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Power grid dispatchers play a critical role in maintaining the stability and efficiency of electrical
networks. As power systems grow in complexity, traditional training methods struggle to equip
dispatchers with the necessary skills for rapid decision-making and human-machine collaboration.
This research explores the application of fine-tuning general large language models (LLMs) to
enhance internal training processes for power grid dispatchers. The research proposed Archerfish
Hunting Fine-tuned Span Bidirectional Encoder Representations from Transformers (AH-
SpanBERT), a model that integrates the SpanBERT architecture with Archerfish Hunting (AH)
optimization to improve decision-making and operational efficiency in power system management. To
fine-tune the model, a comprehensive dataset of 1,000 simulated power grid operational records was
created, covering scenarios such as equipment failures, grid fluctuations, and emergency responses.
The data was preprocessed using domain-specific tokenization and term normalization to ensure
consistency and contextual relevance. The AH-SpanBERT model was trained using this dataset, with
specific prompt strategies designed to simulate real-world dispatch scenarios and foster interactive,
scenario-based learning. The model’s performance was evaluated across multiple key metrics,
including factuality, logicality, stability, and security. Results show significant improvements in
factuality (8.48 in operation monitoring), logicality (9.74 in general scenarios), stability (9.15 in black
start procedures), and security (9.62 in black start procedures). The AH-SpanBERT model
outperforms existing LLMs such as GPT-4 and GAIA-70B in these areas, demonstrating its potential
to enhance dispatcher decision-making and human-machine collaboration in critical power grid
operations. This research highlights the effectiveness of fine-tuning general LLMs with domain-
specific data to improve dispatcher training and operational performance in power grid management.

Povzetek: Clanek obravnava usposablianje dispecerjev energetskih omrezij za obvladovanje
naras$cajoce kompleksnosti omrezja in neenotnih podatkov. Predlaga AH-SpanBERT, tj. SpanBERT
fino uglasen z optimizacijo Archerfish Hunting, treniran na 1000 simuliranih dispecerskih zapisih.
Metoda izboljsa faktualnost, logi¢nost, stabilnost in varnost odlocanja v scenarijih nad GPT-4 in
GAIA-70B.

Introduction

data that was gathered during the energy grid's

A persistent power connection device requires the
realization of data connectivity and business collaboration.
As the power grid's intelligence increases, the power sector
has to manage the rapidly expanding amount of
information. The intelligent evolution of the power grid
greatly depends on the significant amount of unstructured

construction and development. The information is a
significant component of big data [1]. The evolution of
Internet technologies has been continuously supported by
the advancement of information technology. Numerous
data resources, such as pertinent standard specifications,
technical and product documentation, management
documents, fault resolution records, etc., remain to be
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acquired by the energy sector [2]. Enhancing power grid
operating safety and stability for incorporating the long-
term forecasting of alternative energies into power grid
dispatching is necessary [3]. Energy is an alternative
resource with great potential and a rapidly expanding
global capacity. One of the main applications of energy is
power generation. Considering that energy can be
inconsistent and volatile, electrical grid stability and safety
are of important concern [4]. The power system is an
essential component of infrastructure for advancing the
social and economic development of the nation. The
present grid composition remains more complex, and the
globalization of a local disturbance impact is becoming
more prominent as ultra-high-voltage grids, extensive grid
interactions, and grid coupling continue to be established
constantly [5]. A significant quantity of power dispatch
communication has been obtained as a consequence of the
rapid technological advances and the comprehensive
development of smart power grids. Designing a power
dispatch knowledge visualization system and acquiring
valuable information from relevant sources are essential
for increasing team efficiency and assisting professionals
in formulating decisions on power dispatch [6]. Energy
sources, particularly solar and wind, have been actively
developed in recent years, and installed capacity has
increased quickly. However, solar power's intermittency
and unpredictability make power grid scheduling more
challenging, while wind power output's uncertainty and
instantaneous volatility have a significant impact on the
quality of energy and the power grid's stable operation [7].
Inadequate optimization could affect the model's overall
performance, hyperparameter adjustments are complex,
and the network's training time is delayed. The majority of
the research presently in production applies incorrect data-
processing techniques for important factors or fails to
adequately take into consideration the factors influencing
the immediate demand for regional power grids [8].

1.1 Problem statement

The increasing complexity of power grids challenges
traditional methods for dispatchers, who struggle to handle
vast, unstructured data and dynamic operational demands.
Existing tools lack effective integration of domain-specific
knowledge, leading to limited decision-making support
and preparedness. This gap reduces dispatch efficiency
and risks grid stability, especially during emergencies.
There is an urgent need for advanced training solutions
using fine-tuned large language models to improve
dispatcher skills, enhance real-time decision accuracy, and
facilitate better human-machine collaboration in power
grid management.
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1.2 Objective and contributions of this
research

Investigating the use of optimized Large Language Models
(LLMs) to improve power grid dispatchers' internal
training is the intention of this research. Through domain-
specific data adaptation of the Archerfish Hunting Fine-
tuned Span Bidirectional Encoder Representations from
Transformers (AH-SpanBERT) model, it enhances
dispatcher decision-making and operational training. The
objective of the research is to improve dispatchers'
scenario-based  learning by  assessing  essential
instructional factors like accuracy, consistency, safety, and
adaptability.

e To improve internal training procedures for
power grid dispatchers, this research explores the
use of domain-specific data to improve
generalized LLMs.

e  The power grid dispatcher operations dataset is to
facilitate the creation and optimization of LLMs
developed specifically for power grid dispatchers'
internal training.

e  To preprocess the obtained data, tokenization and
domain-specific term normalization techniques
are employed to provide consistency and
contextual relevance.

e An extensive range of power system operational
activities and  decision-making  scenarios,
including operation adjustment, operation
monitoring, and black start procedures, are
supported by the proposed AH-SpanBERT
model.

e The proposed method provides superior
performance in the application of general large
model fine-tuning technology of natural language
in the internal training of power grid dispatchers.

