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Electricity market price forecasting is an increasingly important aspect of modern energy systems, as it
aids grid operators and market developers and informs pricing decisions. Forecasting electricity prices
is challenging due to the significant fluctuations in electricity prices, unpredictable demand for electricity,
and dynamic economic conditions. Also, traditional models cannot leverage multiple economic indicators,
and they cannot adjust to changing conditions in the electricity market. In this research, a hybrid
forecasting method was proposed based on machine learning (ML) models and energy macroeconomic
indicators to provide a short-term and long-term analysis of factors affecting electricity price, depression,
and inflation trends. The dataset, gathered from Kaggle, it consists of electricity prices, inflation rates,
currency exchange rates, indices of production, and ratios of electricity supply and demand at time period
January 2020 to July 2023. The method employed z-score normalization to provide uniformity across
features, and utilized Principal Components Analysis (PCA) to successfully reduce dimensionality. The
proposed method comprises a Least Squares Support Vector (LSSV) algorithm to capture declaratively
non-linear relationships, and an Adaptive Random Forest (ARF) algorithm to examine more linear
relationships based on a composite node-splitting condition applying two frequently used criteria. The
LSSV—-ARF model is executed in Python, validated with real-world and real-time marketplace data, and
produces a MAPE (30.90+1.12), RMSE (3.53+0.21), MSE (12.50+£0.87), and MAE (2.55+0.15), indicating
strong predictive performance and real-world applicability. These results confirm the effectiveness of
integrating economic energy indicators with ML algorithms for electricity price forecasting in managing
energy pricing strategies.

Povzetek: Raziskava predstavija hibridni pristop strojnega ucenja, ki z makroekonomskimi kazalniki

izboljsa napovedovanje cen elektricne energije in podpira odlocanje na energetskem trgu.

1 Introduction

The early 1990s, when competitive markets and
deregulation procedures were introduced, the monopolistic
and government-controlled nature of the power industry
has been evolving. Electricity was exchanged differently
under free-competitive market regulations because it is a
non-storable commodity, and its production and use rely
on the stability of the power grid [1]. The stability of
modern energy systems depends on the operational role of
the electricity market. Even so, the high level of electricity
price volatility continues to be a major problem for energy
producers, consumers, traders, and policymakers [2]. The
nature of electricity markets is volatile, mainly because of
the way supply works, fuel prices, rules, climate, and
national economic conditions all impact them. Because

electricity cannot be stored, the balance between
production and consumption needs to be very precise [3].
The movement toward cleaner and autonomous energy
systems renders it critical to accurately estimate electricity
market rates for reliable, effective, and informed grid
management [4]. In many countries, freely setting energy
prices has moved the job of forecasting prices from the
government to organizations that buy and sell electricity
and manage the grid [5]. It was important for a variety of
people to have accurate information on electricity prices.
Energy producers can use it to optimize bidding strategies
and generation planning. Consumers and industrial users
can leverage forecasts to manage consumption and reduce
costs [6]. The model depends on high-quality data, has
computational difficulty during real-time adaptive
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ensemble learning, and may have limits when it comes to
generalizing to unknown economic shocks.

This research intends to develop a hybrid forecasting
method that is a combination of two ML methods the new
method called as Least Squares Support Vector and
Adaptive Random Forest (LSSV-ARF) to forecast
electricity market prices with a estimate that relies on
electricity data and principal economic variables to model
both short-term non-linear tendencies and adapt to long-
term economic fluctuations.

e To propose a new hybrid model (LSSV-ARF)
that combines nonlinear short-term modelling
with adaptive economic learning, enabling better
electricity price forecasts.

e To collect historical real-world electricity market
and economic data from January 2020 to July
2023, which included fuel prices, inflation,
demand, and supply-related indicators.

e To utilize z-score normalization on features to
control their scales, and LSSV outputs were
inserted into ARF inputs as further enriched
features.

e To provide better predictive accuracy and better
stability, reflecting price volatility with long-term
trends in the baseline economic fundamentals.

Research covers background of the research, related work,
and methodology, introduces the proposed LSSV-ARF
model, explains the experiment setup, and analyses the
findings with economic indicators. The research finishes
by highlighting how its findings can be applied, listing the
main shortcomings, and suggesting future research paths
to improve electricity price forecasting in changing
markets and economies.

