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Power grid dispatchers play a critical role in maintaining the stability and efficiency of electrical 

networks. As power systems grow in complexity, traditional training methods struggle to equip 

dispatchers with the necessary skills for rapid decision-making and human-machine collaboration. 

This research explores the application of fine-tuning general large language models (LLMs) to 

enhance internal training processes for power grid dispatchers. The research proposed Archerfish 

Hunting Fine-tuned Span Bidirectional Encoder Representations from Transformers (AH-

SpanBERT), a model that integrates the SpanBERT architecture with Archerfish Hunting (AH) 

optimization to improve decision-making and operational efficiency in power system management. To 

fine-tune the model, a comprehensive dataset of 1,000 simulated power grid operational records was 

created, covering scenarios such as equipment failures, grid fluctuations, and emergency responses. 

The data was preprocessed using domain-specific tokenization and term normalization to ensure 

consistency and contextual relevance. The AH-SpanBERT model was trained using this dataset, with 

specific prompt strategies designed to simulate real-world dispatch scenarios and foster interactive, 

scenario-based learning. The model’s performance was evaluated across multiple key metrics, 

including factuality, logicality, stability, and security. Results show significant improvements in 

factuality (8.48 in operation monitoring), logicality (9.74 in general scenarios), stability (9.15 in black 

start procedures), and security (9.62 in black start procedures). The AH-SpanBERT model 

outperforms existing LLMs such as GPT-4 and GAIA-70B in these areas, demonstrating its potential 

to enhance dispatcher decision-making and human-machine collaboration in critical power grid 

operations. This research highlights the effectiveness of fine-tuning general LLMs with domain-

specific data to improve dispatcher training and operational performance in power grid management. 

Povzetek: Članek obravnava usposabljanje dispečerjev energetskih omrežij za obvladovanje 

naraščajoče kompleksnosti omrežja in neenotnih podatkov. Predlaga AH-SpanBERT, tj. SpanBERT 

fino uglašen z optimizacijo Archerfish Hunting, treniran na 1000 simuliranih dispečerskih zapisih. 

Metoda izboljša faktualnost, logičnost, stabilnost in varnost odločanja v scenarijih nad GPT-4 in 

GAIA-70B. 

 

1 Introduction 

A persistent power connection device requires the 

realization of data connectivity and business collaboration. 

As the power grid's intelligence increases, the power sector 

has to manage the rapidly expanding amount of 

information. The intelligent evolution of the power grid 

greatly depends on the significant amount of unstructured 

data that was gathered during the energy grid's 

construction and development. The information is a 

significant component of big data [1]. The evolution of 

Internet technologies has been continuously supported by 

the advancement of information technology. Numerous 

data resources, such as pertinent standard specifications, 

technical and product documentation, management 

documents, fault resolution records, etc., remain to be 
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acquired by the energy sector [2]. Enhancing power grid 

operating safety and stability for incorporating the long-

term forecasting of alternative energies into power grid 

dispatching is necessary [3]. Energy is an alternative 

resource with great potential and a rapidly expanding 

global capacity. One of the main applications of energy is 

power generation. Considering that energy can be 

inconsistent and volatile, electrical grid stability and safety 

are of important concern [4]. The power system is an 

essential component of infrastructure for advancing the 

social and economic development of the nation. The 

present grid composition remains more complex, and the 

globalization of a local disturbance impact is becoming 

more prominent as ultra-high-voltage grids, extensive grid 

interactions, and grid coupling continue to be established 

constantly [5]. A significant quantity of power dispatch 

communication has been obtained as a consequence of the 

rapid technological advances and the comprehensive 

development of smart power grids. Designing a power 

dispatch knowledge visualization system and acquiring 

valuable information from relevant sources are essential 

for increasing team efficiency and assisting professionals 

in formulating decisions on power dispatch [6]. Energy 

sources, particularly solar and wind, have been actively 

developed in recent years, and installed capacity has 

increased quickly. However, solar power's intermittency 

and unpredictability make power grid scheduling more 

challenging, while wind power output's uncertainty and 

instantaneous volatility have a significant impact on the 

quality of energy and the power grid's stable operation [7]. 

Inadequate optimization could affect the model's overall 

performance, hyperparameter adjustments are complex, 

and the network's training time is delayed. The majority of 

the research presently in production applies incorrect data-

processing techniques for important factors or fails to 

adequately take into consideration the factors influencing 

the immediate demand for regional power grids [8]. 

1.1 Problem statement 

The increasing complexity of power grids challenges 

traditional methods for dispatchers, who struggle to handle 

vast, unstructured data and dynamic operational demands. 

Existing tools lack effective integration of domain-specific 

knowledge, leading to limited decision-making support 

and preparedness. This gap reduces dispatch efficiency 

and risks grid stability, especially during emergencies. 

There is an urgent need for advanced training solutions 

using fine-tuned large language models to improve 

dispatcher skills, enhance real-time decision accuracy, and 

facilitate better human-machine collaboration in power 

grid management. 

 

1.2 Objective and contributions of this 

research 

Investigating the use of optimized Large Language Models 

(LLMs) to improve power grid dispatchers' internal 

training is the intention of this research. Through domain-

specific data adaptation of the Archerfish Hunting Fine-

tuned Span Bidirectional Encoder Representations from 

Transformers (AH-SpanBERT) model, it enhances 

dispatcher decision-making and operational training. The 

objective of the research is to improve dispatchers' 

scenario-based learning by assessing essential 

instructional factors like accuracy, consistency, safety, and 

adaptability. 

• To improve internal training procedures for 

power grid dispatchers, this research explores the 

use of domain-specific data to improve 

generalized LLMs. 

• The power grid dispatcher operations dataset is to 

facilitate the creation and optimization of LLMs 

developed specifically for power grid dispatchers' 

internal training. 

• To preprocess the obtained data, tokenization and 

domain-specific term normalization techniques 

are employed to provide consistency and 

contextual relevance. 

• An extensive range of power system operational 

activities and decision-making scenarios, 

including operation adjustment, operation 

monitoring, and black start procedures, are 

supported by the proposed AH-SpanBERT 

model. 

• The proposed method provides superior 

performance in the application of general large 

model fine-tuning technology of natural language 

in the internal training of power grid dispatchers. 

 

2 Related work 

The impact of the adoption of electric vehicles (EVs) on 

Italy's national power grid, with a particular emphasis on 

distribution and transmission systems, was described [9]. 