2 Related work

The impact of the adoption of electric vehicles (EVs) on
Italy's national power grid, with a particular emphasis on
distribution and transmission systems, was described [9].
It concludes that curtailment of renewable energy,
dispatching expenses, and grid breaches can all be
considerably decreased by smart charging. However, there
are drawbacks, such as the influence of localized
distribution networks and the unpredictability of EV
charging behavior. To develop a medical waste plasma
hybrid peak load system for coal-fired power units,
integrating syngas production, gas turbines, and renewable
energy sources was described [10]. It finds that the system
enhances energy efficiency and reduces operational costs,
with a 6.20-year payback period. Limitations include the
system's relatively low energy and exergy efficiency
(37.38% and 36.19%, respectively). An optimization
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framework for a PV-grid-integrated EVCS with battery
storage and peer-to-peer charging strategies was
determined [11]. The model focuses on minimizing
operational costs, ensuring reliability, and enhancing
profitability. Simulation results show a reduction in energy
demand costs and a reduction in maximum demand.
However, the model is sensitive to daily varying weather
and load conditions, which may affect long-term
performance. A low-carbon economic dispatching strategy
using a feasible region (FR) model to manage the
interaction between wind power (WP), energy storage
(ES), and carbon capture power plants (CCPP) was
proposed [12]. The model reduces carbon emissions by
promoting WP consumption while addressing its
uncertainty. Simulation results on IEEE 39-bus and 118-
bus test cases confirm its effectiveness. However, the
model's reliance on robust optimization and the
complexity of the column constraint generation algorithm
may limit scalability.

According to the programming, the investigation
was limited in carrying out the operation in an average
layer, as it lacks autonomous ability. To recognize nested
named entities in the power dispatching domain, a
Robustly Optimized BERT (RoBERTa)-Attention-FL
model was suggested [13]. The findings showed that the
RoBERTa-Attention-FL model, with a higher accuracy
rate, enhanced the recognition performance when
compared to the baseline model. The suggested method
needs to recognize named entities and assess the
relationship between named entity identification and
relationship extraction for optimal use of potential
knowledge in the field of grid dispatching. The two-stage,
data-driven deep learning approach for ultra-short-term
photovoltaic (PV) electricity forecasting was presented
[14]. The Bidirectional Gating Recurrent Unit (BiGRU)
and the skip connection were utilized in a bidirectional
recurrent neural network for many historical states that
captured the long- and short-time sequences of PV
sequences. The attention mechanism enabled the neural
network to contribute adaptive importance to more
relevant historical states. The results showed that the
developed approach was capable of predicting PV power
reasonably well for short-range immediate forecasts.
Short-term consistency and long-term frequency were
removed with the unsuitable skip connection, along with a
suitable approach that could not effectively train the linear
regularity. A microgrid scheduling model that addresses
the economic and environmental costs of microgrid
schedules utilizing accurate forecasting of photovoltaic
(PV) power generation was presented [15]. The proposed
model incorporates a combined Sparrow Search Algorithm
(SSA)-Convolutional Neural Network  (CNN)-
Bidirectional Long Short-Term Memory (Bi-LSTM)
prediction model with attention mechanisms, and a more
enhanced Quantum Particle Swarm Optimization (QPSO)
algorithm to optimize dispatch. Together, the model
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produces high prediction accuracy and maintains
stabilization of the microgrid. To improve the flexibility
and stability of the complicated and frequently large-scale
power systems to control properly, the Distributed Al
(DALI) framework was used [16]. The results highlighted
the significance and possible advantages of the suggested
framework in maintaining the reliable and efficient
performance of power systems. Using the system
manager's monitoring, the suggested technique needs to
provide smooth power distribution optimization
throughout the nano-grid that greatly improves the smart
grid management systems. A fault tracing method using
data partition hybrid sampling and multiple incremental
regression tree algorithms to improve power grid fault
detection was proposed [17]. By combining anomaly
detection, clustering, and information difference models,
the method achieves high precision and efficiency,
enhancing grid maintenance and safety. A system based on
LLMs that was presented for developing a domain-specific
language for urban power grid architecture was established
[18]. The creation of semantically intelligent systems for
smart urban power grid design was supported by expert
validation that demonstrated an accuracy rate of 89.3%.
The results represented a significant practical application
value. Semantic depth knowledge problems were
highlighted, such as the current approach of assessing
alternatives, which mostly relies on word vector similarity
and manual tests. To detect abnormal users in smart grids
by combining Bidirectional Long Short-Term Memory
(BiLSTM) and Convolutional Neural Networks (CNN) for
feature extraction, followed by Adaptive Boosting
(AdaBoost) for classification, aimed [19]. The dataset
consists of power consumption data from a small
substation. The method outperforms individual models but
faces challenges in scalability and real-time deployment
across larger grids. The Dynamic Black Hole-driven Deep
Convolutional Generative Adversarial Network (DBH-
DCGAN) to address limitations in traditional power
system monitoring, enhancing real-time equipment status
and operational adaptability, was proposed [20]. The
method utilizes dynamic adjustments to improve model
stability and flexibility. A large set of pre-processed power
equipment images was used for evaluation, showing
significant improvements in monitoring accuracy across
various operating conditions. The DBH-DCGAN method
achieved high recall, accuracy, and F1-score,
demonstrating its effectiveness in power plant monitoring
and advancing intelligent grid management. However,
challenges remain in adapting the method to highly diverse
real-world conditions and scaling for large systems. A
framework for classifying renewable energy sources using
a freely available multivariate time-series dataset, with
data on solar, wind, and hydro, was proposed [21]. The
research analyzed a range of models: Logistic Regression
(LR), Support Vector Machine (SVM), XGBoost,
Artificial Neural Networks (ANN), and 1D Convolutional
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Neural Networks (1D-CNN). A hybrid model that
incorporates an attention mechanism with the 1D-CNN to
not only improve feature extraction but also concentrate on
temporal patterns of interest. The attention-attuned model
proved to be the highest performer in its classification
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ability, with elevated metrics. However, further work is
required to improve model generalisation across different
energy sources and operational conditions. A comparative
summary table showing dataset sizes, tasks, metrics used,
and results of prior models is shown in Table 1.