2 Related works

An ML model was implemented to lower MAPE in smart
grid residential load forecasting [7]. Using the ANFIS. An
overall 17% improvement was observed in the accuracy of
the model when comparing its MAPE values across the
seasons. The prediction models were improved to help
with daily electricity load forecasting for energy planning
[8]. The performance of each model, such as AdaBoost,
Bagging, SVR, and DT, was assessed by using error
metrics, and features were reduced with both PCA and
LDA. To suggest a EWS to keep market fluctuations under
control and reduce expenses [9]. ML models use
uncertainty indices to make predictions about energy
equity prices. Nonlinear Autoregressive with Exogenous
Inputs of NN for an economics project produced superior
results for decision-makers and investors. Compared the
LSTMs and SVM models for predicting short-term
electricity load in terms of both speed and accuracy [10].
LSTM showed an advantage when there was a large data
capacity, while SVM performed better for speed and
accuracy with less data. The model was developed using
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an attention-based LSTM model and utilized load, price,
wind, and solar data, as well as wavelet transform,
addressing irregularities of using renewable energies [11].
Evolving the parameters in the model with crisscross
optimization led to better generalization. When tested with
a high-renewable dataset, the model was more accurate
than other hybrid methods.

A new hybrid model was formed by combining SVR,
GC (1,1), and RF to improve short-term load forecasting
accuracy [12]. SVR was used for predicting GC (1,1)
minimized long-term variability, and RF improved the
results. Using actual data, the model reached MAPE values
of 6.35% and 6.21%, showing that it forecasts more
accurately. To assess electric vehicle energy use, advanced
models XGBoost and LightGBM were compared with
linear regression and neural networks [13]. Performance
was measured using R, RMSE, and MAE. Forecasting
energy consumption reliably, LightGBM showed superior
accuracy compared to XGBoost and traditional methods.
A DRNN approach was suggested in [14] for precise
electricity price prediction in deregulated markets. The
approach outperformed current approaches by learning the
indirect relationship between price and external factors.
The DRNN performed better than single SVM and hybrid
SVM networks, according to data from the New England
electricity market. To forecast electricity prices by
incorporating market coupling, [15] suggested integrating
feature selection techniques with an LSTM-based DL
model. It effectively handled nonlinear time series data and
demonstrated high accuracy in the Nordic market.
However, the model's limitations reside in its dependence
on the availability and quality of cross-market data.

LSTM-DNN and feature selection algorithms were used in
[16] to examine how market interconnections affect the
prediction of power prices. It demonstrated how integrated
market features affect prediction and how feature selection
was essential for precise forecasting. The analysis found
that Nord Pool's pricing was significantly influenced by
the German market. The hybrid forecast model for short-
term power load and price prediction presented in [17]
combined a DL algorithm, feature selection, and wavelet
transform. To provide effective and sustainable electricity
distribution networks, the model has been tested using load
and pricing data from PJM, Spain, and Iran. The data-
driven approach for long-term electricity market price
prediction using Fourier analysis was presented in [18]. By
predicting base evolution and significant price volatility,
the model captured underlying market dynamics. The
approach validated data-driven, finely-grained predictions.
To improve real-time electricity price prediction, a
decision-level LSTM fusion model was suggested as an
alternative to traditional ML and data fusion solutions [19].
Using the method, loT data can be processed
asynchronously,  requiring less  bandwidth  and
computation. Experiments showed that when it involved
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tracking nonlinear electricity prices, LSTM performed
better than linear regression. By using correlated features
in a Gradient Boosting—LSTM model, more accurate smart
city load forecasting was achieved [20]. Adding correlated
features increased accuracy, and RMSE and loss functions
were used to assess performance. SHAP provided details
on factors contributing to household energy consumption.
With the approach, it was possible to make accurate
forecasts and useful insights for sustainable city planning.
To employ amodel using deep learning (DL) [21] to obtain
power cost data characteristics while forecasting profit and
future trends. The model employed a variational
autoencoder for the extraction of features and economic
analysis methodologies. The model generated an annual
profit of 5.36 million yuan and has an accuracy rate of
93.5%, indicating good generalization ability. The deep
neural networks (DNN) [22] were used to reliably predict
long-term electricity prices in Hungary. The method
evaluated various network structures and considered the
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meteorological data and date/time. The results were
particularly for short-term forecasts, while utilizing a DNN
with a single convolutional long-short term memory
(ConvLSTM) encoder. The research emphasized the
significance of accurate permanent electricity price
estimates because of their considerable variability. Cloud
computing was revolutionizing the IT sector, yet energy-
intensive data centres necessitate effective data placement
as well as scheduling. An Extreme Gradient Boosting
(XGBoost) model is used to forecast electricity prices,
lowering energy consumption expenses in data centres.
The model's efficacy was evaluated on an operational
dataset, which resulted in a 2532% cost decrease.