It concludes that curtailment of renewable energy, 

dispatching expenses, and grid breaches can all be 

considerably decreased by smart charging. However, there 

are drawbacks, such as the influence of localized 

distribution networks and the unpredictability of EV 

charging behavior. To develop a medical waste plasma 

hybrid peak load system for coal-fired power units, 

integrating syngas production, gas turbines, and renewable 

energy sources was described [10]. It finds that the system 

enhances energy efficiency and reduces operational costs, 

with a 6.20-year payback period. Limitations include the 

system's relatively low energy and exergy efficiency 

(37.38% and 36.19%, respectively). An optimization 
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framework for a PV-grid-integrated EVCS with battery 

storage and peer-to-peer charging strategies was 

determined [11]. The model focuses on minimizing 

operational costs, ensuring reliability, and enhancing 

profitability. Simulation results show a reduction in energy 

demand costs and a reduction in maximum demand. 

However, the model is sensitive to daily varying weather 

and load conditions, which may affect long-term 

performance. A low-carbon economic dispatching strategy 

using a feasible region (FR) model to manage the 

interaction between wind power (WP), energy storage 

(ES), and carbon capture power plants (CCPP) was 

proposed [12]. The model reduces carbon emissions by 

promoting WP consumption while addressing its 

uncertainty. Simulation results on IEEE 39-bus and 118-

bus test cases confirm its effectiveness. However, the 

model's reliance on robust optimization and the 

complexity of the column constraint generation algorithm 

may limit scalability. 

  According to the programming, the investigation 

was limited in carrying out the operation in an average 

layer, as it lacks autonomous ability. To recognize nested 

named entities in the power dispatching domain, a 

Robustly Optimized BERT (RoBERTa)-Attention-FL 

model was suggested [13]. The findings showed that the 

RoBERTa-Attention-FL model, with a higher accuracy 

rate, enhanced the recognition performance when 

compared to the baseline model. The suggested method 

needs to recognize named entities and assess the 

relationship between named entity identification and 

relationship extraction for optimal use of potential 

knowledge in the field of grid dispatching. The two-stage, 

data-driven deep learning approach for ultra-short-term 

photovoltaic (PV) electricity forecasting was presented 

[14]. The Bidirectional Gating Recurrent Unit (BiGRU) 

and the skip connection were utilized in a bidirectional 

recurrent neural network for many historical states that 

captured the long- and short-time sequences of PV 

sequences. The attention mechanism enabled the neural 

network to contribute adaptive importance to more 

relevant historical states. The results showed that the 

developed approach was capable of predicting PV power 

reasonably well for short-range immediate forecasts. 

Short-term consistency and long-term frequency were 

removed with the unsuitable skip connection, along with a 

suitable approach that could not effectively train the linear 

regularity. A microgrid scheduling model that addresses 

the economic and environmental costs of microgrid 

schedules utilizing accurate forecasting of photovoltaic 

(PV) power generation was presented [15]. The proposed 

model incorporates a combined Sparrow Search Algorithm 

(SSA)-Convolutional Neural Network (CNN)-

Bidirectional Long Short-Term Memory (Bi-LSTM) 

prediction model with attention mechanisms, and a more 

enhanced Quantum Particle Swarm Optimization (QPSO) 

algorithm to optimize dispatch. Together, the model 

produces high prediction accuracy and maintains 

stabilization of the microgrid. To improve the flexibility 

and stability of the complicated and frequently large-scale 

power systems to control properly, the Distributed AI 

(DAI) framework was used [16]. The results highlighted 

the significance and possible advantages of the suggested 

framework in maintaining the reliable and efficient 

performance of power systems. Using the system 

manager's monitoring, the suggested technique needs to 

provide smooth power distribution optimization 

throughout the nano-grid that greatly improves the smart 

grid management systems. A fault tracing method using 

data partition hybrid sampling and multiple incremental 

regression tree algorithms to improve power grid fault 

detection was proposed [17]. By combining anomaly 

detection, clustering, and information difference models, 

the method achieves high precision and efficiency, 

enhancing grid maintenance and safety. A system based on 

LLMs that was presented for developing a domain-specific 

language for urban power grid architecture was established 

[18]. The creation of semantically intelligent systems for 

smart urban power grid design was supported by expert 

validation that demonstrated an accuracy rate of 89.3%. 

The results represented a significant practical application 

value. Semantic depth knowledge problems were 

highlighted, such as the current approach of assessing 

alternatives, which mostly relies on word vector similarity 

and manual tests. To detect abnormal users in smart grids 

by combining Bidirectional Long Short-Term Memory 

(BiLSTM) and Convolutional Neural Networks (CNN) for 

feature extraction, followed by Adaptive Boosting 

(AdaBoost) for classification, aimed [19]. The dataset 

consists of power consumption data from a small 

substation. The method outperforms individual models but 

faces challenges in scalability and real-time deployment 

across larger grids. The Dynamic Black Hole-driven Deep 

Convolutional Generative Adversarial Network (DBH-

DCGAN) to address limitations in traditional power 

system monitoring, enhancing real-time equipment status 

and operational adaptability, was proposed [20]. The 

method utilizes dynamic adjustments to improve model 

stability and flexibility. A large set of pre-processed power 

equipment images was used for evaluation, showing 

significant improvements in monitoring accuracy across 

various operating conditions. The DBH-DCGAN method 

achieved high recall, accuracy, and F1-score, 

demonstrating its effectiveness in power plant monitoring 

and advancing intelligent grid management. However, 

challenges remain in adapting the method to highly diverse 

real-world conditions and scaling for large systems. A 

framework for classifying renewable energy sources using 

a freely available multivariate time-series dataset, with 

data on solar, wind, and hydro, was proposed [21]. The 

research analyzed a range of models: Logistic Regression 

(LR), Support Vector Machine (SVM), XGBoost, 

Artificial Neural Networks (ANN), and 1D Convolutional 
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Neural Networks (1D-CNN). A hybrid model that 

incorporates an attention mechanism with the 1D-CNN to 

not only improve feature extraction but also concentrate on 

temporal patterns of interest. The attention-attuned model 

proved to be the highest performer in its classification 

ability, with elevated metrics. However, further work is 

required to improve model generalisation across different 

energy sources and operational conditions. A comparative 

summary table showing dataset sizes, tasks, metrics used, 

and results of prior models is shown in Table 1.