Table 1: Summary table

and grid breaches

Model Methodology Dataset/Scope Key Task Performance Results Limitations

EV-Grid Smart Charging Impact | EV adoption in Italy's | Evaluate EV's effect on | Reduces curtailment of | Influence of localized
Integration on Distribution and | national grid the distribution network | renewable energy, | networks and
Evaluation [9] Transmission Systems and grid dispatching dispatching  expenses, | unpredictability in EV

charging behavior

Dispatching [12]

energy storage, and
carbon capture

carbon capture

effectiveness in  test
cases

Medical Waste | Hybrid system | Coal-fired power units Energy efficiency and | Enhances energy | Low energy and exergy
Plasma Hybrid | integrating syngas operational cost | efficiency, 6.20-year | efficiency (37.38% and
Peak Load System | production, gas turbines, reduction payback period 36.19%)
[10] and renewable energy

sources
PV-Grid- Optimization PV-grid integrated EV | Minimize operational | Reduction in energy | Sensitive to daily weather
Integrated EVCS | framework for | charging stations costs, ensure reliability, | demand costs and | and load conditions,
with Battery | minimizing operational and enhance | maximum demand which affect long-term
Storage [11] costs profitability performance
Low-Carbon Feasible region model to | IEEE 39-bus and 118- | Economic dispatching | Reduces carbon | Complex column
Economic manage wind power, | bus test cases with wind power and | emissions, confirms | constraint generation,

limiting scalability

RoBERTa-
Attention-FL  for
Named Entity
Recognition [13]

RoBERTa with
Attention-FL for nested
named entity
recognition

Power dispatch domain

Named
recognition

entity

Improved accuracy in
entity recognition

Needs better relationship
extraction and entity
identification

BiGRU +
Attention
Mechanism for PV
Forecasting [14]

BiGRU with attention
mechanism for ultra-
short-term PV
forecasting

PV data for short-term
forecasting

PV power forecasting
for short-range
immediate forecast

An accurate short-term
forecast captures long
and short time sequences

Issues with consistency
and long-term frequency
in predictions

Microgrid
Scheduling
SSA-CNN-Bi-
LSTM [15]

with

SSA-CNN-Bi-LSTM

with QPSO for
optimizing  microgrid
dispatching

Microgrid ~ with PV
power generation

Economic and
environmental cost
optimization

High prediction
accuracy, stable
microgrid performance

Needs  more  robust
optimization  techniques
for varying conditions
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Distributed Al | Distributed Al for large- | Smart grid and large- | Power system control | Improves flexibility and | Lack of real-time

Framework  for | scale power systems | scale systems and management stability in power system | autonomous decision-

Power Systems | control control making

[16]

Fault  Detection | Data partition, hybrid | Power grid fault data Fault detection and grid | High precision and | Complexity in handling

with Hybrid | sampling, and maintenance efficiency in  fault | large-scale datasets

Sampling [17] incremental  regression detection

trees

LLMs for Urban | Large Language Models | Urban power grid design | Design of intelligent | 89.3% accuracy in | Relies on word vector

Power Grid | (LLMs) for developing a systems for urban grid | expert validation similarity and manual

Architecture [18] domain-specific architecture testing for semantic depth

language

GPT-4 [23] Variable (General) General language | Factuality, Logicality, | Factuality: 7.05, | Limited domain
understanding, text | Stability Logicality: 9.71, | adaptation, no specific
generation Stability: 7.52 optimization for power

grid tasks

GAIA-70B [23] Power Grid Specific Power grid | Factuality, Logicality, | Factuality: 7.79, | Lack of real-time scenario
management, load | Security Logicality: 7.79, | adaptability, limited
forecasting Stability: 8.64 domain-specific

vocabulary

2.1 Research gap: Current models for grid
optimization, energy forecasting, and Al-driven power
dispatching, such as smart charging for EVs and
RoBERTa-Attention-FL, face significant challenges in
real-time  adaptability, scalability, and semantic
understanding. Existing solutions struggle to address
localized network behaviors and the unpredictability of
charging patterns, limiting their effectiveness in dynamic
environments. Additionally, short-term forecasting models
like BiGRU + Attention Mechanism lack consistency over
the long term, while Al models show promise in entity
recognition but fall short in relationship extraction and
complex semantic processing. AH-SpanBERT overcomes
these issues by leveraging advanced span-based entity
recognition to handle power-specific vocabularies and
dynamic relationships in grid dispatching. Its ability to
recognize named entities and relationship extraction
allows for accurate, scalable, and real-time decision-
making. By combining DL techniques like BiGRU, CNN-
BiGRU Hybrid, and QPSO, AH-SpanBERT enhances
forecasting accuracy, grid stability, and autonomous
operations in large-scale energy systems.

2.2 Research methodology

To improve the internal training procedures for power grid
dispatchers, this research investigates the use of domain-
specific knowledge to improve generic LLMs. For
effective performance, the research explores the data
collection process, preprocessing techniques like
tokenization, along with  domain-specific  term
normalization, and the proposed method applications more

comprehensively. Figure 1 shows the process of research
methodology.
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Figure 1: Methodology process involved with natural
language in the internal training of power grid dispatchers
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2.3 Data collection

The power grid dispatcher operations dataset is obtained
from the open-source Kaggle [22]. The purpose of the
dataset is to facilitate the creation and optimization of
LLMs developed specifically for power grid dispatchers'
internal training. The dataset contains 1,000 simulated
functional records that span real-world situations like
normal monitoring, emergency responses, equipment
failures, and grid fluctuations. This dataset is beneficial for
scenario-based LLM training, interactive dispatcher
learning simulations, decision-making analysis under
various complexity and urgency levels, along with
collaborative human-machine modeling.

The data is split into training, validation, and test sets, in
which 80% of the data will be used for training, 10% for
validation, and 10% for testing. This split allows for proper
evaluation of the model and prevents overfitting by
ensuring that there is separate data to validate and test the
model.

