝐷̅

𝑆𝐷/√𝑛
     

      (1) 

Where  𝐷̅ = mean of the differences between paired 

values,  𝑆𝐷= standard deviation of the differences, 𝑛 = 

number of paired samples. The results of the comparative 

statistics of AGTO-CDQN and DDPG are presented in 

Table 8. 

 

Table 8: Comparative performance with statistical 

significance testing 

Metric 
Mea

n  

Std

. 

De

v. 

95% 

CI  

Mea

n  

Std

. 

De

v. 

95% 

CI  

p-

valu

e 

IT Power 

Consumpt

ion (kW) 

80.2 6.1 

[78.0

, 

82.4] 

104.

7 
7.5 

[101.

8, 

107.

6] 

<0.0

01 

Cooling 

Power 

(kW) 

47.5 4.2 

[46.0

, 

49.0] 

52.8 5.0 

[50.8

, 

54.8] 

0.00

2 

Total 

Power 

(kW) 

128.

5 
6.9 

[126.

0, 

131.

0] 

159.

6 
8.7 

[156.

3, 

162.

9] 

<0.0

01 

Avg. Zone 

Temperatu

re (°C) 

22.9 0.6 

[22.7

, 

23.1] 

23.6 0.9 

[23.3

, 

23.9] 

0.00

3 

 

As seen in the table 8, AGTO-CDQN can significantly 

decrease both IT power, cooling power and the total 

power consumption relative to the baseline and all p-

values are less than 0.05. The confidence intervals show 

that there are uninterrupted enhancements of energy 

metrics. Furthermore, AGTO-CDQN has a reduced and 

more constant average zone temperature, which 

guarantees thermal security as well as energy efficiency. 

 

4.7  Ablation study 
The ablation study is performed to show the performance 

of the data, CDQN and AGTO. The accuracy of the 

methods in the ablation study is presented in Table 9. The 

combination of AGTO-CDQN has the best accuracy, 

which proves the complementary power of both elements. 
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Table 9: Ablation study showing accuracy improvements 

across methods 

Method Accuracy 

(%) 

Data Center Cold Source Control 

dataset 

85.0 

Data Center Cold Source Control 

dataset + CDQN 

87.5 

Data Center Cold Source Control 

dataset + CDQN + attention mechanism 

88.2 

Data Center Cold Source Control 

dataset + CDQN + attention mechanism 

+ AGTO [Proposed] 

91.5 

The outcomes indicate that the accuracy is increased from 

85.0% to 91.5%, and the highest accuracy is 91.5% 

attained for a combined whole approach. This shows that 

the combined proposed AGTO-CDQN provides the best 

performance. 

 

5  Discussion 
The research developed a hybrid AGTO-CDQN 

framework that reduces the energy usage in cooling data 

centers and maintains constant thermal conditions. DDPG 

[15] has some drawbacks, such as limited exploration 

power resulting in early convergence, non-hierarchical 

weights on input features, prerecorded priority on key 

variables such as workload peaks or temperature 

variations, limited scalability to highly dynamic 

workloads, and limited co-ordination of multiple cold 

source units. The proposed AGTO-CDQN approach 

solves these gaps with the improvement of exploration via 

AGTO, an attention mechanism dedicated to prioritizing 

important features, and coordination of several cold 

sources to control the system-wide performance. The 

AGTO-CDQN was always able to perform better than 

DDPG because it was more adaptive, and more accurate 

temperature control, along with consumes less energy. In 

practical considerations, the framework gives data center 

operators a rational method to reduce the cost of operation 

and environmental impact; it offers deployment in a 

variety of workloads and environmental circumstances 

and offers a scaling entry to sustainable and energy 

efficient data center management. 

 

6  Conclusion 
The proposed AGTO-CDQN method intends to reduce 

energy consumption in DC cooling systems by 

dynamically optimizing control actions while maintaining 

temperature restrictions through DRL. The results show 

that AGTO-CDQN considerably increases the power 

saving above 15% for IT power consumption, cooling 

power consumption, total power consumption, and 

average zone air temperature. The AGTO-CDQN 

approach includes disadvantages, such as high processing 

needs, susceptibility to noisy or missing data, difficulties 

with real-time deployment, and potential performance 

degradation in highly dynamic or previously unplanned 

DC operating circumstances. Future directions for 

AGTO-CDQN include generalizing the approach to a 

multi-objective optimization framework, aimed not only 

at maximizing energy efficiency, but also at minimizing 

cooling latency, component wear, and carbon footprint. 

Trade-offs among those can be explored systematically 

by use of the Pareto front analysis. This will increase the 

strength and practical applicability of the model to real 

world data centers. It has potential applications in future 

work to optimize training efficiency and to lower the cost 

of computation to increase scalability. 
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