Table 1: Summary table 

Model Methodology Dataset/Scope Key Task Performance Results Limitations 

EV-Grid 

Integration 

Evaluation [9] 

Smart Charging Impact 

on Distribution and 

Transmission Systems 

EV adoption in Italy's 

national grid 

Evaluate EV's effect on 

the distribution network 

and grid dispatching 

Reduces curtailment of 

renewable energy, 

dispatching expenses, 

and grid breaches 

Influence of localized 

networks and 

unpredictability in EV 

charging behavior 

Medical Waste 

Plasma Hybrid 

Peak Load System 

[10] 

Hybrid system 

integrating syngas 

production, gas turbines, 

and renewable energy 

sources 

Coal-fired power units Energy efficiency and 

operational cost 

reduction 

Enhances energy 

efficiency, 6.20-year 

payback period 

Low energy and exergy 

efficiency (37.38% and 

36.19%) 

PV-Grid-

Integrated EVCS 

with Battery 

Storage [11] 

Optimization 

framework for 

minimizing operational 

costs 

PV-grid integrated EV 

charging stations 

Minimize operational 

costs, ensure reliability, 

and enhance 

profitability 

Reduction in energy 

demand costs and 

maximum demand 

Sensitive to daily weather 

and load conditions, 

which affect long-term 

performance 

Low-Carbon 

Economic 

Dispatching [12] 

Feasible region model to 

manage wind power, 

energy storage, and 

carbon capture 

IEEE 39-bus and 118-

bus test cases 

Economic dispatching 

with wind power and 

carbon capture 

Reduces carbon 

emissions, confirms 

effectiveness in test 

cases 

Complex column 

constraint generation, 

limiting scalability 

RoBERTa-

Attention-FL for 

Named Entity 

Recognition [13] 

RoBERTa with 

Attention-FL for nested 

named entity 

recognition 

Power dispatch domain Named entity 

recognition 

Improved accuracy in 

entity recognition 

Needs better relationship 

extraction and entity 

identification 

BiGRU + 

Attention 

Mechanism for PV 

Forecasting [14] 

BiGRU with attention 

mechanism for ultra-

short-term PV 

forecasting 

PV data for short-term 

forecasting 

PV power forecasting 

for short-range 

immediate forecast 

An accurate short-term 

forecast captures long 

and short time sequences 

Issues with consistency 

and long-term frequency 

in predictions 

Microgrid 

Scheduling with 

SSA-CNN-Bi-

LSTM [15] 

SSA-CNN-Bi-LSTM 

with QPSO for 

optimizing microgrid 

dispatching 

Microgrid with PV 

power generation 

Economic and 

environmental cost 

optimization 

High prediction 

accuracy, stable 

microgrid performance 

Needs more robust 

optimization techniques 

for varying conditions 
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Distributed AI 

Framework for 

Power Systems 

[16] 

Distributed AI for large-

scale power systems 

control 

Smart grid and large-

scale systems 

Power system control 

and management 

Improves flexibility and 

stability in power system 

control 

Lack of real-time 

autonomous decision-

making 

Fault Detection 

with Hybrid 

Sampling [17] 

Data partition, hybrid 

sampling, and 

incremental regression 

trees 

Power grid fault data Fault detection and grid 

maintenance 

High precision and 

efficiency in fault 

detection 

Complexity in handling 

large-scale datasets 

LLMs for Urban 

Power Grid 

Architecture [18] 

Large Language Models 

(LLMs) for developing a 

domain-specific 

language 

Urban power grid design Design of intelligent 

systems for urban grid 

architecture 

89.3% accuracy in 

expert validation 

Relies on word vector 

similarity and manual 

testing for semantic depth 

GPT-4 [23] Variable (General) General language 

understanding, text 

generation 

Factuality, Logicality, 

Stability 

Factuality: 7.05, 

Logicality: 9.71, 

Stability: 7.52 

Limited domain 

adaptation, no specific 

optimization for power 

grid tasks 

GAIA-70B [23] Power Grid Specific Power grid 

management, load 

forecasting 

Factuality, Logicality, 

Security 

Factuality: 7.79, 

Logicality: 7.79, 

Stability: 8.64 

Lack of real-time scenario 

adaptability, limited 

domain-specific 

vocabulary 

 

2.1 Research gap: Current models for grid 

optimization, energy forecasting, and AI-driven power 

dispatching, such as smart charging for EVs and 

RoBERTa-Attention-FL, face significant challenges in 

real-time adaptability, scalability, and semantic 

understanding. Existing solutions struggle to address 

localized network behaviors and the unpredictability of 

charging patterns, limiting their effectiveness in dynamic 

environments. Additionally, short-term forecasting models 

like BiGRU + Attention Mechanism lack consistency over 

the long term, while AI models show promise in entity 

recognition but fall short in relationship extraction and 

complex semantic processing. AH-SpanBERT overcomes 

these issues by leveraging advanced span-based entity 

recognition to handle power-specific vocabularies and 

dynamic relationships in grid dispatching. Its ability to 

recognize named entities and relationship extraction 

allows for accurate, scalable, and real-time decision-

making. By combining DL techniques like BiGRU, CNN-

BiGRU Hybrid, and QPSO, AH-SpanBERT enhances 

forecasting accuracy, grid stability, and autonomous 

operations in large-scale energy systems. 

2.2 Research methodology 

To improve the internal training procedures for power grid 

dispatchers, this research investigates the use of domain-

specific knowledge to improve generic LLMs. For 

effective performance, the research explores the data 

collection process, preprocessing techniques like 

tokenization, along with domain-specific term 

normalization, and the proposed method applications more 

comprehensively. Figure 1 shows the process of research 

methodology. 

 

Figure 1: Methodology process involved with natural 

language in the internal training of power grid dispatchers 
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2.3 Data collection 

The power grid dispatcher operations dataset is obtained 

from the open-source Kaggle [22]. The purpose of the 

dataset is to facilitate the creation and optimization of 

LLMs developed specifically for power grid dispatchers' 

internal training. The dataset contains 1,000 simulated 

functional records that span real-world situations like 

normal monitoring, emergency responses, equipment 

failures, and grid fluctuations. This dataset is beneficial for 

scenario-based LLM training, interactive dispatcher 

learning simulations, decision-making analysis under 

various complexity and urgency levels, along with 

collaborative human-machine modeling. 

The data is split into training, validation, and test sets, in 

which 80% of the data will be used for training, 10% for 

validation, and 10% for testing. This split allows for proper 

evaluation of the model and prevents overfitting by 

ensuring that there is separate data to validate and test the 

model. 

2.4 Data preprocessing through tokenization 

and domain-specific term normalization 

Initial measures to clean and prepare unprocessed textual 

information for efficient performance are known as data 

pre-processing. There are two preprocessing techniques, 

such as tokenization and domain-specific term 

normalization, that are employed to preprocess the 

obtained data for the application of general large model 

fine-tuning technology of natural language in the internal 

training of power grid dispatchers. 

2.4.1 Tokenization  

Textual information is divided into meaningful 

components through proper tokenization, facilitating 

advanced modeling and computational processes. Text can 

be efficiently processed and comprehended by NLP 

algorithms by breaking the textual data into tokens, which 

leads to more precise and perceptive outcomes across a 

wide range of language processing applications. 