2.4 Data preprocessing through tokenization
and domain-specific term normalization

Initial measures to clean and prepare unprocessed textual
information for efficient performance are known as data
pre-processing. There are two preprocessing techniques,
such as tokenization and domain-specific term
normalization, that are employed to preprocess the
obtained data for the application of general large model
fine-tuning technology of natural language in the internal
training of power grid dispatchers.

2.4.1 Tokenization

Textual information is divided into meaningful
components through proper tokenization, facilitating
advanced modeling and computational processes. Text can
be efficiently processed and comprehended by NLP
algorithms by breaking the textual data into tokens, which
leads to more precise and perceptive outcomes across a
wide range of language processing applications.
Modifying tokenization for domain-specific needs,
including the needs of social media data, legal
documentation, or research papers, is known as domain-
specific tokenization.

2.4.2 Domain-specific term normalization

Impurity assessment is enhanced with the normalization
step to distinguish between various document lengths and
domain corpora sizes. The normalizing step and the
impurity measure, as demonstrated by the research, make
the technique more accurate in characterizing words for
the application of general large-scale model fine-tuning
technology of natural language.
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2.5 Stemming: Stemming is a text preprocessing
technique in NLP that reduces words to their root form by
removing prefixes and suffixes. This process helps in
simplifying words to a common base, making them more
consistent and improving model accuracy by treating
different forms of a word as equivalent. Algorithms like
the Porter Stemmer and Snowball Stemmer are commonly
used for this purpose. While stemming enhances data
consistency and model performance, it may occasionally
result in non-standard words, such as reducing "better" to
"pet." Despite this, stemming is essential for improving
tasks like text classification and information retrieval in
NLP.

2.6 Power system operational tasks and
decision-making  scenarios  development
through archerfish hunting fine-tuned span
bidirectional encoder representations from
transformers (AH-SpanBERT)

The suggested Archerfish Hunting Fine-tuned Span
Bidirectional Encoder Representations from Transformers
(AH-SpanBERT) model supports a wide range of power
system operational tasks and decision-making scenarios
that integrate the Span Bidirectional Encoder
Representations from Transformers (SpanBERT) and
Archerfish Hunting (AH) optimization that enhances the
internal training processes for power grid dispatchers. AH-
SpanBERT is described in Figure 2.

Power System Operational Tasks and Decision-Making
Scenarios Development through Archerfish Hunting Fine-
tuned Span Bidirectional Encoder Representations from

Transformers (AH-SpanBERT)

! l

Span Bidirectional Encoder
Archerfish Hunting Optimization

Representations from Transformers
(AHO)
(SpanBERT)

OCapture Contextual Connections Text R

Time Power Grid Management
OEnhances Dispatcher Training in pme Lonerriciaansg

IR I akin s R R Retaatrt OExploration and Exploitation Stages

) . OMobility Determined by Aceeleration
Comprehension "

d T t Sensil
OMasking: Replaces Text Spans with LR
Masking
OBoundary Intention: Forecasts Each

Token of a Masking Span

!

AH-SpanBERT Combines SpanBERT and AH Optimization,
Enhancing Training and Operation Efficiency for Power Grid

Dispatchers

Figure 2: Flowchart of AH-SpanBERT
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2.6.1 Span bidirectional encoder
representations from transformers
(SpanBERT)

A transformer-based model called SpanBERT predicts text
spans and performs an exceptional task at capturing
contextual connections in text. The technique is designed
to comprehend domain-specific language, enhancing
dispatcher training in decision-making and scenario
comprehension. To improve the representation and
prediction of text spans, a self-supervised pre-training
technique called SpanBERT was introduced. One
extended textual segment is sampled by SpanBERT for
every training instance. The categories of SpanBERT
processes, such as masking and boundary intention, are
discussed.

Masking: This model iteratively samples text spans until
the masking resource is exhausted, selecting a subset of
tokens B< A from a series of tokens A =
(ay,ay,...,ay). The method initiates iteration by
sampling a span length (the number of words) from a
geometrical distributionf~GE 0 (q), which tends to benefit
from shorter spans. Next, uniformly and randomly chooses
an initial point for the masking of the span. Instead of using
subword tokens, always samples a sequence of whole
words, and the initial position should be the first character
of a single word. The technique replaces all of the tokens
in a span with masking, and it is performed at the span
level.

Boundary Intention: The span selection approaches
engage with a span's boundary tokens to provide a fixed-
length representation of the span. The representations at
the end of the span can ideally compress the majority of
the inside span information. To accomplish the function,
SpanBERT introduces a span boundaries target that uses
the representations of the observation tokens at the
boundaries to forecast each token of a masking span.

Representing the transformer encoder's output in each
word of the sequence is represented by a,...,ay. Using
the output encodings of the outer boundary tokens a;_,
andas,, along with the position encoding of the target
token qj_.,1, it represents each token a; in the masked
span of tokens (a,...,ar) € B, where (t, /) denotes its
beginning and the end positions in Eq. (1). It allows for a
real-time operational scenario to be built, and helps
dispatchers make informed decisions about system
performance, such as response to grid changes, equipment
failures, and energy demand changes, improving training
and operation efficiency.

bj = f(at_l, Ar 11, qj—t+1)

@)
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Where the masked words' positional relationships to the
left boundary word a,_, are indicated by positional
embeddingsq,, g4, ..., etc. For every token a; in the
masked span (a,...,ar), SpanBERT adds the loss from
the span border and the regular masked language model
desired outcomes, utilizing the input embedded for the
target tokens described in Eq. (2).

L(a) = Li(a;) + L2(a;) = —log Q(a;]a;) -
log Q(a;|b;)

()

Where, £(a;) measures the prediction error of a; based on
its history, and £,(a;)measure the error based on the
related variable b;. The likelihood (a;|a;) and Q(q;|b;)
assess prediction accuracy for both self-prediction and
cross-variable relationships. This loss function could be
applied to minimize the difference between actual and
predicted outcomes, such as grid behaviors or operational
decisions, and to increase the accuracy of the models for
both the historical context and future predictions.

