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Electricity market price forecasting is an increasingly important aspect of modern energy systems, as it 

aids grid operators and market developers and informs pricing decisions. Forecasting electricity prices 

is challenging due to the significant fluctuations in electricity prices, unpredictable demand for electricity, 

and dynamic economic conditions. Also, traditional models cannot leverage multiple economic indicators, 

and they cannot adjust to changing conditions in the electricity market. In this research, a hybrid 

forecasting method was proposed based on machine learning (ML) models and energy macroeconomic 

indicators to provide a short-term and long-term analysis of factors affecting electricity price, depression, 

and inflation trends. The dataset, gathered from Kaggle, it consists of electricity prices, inflation rates, 

currency exchange rates, indices of production, and ratios of electricity supply and demand at time period 

January 2020 to July 2023. The method employed z-score normalization to provide uniformity across 

features, and utilized Principal Components Analysis (PCA) to successfully reduce dimensionality. The 

proposed method comprises a Least Squares Support Vector (LSSV) algorithm to capture declaratively 

non-linear relationships, and an Adaptive Random Forest (ARF) algorithm to examine more linear 

relationships based on a composite node-splitting condition applying two frequently used criteria. The 

LSSV–ARF model is executed in Python, validated with real-world and real-time marketplace data, and 

produces a MAPE (30.90±1.12), RMSE (3.53±0.21), MSE (12.50±0.87), and MAE (2.55±0.15), indicating 

strong predictive performance and real-world applicability. These results confirm the effectiveness of 

integrating economic energy indicators with ML algorithms for electricity price forecasting in managing 

energy pricing strategies. 

Povzetek: Raziskava predstavlja hibridni pristop strojnega učenja, ki z makroekonomskimi kazalniki 

izboljša napovedovanje cen električne energije in podpira odločanje na energetskem trgu. 

 

1 Introduction 

The early 1990s, when competitive markets and 

deregulation procedures were introduced, the monopolistic 

and government-controlled nature of the power industry 

has been evolving. Electricity was exchanged differently 

under free-competitive market regulations because it is a 

non-storable commodity, and its production and use rely 

on the stability of the power grid [1]. The stability of 

modern energy systems depends on the operational role of 

the electricity market. Even so, the high level of electricity 

price volatility continues to be a major problem for energy 

producers, consumers, traders, and policymakers [2]. The 

nature of electricity markets is volatile, mainly because of 

the way supply works, fuel prices, rules, climate, and 

national economic conditions all impact them. Because 

electricity cannot be stored, the balance between 

production and consumption needs to be very precise [3].  

The movement toward cleaner and autonomous energy 

systems renders it critical to accurately estimate electricity 

market rates for reliable, effective, and informed grid 

management [4].  In many countries, freely setting energy 

prices has moved the job of forecasting prices from the 

government to organizations that buy and sell electricity 

and manage the grid [5]. It was important for a variety of 

people to have accurate information on electricity prices. 

Energy producers can use it to optimize bidding strategies 

and generation planning. Consumers and industrial users 

can leverage forecasts to manage consumption and reduce 

costs [6]. The model depends on high-quality data, has 

computational difficulty during real-time adaptive 
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ensemble learning, and may have limits when it comes to 

generalizing to unknown economic shocks. 

This research intends to develop a hybrid forecasting 

method that is a combination of two ML methods the new 

method called as Least Squares Support Vector and 

Adaptive Random Forest (LSSV-ARF) to forecast 

electricity market prices with a estimate that relies on 

electricity data and principal economic variables to model 

both short-term non-linear tendencies and adapt to long-

term economic fluctuations.  

• To propose a new hybrid model (LSSV-ARF) 

that combines nonlinear short-term modelling 

with adaptive economic learning, enabling better 

electricity price forecasts.  

• To collect historical real-world electricity market 

and economic data from January 2020 to July 

2023, which included fuel prices, inflation, 

demand, and supply-related indicators. 

• To utilize z-score normalization on features to 

control their scales, and LSSV outputs were 

inserted into ARF inputs as further enriched 

features. 

• To provide better predictive accuracy and better 

stability, reflecting price volatility with long-term 

trends in the baseline economic fundamentals. 

Research covers background of the research, related work, 

and methodology, introduces the proposed LSSV-ARF 

model, explains the experiment setup, and analyses the 

findings with economic indicators. The research finishes 

by highlighting how its findings can be applied, listing the 

main shortcomings, and suggesting future research paths 

to improve electricity price forecasting in changing 

markets and economies. 