Table 1 gives a comparative summary of ML and DL
based models used for electricity load and price
forecasting, comprising datasets, methods used, results,
and limitations that indicate the history and pitfalls of
energy forecasting research.

influence  of

environmental

variables

such as

Table 1: Summary of related studies on electricity load and price forecasting methods

References Dataset Method Result
Yousaf etal., [7] Smart grid ANFIS 17% improvement in MAPE across
residential load seasons

Nooruldeen et al.,

[8]

Daily electricity
load

AdaBoost, Bagging, SVR,
DT with PCA and LDA

Enhanced energy planning forecasts

Alshater et al., [9]

Market equity data

ML with uncertainty indices

Suggested EWS to control fluctuations
and expenses

Pallonetto et al.,
[10]

Electricity load

LSTM vs. SVM

LSTM is better with large data, and
SVM is faster with small data

Meng et al., [11]

Load, price, wind,

Attention-based LSTM with

Accurate with high-renewable datasets

solar wavelet transform
Fanetal., [12] Actual load and SVR + GC(1,1) + RF hybrid MAPE: 6.35% and 6.21%
price data
Ullah et al., [13] Electric vehicle XGBoost, LightGBM, Linear | LightGBM outperformed others in R2,
consumption regression, NN MAE, RMSE
Zhang et al., [14] New England Deep Recurrent Neural Outperformed SVM and hybrid
electricity market Network (DRNN) models

Li and Becker,

Nordic market

LSTM + Feature Selection

High accuracy in cross-market

[15] (Market coupling) forecasting
Kim et al., [16] Nord Pool + LSTM-DNN + Feature Found intermarket influence on prices
Germany selection
Memarzadeh and PJM, Spain, Iran DL + Wavelet + Feature Sustainable, effective load/price
Keynia, [17] Selection prediction
Gabrielli et al., Long-term market | Fourier analysis (data-driven | Captured base evolution and volatility
[18] price approach)
Xieetal., [19] loT-based smart LSTM fusion model Better than traditional ML for real-
grid data time predictions

Janjua et al., [20]

Smart city load

Gradient Boosting + LSTM

High accuracy and interpretable

+ SHAP features
Fu, [21] Power cost & DL with Variational Auto 93.5% accuracy; 5.36M yuan
economic data Encoder + economic analysis profit/year

Dombi and Dulai,
[22]

Hungarian
electricity prices

DNN + ConvLSTM with
environmental data

Effective short-term forecasting
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Albahlietal., [23] | Cloud data center

energy prices

Extreme Gradient Boosting
(XGBoost)

25.32% reduction in electricity costs

1.1. Research gap

The existing methods have shown important progress in
electricity price and load forecasting with identifiable
limitations. Many of the models are highly data-specific,
like renewable energy data, market coupling data, and EV
data, which reduces their generalizability. Several models,
such as LSTM, DNN, and DRNN, require high
computational costs and have limited interpretability.
Several also rely on feature selection accuracy, thus
resulting in poor performance if economic data is missing
or noisy. Furthermore, most approaches only provide an
analysis of either short-term fluctuations or long-term
changes. Overall, the proposed LSSV-ARF method offer
the solutions these weaknesses by combining economic
data and historical price data to reveal short-term
nonlinearities, applying LSSV, and using adaptive random
forests for long-term economic changes. The proposed
LSSV-ARF reveals an accurate, interpretable, and
adaptable model with a low computational cost and
reasonable forecasting performance.