SpanBERT loss function Equation 2 is indeed the
probability of predicting a; given itself; this term would
ideally be zero, as the model would predict a; perfectly,
making the likelihood zero abd contributing nothing to the
loss. This is not consistent with the typical loss
components used with SpanBERT-type models. The
normal SpanBERT loss function is the combination of two
objectives: the Masked Language Modeling (MLM) loss,
which is concerned with predicting masked tokens, and the
Span Boundary Objective (SBO) loss, which ensures span
boundaries are predicted better. The equation in question
does not capture either of these two components or the
appropriate math form for either. A fix would involve
properly combining MLM loss and SBO loss to be
consistent with established formulations, to include both
span prediction and token prediction objectives in the loss
function. To pre-train span representations, SpanBERT
uses a geometric distribution-based masking approach that
masks full-word spans and a single-sequence data flow to
optimize a supporting span-boundary achievement.

2.6.2 Archerfish hunting (AH) optimization

The AH optimization enhances LLM training for
operational responsibilities in complicated, real-time
power grid management by optimizing decision-making
through the simulation of environment-specific problem-
solving. The proposed AH's exploration and exploitation
stages depend on the hunting and jumping behaviors of
archerfish. Any optimization issue can be resolved using
AH, provided that the power grid management is properly
formulated. The AH optimization was selected for its
biologically inspired exploration—exploitation balance and
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suitability for nonlinear, high-dimensional scenarios like
power grid dispatcher simulation. AH demonstrated
improved convergence behavior and enhanced training
dynamics in the AH-SpanBERT model with standard
optimizers such as Adam and Particle Swarm
Optimization (PSO) under identical training conditions.
This will help quantify AH's performance advantage in
terms of model accuracy, convergence rate, and decision
quality in scenario-based training tasks. Assume that there
are many archerfish in a search area of dimensions D.
Archerfish location j at iteration s is as follows (Eq. (3)),
and the population size isn.

Aj,S = (al, az, ...,aD)

®)

Using Eq. (4), the point A9 is initialized at
random with repetitions = 0.

AU = (@ x (araxt — girint) 4 qint g x
(az)naxi _ air)nini) + air)nini)

(4)

AY9 s the initial position vector, a; is the random
multiplier, and a uniform distribution. a**** and al*™ are
upper and lower bounds, D defining the complexity of the
optimization problem. Equation (4) initializes agent
positions in the AH optimization algorithm and creates
different places to begin within the defined bounds. The
issues of starting position support the search space for
optimization of energy grids, particularly for supporting
task schedules and the overall efficiency of operations,
ensuring a reachable solution as it relates to decision-
making in active or dynamic grid management. AH
initialization formula raises a valid concern regarding the
ambiguity of the notation. The variables (a,, a,, ..., ap)
are described as "uniformly distributed random integers
between o and 1," but the formula implies these values
might be sequential components of the single random
vector, which could lead to confusion. In standard
optimization algorithms, each dimension is typically
initialized with independent random values. Additionally,
the notation a*®* and aP™, with the subscript i, is
unclear regarding whether the bounds are shared across all
dimensions or specific to each one.

Where the uniformly distributed random integers
between 0 and 1 are denoted byea,, ..., ap. An archerfish
uses Eq. (5) to travel in the direction of a target when it
identifies the generation of the vibration.

AU = 408 4 f—llAﬁfE’y—A‘f's’Hz( AL — 40

Q)
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The position of the prey is determined in Eq. (6).
The archerfish's mobility is determined by its acceleration
of gravity (g), launch speed (v), and sensing angle (60),
while the air friction is minimal. The desired outcome is
assumed to be at the peak of the motion visualization.
Using Eq. (7), an archerfish moves in the direction of the
target that intends to capture.

I, : u? .
AL, = 499 4 (0, ..., x 5in 265, ..,0) + £

(6)

AUS*D s the updated position of the j-th archerfish, AV
is the current position of the jth archerfish at iteration T.

Agfgy is the position of the prey at the sth iteration for the
lth archerfish. e is the scaling factor that adjusts the

magnitude of the movement based on the distance between

the archerfish and its prey, Ag;fe)y — AYS) is the squared
Euclidean diatance between the archerfish and he prey, ¢
is the small random perturbation, v is the lunch speed of
the archerfish, g is the acceleration due to gravity, 6, is the
sensing angle of the archerfish. The motion of an
archerfish can be characterized by these equations as part
of the AH optimization algorithm. The update process has
two main components. First, the prey is updated via a
physics formulation (Equation 6) based on its speed,
gravitational pull, and the angle of the prey based on the
archerfish's three-dimensional surface imaging.

New _pos = current _pos + (target_pos —
current_pos). e 1targetpos—current.pos  \yas  Eyclidean
distance. However, it is more closely representative of
physics-inspired metaheuristics (e.g., Gravitational Search
Algorithms) than AH's original behavior based on a jump-
based ballistic mechanism. To more closely align with the
AH concept, this function must incorporate: directional
jumps influenced by 6o projectile arc displacement
perturbations €. Moving forward, the updated algorithm
provides an updated formulation, using a hybrid of
physics-based trajectory (Equation 6) and normalized
directional movement.

This must also be appropriately buffered by parameter 6o.
The perceiving angle value (6,) makes the exploration and
exploiting phases switch. Therefore, the more effectively
AH will utilize the search space when the value of 6, is to
gor— % and vice versa. Eq. (7) is used to produce the value

of 8, at random.
0y =(-1)YxXaxmn
(")

6, is the perceiving angle controlling exploration, y is the
random variable for alternating sign, « is the scaling factor
for angle magnitude. m is the mathematical constant for
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angle bounds. Equation (7) was used to create a method for
generating the perceiving angle 6 0 randomly, which is
important in AH optimization to control both exploration
and exploitation. By selecting the value of the perceptive
angle randomly, ensures that the archerfish will alternate
between exploring the search space (6 0 =w/2 or 6 0= -
n/2) and exploiting areas near a target (indicated by smaller
values of 6_0). The concerns with the implementation of
0 0 logic and its effect on  whatever
exploration/exploitation is currently being done. The
current implementation of 6 0, where randomly selected
to be between n/2 and -n/2 is too limiting on the flipping
between an exploration phase and an exploitation phase as
designed from the formula in Equation (7). Instead of
having a plan of action where consideration of exploration
is always occurring and the exploitation logic in the
explore_exploit function is not able to be reached, to
modify the code to allow 6_0 more flexibility in terms of
how many values it take on a variety of angles, while
simultaneously providing behavior that enacts both
exploration and exploitation, making use of values
controlled by 6 0, as intended for AH optimization.