Modifying tokenization for domain-specific needs, 

including the needs of social media data, legal 

documentation, or research papers, is known as domain-

specific tokenization. 

2.4.2 Domain-specific term normalization 

Impurity assessment is enhanced with the normalization 

step to distinguish between various document lengths and 

domain corpora sizes. The normalizing step and the 

impurity measure, as demonstrated by the research, make 

the technique more accurate in characterizing words for 

the application of general large-scale model fine-tuning 

technology of natural language. 

2.5 Stemming:  Stemming is a text preprocessing 

technique in NLP that reduces words to their root form by 

removing prefixes and suffixes. This process helps in 

simplifying words to a common base, making them more 

consistent and improving model accuracy by treating 

different forms of a word as equivalent. Algorithms like 

the Porter Stemmer and Snowball Stemmer are commonly 

used for this purpose. While stemming enhances data 

consistency and model performance, it may occasionally 

result in non-standard words, such as reducing "better" to 

"bet." Despite this, stemming is essential for improving 

tasks like text classification and information retrieval in 

NLP. 

2.6 Power system operational tasks and 

decision-making scenarios development 

through archerfish hunting fine-tuned span 

bidirectional encoder representations from 

transformers (AH-SpanBERT) 

The suggested Archerfish Hunting Fine-tuned Span 

Bidirectional Encoder Representations from Transformers 

(AH-SpanBERT) model supports a wide range of power 

system operational tasks and decision-making scenarios 

that integrate the Span Bidirectional Encoder 

Representations from Transformers (SpanBERT) and 

Archerfish Hunting (AH) optimization that enhances the 

internal training processes for power grid dispatchers. AH-

SpanBERT is described in Figure 2. 

 

Figure 2: Flowchart of AH-SpanBERT 



AH-SpanBERT: Fine-Tuning SpanBERT with Archerfish Optimization… Informatica 49 (2025) 381–396 387 

 

2.6.1 Span bidirectional encoder 

representations from transformers 

(SpanBERT) 

A transformer-based model called SpanBERT predicts text 

spans and performs an exceptional task at capturing 

contextual connections in text. The technique is designed 

to comprehend domain-specific language, enhancing 

dispatcher training in decision-making and scenario 

comprehension. To improve the representation and 

prediction of text spans, a self-supervised pre-training 

technique called SpanBERT was introduced. One 

extended textual segment is sampled by SpanBERT for 

every training instance. The categories of SpanBERT 

processes, such as masking and boundary intention, are 

discussed. 

Masking: This model iteratively samples text spans until 

the masking resource is exhausted, selecting a subset of 

tokens 𝐵 ⊆ 𝐴 from a series of tokens 𝐴 =

 (𝑎1, 𝑎2, . . . , 𝑎𝑁). The method initiates iteration by 

sampling a span length (the number of words) from a 

geometrical distributionℓ~𝐺𝐸𝑂(𝑞), which tends to benefit 

from shorter spans. Next, uniformly and randomly chooses 

an initial point for the masking of the span. Instead of using 

subword tokens, always samples a sequence of whole 

words, and the initial position should be the first character 

of a single word. The technique replaces all of the tokens 

in a span with masking, and it is performed at the span 

level. 

Boundary Intention: The span selection approaches 

engage with a span's boundary tokens to provide a fixed-

length representation of the span. The representations at 

the end of the span can ideally compress the majority of 

the inside span information. To accomplish the function, 

SpanBERT introduces a span boundaries target that uses 

the representations of the observation tokens at the 

boundaries to forecast each token of a masking span. 

Representing the transformer encoder's output in each 

word of the sequence is represented by 𝑎1, . . . , 𝑎𝑁 . Using 

the output encodings of the outer boundary tokens 𝑎𝑡−1 

and𝑎𝑓+1, along with the position encoding of the target 

token 𝑞𝑗−𝑡+1, it represents each token 𝑎𝑗 in the masked 

span of tokens (𝑎𝑡 , . . . , 𝑎𝑓) ∈ 𝐵, where (𝑡, 𝑓) denotes its 

beginning and the end positions in Eq. (1). It allows for a 

real-time operational scenario to be built, and helps 

dispatchers make informed decisions about system 

performance, such as response to grid changes, equipment 

failures, and energy demand changes, improving training 

and operation efficiency. 

𝑏𝑗 = 𝑓(𝑎𝑡−1, 𝑎𝑓+1, 𝑞𝑗−𝑡+1)                                                                                                                            

                                                                               (1) 

Where the masked words' positional relationships to the 

left boundary word 𝑎𝑡−1 are indicated by positional 

embeddings𝑞1, 𝑞1, … , 𝑒𝑡𝑐. For every token 𝑎𝑗 in the 

masked span (𝑎𝑡 , . . . , 𝑎𝑓), SpanBERT adds the loss from 

the span border and the regular masked language model 

desired outcomes, utilizing the input embedded for the 

target tokens described in Eq. (2).  

ℒ(𝑎𝑗) = ℒ1(𝑎𝑗) + ℒ2(𝑎𝑗) = − log 𝑄(𝑎𝑗|𝒂𝑗) −

log 𝑄(𝑎𝑗|𝒃𝑗)                                                   

                                                                            (2) 

Where, ℒ(𝑎𝑗) measures the prediction error of 𝑎𝑗 based on 

its history, and ℒ2(𝑎𝑗)measure the error based on the 

related variable 𝒃𝑗. The likelihood (𝑎𝑗|𝒂𝑗) and 𝑄(𝑎𝑗|𝒃𝑗) 

assess prediction accuracy for both self-prediction and 

cross-variable relationships. This loss function could be 

applied to minimize the difference between actual and 

predicted outcomes, such as grid behaviors or operational 

decisions, and to increase the accuracy of the models for 

both the historical context and future predictions. 

 SpanBERT loss function Equation 2 is indeed the 

probability of predicting 𝑎𝑗 given itself; this term would 

ideally be zero, as the model would predict 𝑎𝑗 perfectly, 

making the likelihood zero abd contributing nothing to the 

loss. This is not consistent with the typical loss 

components used with SpanBERT-type models. The 

normal SpanBERT loss function is the combination of two 

objectives: the Masked Language Modeling (MLM) loss, 

which is concerned with predicting masked tokens, and the 

Span Boundary Objective (SBO) loss, which ensures span 

boundaries are predicted better. The equation in question 

does not capture either of these two components or the 

appropriate math form for either. A fix would involve 

properly combining MLM loss and SBO loss to be 

consistent with established formulations, to include both 

span prediction and token prediction objectives in the loss 

function. To pre-train span representations, SpanBERT 

uses a geometric distribution-based masking approach that 

masks full-word spans and a single-sequence data flow to 

optimize a supporting span-boundary achievement. 