 

2 Related works 

An ML model was implemented to lower MAPE in smart 

grid residential load forecasting [7]. Using the ANFIS. An 

overall 17% improvement was observed in the accuracy of 

the model when comparing its MAPE values across the 

seasons. The prediction models were improved to help 

with daily electricity load forecasting for energy planning 

[8]. The performance of each model, such as AdaBoost, 

Bagging, SVR, and DT, was assessed by using error 

metrics, and features were reduced with both PCA and 

LDA. To suggest a EWS to keep market fluctuations under 

control and reduce expenses [9]. ML models use 

uncertainty indices to make predictions about energy 

equity prices. Nonlinear Autoregressive with Exogenous 

Inputs of NN for an economics project produced superior 

results for decision-makers and investors. Compared the 

LSTMs and SVM models for predicting short-term 

electricity load in terms of both speed and accuracy [10]. 

LSTM showed an advantage when there was a large data 

capacity, while SVM performed better for speed and 

accuracy with less data. The model was developed using 

an attention-based LSTM model and utilized load, price, 

wind, and solar data, as well as wavelet transform, 

addressing irregularities of using renewable energies [11]. 

Evolving the parameters in the model with crisscross 

optimization led to better generalization. When tested with 

a high-renewable dataset, the model was more accurate 

than other hybrid methods. 

A new hybrid model was formed by combining SVR, 

𝐺𝐶 (1,1), and RF to improve short-term load forecasting 

accuracy [12]. SVR was used for predicting 𝐺𝐶 (1,1) 

minimized long-term variability, and RF improved the 

results. Using actual data, the model reached MAPE values 

of 6.35% and 6.21%, showing that it forecasts more 

accurately. To assess electric vehicle energy use, advanced 

models XGBoost and LightGBM were compared with 

linear regression and neural networks [13]. Performance 

was measured using R², RMSE, and MAE. Forecasting 

energy consumption reliably, LightGBM showed superior 

accuracy compared to XGBoost and traditional methods. 

A DRNN approach was suggested in [14] for precise 

electricity price prediction in deregulated markets. The 

approach outperformed current approaches by learning the 

indirect relationship between price and external factors. 

The DRNN performed better than single SVM and hybrid 

SVM networks, according to data from the New England 

electricity market. To forecast electricity prices by 

incorporating market coupling, [15] suggested integrating 

feature selection techniques with an LSTM-based DL 

model. It effectively handled nonlinear time series data and 

demonstrated high accuracy in the Nordic market. 

However, the model's limitations reside in its dependence 

on the availability and quality of cross-market data.  

LSTM-DNN and feature selection algorithms were used in 

[16] to examine how market interconnections affect the 

prediction of power prices. It demonstrated how integrated 

market features affect prediction and how feature selection 

was essential for precise forecasting. The analysis found 

that Nord Pool's pricing was significantly influenced by 

the German market. The hybrid forecast model for short-

term power load and price prediction presented in [17] 

combined a DL algorithm, feature selection, and wavelet 

transform. To provide effective and sustainable electricity 

distribution networks, the model has been tested using load 

and pricing data from PJM, Spain, and Iran. The data-

driven approach for long-term electricity market price 

prediction using Fourier analysis was presented in [18]. By 

predicting base evolution and significant price volatility, 

the model captured underlying market dynamics. The 

approach validated data-driven, finely-grained predictions. 

To improve real-time electricity price prediction, a 

decision-level LSTM fusion model was suggested as an 

alternative to traditional ML and data fusion solutions [19]. 

Using the method, IoT data can be processed 

asynchronously, requiring less bandwidth and 

computation. Experiments showed that when it involved 
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tracking nonlinear electricity prices, LSTM performed 

better than linear regression. By using correlated features 

in a Gradient Boosting–LSTM model, more accurate smart 

city load forecasting was achieved [20]. Adding correlated 

features increased accuracy, and RMSE and loss functions 

were used to assess performance. SHAP provided details 

on factors contributing to household energy consumption. 

With the approach, it was possible to make accurate 

forecasts and useful insights for sustainable city planning. 

To employ a model using deep learning (DL) [21] to obtain 

power cost data characteristics while forecasting profit and 

future trends. The model employed a variational 

autoencoder for the extraction of features and economic 

analysis methodologies. The model generated an annual 

profit of 5.36 million yuan and has an accuracy rate of 

93.5%, indicating good generalization ability. The deep 

neural networks (DNN) [22] were used to reliably predict 

long-term electricity prices in Hungary.  The method 

evaluated various network structures and considered the 

influence of environmental variables such as 

meteorological data and date/time.  The results were 

particularly for short-term forecasts, while utilizing a DNN 

with a single convolutional long-short term memory 

(ConvLSTM) encoder.  The research emphasized the 

significance of accurate permanent electricity price 

estimates because of their considerable variability. Cloud 

computing was revolutionizing the IT sector, yet energy-

intensive data centres necessitate effective data placement 

as well as scheduling.  An Extreme Gradient Boosting 

(XGBoost) model is used to forecast electricity prices, 

lowering energy consumption expenses in data centres.  

The model's efficacy was evaluated on an operational 

dataset, which resulted in a 2532% cost decrease. 