The current implementation always assigns 6, as + /2,
making the condition if abs(8,) 7/ 2 always true and
rendering the else branch redundant. To address this, will
introduce continuous sampling of 6,€ [-mw/2,m/
2] using 8y = (—1)*rand X a X m, allowing
dynamic control via scaling factor o. The
explore_exploit() function then probabilistically
switches between exploration and exploitation based on
whether |8o] > m/4. The model, as it is currently set,
exists to log updated_position, but not to affect the
model training of SpanBERT. The next iteration of AH
represented the positions generated as hyperparameter
vectors (learning rate, masking ratio, frozen layers, batch
size) to fine-tune the model. The hyperparameters are
decoded and used from the function
fine_tune_with_config(). In this version, AH was able
to know how to proceed conservatively with a lower
learning rate, masking ratio, and batch size depending on
the scenario being suited. This marks the beginning of a
closed-loop system with AH insisting on the tuning of
SpanBERT training creation and SpanBERT creating
feedback for AH's directed search through a performance-
based fitness score.

To prevent getting trapped in localized optimums, AH
optimization employs a conventional approach. Algorithm
1 shows the working procedure of the proposed AH-
SpanBERT model.

Informatica 49 (2025) 381-396 389

def __init_ (self, model_name):
self.model_name = model_name
def preprocess(self, data):

Return preprocess_data(data)
deffine_tune(self, data):

Return fine_tune_model(data)
def predict(self, input_text):

Return self.model.predict(input_text)
Class ArcherfishHunting:
def __init__ (self, dimensions, population_size):
self.dimensions = dimensions
self.population_size = population_size
self.position = np.random.rand(population_size,
dimensions)
defupdate_position(self,
target_position):
current_position+(target_position-
current_position)*np.exp(-np.linalg.norm(target_position
- current_position))
defexplore_exploit(self, position, prey_position, theta_0):
if abs(@_0) == np.pi/ 2:

Return

prey_position)
else:

current_position,
Return

self.update_position(position,

Return position

def simulate(self):
for _ in range(self.population_size):
prey_position = self.position[random.randint(0,
self.population_size - 1)]
target_position =
self.population_size - 1)]
6_0=random.choice([-np.pi / 2, np.pi/ 2])
new_position = self.explore_exploit(self.position,
prey_position, 6_0)
self.position = new_position

Return self. position
Class AHSpanBERTModel:
def __init__(self, span_bert_model, archerfish_model):
self.span_bert = span_bert_model
self.ah_optimizer = archerfish_model
defoptimize_training(self, training_data, scenario_data):
fine_tuned_model =
self.span_bert.fine_tune(training_data)
training_scenarios = generate_scenarios(scenario_data)
for scenario in training_scenarios:
updated_position = self.ah_optimizer.simulate()
predictions = self.span_bert.predict(scenario['input'])
scenario['actions'] = predictions
scenario['updated_position'] = updated_position

Return training_scenarios

self.position[random.randint(0,

Algorithm 1: AH-SpanBERT

Import numpy as np
Import random
Class SpanBERT:

Through the simulation of domain-specific operational
situations, such as task management, system monitoring,
and emergency protocols, the AH-SpanBERT model is
optimized to improve power grid dispatcher training. The
proposed technique makes interactive, scenario-based



390 Informatica 49 (2025) 381-396

learning, which enhances flexibility, knowledge retention,
and decision-making. The approach facilitates context-
aware, real-time responses, improving human-machine
cooperation in power grid systems and dispatcher
performance across a range of operational tasks.

3 Results and discussions

This section deliberates on the results produced by the
implementation of the model, including parameter setup,
evaluation criteria, and comparative phase.

3.1 Experimental setup

For fast processing and effective multitasking, the research
makes use of an AMD Ryzen 7 5800X CPU and 32GB
DDR4 memory. Graphics-intensive operations are
managed by the NVIDIA GeForce RTX 3080 GPU. For
GPU computing performance and scalability, the system
runs on Windows 11 and uses Python 3.9, scikit-learn, and
TensorFlow libraries

3.2 Parameters setup

AH-SpanBERT hyperparameters as described in Table 2.

Table 2: Parameter setup

Hyperparameter | Value
Learning Rate 0.0001
Epochs 50
Batch Size 32

The first few layers of SpanBERT model
are frozen to maintain the pre-trained
knowledge.

Layers Frozen

Combination of Masked Language
Modeling (MLM) loss and Span
Boundary Objective (SBO) loss

Loss Function

Loss  Function | Regularization values of 0.5 for both

Values MLM and SBO losses

3.3 Evaluation criteria

The evaluation criteria demonstrate the cost consumption
of the proposed AH-SpanBERT technique’s efficiency in
the internal training of power grid dispatchers, and resulted
in the 0 to 100 iterations & 0 to 500 iterations (Figure 3 a-
b). The 100-iteration run is effective for quicker results
because it quickly converges and maintains performance.
Over time, better optimization could become possible due
to the 500-iteration run, which allows for additional
exploration and improvement. The AH-SpanBERT
method shows significant outcomes in the cost function in
that provides less cost consumption in performing the
power grid dispatcher’s internal training process.
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Figure 3: Outcomes of cost assessment with (a) iteration
within 0-100 and (b) iteration within 0-500

3.4 Comparison phase

The proposed AH-SpanBERT and the existing models
such as Generative Pre-trained Transformer 4 (GPT-4)
[23] and Grid Atrtificial Intelligent Assistant (GAIA-70B)
[23] are compared for providing an effective performance
in internal training of power grid dispatchers along with
various parameters like factuality, logicality, stability and
security for various scenarios like general, dispatch,
operation monitoring and black start.

» Factuality indicates that the information is valid
and the findings accurately reflect the actual
circumstances, which is crucial for valid
decision-making in the operation of power
systems.