3 Methodology

Figure 1 provides a visualization of the procedures for
electricity price prediction using the LSSV-ARF method.
The various steps in Figure 1 start with collecting data
from economic indicators, followed by data preprocessing
using Z-score normalization to scale the input data. After
the preprocessing stage, Principal Component Analysis
(PCA) is used to extract the predictive features. The
prediction model parameterizes the model by combining
Least Squares Support Vector (LSSV) and Adaptive
Random Forest (ARF). Finally, the performance of the
modeling process is evaluated using measures of
prediction accuracy and reliability.
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Figure 1: Overall process for predicting electricity price.
1.2. Dataset

The dataset, which combines historical data and
macroeconomic indices, is a tool for predicting electricity
market prices. It includes 1,344 daily records from a
market scenario, such as the Industrial Production Index,
inflation rate, currency exchange rate, economic energy
parameters, and power market variables. A demand-supply
ratio is also included in the dataset. This dataset utilizes
data from January 2020 to July 2023, as shown in Table 2.
The data was split into training (80%), testing (10%), and
validation (10%) to ensure balanced model development,
efficient hyperparameter tuning, and an unbiased
assessment of forecasting performance.

Source:
https://www.kaggle.com/datasets/ziya07/economic-
indicators-price-forecasting/data

Table 2: Input features

Feature Name Category Unit / Description
Day-ahead USD/MWh
electricity price
Electricity Electricity Market MWh
demand Variable
Electricity MWh
supply
Demand-supply Ratio
ratio
Crude oil price USD/barrel
Natural gas price USD/MMBtu
Coal price Macroeconomic USD/ton
Inflation rate Indicator Percentage (%)
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Currency Local currency per
exchange rate USD
Industrial Index value (base year
production index normalized)
1.3. Data preprocessing using Z-score

normalization

Z-score normalization is used as an important data
preprocessing technique to standardize the different sets of
input features for electricity market price forecasting. The
dataset contains variables with different scales/units, for
example, the electricity price ($/MWHh), fuel costs with
different currency units, inflation rate (percentage), and
industrial index. In this way, Z-score normalization
improves model convergence, numerical stability, and
forecasting performance.

A statistical method for scaling numerical
characteristics based on the mean and standard deviation
is called Z-score normalization. Without altering the
variations in the ranges of values, it normalizes various
data formats to a single scale. The Z-score normalized
value y; for the jt" data point w; is calculated using
Equation (1).

Witk
(2

Vi =

M

The initial feature value is denoted by wj;, the
meaning of u, the standard deviation by o, and the
normalized output by y;.

1.4. Feature extraction using Principal
Component Analysis (PCA)

PCA was used to derive the most important features from
high-dimensional electricity and economic datasets
efficiently in a way that provides improved forecasting
accuracy while reducing the complexity of the models.
PCA converts the original feature space into a lower-
dimensional space and picks out only the components that
retain the most variance in the data. This reduces
redundancy, allows the model to generalize better, and
reduces the overall chance of overfitting in the LSSV—
ARF model. The transformed features are formed using the
top components from the eigenvectors of the covariance
matrix, in the following Equation (2).

Xpca = Xcentrea "W

@

Where X .nireq 1S the centred input data and W is the
matrix of selected eigenvectors.
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1.5. Prediction model for least squares
support vector fused adaptive random
forest (LSSV-ARF)

The hybrid LSSV-ARF forecasting model combines two
forms of machine learning with different forecasting
capabilities to improve the forecasting of electricity prices.
The LSSV method was used to model nonlinear short-term
price variations. LSSV can satisfy the optimization of non-
linear equations using an LSSV approach, and regressions
can be computed rapidly with accuracy because LSSV
accommodates fewer hyper parameters. The ARF
algorithm models long-term economic patterns in
electricity prices and climatic dynamic market behavior.
The ARF provides additional flexibility to traditional
random forests by applying adaptive node-splitting
strategies based on a weighted combination of Gini index
and information gain, allowing for flexibility to learn to
adapt to electricity prices and trends in economic data.

Table 3 depicts that the LSSV-ARF hybrid model utilizes
LSSV with an RBF kernel and ARF with adaptive split as
a hybrid model. The LSSV makes short-term forecasts
from normalized data, which is then added as features in
the training data, permitting ARF to create short-term
forecasts. This hybridization combines the nonlinear
pattern identification of LSSV and the economic
adaptability of ARF for long-term forecasting to improve
electricity price forecasting.