2.6.2 Archerfish hunting (AH) optimization 

The AH optimization enhances LLM training for 

operational responsibilities in complicated, real-time 

power grid management by optimizing decision-making 

through the simulation of environment-specific problem-

solving. The proposed AH's exploration and exploitation 

stages depend on the hunting and jumping behaviors of 

archerfish. Any optimization issue can be resolved using 

AH, provided that the power grid management is properly 

formulated. The AH optimization was selected for its 

biologically inspired exploration–exploitation balance and 
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suitability for nonlinear, high-dimensional scenarios like 

power grid dispatcher simulation. AH demonstrated 

improved convergence behavior and enhanced training 

dynamics in the AH-SpanBERT model with standard 

optimizers such as Adam and Particle Swarm 

Optimization (PSO) under identical training conditions. 

This will help quantify AH's performance advantage in 

terms of model accuracy, convergence rate, and decision 

quality in scenario-based training tasks. Assume that there 

are many archerfish in a search area of dimensions 𝐷. 

Archerfish location 𝑗 at iteration 𝑠 is as follows (Eq. (3)), 

and the population size is𝑛. 

𝐴𝑗,𝑠 = (𝑎1, 𝑎2, … , 𝑎𝐷)                                                                                                                    

                                                                            (3) 

 Using Eq. (4), the point 𝐴〈𝑗,0〉 is initialized at 

random with repetition𝑠 =  0. 

𝐴〈𝑗,0〉 = (𝛼1 × (𝑎1
𝑚𝑎𝑥𝑖 − 𝑎1

𝑚𝑖𝑛𝑖) + 𝑎1
𝑚𝑖𝑛𝑖 , … , 𝛼𝐷 ×

(𝑎𝐷
𝑚𝑎𝑥𝑖 − 𝑎𝐷

𝑚𝑖𝑛𝑖) + 𝑎𝐷
𝑚𝑖𝑛𝑖)                         

                                                                            (4) 

𝐴〈𝑗,0〉 is the initial position vector, 𝛼1 is the random 

multiplier, and a uniform distribution. 𝑎𝑘
𝑚𝑎𝑥𝑖  and 𝑎𝑘

𝑚𝑖𝑛𝑖 are 

upper and lower bounds, 𝐷 defining the complexity of the 

optimization problem. Equation (4) initializes agent 

positions in the AH optimization algorithm and creates 

different places to begin within the defined bounds. The 

issues of starting position support the search space for 

optimization of energy grids, particularly for supporting 

task schedules and the overall efficiency of operations, 

ensuring a reachable solution as it relates to decision-

making in active or dynamic grid management. AH 

initialization formula raises a valid concern regarding the 

ambiguity of the notation. The variables (𝑎1, 𝑎2, … , 𝑎𝐷) 

are described as "uniformly distributed random integers 

between o and 1," but the formula implies these values 

might be sequential components of the single random 

vector, which could lead to confusion.  In standard 

optimization algorithms, each dimension is typically 

initialized with independent random values. Additionally, 

the notation 𝑎1
𝑚𝑎𝑥𝑖   and 𝑎𝐷

𝑚𝑖𝑛𝑖 , with the subscript 𝑖, is 

unclear regarding whether the bounds are shared across all 

dimensions or specific to each one.  

 Where the uniformly distributed random integers 

between 0 and 1 are denoted by𝛼1, . . . , 𝛼𝐷. An archerfish 

uses Eq. (5) to travel in the direction of a target when it 

identifies the generation of the vibration. 

𝐴〈𝑗,𝑠+1〉 = 𝐴〈𝑗,𝑠〉 + 𝑓−‖𝐴𝑝𝑟𝑒𝑦
〈𝑙,𝑠〉

−𝐴〈𝑗,𝑠〉‖
2

(𝐴𝑝𝑟𝑒𝑦
〈𝑙,𝑠〉

− 𝐴〈𝑗,𝑠〉)       

                                                                           (5) 

 The position of the prey is determined in Eq. (6). 

The archerfish's mobility is determined by its acceleration 

of gravity (g), launch speed (v), and sensing angle (θ0), 

while the air friction is minimal. The desired outcome is 

assumed to be at the peak of the motion visualization. 

Using Eq. (7), an archerfish moves in the direction of the 

target that  intends to capture. 

𝐴𝑝𝑟𝑒𝑦
〈𝑙,𝑠〉

= 𝐴〈𝑗,𝑠〉 + (0, … ,
𝑢2

2𝐺𝑟
× sin 2𝜃0, … ,0) + 𝜀                                                                              

                                                                           (6) 

𝐴〈𝑗,𝑠+1〉 is the updated position of the j-th archerfish, 𝐴〈𝑗,𝑠〉 

is the current position of the jth archerfish at iteration 𝑇. 

𝐴𝑝𝑟𝑒𝑦
〈𝑙,𝑠〉

 is the position of the prey at the 𝑠th iteration for the 

𝑙th archerfish. 𝑒 is the scaling factor that adjusts the 

magnitude of the movement based on the distance between 

the archerfish and its prey, 𝐴𝑝𝑟𝑒𝑦
〈𝑙,𝑠〉

− 𝐴〈𝑗,𝑠〉 is the squared 

Euclidean diatance between the archerfish and he prey, 𝜀 

is the small random perturbation, 𝑣 is the lunch speed of 

the archerfish, 𝑔 is the acceleration due to gravity, 𝜃0 is the 

sensing angle of the archerfish. The motion of an 

archerfish can be characterized by these equations as part 

of the AH optimization algorithm. The update process has 

two main components. First, the prey is updated via a 

physics formulation (Equation 6) based on its speed, 

gravitational pull, and the angle of the prey based on the 

archerfish's three-dimensional surface imaging.  

 𝑁𝑒𝑤 _𝑝𝑜𝑠 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 _𝑝𝑜𝑠 + (𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑜𝑠 −

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠). 𝑒−||𝑡𝑎𝑟𝑔𝑒𝑡𝑝𝑜𝑠−𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠 was Euclidean 

distance. However, it is more closely representative of 

physics-inspired metaheuristics (e.g., Gravitational Search 

Algorithms) than AH's original behavior based on a jump-

based ballistic mechanism. To more closely align with the 

AH concept, this function must incorporate:  directional 

jumps influenced by θ₀  projectile arc displacement 

perturbations 𝜖.  Moving forward, the updated algorithm 

provides an updated formulation, using a hybrid of 

physics-based trajectory (Equation 6) and normalized 

directional movement.  