» Logicality is concerned with the precision of
logical inference and the dependability of the data
utilized in the enhancement of power grid
dispatcher learning assessment.

» Stability maintains operational continuity and
reliability. The parameter also assesses LLMs'
capacity to sustain similar outputs in dynamic
situations.

» Security indicates the significance of ensuring
that operational security provides model
applications that can never damage the power
system's security.

The evaluation metrics (factuality, logicality, stability, and
security) scaled from 0 to 10, were adapted from the
Elecbench benchmark (Zhou et al., 2024), which provides
a standardized framework for assessing LLM performance
in power dispatch tasks. The scoring system follows
Elecbench’s normalized evaluation procedure, where
expert raters assess model responses based on alignment
with ground truth, operational logic, and scenario safety.
Each metric was averaged over multiple annotated
responses across four scenarios to ensure consistency and
comparability. This alignment ensures that our reported
results are interpretable within the context of existing
power grid LLM evaluation standards.
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The purpose of the general scenario design is to assess the
LLM's proficiency in handling data analysis, forecasting,
and basic knowledge question-and-answer tasks related to
day-to-day power system management. AH-SpanBERT
achieves high scores in factuality (8.32), ensuring accurate
information delivery. Logicality is very high at 9.74,
supporting sound reasoning. Security (9.38) and stability
(8.76) confirm the model's reliability and safety in
everyday power system management and training tasks.
Table 2 and Figure 4 represent the numerical outcomes of
factuality in four scenarios.

Table 2: Numerical outcomes of General power
systemwith four scenarios

General power system

Models Factuali  Logicali ~ Securit Stabilit
ty ty y y
GPT-4
23] 7.05 9.71 9.28 7.52
GAIA-
708 [23] 7.79 7.79 9.29 8.64
AH-
SpanBER
T 8.32 9.74 9.38 8.76
[Propose
d]
[ |Factuality
fitiar
General Power System | Security
0 [ | Stability
N — |
£ 6
4
24
GPT-4 [23] GAIA-T0 [23] AH-SpanBERT

P
Models [Proposed]

Figure 4: Graphical illustration of factuality results in
general scenarios.

The dispatch sub-scenario is essential for assessing the
efficiency of LLMs data analysis, forecasting, and optimal
decision-making, all of which are vital for improving the
stability and efficiency of the sector. In dispatch
operations, AH-SpanBERT maintains solid factuality
(7.59) and logicality (9.37), facilitating optimal decision-
making. The security score of 9.40 indicates that the model
safequards operational safety, while stability at 8.15
reflects consistent output, essential for reliable
performance in dynamic dispatch scenarios. Mathematical
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results of four scenarios in logicality are provided in Table
3 and Figure 5.

Table 3: Mathematical results of dispatch.

Dispatch
Models Factuali  Logicali  Securit Stabilit
ty ty y y
GPT-4
23] 7.42 9.30 9.35 8.07
GAIA-
708 [23] 7.45 7.52 9.37 7.44
AH-
SpanBER
T 7.59 9.37 9.40 8.15
[Propose
d]
%Factudlty
" Logicality
Power Dispatch N
10- ] Samiy
8 — ] —
8 61
8
s
4
2
0
GPT-4 [23] GAIA-70 [23] AH-SpanBERT
[Proposed]
Models

Figure 5: Mathematical outcomes of logicality with
dispatch

Operation monitoring places significant demands on data
speed and accuracy in the design of the assessment
framework, requiring LLMs to have strong data gathering
and processing skills along with the capacity to promptly
recognize and address possible problems. For operation
monitoring, AH-SpanBERT delivers high factuality (8.48)
and logicality (8.97), demonstrating effective data
interpretation and problem identification. The security
score of 9.39 ensures safe application, while stability
(7.14) remains adequate, supporting dependable
performance despite real-time monitoring issues. Figure 6
and Table 4 show the outcomes of operation monitoring.
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Table 4: Operation monitoring outcomes with several
parameters

Operation Monitoring

Models
Factuality  Logicality — Security  Stability
GPT-4[23] 821 8.92 9.10 6.16
GAIA-70B
23] 8.42 7.78 9.35 7.00
AH-
SpanBERT  8.48 8.97 9.39 7.14
[Proposed]
—+— Factuality
—+— Logicality
Operation Monitoring —+— Security
581 //—a —+— Stability
9.0 4
8.5+
¢
8 8.0 4
L]
7.5+
7.0 o
R /
6.0 . T -
GPT-4 [23] GAIA-70 [23] AH-SpanBERT

[Proposed]
Models

Figure 6: Visual depiction of operation monitoring

The accurate assessment of LLMs in this context is crucial
for comprehending their practical utility and potential in
identifying faults and recovery procedures, as Black Start
is necessary to preserve power system continuity and avert
large-scale grid failures. During black start procedures,
AH-SpanBERT achieves high factuality (8.43) and
locality (8.99), supporting accurate fault recovery
decisions. This model scores highest in security (9.62), and
stability (9.15), emphasizing the model's robustness and
reliability in critical emergency power system restoration
scenarios. Table 5 and Figure 7 determine the algorithmic
outcomes of black start.
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Table 5: Algorithmic outcomes of black start

Black Start
Models
Factuality Logicality —Security  Stability
GPT-4
23] 8.39 8.84 9.53 9.03
GAIA-70B
23] 7.94 7.85 9.50 7.28
AH-
SpanBERT  8.43 8.89 9.62 9.15
[Proposed]
Black Start —e— Factuality
—a— Logicality
9.5 —e— Security
—a— Stability
9.0
3
5 854
(5]
n
8.0
7.5
7.0 . . :
GPT-4[23] GAIA-70 [23] AH-SpanBERT
[Proposed]
Models

Figure 7: Results of the black start scenario with various
performance matrices

Table 5 shows the standard deviation values for four
metrics (Factuality, Logicality, Security, and Stability)
applied to the various power system tasks using the AH-
SpanBERT Model. The standard deviation for the four
metrics is observed between a range of 0.05 to 0.11. This
indicates slight differences in model performance across
the power system tasks. Factuality displays little variation
in its standard deviations (0.06 to 0.10); Logicality had
slightly more variation, especially in the General Power
System and Dispatch tasks (0.07 — 0.09). Security had a
higher standard deviation observable during the Black
Start task (0.10), delineating there were slight fluctuations
in security predictions in this task. Stability shows the
highest standard deviations in two tasks, General Power
System and Dispatch (0.10 and 0.11, respectively) and
indicate less stable predictions in these two tasks compared
to the other tasks. Overall, the model performance shows
little variation, although these particular tasks (Dispatch



AH-SpanBERT: Fine-Tuning SpanBERT with Archerfish Optimization...

and General Power System) may vary more in some
metrics.