Table 1 gives a comparative summary of ML and DL 

based models used for electricity load and price 

forecasting, comprising datasets, methods used, results, 

and limitations that indicate the history and pitfalls of 

energy forecasting research. 

Table 1: Summary of related studies on electricity load and price forecasting methods 

References Dataset Method Result 

Yousaf et al., [7] Smart grid 

residential load 

ANFIS 17% improvement in MAPE across 

seasons 

Nooruldeen et al., 

[8] 

Daily electricity 

load 

AdaBoost, Bagging, SVR, 

DT with PCA and LDA 

Enhanced energy planning forecasts 

Alshater et al., [9] Market equity data ML with uncertainty indices Suggested EWS to control fluctuations 

and expenses 

Pallonetto et al., 

[10] 

Electricity load LSTM vs. SVM LSTM is better with large data, and 

SVM is faster with small data 

Meng et al., [11] Load, price, wind, 

solar 

Attention-based LSTM with 

wavelet transform 

Accurate with high-renewable datasets 

Fan et al., [12] Actual load and 

price data 

SVR + GC(1,1) + RF hybrid MAPE: 6.35% and 6.21% 

Ullah et al., [13] Electric vehicle 

consumption 

XGBoost, LightGBM, Linear 

regression, NN 

LightGBM outperformed others in R², 

MAE, RMSE 

Zhang et al., [14] New England 

electricity market 

Deep Recurrent Neural 

Network (DRNN) 

Outperformed SVM and hybrid 

models 

Li and Becker, 

[15] 

Nordic market LSTM + Feature Selection 

(Market coupling) 

High accuracy in cross-market 

forecasting 

Kim et al., [16] Nord Pool + 

Germany 

LSTM-DNN + Feature 

selection 

Found intermarket influence on prices 

Memarzadeh and 

Keynia, [17] 

PJM, Spain, Iran DL + Wavelet + Feature 

Selection 

Sustainable, effective load/price 

prediction 

Gabrielli et al., 

[18] 

Long-term market 

price 

Fourier analysis (data-driven 

approach) 

Captured base evolution and volatility 

Xie et al., [19] IoT-based smart 

grid data 

LSTM fusion model Better than traditional ML for real-

time predictions 

Janjua et al., [20] Smart city load Gradient Boosting + LSTM 

+ SHAP 

High accuracy and interpretable 

features 

Fu, [21] Power cost & 

economic data 

DL with Variational Auto 

Encoder + economic analysis 

93.5% accuracy; 5.36M yuan 

profit/year 

Dombi and Dulai, 

[22] 

Hungarian 

electricity prices 

DNN + ConvLSTM with 

environmental data 

Effective short-term forecasting 



224 Informatica 49 (2025) 221–232 S. Zhang et al. 

 

Albahli et al., [23] Cloud data center 

energy prices 

Extreme Gradient Boosting 

(XGBoost) 

25.32% reduction in electricity costs 

in data centers via forecasting and 

offloading 

1.1. Research gap 

The existing methods have shown important progress in 

electricity price and load forecasting with identifiable 

limitations. Many of the models are highly data-specific, 

like renewable energy data, market coupling data, and EV 

data, which reduces their generalizability. Several models, 

such as LSTM, DNN, and DRNN, require high 

computational costs and have limited interpretability. 

Several also rely on feature selection accuracy, thus 

resulting in poor performance if economic data is missing 

or noisy. Furthermore, most approaches only provide an 

analysis of either short-term fluctuations or long-term 

changes. Overall, the proposed LSSV–ARF method offer 

the solutions these weaknesses by combining economic 

data and historical price data to reveal short-term 

nonlinearities, applying LSSV, and using adaptive random 

forests for long-term economic changes. The proposed 

LSSV–ARF reveals an accurate, interpretable, and 

adaptable model with a low computational cost and 

reasonable forecasting performance. 

3 Methodology 

Figure 1 provides a visualization of the procedures for 

electricity price prediction using the LSSV–ARF method. 

The various steps in Figure 1 start with collecting data 

from economic indicators, followed by data preprocessing 

using Z-score normalization to scale the input data. After 

the preprocessing stage, Principal Component Analysis 

(PCA) is used to extract the predictive features. The 

prediction model parameterizes the model by combining 

Least Squares Support Vector (LSSV) and Adaptive 

Random Forest (ARF). Finally, the performance of the 

modeling process is evaluated using measures of 

prediction accuracy and reliability.  

 

Figure 1: Overall process for predicting electricity price. 

1.2. Dataset 

The dataset, which combines historical data and 

macroeconomic indices, is a tool for predicting electricity 

market prices. It includes 1,344 daily records from a 

market scenario, such as the Industrial Production Index, 

inflation rate, currency exchange rate, economic energy 

parameters, and power market variables. A demand-supply 

ratio is also included in the dataset. This dataset utilizes 

data from January 2020 to July 2023, as shown in Table 2. 