Table 3: Hyper parameter of proposed LSSV-ARF

Hyperparameter Typical Range/Value
v (Regularization) 0.01-100
62 (RBF Kernel 0.1-10
Width)
€ (Loss Insensitivity) 0.001-0.1
n_estimators 100 - 500
max_features ‘sqrt’, ‘log2’, or fixed
value
a, B (Split Weights) 0<o,f<landoa+B=1

Least Squares Support Vector (LSSV): The LSSV
model is applied to model the nonlinear and short-term
changes in electricity market prices; it takes input data,
maps it to some high-dimensional feature space using
kernel function(s), which enables its nonlinear
dependencies to be captured for a more fitted regression.
A variation of standard SVM, the LSSV replaces the
inequality constraints with equality constraints and
minimizes the least squares loss such that the problem can
be solved using a linear equation system. This reformulates
the computational complexity of a standard SVM
(quadratic programming) into a simpler form. LSSV for
regression with the RBF kernel has only two hyper
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parameters, while LSSV for regression includes the bias
term in the solution. Let the dataset be shown in Equation

@3).

min

o oG ) = xS0 +y LTl 2

such that f; = z; — [xS¢(w) +al,l =1,..,.M

@)

Here, & =[&1,...,EM]* is the error vector,
weRT is the weight vector in feature space, and
¢: f m — f2 is the nonlinear mapping function. The dual
formulation is developed as shown in Equation (4).

Solve in b a:
; I=1,]
L, o+ Y_llM

(4)

Where z = [z, ...,zy]° 1, is an M-dimensional vector
=[1,..,11% a = [ay,..,ay]®, Jy is an M-dimensional
identity matrix, andy € Q@ isavariable for regularity. The
following Equation (5) is how the kernel technique is used.

Qe =eWwW)ow) —Lw,w)l=k=1,..,.M

®)

Where  the  kernel  function Lis
specified. Equation (6) contains the resultant LSSV model
for function estimation.

z=Nw) = S o)’ ow) +a
©6)

Where w; is the training data, [ = 1,2...,M,w
is the latest input case, b;,a € Q are the results and RBF
is selected as the kernel function [.

Adaptive Random Forest (ARF):Random Forest (RF) is
a standard ensemble learning method that creates many
decision trees that are trained with bootstrapped data
subsets and combines the outputs of the trees, hoping that
pooling the individual outputs will provide a more accurate
and robust outcome. Each tree in the forest is trained on
random sets of features; this randomness reduces
overfitting and increases generalization to unseen data. For
regression, the predicted final output is the average of each
tree's output in Equation (7).

9= Ty he(x)
@)

Here h.(x) is the prediction from t** tree, and T is the
total number of trees.
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The ARF was used to improve electricity price prediction
by employing an ARF model for feature selection,
interpretation, and prediction in existing energy
forecasting systems. The ARF is a step in defining the
feature space to optimize electricity market modeling. The
ARF removes the less related features, defines a collection
of decision trees, performs adequate learning, followed by
the performance monitoring of each decision tree,
identifying the most efficient trees. The ARF is capable of
operating in a binary or a multi-class classification task,
such as price fluctuation level identification or peak-
demand scenario categorization. The random forest
models combine the predictions of each decision tree in the
training, generating a stronger prediction through an
ensemble of decision trees as expressed in Equation (8).

Zl ORP(]PC)(l RP(]PC))
(8)

In Equation (8), RP(jpc) is the probability of selecting an
element of classjp. at node I, where m is the number of
classes considered in the Gini impurity calculation, when
employing ARF within the dynamic pricing model, it gave
this system the ability to target the high impacts of features
like fuel price or demand ratios which enabled more
accurate, interpretable and adaptable price forecasts for
different market conditions. The ARF consists of
numerous simple decision trees to create an ensemble
model to assist in minimizing the prediction error in
electricity price forecasting. The ARF has computational
simplicity and allows for the development of many
inexpensive decision trees based on subsets of market
features, patterns over time, economic indicators, and
demand trends, which can then be consolidated using a
majority vote or simple average of the predictions to
provide one consolidated and robust prediction. The
ensemble-learning method reduces computational effort
and cost while improving reliability in electricity market
price forecasting. ARF provides computational advantage,
scalability, and interpretability for real-time energy
forecasting. Collaborative construction of market features
advances fine-grained decision-making, improving
forecasting performance outcomes.