Table 5: Standard deviation values

Metric Standard Deviation — AH-SpanBERT
[Proposed]
Genera | Dispatc | Blac | Operation
| power | h k Monitorin
system Start | g

Factualit | 0.07 0.10 0.07 | 0.06

y

Logicalit | 0.09 0.07 0.06 | 0.08

y

Security | 0.08 0.06 0.10 | 0.05

Stability | 0.10 0.11 0.09 | 0.07

Table 6 indicates the performance metrics (Accuracy,
Precision, Recall, F1-Score) of a model across 5 folds. The
model's performance is consistently strong, with accuracy
ranging from 0.90 to 0.99 (mean = 0.97), and high
precision (range 0.90 - 0.99; mean = 0.97) indicates
positive predictions are generally correct. Recall ranges
from 0.90 - 0.99 (mean = 0.97), confirming the model's
effectiveness in targeting positive instances. Finally, F1-
Score also exhibits the same pattern of reliability (range
0.90 - 0.99; mean 0.97) as well as consistency across folds.

Table 6: Results of 5-Fold Cross-Validation

Fold Accuracy | Precision | Recall | F1-
Score
1 0.99 0.97 0.90 0.99
2 0.91 0.99 0.92 0.90
3 0.99 0.96 0.99 0.97
4 0.90 0.99 0.91 0.99
5 0.92 0.90 0.93 0.91
Average | 0.97 0.98 0.97 0.97

4 Discussion

The internal training of power grid dispatches, enhanced
by leveraging fine-tuning of general LLMs with domain-
specific data, was the main objective of the research.
Existing methods, including traditional training
approaches and generic LLMs like GPT-4 [23] and GAIA-
70B [23], have limitations such as insufficient domain
adaptation, lack of scenario-specific understanding, and
inconsistent performance in critical operational tasks. By
applying specialist knowledge and optimizing a dataset of
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power grid operational data, the proposed AH-SpanBERT
model overcomes the shortcomings of power system
models. The domain-aware adaptation enhances stability,
security, logical thinking, and factual correctness in a
variety of situations. By filling up the gaps in previous
models and providing a strong tool for dispatcher training
and power system management, AH-SpanBERT
dramatically increases operational reliability, knowledge
retention, and decision-making accuracy.

The AH-SpanBERT maodel, leveraging Span masking and
AH optimization, outperforms existing models like GPT-4
and GAIA-70B in key areas such as factuality, logicality,
stability, and security. Span masking enables more
accurate contextual understanding of domain-specific
terminology, which is crucial for power grid dispatchers,
while AH optimization simulates environment-specific
problem-solving to enhance decision-making. In
performance metrics, AH-SpanBERT excels, with higher
factuality, logicality, and security scores, particularly in
critical tasks like operation monitoring and black start
scenarios. Unlike GPT-4 and GAIA-70B, which lack
domain-specific focus, AH-SpanBERT's fine-tuning on
power grid data ensures more reliable and accurate
performance in real-time decision-making. However, its
reliance on historical data may limit adaptability to
unforeseen grid changes, and in highly uncertain scenarios,
AH optimization may occasionally lead to suboptimal
outcomes.  Overall, AH-SpanBERT  demonstrates
substantial improvements in power grid dispatcher
training, addressing the shortcomings of previous models,
though it still has room for enhancement in handling
dynamic, real-time disruptions.

5 Conclusion

Power grid dispatchers play an essential role in
maintaining the consistent, effective, and safe functioning
of electrical networks. The use of domain-specific data to
refine the generic LLMs to improve internal training
procedures for power grid dispatchers was examined in the
research. The AH-SpanBERT model was developed to
facilitate black start processes, operation monitoring, and
general dispatch, which were some of the many operating
responsibilities and decision-making scenarios. An
extensive dataset was assembled from several sources,
including operational manuals, emergency procedures,
internal communications, training materials, and historical
dispatch logs. Utilizing tokenization and domain-specific
word normalization, the data was preprocessed for
contextual relevance and consistency. Rapid techniques
were created to mimic authentic dispatch situations,
allowing trainees to learn interactively through scenario-
based learning. The model's power dispatch performance
was assessed to evaluate LLMs on important parameters
that were necessary for efficient power system
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management, including factuality (8.48 in operation
monitoring), logicality (9.74 in general), stability (9.15 in
black start), and security (9.62 in black start).
Experimental findings showed significant improvement in
factuality (8.48 in operation monitoring), logicality (9.74
in general), stability (9.15 in black start), and security (9.62
in black start) across dispatchers with different scenarios.
In power dispatch operations, the research showed that the
suggested General Large Model greatly improved human-
machine interaction, operational efficiency, and decision-
making capacities.

Limitations and future scopes: The use of a small,
simulated Kaggle dataset (1,000 records) may limit the
model's generalizability to real-world dispatcher logs,
affecting performance under authentic, complex grid
conditions. Reliance on historical information limits the
investigation and could affect the model's capacity to
adjust to changes in the power grid. Enhancing operational
effectiveness and cooperation across various grid
environments could expand the model to more power
system management categories in the future. In future
revisions, will explicitly outline risk mitigation strategies,
such as human-in-the-loop validation, real-time alert
prioritization, and fallback protocols. These ensure Al
recommendations serve as augmentative tools, supporting
but not overriding the dispatcher's expert decisions in high-
stakes operational scenarios.
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