The data was split into training (80%), testing (10%), and 

validation (10%) to ensure balanced model development, 

efficient hyperparameter tuning, and an unbiased 

assessment of forecasting performance.  

Source: 

https://www.kaggle.com/datasets/ziya07/economic-

indicators-price-forecasting/data  

Table 2: Input features 

Feature Name Category Unit / Description 

Day-ahead 

electricity price 

 

 

Electricity Market 

Variable  

USD/MWh 

Electricity 

demand 

MWh 

Electricity 

supply 

MWh 

Demand–supply 

ratio 

Ratio 

Crude oil price  

 

Macroeconomic         

Indicator  

USD/barrel 

Natural gas price USD/MMBtu 

Coal price USD/ton 

Inflation rate Percentage (%) 

https://www.kaggle.com/datasets/ziya07/economic-indicators-price-forecasting/data
https://www.kaggle.com/datasets/ziya07/economic-indicators-price-forecasting/data
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Currency 

exchange rate 

Local currency per 

USD 

Industrial 

production index 

Index value (base year 

normalized) 

 

1.3. Data preprocessing using Z-score 

normalization 

Z-score normalization is used as an important data 

preprocessing technique to standardize the different sets of 

input features for electricity market price forecasting. The 

dataset contains variables with different scales/units, for 

example, the electricity price ($/𝑀𝑊ℎ), fuel costs with 

different currency units, inflation rate (percentage), and 

industrial index. In this way, Z-score normalization 

improves model convergence, numerical stability, and 

forecasting performance. 

 A statistical method for scaling numerical 

characteristics based on the mean and standard deviation 

is called Z-score normalization. Without altering the 

variations in the ranges of values, it normalizes various 

data formats to a single scale. The Z-score normalized 

value 𝑦𝑗 for the 𝑗𝑡ℎ data point 𝑤𝑗  is calculated using 

Equation (1). 

𝑦𝑗 =
𝑤𝑗−𝜇

𝜎
       

      

      (1) 

 The initial feature value is denoted by 𝑤𝑗, the 

meaning of 𝜇, the standard deviation by 𝜎, and the 

normalized output by 𝑦𝑗.  

1.4.   Feature extraction using Principal 

Component Analysis (PCA) 

PCA was used to derive the most important features from 

high-dimensional electricity and economic datasets 

efficiently in a way that provides improved forecasting 

accuracy while reducing the complexity of the models. 

PCA converts the original feature space into a lower-

dimensional space and picks out only the components that 

retain the most variance in the data. This reduces 

redundancy, allows the model to generalize better, and 

reduces the overall chance of overfitting in the LSSV–

ARF model. The transformed features are formed using the 

top components from the eigenvectors of the covariance 

matrix, in the following Equation (2). 

𝑋𝑃𝐶𝐴 = 𝑋𝑐𝑒𝑛𝑡𝑟𝑒𝑑 ∙ 𝑊                                                                                                            

      (2) 

Where 𝑋𝑐𝑒𝑛𝑡𝑟𝑒𝑑  is the centred input data and 𝑊 is the 

matrix of selected eigenvectors. 

1.5.  Prediction model for least squares 

support vector fused adaptive random 

forest (LSSV-ARF)  

The hybrid LSSV–ARF forecasting model combines two 

forms of machine learning with different forecasting 

capabilities to improve the forecasting of electricity prices. 

The LSSV method was used to model nonlinear short-term 

price variations. LSSV can satisfy the optimization of non-

linear equations using an LSSV approach, and regressions 

can be computed rapidly with accuracy because LSSV 

accommodates fewer hyper parameters. The ARF 

algorithm models long-term economic patterns in 

electricity prices and climatic dynamic market behavior. 

The ARF provides additional flexibility to traditional 

random forests by applying adaptive node-splitting 

strategies based on a weighted combination of Gini index 

and information gain, allowing for flexibility to learn to 

adapt to electricity prices and trends in economic data.  

Table 3 depicts that the LSSV-ARF hybrid model utilizes 

LSSV with an RBF kernel and ARF with adaptive split as 

a hybrid model. The LSSV makes short-term forecasts 

from normalized data, which is then added as features in 

the training data, permitting ARF to create short-term 

forecasts. This hybridization combines the nonlinear 

pattern identification of LSSV and the economic 

adaptability of ARF for long-term forecasting to improve 

electricity price forecasting. 

Table 3: Hyper parameter of proposed LSSV–ARF 

Hyperparameter Typical Range/Value 

γ (Regularization) 0.01 – 100 

σ² (RBF Kernel 

Width) 

0.1 – 10 

ε (Loss Insensitivity) 0.001 – 0.1 

n_estimators 100 – 500 

max_features ‘sqrt’, ‘log2’, or fixed 

value 

α, β (Split Weights) 0 ≤ α, β ≤ 1 and α + β = 1 

 

Least Squares Support Vector (LSSV): The LSSV 

model is applied to model the nonlinear and short-term 

changes in electricity market prices; it takes input data, 

maps it to some high-dimensional feature space using 

kernel function(s), which enables its nonlinear 

dependencies to be captured for a more fitted regression. 