Glnllmpunty

The hybrid approach utilizes the advantages of
different ML models in a combined state to use the
complementary benefits from these models to improve the
accuracy in predictions. By using different models, it can
capture complex patterns and dynamic variations in a
variety of electricity market prices and economic
variables, as shown in Algorithm 1.

Algorithm 1: Hybrid LSSV-ARF

Input: Dataset D = {X, Y}

Output: Predicted prices Y_pred
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1. Preprocess Data:
- Normalize features with Z-score
- Apply PCA to reduce dimensionality
- Split D into training and testing sets
2. Train LSSV Model:
- Compute RBF kernel matrix K
-Solve: [0 17,1 K+ y71] * [b; a/ = [0; Y_train]
- Predict: z LSSV(x) =X a i *K(x_i,x) +b
3. Train Adaptive Random Forest (ARF):

- Build T trees using bootstrapped samples and
adaptive splitting

- Predict: y_ARF(x) = Average(tree_t.predict(x)) over
all T trees

4, Fuse Predictions:

- Final prediction: Y pred = 1 *z LSSV + (I - 1) *
y_ARF

Return Y_pred

2 Results and discussion

The findings showed that the LSSV-ARF model greatly
improved the accuracy of electricity price forecasting. The
results of comparative analysis indicated lower error
metrics for LSSV-ARF than traditional models, which
indicated the LSSV-ARF model was able to identify and
capture short-term variability in the price signals while
also adhering to long-term economic trends under a
dynamic and evolving market.

2.1. System configuration

The experiments were conducted in a high-performance
computing facility utilizing Python 3.10. We used a multi-
core processor and a GPU, and there was sufficient RAM
in the workstation that was able to manage the data
provided and perform all training and testing of the
models. Training the model on the full dataset (1,344 daily
records) required approximately 142 seconds, and
prediction on the test set required 6 seconds, as shown in
Table 4.

Table 4: Experimental Setup

Specification Details
Programming Python
Language
Python Version 3.10
CPU Intel Core i7-11700 @
2.50GHz

Informatica 49 (2025) 221-232 227

GPU NVIDIA GeForce RTX
3060 (6GB VRAM)
Windows 11 Pro 64-bit

32 GB DDR4 @ 3200 MHz

Operating System
RAM

2.2. Research output

The correlation heat map shows some weak correlations
between electricity price and individual variables,
including demand (-0.01), supply (-0.03), and demand-
supply ratio (0.01) in Figure 2. However, there are strong
correlations between features like demand vs demand-
supply ratio: 0.75, and weak correlations between features
and price, which are related to feature interdependencies
with the dataset and not electricity price prediction.

Figure 2: Correlation heat map for economic indicators
feature.

The time series of natural gas, crude oil, and coal fuel
prices from January 2020 to July 2023 is displayed in
Figure 3. While the Natural Gas price remains relatively
stable and low, with minor fluctuations, the Crude Oil and
Coal prices are highly volatile and frequently spike,
particularly in the latter part of the time series. The
proposed LSSV-ARF prediction method was used to
predict the fuel price trend. This suggests that the Crude
Oil and Coal market conditions are more susceptible to
fluctuations, likely due to global demand, geopolitical
events, and supply disruptions, while Natural Gas market
conditions remain comparatively stable.
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Figure 3: Fuel prices from January 2020 to July 2023
used in the LSSV-ARF method.

The fluctuations in electricity prices, expressed in
USD/MWh, between January 2020 and July 2023 are
displayed in Figure 4. Many fluctuations reveal significant
volatility, indicating that electricity prices are highly
volatile based on demand, supply, fuel prices, and market
dynamics. While there are fluctuations from day to day,
over time the trend is relatively stable, with some
significant sharp peaks and dips. These consistent
oscillations demonstrate the impact of external economic
factors, seasonal factors, and geopolitical factors on
electricity pricing. The proposed hybrid optimization-
based prediction method was used to predict the electricity
prices.