This must also be appropriately buffered by parameter θ₀. 

The perceiving angle value (𝜃0) makes the exploration and 

exploiting phases switch. Therefore, the more effectively 

AH will utilize the search space when the value of 𝜃0 is to 
𝜋

2
or−

𝜋

2
, and vice versa. Eq. (7) is used to produce the value 

of 𝜃0 at random. 

𝜃0 = (−1)𝑦 × 𝛼 × 𝜋                                                                                                                                     

                                                                    (7) 

𝜃0 is the perceiving angle controlling exploration, 𝑦 is the 

random variable for alternating sign, 𝛼 is the scaling factor 

for angle magnitude. 𝜋 is the mathematical constant for 
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angle bounds. Equation (7) was used to create a method for 

generating the perceiving angle θ_0 randomly, which is 

important in AH optimization to control both exploration 

and exploitation. By selecting the value of the perceptive 

angle randomly, ensures that the archerfish will alternate 

between exploring the search space (θ_0 = π/2 or θ_0 = -

π/2) and exploiting areas near a target (indicated by smaller 

values of θ_0). The concerns with the implementation of 

θ_0 logic and its effect on whatever 

exploration/exploitation is currently being done. The 

current implementation of θ_0, where randomly selected 

to be between π/2 and -π/2 is too limiting on the flipping 

between an exploration phase and an exploitation phase as 

designed from the formula in Equation (7). Instead of 

having a plan of action where consideration of exploration 

is always occurring and the exploitation logic in the 

𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑒𝑥𝑝𝑙𝑜𝑖𝑡 function is not able to be reached, to 

modify the code to allow θ_0 more flexibility in terms of 

how many values it take on a variety of angles, while 

simultaneously providing behavior that enacts both 

exploration and exploitation, making use of values 

controlled by θ_0, as intended for AH optimization. 

The current implementation always assigns 𝜃₀ 𝑎𝑠 ± 𝜋/2, 

making the condition if 𝑎𝑏𝑠(𝜃₀)  ==  𝜋/2 always true and 

rendering the else branch redundant. To address this, will 

introduce continuous sampling of 𝜃₀ ∈ [−𝜋/2, 𝜋/

2] 𝑢𝑠𝑖𝑛𝑔 𝜃₀ =  (−1)^𝑟𝑎𝑛𝑑 ×  𝛼 ×  𝜋, allowing 

dynamic control via scaling factor α. The 

𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑒𝑥𝑝𝑙𝑜𝑖𝑡() function then probabilistically 

switches between exploration and exploitation based on 

whether |𝜃₀|  >  𝜋/4. The model, as it is currently set, 

exists to log 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, but not to affect the 

model training of SpanBERT. The next iteration of AH 

represented the positions generated as hyperparameter 

vectors (learning rate, masking ratio, frozen layers, batch 

size) to fine-tune the model. The hyperparameters are 

decoded and used from the function 

𝑓𝑖𝑛𝑒_𝑡𝑢𝑛𝑒_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑓𝑖𝑔(). In this version, AH was able 

to know how to proceed conservatively with a lower 

learning rate, masking ratio, and batch size depending on 

the scenario being suited. This marks the beginning of a 

closed-loop system with AH insisting on the tuning of 

SpanBERT training creation and SpanBERT creating 

feedback for AH's directed search through a performance-

based fitness score. 

To prevent getting trapped in localized optimums, AH 

optimization employs a conventional approach. Algorithm 

1 shows the working procedure of the proposed AH-

SpanBERT model. 

Algorithm 1: AH-SpanBERT 

Import numpy as np 

Import random 

Class SpanBERT: 

def __init__(self, model_name): 

self.model_name = model_name 

def preprocess(self, data): 

        Return preprocess_data(data) 

deffine_tune(self, data): 

        Return fine_tune_model(data) 

def predict(self, input_text): 

        Return self.model.predict(input_text) 

Class ArcherfishHunting: 

def __init__(self, dimensions, population_size): 

self.dimensions = dimensions 

self.population_size = population_size 

self.position = np.random.rand(population_size, 

dimensions) 

defupdate_position(self, current_position, 

target_position):      Return 

current_position+(target_position-

current_position)*np.exp(-np.linalg.norm(target_position 

- current_position)) 

defexplore_exploit(self, position, prey_position, theta_0): 

if abs(θ_0) == np.pi / 2: 

            Return self.update_position(position, 

prey_position) 

else: 

            Return position 

def simulate(self): 

for _ in range(self.population_size): 

prey_position = self.position[random.randint(0, 

self.population_size - 1)] 

target_position = self.position[random.randint(0, 

self.population_size - 1)] 

θ_0= random.choice([-np.pi / 2, np.pi / 2]) 

new_position = self.explore_exploit(self.position, 

prey_position, θ_0) 

self.position = new_position 

        Return self. position 

Class AHSpanBERTModel: 

def __init__(self, span_bert_model, archerfish_model): 

self.span_bert = span_bert_model 

self.ah_optimizer = archerfish_model 

defoptimize_training(self, training_data, scenario_data): 

fine_tuned_model = 

self.span_bert.fine_tune(training_data) 

training_scenarios = generate_scenarios(scenario_data) 

for scenario in training_scenarios: 

updated_position = self.ah_optimizer.simulate() 

predictions = self.span_bert.predict(scenario['input']) 

scenario['actions'] = predictions 

scenario['updated_position'] = updated_position 

        Return training_scenarios 

Through the simulation of domain-specific operational 

situations, such as task management, system monitoring, 

and emergency protocols, the AH-SpanBERT model is 

optimized to improve power grid dispatcher training. The 

proposed technique makes interactive, scenario-based 
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learning, which enhances flexibility, knowledge retention, 

and decision-making. The approach facilitates context-

aware, real-time responses, improving human-machine 

cooperation in power grid systems and dispatcher 

performance across a range of operational tasks. 

3 Results and discussions 

This section deliberates on the results produced by the 

implementation of the model, including parameter setup, 

evaluation criteria, and comparative phase. 

3.1 Experimental setup  

For fast processing and effective multitasking, the research 

makes use of an AMD Ryzen 7 5800X CPU and 32GB 

DDR4 memory. Graphics-intensive operations are 

managed by the NVIDIA GeForce RTX 3080 GPU. For 

GPU computing performance and scalability, the system 

runs on Windows 11 and uses Python 3.9, scikit-learn, and 

TensorFlow libraries 

3.2 Parameters setup  

AH-SpanBERT hyperparameters as described in Table 2. 

Table 2: Parameter setup 

Hyperparameter Value 

Learning Rate 0.0001 

Epochs 50 

Batch Size 32 

Layers Frozen 

The first few layers of SpanBERT model 

are frozen to maintain the pre-trained 

knowledge. 

