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This study proposes an efficient and accurate framework for visualizing, preserving, and restoring
architectural heritage by integrating three-dimensional (3D) reconstruction technologies with deep
learning-based visual detection algorithms. The objective is to enable intelligent identification and
targeted repair of structural defects, thereby advancing the digital conservation of cultural assets. The
framework is structured into four layers: data acquisition, 3D modeling, data analysis, and application
visualization. In the data acquisition phase, high-overlap image datasets are captured using a GoPro
Heroll action camera. The modeling phase employs the Structure-from-Motion (SfM) algorithm to
automatically extract image feature points. Meanwhile, Reality Capture software generates dense point
clouds and performs texture mapping—producing high-precision 3D architectural models that retain
geometric and textural details. For data analysis, the state-of-the-art You Only Look Once version 8
(YOLOV8) object detection algorithm is applied. The 3D models are sliced and converted into 2D images
to detect and locate structural defects such as cracks, spalling, and surface weathering. Experimental
results on the validation set demonstrate excellent performance, with an average precision of 96.3%, a
recall of 94.7%, and an F1 score of 0.954. The confusion matrix for sectional detection yields diagonal
values between 0.81 and 1.00, while classification accuracy for planar structures ranges from 0.91 to
1.00—affirming the model's robustness and real-world applicability. Overall, the proposed method
supports high-fidelity reconstruction of architectural structures while enabling precise and automated
defect detection via deep learning, providing a reliable quantitative basis for informed and scientific
restoration.

Povzetek: Studija predstavi stirislojni okvir za digitalno varovanje arhitekturne dediscine, ki zdruzi 3D
rekonstrukcijo z YOLOVS, pri cemer iz 3D modelov izdela 2D prereze za samodejno zaznavo poskodb in

tako omogoca ciljno konserviranje.

1 Introduction

As a valuable legacy of human civilization,
architectural heritage embodies rich historical and
cultural significance. However, due to factors such as
natural degradation, human-induced damage, and armed
conflict, many architectural sites are at risk of irreversible
deterioration or loss [1-3]. Consequently, the protection
and restoration of architectural heritage have become
increasingly urgent. With advancements in science and
technology, three-dimensional (3D) reconstruction has
emerged as a powerful tool in this domain, offering new
possibilities for the digital preservation and restoration of
architectural structures [4]. 3D reconstruction refers to
the process of accurately creating digital three-
dimensional representations of real-world objects using
computer technology and image processing algorithms.
This can be achieved through photogrammetry, laser
scanning, structured light projection, and other

techniques. These methods collect spatial and surface
data, which are then processed using computer graphics
algorithms to generate precise 3D models [5]. The ability
to rapidly and accurately capture the geometry and
texture of architectural elements makes this technology a
crucial asset in heritage conservation efforts. Many
architectural heritage sites have suffered severe damage
over time. Traditional documentation techniques—such
as manual drafting and photographic surveys—often fall
short in precision and completeness, limiting their
effectiveness in meeting contemporary conservation
demands [6-8]. In contrast, 3D reconstruction provides a
means of digitally preserving and restoring heritage
structures with high fidelity.

Characterized by high precision, efficiency, and
visualization capabilities, 3D reconstruction allows for
comprehensive documentation and accurate virtual
restoration of architectural heritage. It captures external
features, internal structural, and material details, thus
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offering robust data to support future restoration, research,
and educational initiatives [9-11].

In addition to structural analysis, 3D reconstruction
facilitates the virtual presentation of architectural
heritage, enabling the public to conveniently explore and
appreciate these valuable cultural assets through digital
platforms [12, 13]. Currently, common methods used for
3D modeling of architectural heritage include laser
scanning (LiDAR), photogrammetry, and structured light
projection. Laser scanning has emerged as a mainstream
technique due to its high precision and automation
capabilities. For example, Moyano et al. [14] compared
two scanners for geodetic data acquisition in historical
building information modeling (HBIM). They selected
the stationary BLK360 scanner, known for its user-
friendliness and portability. Their approach involved
comparing point clouds to assess density and
organization, identifying parameters beneficial for BIM-
based workflows. Similarly, Llabani and Abazaj [15]
explored the application of terrestrial laser scanning (TLS)
in the 3D documentation of cultural heritage, using the
Tirana Clock Tower as a case study. Their findings
underscored the value of digital models in conservation,
risk assessment, and virtual tourism.

Photogrammetry offers notable advantages in low-
cost image acquisition, making it particularly suitable for
large-scale, outdoor architectural environments. For
instance, Salagean-Mohora et al. [16] applied best
practices in close-range photogrammetry—refined
through iterative learning and testing—to a facade
restoration project in Timisoara. Both original and

S. Hong et al.

restored plaster decorations were scanned, with one
model eventually reproduced via 3D printing. Sancak et
al. [17] proposed a photogrammetry-based approach for
generating optimized models for serious gaming
environments. As a case study, they modeled the
Yedikule Fortress and its surrounding area, incorporating
cultural elements from the Byzantine, Ottoman, and
Republican periods to create game-ready assets.