Eincty Prcs Trend Over Tme

il

Eloctricity Price (USO/RAWR)

Pl P it o M pyal il i
laiz

Figure 4: Fluctuations in electricity prices prediction for
LSSV-ARF.

In Figure 5, the time series for the Industrial Production
Index (IPI) is one of the economic input features that is
used to provide contextual input for electricity price
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predictions. The proposed model does not predict this

feature but uses it as input for electricity price predictions.
Fitancal Gronth Tend et T

Figure 5: Financial growth trend prediction using LSSV-
ARF.

A feature importance analysis utilizing the ARF
component. Results showed electricity demand (34%) and
demand-supply ratio (26%) as the most important
predictors of electricity demand. Macroeconomic
indicators, such as crude oil price and inflation rate, were
useful for long-run trend modelling and confirmed the
model's interpretability and robustness, as shown in Figure
6.

Electricity Demand W

Demand-Supply Ratio

Crude Oil Price

Inflation Rate

Curency Exchange Rate

Coal Price

Natural Gas Price

Industrial Production Index

0 l‘p IIU 15 EIU 2‘5 SID 3:5
Importance (%)
Figure 6: Feature Importance in LSSV-ARF Model
2.3. Comparative analysis

This subsection provides the evaluation criteria utilized to
measure the performance of the suggested LSSV-ARF
model for forecasting electricity prices, including
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XGBoost [23], RF [23], and SVR [23]. The outcome
illustrates that the suggested hybrid model immensely
outperforms conventional methods in precision and
stability.

e MAE considers the average size of errors among
predicted and actual electricity prices, without
considering their direction. Lower MAE indicates
better prediction accuracy and overall model
performance.

e MAPE gives model prediction error as a
percentage, indicating how much the prediction
deviates from actual average prices; lower MAPE
means more accurate and reliable forecasting of
electricity prices.

e RMSE calculates the square root of the average
squared differences of predicted and actual
values, repeatedly indicated in future work to
suggest RMSE also depicts the standard deviation
of prediction errors.

e MSE computes the average of the squared
differences of predicted and actual values, while
giving an overall indication of prediction
accuracy, but it is especially sensitive to large
errors.

Table 5: Evaluation of predictive accuracy across
different algorithms

Model MAPE | RMSE MSE MAE
XGBoost 40.90 9.25 15.66 3.74
RF 71.54 11.25 98.36 7.98
SVR 44,91 12.11 99.2 7.67
LSSV-ARF | 30.90 3.53 12.50 2.55
[Proposed] | +1.12 | £0.21 | +£0.87 | £0.15

Table 5 and Figure 7 illustrate the evaluation of predictive
accuracy of the four algorithms, XGBoost, RF, SVR, and
the LSSV-ARF model, which was proposed, using the
standard error metrics. The LSSV—-ARF obtained the best
performance, as compared to the others, as it provided the
lowest MAPE (30.90), RMSE (3.53), MSE (12.50), and
MAE (2.55). The other models had a higher error, and the
accuracy of prediction decreased. These results
demonstrate that the LSSV-ARF is a superior predictive
model, when compared with the conventional models, in
terms of the level of prediction precision.

To ensure a comprehensive appraisal of performance, we
monitored RMSE and MSE alongside MAE and MAPE.
For evaluative purposes, ten independent runs were used
to assess variability of results, and a paired t-test was used
to verify statistical significance. The LSSV-ARF model
reported statistically significantly better results than all
benchmarks with significance (p < 0.01) on every
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improvement, demonstrating more accurate, robust, and
reliable performance across all measures.
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Figure 7: Performance of electricity price prediction
methods

The proposed model LSSV-ARF predicts electricity
prices one day ahead, relying on 1,344 daily records
from January 2020 to July 2023. 1,000 bootstrap
resamples were constructed to ensure effect sizes were
statistically reliable to report 95% confidence
intervals for analyses. To further examine
performance related to volatility, particularly low,
medium, and high volatility levels were segmented for
analysis, as shown in Table 6.