A variation of standard SVM, the LSSV replaces the 

inequality constraints with equality constraints and 

minimizes the least squares loss such that the problem can 

be solved using a linear equation system. This reformulates 

the computational complexity of a standard SVM 

(quadratic programming) into a simpler form. LSSV for 

regression with the RBF kernel has only two hyper 
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parameters, while LSSV for regression includes the bias 

term in the solution. Let the dataset be shown in Equation 

(3).  

[

𝑚𝑖𝑛
𝑥, 𝑎, 𝑓

 𝐼𝑜(𝑥, 𝑓) =
1

2
𝑥𝑆𝑥 + 𝛾

1

2
∑ 𝑓𝑙

2𝑀
𝑙=1

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑙 = 𝑧𝑙 − [𝑥𝑆𝜙(𝑤𝑙) + 𝑎], 𝑙 = 1, . . , 𝑀 
]  

          

      (3) 

 Here, 𝜉 = [𝜉1, . . . , 𝜉𝑀]𝑠  is the error vector, 

𝑤 ∈ 𝑅 𝑓   is the weight vector in feature space, and 

𝜙: 𝑓 𝑚 → 𝑓𝑎  is the nonlinear mapping function. The dual 

formulation is developed as shown in Equation (4). 

[

𝑆𝑜𝑙𝑣𝑒 𝑖𝑛 𝑏, 𝑎:

[
0

1𝑢
 

𝐽𝑆

Ω + 𝛾−1𝐽𝑀

] [
𝑎
𝑏

] = [
0
𝑧

]
]    

      

      (4) 

Where 𝑧 = [𝑧1, … , 𝑧𝑀]𝑆 1𝑢 is an 𝑀-dimensional vector 

= [1, … ,1]2, 𝛼 = [𝛼1, . . , 𝛼𝑀]𝑆, 𝐽𝑀 is an 𝑀-dimensional 

identity matrix, and 𝛾 ∈  𝑄 is a variable for regularity. The 

following Equation (5) is how the kernel technique is used. 

Ω𝑙,𝑘 = 𝜑(𝑤𝑙)𝑆𝜑(𝑤𝑘) − 𝐿(𝑤𝑙 , 𝑤𝑘) 𝑙 = 𝑘 = 1, . . , 𝑀  

      

      (5) 

 Where the kernel function  𝐿 is 

specified. Equation (6) contains the resultant LSSV model 

for function estimation.  

𝑧 = 𝑁(𝑤) =  ∑ 𝛼𝑙𝜑(𝑤𝑙)𝑀
𝑙=1

2
 𝜑(𝑤) + 𝑎                                                                        

       (6) 

 Where 𝑤𝑙  is the training data,  𝑙 =  1,2 … , 𝑀, 𝑤 

is the latest input case, 𝑏𝑙 , 𝑎 ∈ 𝑄 are the results and RBF 

is selected as the kernel function  𝑙. 

Adaptive Random Forest (ARF):Random Forest (RF) is 

a standard ensemble learning method that creates many 

decision trees that are trained with bootstrapped data 

subsets and combines the outputs of the trees, hoping that 

pooling the individual outputs will provide a more accurate 

and robust outcome. Each tree in the forest is trained on 

random sets of features; this randomness reduces 

overfitting and increases generalization to unseen data. For 

regression, the predicted final output is the average of each 

tree's output in Equation (7). 

𝑦̂ =
1

𝑇
 ∑ ℎ𝑡(𝑥)𝑡

𝑇=1                                                                                                   

       (7) 

Here ℎ𝑡(𝑥) is the prediction from 𝑡𝑡ℎ     tree, and 𝑇 is the 

total number of trees. 

The ARF was used to improve electricity price prediction 

by employing an ARF model for feature selection, 

interpretation, and prediction in existing energy 

forecasting systems. The ARF is a step in defining the 

feature space to optimize electricity market modeling. The 

ARF removes the less related features, defines a collection 

of decision trees, performs adequate learning, followed by 

the performance monitoring of each decision tree, 

identifying the most efficient trees. The ARF is capable of 

operating in a binary or a multi-class classification task, 

such as price fluctuation level identification or peak-

demand scenario categorization. The random forest 

models combine the predictions of each decision tree in the 

training, generating a stronger prediction through an 

ensemble of decision trees as expressed in Equation (8). 