Loss Function 

Combination of Masked Language 

Modeling (MLM) loss and Span 

Boundary Objective (SBO) loss 

Loss Function 

Values 

Regularization values of 0.5 for both 

MLM and SBO losses 

 

3.3 Evaluation criteria 

The evaluation criteria demonstrate the cost consumption 

of the proposed AH-SpanBERT technique’s efficiency in 

the internal training of power grid dispatchers, and resulted 

in the 0 to 100 iterations & 0 to 500 iterations (Figure 3 a-

b). The 100-iteration run is effective for quicker results 

because it quickly converges and maintains performance. 

Over time, better optimization could become possible due 

to the 500-iteration run, which allows for additional 

exploration and improvement. The AH-SpanBERT 

method shows significant outcomes in the cost function in 

that provides less cost consumption in performing the 

power grid dispatcher’s internal training process. 

 

Figure 3: Outcomes of cost assessment with (a) iteration 

within 0-100 and (b) iteration within 0-500 

3.4 Comparison phase 

The proposed AH-SpanBERT and the existing models 

such as Generative Pre-trained Transformer 4 (GPT-4) 

[23] and Grid Artificial Intelligent Assistant (GAIA-70B) 

[23] are compared for providing an effective performance 

in internal training of power grid dispatchers along with 

various parameters like factuality, logicality, stability and 

security for various scenarios like general, dispatch, 

operation monitoring and black start. 

➢ Factuality indicates that the information is valid 

and the findings accurately reflect the actual 

circumstances, which is crucial for valid 

decision-making in the operation of power 

systems.  

➢ Logicality is concerned with the precision of 

logical inference and the dependability of the data 

utilized in the enhancement of power grid 

dispatcher learning assessment. 

➢ Stability maintains operational continuity and 

reliability. The parameter also assesses LLMs' 

capacity to sustain similar outputs in dynamic 

situations. 

➢ Security indicates the significance of ensuring 

that operational security provides model 

applications that can never damage the power 

system's security. 

The evaluation metrics (factuality, logicality, stability, and 

security) scaled from 0 to 10, were adapted from the 

Elecbench benchmark (Zhou et al., 2024), which provides 

a standardized framework for assessing LLM performance 

in power dispatch tasks. The scoring system follows 

Elecbench’s normalized evaluation procedure, where 

expert raters assess model responses based on alignment 

with ground truth, operational logic, and scenario safety. 

Each metric was averaged over multiple annotated 

responses across four scenarios to ensure consistency and 

comparability. This alignment ensures that our reported 

results are interpretable within the context of existing 

power grid LLM evaluation standards. 
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The purpose of the general scenario design is to assess the 

LLM's proficiency in handling data analysis, forecasting, 

and basic knowledge question-and-answer tasks related to 

day-to-day power system management. AH-SpanBERT 

achieves high scores in factuality (8.32), ensuring accurate 

information delivery. Logicality is very high at 9.74, 

supporting sound reasoning. Security (9.38) and stability 

(8.76) confirm the model's reliability and safety in 

everyday power system management and training tasks. 

Table 2 and Figure 4 represent the numerical outcomes of 

factuality in four scenarios. 

Table 2: Numerical outcomes of General power 

systemwith four scenarios 

Models 

General power system 

Factuali

ty 

Logicali

ty 

Securit

y 

Stabilit

y 

GPT-4 

[23] 
7.05 9.71 9.28 7.52 

GAIA-

70B [23] 
7.79 7.79 9.29 8.64 

AH-

SpanBER

T 

[Propose

d] 

8.32 9.74 9.38 8.76 

 

 

Figure 4: Graphical illustration of factuality results in 

general scenarios. 

The dispatch sub-scenario is essential for assessing the 

efficiency of LLMs data analysis, forecasting, and optimal 

decision-making, all of which are vital for improving the 

stability and efficiency of the sector. In dispatch 

operations, AH-SpanBERT maintains solid factuality 

(7.59) and logicality (9.37), facilitating optimal decision-

making. The security score of 9.40 indicates that the model 

safeguards operational safety, while stability at 8.15 

reflects consistent output, essential for reliable 

performance in dynamic dispatch scenarios. Mathematical 

results of four scenarios in logicality are provided in Table 

3 and Figure 5. 

Table 3: Mathematical results of dispatch. 

Models 

Dispatch 

Factuali

ty 

Logicali

ty 

Securit

y 

Stabilit

y 

GPT-4 

[23] 
7.42 9.30 9.35 8.07 

GAIA-

70B [23] 
7.45 7.52 9.37 7.44 

AH-

SpanBER

T 

[Propose

d] 

7.59 9.37 9.40 8.15 

 

 

Figure 5: Mathematical outcomes of logicality with 

dispatch 

Operation monitoring places significant demands on data 

speed and accuracy in the design of the assessment 

framework, requiring LLMs to have strong data gathering 

and processing skills along with the capacity to promptly 

recognize and address possible problems. For operation 

monitoring, AH-SpanBERT delivers high factuality (8.48) 

and logicality (8.97), demonstrating effective data 

interpretation and problem identification. The security 

score of 9.39 ensures safe application, while stability 

(7.14) remains adequate, supporting dependable 

performance despite real-time monitoring issues. Figure 6 

and Table 4 show the outcomes of operation monitoring. 
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Table 4: Operation monitoring outcomes with several 

parameters 

Models 

Operation Monitoring 

Factuality Logicality Security Stability 

GPT-4 [23] 8.21 8.92 9.10 6.16 

GAIA-70B 

[23] 
8.42 7.78 9.35 7.00 

AH-

SpanBERT 

[Proposed] 

8.48 8.97 9.39 7.14 

 

 

Figure 6: Visual depiction of operation monitoring 

The accurate assessment of LLMs in this context is crucial 

for comprehending their practical utility and potential in 

identifying faults and recovery procedures, as Black Start 

is necessary to preserve power system continuity and avert 

large-scale grid failures. During black start procedures, 

AH-SpanBERT achieves high factuality (8.43) and 

locality (8.99), supporting accurate fault recovery 

decisions. This model scores highest in security (9.62), and 

stability (9.15), emphasizing the model's robustness and 

reliability in critical emergency power system restoration 

scenarios. Table 5 and Figure 7 determine the algorithmic 

outcomes of black start. 