Table 6: Performance evaluation by volatility regime

Volatility Regime MAE MAPE
Low Volatility 0.65 4.12

Medium Volatility 0.81 5.39
High Volatility 0.94 6.21

The LSSV-ARF model employs regularization (C = 1.2)
and has been tuned to prevent overfitting by ensemble
averaging with adaptive node-splitting. Hyper parameters
were tuned using 5-fold cross-validation. Ten independent
runs of cross-validation showed minimal variation in fitted
error, indicating that the model was stable and robust, and
demonstrated strong generalization to unseen data, as
shown in Table 7.

Table 7: 5-fold cross-validation results

Model MAPE | RMSE MSE MAE
LSSV-ARF | 30.90 3.53 12.50 2.55
[Proposed] | +1.12 | £0.21 | £0.87 | £0.15
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2.4. Discussion

Despite their high accuracy, XGBoost [23] can be
resource-intensive and exposed to overfitting of noisy
data, and RF [23] models can exhibit high variance on
large datasets and lack interpretability. SVR [23] has a
difficult time scaling for large datasets, and can be
sensitive to the kernel and parameters selected. All three
models can have additional preprocessing to complete, as
well as challenges due to non-linear fluctuations of
electricity prices, which have the potential to greatly
influence performance and accuracy.

The LSSV-ARF model addresses the drawbacks of the by
XGBoost [23], RF [23], and SVM [23] utilizing LSSV and
ARF together, while providing a more interpretable and
computationally efficient approach. There is a more
optimization from linear equations, as opposed to
complicated quadratic programming, which saves on
training time and cost; the ARF selects the splitting
attributes when splitting nodes automatically, which
allows the ARF to better track changing patterns without
overfitting; and it has fewer hyper parameters. Overall, this
combination enhances forecasting performance while
interpreting the model, provides scale for larger datasets,
and robustness for complex environments with limited
data in dynamically data-limited environments such as the
electricity market.

2.5. Real-world implications

In real electricity markets, price forecasting is critical for
energy suppliers, system operators, and policy makers.
The LSSV-ARF model suggested here is suitable for day-
ahead electricity price forecasting using historical demand,
climate data, and economic factors. An example would be
to enable a utility company to reduce operational costs by
managing energy procurement with accurate price
forecasts, providing the most productive avenues for
action during those periods when operational costs create
volatility, enabling them to make more profit or less loss
and deliver power at a lower cost to consumers.

3 Conclusion

The new electricity market price forecasting model
presented in this research effectively combines advanced
machine learning techniques with significant economic
energy indicators. By including such variables as fuel
prices, inflation, exchange rates, industrial production
indexes, and demand-supply ratios in addition to historical
price and load data, the model captures short-term
variability as well as long-term economic patterns. The Z-
score normalization method was applied during
preprocessing to normalize input features, maintaining
uniform scale and improving model stability. The
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suggested LSSV-ARF ensemble model, integration of
Least Squares Support Vector and Adaptive Random
Forest for predicting electricity prices, was implemented
using the Python platform and tested with actual data.
Achieving an MAPE (30.90 + 1.12), RMSE (3.53 +
0.21), MSE (12.50 + 0.87), and MAE (2.55 + 0.15),
indicating its forecasting accuracy. The model is
dependent on having quality and accessible historical and
economic data. Further, when deployed in a real-time
situation, the model may present complications. It requires
significant computational resources to train. Further, it
requires even more computational resources depending on
the hyperparameter tuning. Future work could focus on
reducing the computational complexity of the model to
facilitate faster real-time predictions. Integrating
additional data sources, such as renewable energy
generation forecasts and weather conditions, may further
improve accuracy.
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APPENDIX
machine learning = ML Neural Networks
= NN
Mean Absolute Percentage E| Long Short
= MAPE — term Memory Network
= LSTMs
adaptive — network Support vector machine
— based fuzzy inference sys{ = SVM
= ANFIS
Support Vector Regression | grey catastrophe
= SVR = GC

Decision Tree = DT random forest = RF

Principal Component Analys

least squares support ved

= PCA = LSSV
Linear Discriminant Analysiy quadratic programs
= LDA = QP
Early Warning System Radial Basis Function
= EWS = RBF
Mean Absolute Error deep neural networks
= MAE = DNN
Extreme Gradient Boosting | Information Technology
= XGBoost =IT
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