  𝐺𝑖𝑛𝑖𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = ∑ 𝑅𝑃(𝑗𝑃𝐶)(1 − 𝑅𝑃(𝑗𝑃𝐶))𝑚
𝑙=0                                          

     (8) 

In Equation (8), 𝑅𝑃(𝑗𝑃𝐶) is the probability of selecting an 

element of class𝑗𝑃𝐶  at node l, where 𝑚 is the number of 

classes considered in the Gini impurity calculation, when 

employing ARF within the dynamic pricing model, it gave 

this system the ability to target the high impacts of features 

like fuel price or demand ratios which enabled more 

accurate, interpretable and adaptable price forecasts for 

different market conditions. The ARF consists of 

numerous simple decision trees to create an ensemble 

model to assist in minimizing the prediction error in 

electricity price forecasting. The ARF has computational 

simplicity and allows for the development of many 

inexpensive decision trees based on subsets of market 

features, patterns over time, economic indicators, and 

demand trends, which can then be consolidated using a 

majority vote or simple average of the predictions to 

provide one consolidated and robust prediction. The 

ensemble-learning method reduces computational effort 

and cost while improving reliability in electricity market 

price forecasting. ARF provides computational advantage, 

scalability, and interpretability for real-time energy 

forecasting. Collaborative construction of market features 

advances fine-grained decision-making, improving 

forecasting performance outcomes. 

 The hybrid approach utilizes the advantages of 

different ML models in a combined state to use the 

complementary benefits from these models to improve the 

accuracy in predictions. By using different models, it can 

capture complex patterns and dynamic variations in a 

variety of electricity market prices and economic 

variables, as shown in Algorithm 1. 

Algorithm 1: Hybrid LSSV–ARF 

Input: Dataset D = {X, Y} 

Output: Predicted prices Y_pred 
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1. Preprocess Data: 

   - Normalize features with Z-score 

   - Apply PCA to reduce dimensionality 

   - Split D into training and testing sets 

2. Train LSSV Model: 

   - Compute RBF kernel matrix K 

   - Solve: [0  1ᵀ; 1  K + γ⁻¹I] * [b; α] = [0; Y_train] 

   - Predict: z_LSSV(x) = Σ α_i * K(x_i, x) + b 

3. Train Adaptive Random Forest (ARF): 

   - Build T trees using bootstrapped samples and 

adaptive splitting 

   - Predict: y_ARF(x) = Average(tree_t.predict(x)) over 

all T trees 

4. Fuse Predictions: 

   - Final prediction: Y_pred = λ * z_LSSV + (1 - λ) * 

y_ARF 

Return Y_pred 

2 Results and discussion 

The findings showed that the LSSV–ARF model greatly 

improved the accuracy of electricity price forecasting. The 

results of comparative analysis indicated lower error 

metrics for LSSV–ARF than traditional models, which 

indicated the LSSV–ARF model was able to identify and 

capture short-term variability in the price signals while 

also adhering to long-term economic trends under a 

dynamic and evolving market. 

2.1.   System configuration 

The experiments were conducted in a high-performance 

computing facility utilizing Python 3.10. We used a multi-

core processor and a GPU, and there was sufficient RAM 

in the workstation that was able to manage the data 

provided and perform all training and testing of the 

models. Training the model on the full dataset (1,344 daily 

records) required approximately 142 seconds, and 

prediction on the test set required 6 seconds, as shown in 

Table 4.  

Table 4: Experimental Setup 

Specification Details 

Programming 

Language 

Python 

Python Version 3.10 

CPU Intel Core i7-11700 @ 

2.50GHz 

GPU NVIDIA GeForce RTX 

3060 (6GB VRAM) 

Operating System Windows 11 Pro 64-bit 

RAM 32 GB DDR4 @ 3200 MHz 

 

2.2. Research output 

 

The correlation heat map shows some weak correlations 

between electricity price and individual variables, 

including demand (-0.01), supply (-0.03), and demand-

supply ratio (0.01) in Figure 2. However, there are strong 

correlations between features like demand vs demand-

supply ratio: 0.75, and weak correlations between features 

and price, which are related to feature interdependencies 

with the dataset and not electricity price prediction. 

 

Figure 2: Correlation heat map for economic indicators 

feature. 

The time series of natural gas, crude oil, and coal fuel 

prices from January 2020 to July 2023 is displayed in 

Figure 3. While the Natural Gas price remains relatively 

stable and low, with minor fluctuations, the Crude Oil and 

Coal prices are highly volatile and frequently spike, 

particularly in the latter part of the time series. The 

proposed LSSV-ARF prediction method was used to 

predict the fuel price trend. This suggests that the Crude 

Oil and Coal market conditions are more susceptible to 

fluctuations, likely due to global demand, geopolitical 

events, and supply disruptions, while Natural Gas market 

conditions remain comparatively stable. 



228 Informatica 49 (2025) 221–232 S. Zhang et al. 

 

 

Figure 3: Fuel prices from January 2020 to July 2023 

used in the LSSV-ARF method. 