 

 

 

 

Table 5: Algorithmic outcomes of black start 

Models 

Black Start 

Factuality Logicality Security Stability 

GPT-4 

[23] 
8.39 8.84 9.53 9.03 

GAIA-70B 

[23] 
7.94 7.85 9.50 7.28 

AH-

SpanBERT 

[Proposed] 

8.43 8.89 9.62 9.15 

 

 

Figure 7: Results of the black start scenario with various 

performance matrices 

Table 5 shows the standard deviation values for four 

metrics (Factuality, Logicality, Security, and Stability) 

applied to the various power system tasks using the AH-

SpanBERT Model. The standard deviation for the four 

metrics is observed between a range of 0.05 to 0.11. This 

indicates slight differences in model performance across 

the power system tasks. Factuality displays little variation 

in its standard deviations (0.06 to 0.10); Logicality had 

slightly more variation, especially in the General Power 

System and Dispatch tasks (0.07 – 0.09). Security had a 

higher standard deviation observable during the Black 

Start task (0.10), delineating there were slight fluctuations 

in security predictions in this task. Stability shows the 

highest standard deviations in two tasks, General Power 

System and Dispatch (0.10 and 0.11, respectively) and 

indicate less stable predictions in these two tasks compared 

to the other tasks. Overall, the model performance shows 

little variation, although these particular tasks (Dispatch 
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and General Power System) may vary more in some 

metrics. 

Table 5: Standard deviation values 

Metric Standard Deviation – AH-SpanBERT 

[Proposed] 

Genera

l power 

system 

Dispatc

h 

Blac

k 

Start 

Operation 

Monitorin

g 

Factualit

y 

0.07 0.10 0.07 0.06 

Logicalit

y 

0.09 0.07 0.06 0.08 

Security 0.08 0.06 0.10 0.05 

Stability 0.10 0.11 0.09 0.07 

 

Table 6 indicates the performance metrics (Accuracy, 

Precision, Recall, F1-Score) of a model across 5 folds. The 

model's performance is consistently strong, with accuracy 

ranging from 0.90 to 0.99 (mean = 0.97), and high 

precision (range 0.90 - 0.99; mean = 0.97) indicates 

positive predictions are generally correct. Recall ranges 

from 0.90 - 0.99 (mean = 0.97), confirming the model's 

effectiveness in targeting positive instances. Finally, F1-

Score also exhibits the same pattern of reliability (range 

0.90 - 0.99; mean 0.97) as well as consistency across folds.  

Table 6: Results of 5-Fold Cross-Validation 

Fold Accuracy Precision Recall F1-

Score 

1 0.99 0.97 0.90 0.99 

2 0.91 0.99 0.92 0.90 

3 0.99 0.96 0.99 0.97 

4 0.90 0.99 0.91 0.99 

5 0.92 0.90 0.93 0.91 

Average 0.97 0.98 0.97 0.97 

 

4 Discussion  

The internal training of power grid dispatches, enhanced 

by leveraging fine-tuning of general LLMs with domain-

specific data, was the main objective of the research. 

Existing methods, including traditional training 

approaches and generic LLMs like GPT-4 [23] and GAIA-

70B [23], have limitations such as insufficient domain 

adaptation, lack of scenario-specific understanding, and 

inconsistent performance in critical operational tasks. By 

applying specialist knowledge and optimizing a dataset of 

power grid operational data, the proposed AH-SpanBERT 

model overcomes the shortcomings of power system 

models. The domain-aware adaptation enhances stability, 

security, logical thinking, and factual correctness in a 

variety of situations. By filling up the gaps in previous 

models and providing a strong tool for dispatcher training 

and power system management, AH-SpanBERT 

dramatically increases operational reliability, knowledge 

retention, and decision-making accuracy. 

The AH-SpanBERT model, leveraging Span masking and 

AH optimization, outperforms existing models like GPT-4 

and GAIA-70B in key areas such as factuality, logicality, 

stability, and security. Span masking enables more 

accurate contextual understanding of domain-specific 

terminology, which is crucial for power grid dispatchers, 

while AH optimization simulates environment-specific 

problem-solving to enhance decision-making. In 

performance metrics, AH-SpanBERT excels, with higher 

factuality, logicality, and security scores, particularly in 

critical tasks like operation monitoring and black start 

scenarios. Unlike GPT-4 and GAIA-70B, which lack 

domain-specific focus, AH-SpanBERT's fine-tuning on 

power grid data ensures more reliable and accurate 

performance in real-time decision-making. However, its 

reliance on historical data may limit adaptability to 

unforeseen grid changes, and in highly uncertain scenarios, 

AH optimization may occasionally lead to suboptimal 

outcomes. Overall, AH-SpanBERT demonstrates 

substantial improvements in power grid dispatcher 

training, addressing the shortcomings of previous models, 

though it still has room for enhancement in handling 

dynamic, real-time disruptions. 

5 Conclusion 

Power grid dispatchers play an essential role in 

maintaining the consistent, effective, and safe functioning 

of electrical networks. The use of domain-specific data to 

refine the generic LLMs to improve internal training 

procedures for power grid dispatchers was examined in the 

research. The AH-SpanBERT model was developed to 

facilitate black start processes, operation monitoring, and 

general dispatch, which were some of the many operating 

responsibilities and decision-making scenarios. An 

extensive dataset was assembled from several sources, 

including operational manuals, emergency procedures, 

internal communications, training materials, and historical 

dispatch logs. Utilizing tokenization and domain-specific 

word normalization, the data was preprocessed for 

contextual relevance and consistency. Rapid techniques 

were created to mimic authentic dispatch situations, 

allowing trainees to learn interactively through scenario-

based learning. The model's power dispatch performance 

was assessed to evaluate LLMs on important parameters 

that were necessary for efficient power system 
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management, including factuality (8.48 in operation 

monitoring), logicality (9.74 in general), stability (9.15 in 

black start), and security (9.62 in black start). 

Experimental findings showed significant improvement in 

factuality (8.48 in operation monitoring), logicality (9.74 

in general), stability (9.15 in black start), and security (9.62 

in black start) across dispatchers with different scenarios. 

In power dispatch operations, the research showed that the 

suggested General Large Model greatly improved human-

machine interaction, operational efficiency, and decision-

making capacities. 

Limitations and future scopes: The use of a small, 

simulated Kaggle dataset (1,000 records) may limit the 

model's generalizability to real-world dispatcher logs, 

affecting performance under authentic, complex grid 

conditions. Reliance on historical information limits the 

investigation and could affect the model's capacity to 

adjust to changes in the power grid. Enhancing operational 

effectiveness and cooperation across various grid 

environments could expand the model to more power 

system management categories in the future. In future 

revisions, will explicitly outline risk mitigation strategies, 

such as human-in-the-loop validation, real-time alert 

prioritization, and fallback protocols. These ensure AI 

recommendations serve as augmentative tools, supporting 

but not overriding the dispatcher's expert decisions in high-

stakes operational scenarios. 
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