 

The fluctuations in electricity prices, expressed in 

USD/MWh, between January 2020 and July 2023 are 

displayed in Figure 4. Many fluctuations reveal significant 

volatility, indicating that electricity prices are highly 

volatile based on demand, supply, fuel prices, and market 

dynamics. While there are fluctuations from day to day, 

over time the trend is relatively stable, with some 

significant sharp peaks and dips. These consistent 

oscillations demonstrate the impact of external economic 

factors, seasonal factors, and geopolitical factors on 

electricity pricing. The proposed hybrid optimization-

based prediction method was used to predict the electricity 

prices.  

 

Figure 4: Fluctuations in electricity prices prediction for 

LSSV-ARF. 

In Figure 5, the time series for the Industrial Production 

Index (IPI) is one of the economic input features that is 

used to provide contextual input for electricity price 

predictions. The proposed model does not predict this 

feature but uses it as input for electricity price predictions.  

 

Figure 5: Financial growth trend prediction using LSSV-

ARF. 

 

A feature importance analysis utilizing the ARF 

component. Results showed electricity demand (34%) and 

demand–supply ratio (26%) as the most important 

predictors of electricity demand. Macroeconomic 

indicators, such as crude oil price and inflation rate, were 

useful for long-run trend modelling and confirmed the 

model's interpretability and robustness, as shown in Figure 

6. 

 

 

Figure 6: Feature Importance in LSSV-ARF Model 

2.3. Comparative analysis  

This subsection provides the evaluation criteria utilized to 

measure the performance of the suggested LSSV-ARF 

model for forecasting electricity prices, including 
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XGBoost [23], RF [23], and SVR [23]. The outcome 

illustrates that the suggested hybrid model immensely 

outperforms conventional methods in precision and 

stability. 

• MAE considers the average size of errors among 

predicted and actual electricity prices, without 

considering their direction. Lower MAE indicates 

better prediction accuracy and overall model 

performance. 

• MAPE gives model prediction error as a 

percentage, indicating how much the prediction 

deviates from actual average prices; lower MAPE 

means more accurate and reliable forecasting of 

electricity prices. 

• RMSE calculates the square root of the average 

squared differences of predicted and actual 

values, repeatedly indicated in future work to 

suggest RMSE also depicts the standard deviation 

of prediction errors.  

• MSE computes the average of the squared 

differences of predicted and actual values, while 

giving an overall indication of prediction 

accuracy, but it is especially sensitive to large 

errors. 

Table 5: Evaluation of predictive accuracy across 

different algorithms 

Model MAPE RMSE MSE MAE 

XGBoost 40.90 9.25 15.66 3.74 

RF 71.54 11.25 98.36 7.98 

SVR 44.91 12.11 99.2 7.67 

LSSV-ARF 

[Proposed] 

30.90

± 1.12 

3.53

± 0.21 

12.50

± 0.87 

2.55

± 0.15 

 

Table 5 and Figure 7 illustrate the evaluation of predictive 

accuracy of the four algorithms, XGBoost, RF, SVR, and 

the LSSV–ARF model, which was proposed, using the 

standard error metrics. The LSSV–ARF obtained the best 

performance, as compared to the others, as it provided the 

lowest MAPE (30.90), RMSE (3.53), MSE (12.50), and 

MAE (2.55). The other models had a higher error, and the 

accuracy of prediction decreased. These results 

demonstrate that the LSSV–ARF is a superior predictive 

model, when compared with the conventional models, in 

terms of the level of prediction precision.  

To ensure a comprehensive appraisal of performance, we 

monitored RMSE and MSE alongside MAE and MAPE. 

For evaluative purposes, ten independent runs were used 

to assess variability of results, and a paired t-test was used 

to verify statistical significance. The LSSV–ARF model 

reported statistically significantly better results than all 

benchmarks with significance (𝑝 < 0.01) on every 

improvement, demonstrating more accurate, robust, and 

reliable performance across all measures. 

 

Figure 7: Performance of electricity price prediction 

methods 

The proposed model LSSV–ARF predicts electricity 

prices one day ahead, relying on 1,344 daily records 

from January 2020 to July 2023. 1,000 bootstrap 

resamples were constructed to ensure effect sizes were 

statistically reliable to report 95% confidence 

intervals for analyses. To further examine 

performance related to volatility, particularly low, 

medium, and high volatility levels were segmented for 

analysis, as shown in Table 6. 

Table 6: Performance evaluation by volatility regime 

Volatility Regime MAE MAPE 

Low Volatility 0.65 4.12 

Medium Volatility 0.81 5.39 

High Volatility 0.94 6.21 

 

The LSSV-ARF model employs regularization (C = 1.2) 

and has been tuned to prevent overfitting by ensemble 

averaging with adaptive node-splitting. Hyper parameters 

were tuned using 5-fold cross-validation. Ten independent 

runs of cross-validation showed minimal variation in fitted 

error, indicating that the model was stable and robust, and 

demonstrated strong generalization to unseen data, as 

shown in Table 7. 

Table 7: 5-fold cross-validation results 

Model MAPE RMSE MSE MAE 

LSSV-ARF 

[Proposed] 

30.90

± 1.12 

3.53

± 0.21 

12.50

± 0.87 

2.55

± 0.15 
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2.4.   Discussion 

Despite their high accuracy, XGBoost [23] can be 

resource-intensive and exposed to overfitting of noisy 

data, and RF [23] models can exhibit high variance on 

large datasets and lack interpretability. SVR [23] has a 

difficult time scaling for large datasets, and can be 

sensitive to the kernel and parameters selected. All three 

models can have additional preprocessing to complete, as 

well as challenges due to non-linear fluctuations of 

electricity prices, which have the potential to greatly 

influence performance and accuracy. 

The LSSV-ARF model addresses the drawbacks of the by 

XGBoost [23], RF [23], and SVM [23] utilizing LSSV and 

ARF together, while providing a more interpretable and 

computationally efficient approach. There is a more 

optimization from linear equations, as opposed to 

complicated quadratic programming, which saves on 

training time and cost; the ARF selects the splitting 

attributes when splitting nodes automatically, which 

allows the ARF to better track changing patterns without 

overfitting; and it has fewer hyper parameters. Overall, this 

combination enhances forecasting performance while 

interpreting the model, provides scale for larger datasets, 

and robustness for complex environments with limited 

data in dynamically data-limited environments such as the 

electricity market. 

2.5.   Real-world implications 

In real electricity markets, price forecasting is critical for 

energy suppliers, system operators, and policy makers. 

The LSSV-ARF model suggested here is suitable for day-

ahead electricity price forecasting using historical demand, 

climate data, and economic factors. An example would be 

to enable a utility company to reduce operational costs by 

managing energy procurement with accurate price 

forecasts, providing the most productive avenues for 

action during those periods when operational costs create 

volatility, enabling them to make more profit or less loss 

and deliver power at a lower cost to consumers. 

3 Conclusion 

The new electricity market price forecasting model 

presented in this research effectively combines advanced 

machine learning techniques with significant economic 

energy indicators.  By including such variables as fuel 

prices, inflation, exchange rates, industrial production 

indexes, and demand-supply ratios in addition to historical 

price and load data, the model captures short-term 

variability as well as long-term economic patterns. The Z-

score normalization method was applied during 

preprocessing to normalize input features, maintaining 

uniform scale and improving model stability. The 

suggested LSSV-ARF ensemble model, integration of 

Least Squares Support Vector and Adaptive Random 

Forest for predicting electricity prices, was implemented 

using the Python platform and tested with actual data. 

Achieving an MAPE (30.90 ± 1.12), RMSE (3.53 ±

0.21), MSE (12.50 ± 0.87), and MAE (2.55 ± 0.15), 

indicating its forecasting accuracy. The model is 

dependent on having quality and accessible historical and 

economic data. Further, when deployed in a real-time 

situation, the model may present complications. It requires 

significant computational resources to train. Further, it 

requires even more computational resources depending on 

the hyperparameter tuning. Future work could focus on 

reducing the computational complexity of the model to 

facilitate faster real-time predictions. Integrating 

additional data sources, such as renewable energy 

generation forecasts and weather conditions, may further 

improve accuracy. 
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APPENDIX 

𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =  𝑀𝐿 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 

=  𝑁𝑁 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 

=  𝑀𝐴𝑃𝐸  

𝐿𝑜𝑛𝑔 𝑆ℎ𝑜𝑟𝑡

− 𝑡𝑒𝑟𝑚 𝑀𝑒𝑚𝑜𝑟𝑦 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 

=  𝐿𝑆𝑇𝑀𝑠 

𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

− 𝑏𝑎𝑠𝑒𝑑 𝑓𝑢𝑧𝑧𝑦 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

=  𝐴𝑁𝐹𝐼𝑆 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 

=  𝑆𝑉𝑀  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

=  𝑆𝑉𝑅 

𝑔𝑟𝑒𝑦 𝑐𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑒 

=  𝐺𝐶  

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 =  𝐷𝑇 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 =  𝑅𝐹 

𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

=  𝑃𝐶𝐴 

𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

=  𝐿𝑆𝑆𝑉 

𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

=  𝐿𝐷𝐴 

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠 

=  𝑄𝑃 

𝐸𝑎𝑟𝑙𝑦 𝑊𝑎𝑟𝑛𝑖𝑛𝑔 𝑆𝑦𝑠𝑡𝑒𝑚 

=  𝐸𝑊𝑆 

𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

=  𝑅𝐵𝐹 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

=  𝑀𝐴𝐸  

𝑑𝑒𝑒𝑝 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 

=  𝐷𝑁𝑁 

𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐵𝑜𝑜𝑠𝑡𝑖𝑛𝑔 

= 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 

= 𝐼𝑇 
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