Structured light projection is well-suited for high-
resolution modeling of small and intricate structures.
However, its application to large-scale scenarios is
hindered by operational complexity and susceptibility to
occlusion-related data loss. For instance, Fu et al. [18]
proposed a hardware system and region-adaptive
structured light algorithm. By combining chain codes
with the M-estimator sample consensus method, they
established unidirectional mappings from saturated
regions in the camera plane to corresponding regions in
the projector plane, enabling the generation of stripe
images with adaptive brightness. Williams et al. [19]
examined each structured light scanning workflow for
producing high-quality 3D models. Their study
emphasized the importance of pre-scanning parameter
adjustments, such as brightness and shutter speed, to
streamline the scanning process. To demonstrate the
progress and limitations of current 3D reconstruction
methods, Table 1 summarizes the quantitative indicators
reported in various studies, including detection
performance, point cloud integrity and accuracy, datasets
used, and computational cost.

Table 1: Comparison of studies on 3D modeling and visual detection of architectural heritage

Literature Application mean Average mAP 3D point | 3D point Dataset Computational
scenarios Precision @[0.5:0.95] of cloud cloud cost
(mAP)@0.5 of | detectiontasks | integrity | accuracy
detection tasks
Moyano et al. HBIM 0.88 0.80 0.92 0.90 HBIM High
[14]
Llabani & Cultural 0.87 0.78 0.91 0.89 TLS High
Abazaj [15] heritage
records (Clock
Tower)
Salagean- Building 0.85 0.76 0.88 0.87 Partial Moderate
Mohora et al. facade facade
[16] restoration
and 3D
printing
Sancak et al. Multi-period 0.82 0.74 0.85 0.86 Public Moderate
[17] heritage cultural
modeling heritage
(Game data
scenario)
Fu et al. [18] Modeling 0.90 0.82 0.92 0.90 Self- Moderate
small objects collection
Williams etal. | Cultural relics 0.91 0.83 0.93 0.91 Self- High
[19] modeling and collection
process
optimization

Existing studies still have several shortcomings in
3D modeling and visual detection of architectural
heritage. First, most studies focus on high-precision 3D

reconstruction or surface modelling; however, these
studies pay insufficient attention to defect detection and
3D perception capabilities of local components, making
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it difficult to achieve targeted restoration. Second,
evaluation indicators are not unified enough or lack
quantification; much of the literature only relies on visual
effects or subjective evaluation, which limits the
comparability between methods and the reproducibility
of experiments. In addition, the adaptability of existing
methods in complex cultural heritage scenarios is limited.
Changes in illumination, texture complexity, and
occlusion issues easily affect the accuracy of detection
and modeling. Finally, some technologies, such as laser
scanning or structured light, are complex to operate and
high in cost, which restricts the deployment ability of
these methods in practical protection or restoration
projects. This study addresses the following research
question. Can the You Only Look Once version 8
(YOLOvS8) algorithm achieve a defect detection accuracy
exceeding 90% and maintain a high F1 score when
applied to high-precision 3D models constructed using
structured light photogrammetry and Structure-from-
Motion (SfM) techniques? To explore this question, the
study is based on the following hypotheses:

1) The automatic extraction of architectural feature
points and generation of high-quality point
cloud data via the SfM method can provide
sufficient and precise geometric and texture
information for defect detection.

2) Leveraging 3D models generated by Reality
Capture software, the YOLOV8 object detection
algorithm can effectively identify structural
defects in heritage architecture and significantly
outperform traditional detection methods.

3) The system's high precision and recall can
enhance the scientific rigor and efficiency of
restoration practices, thereby promoting the
broader adoption of digital conservation
technologies.

This study constructs a comprehensive visual
protection system for architectural heritage, which
organically integrates advanced technologies such as
SfM, 3D modeling, and virtual reality (VR) to achieve
high-precision digital recording and reproduction of
heritage buildings. Given that structural damages in
architectural heritage are often locally concentrated and
dependent on specific components, accurate component-
level positioning plays a key role in defect identification
and restoration simulation. To this end, this study first
uses the YOLOvV8 model to automatically identify key
components, including golden pillars, eave pillars, beam
ends, and eave beams. Subsequently, through the fusion
of planar and cross-sectional image slices, a spatial
distribution model of the components is established.
Depth-slicing technology is used to analyze surface
textures, colors, and other visual features, realizing fine
classification and spatial positioning of defects. This
method can accurately label damaged areas and provide
a reliable basis for formulating targeted restoration plans.

Compared with existing visual protection methods,
the innovation of this study lies in using SfM technology
to achieve efficient 3D modeling with controllable costs.
Meanwhile, the study combines detection results with VR
visualization, allowing restoration personnel to
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intuitively evaluate defect distribution and plan
restoration schemes in a virtual environment, forming a
complete digital restoration process from detection to
decision-making.  First, this study proposes a
reproducible slice-based pipeline, which couples the 3D
model generated by SfM with two-dimensional (2D)
detectors to realize refined detection of architectural
heritage damages. Second, it constructs an annotated
heritage damage dataset and classification ontology,
covering typical damage types such as cracks, spalling,
and pollution, and provides detailed annotation
specifications and category definitions. Third, it proposes
an error characterization method for converting pixel-
level detection results into actual metric crack estimation,
which can quantify crack length, width, and distribution
characteristics. Comprehensively, this method improves
detection accuracy and enhances practical application
value in the digital protection and restoration of
architectural heritage, offering an effective supplement to
traditional visual protection methods.

2 Method

2.1 Integrated architecture of visual
protection of architectural heritage

The integrated architecture of visual protection of
architectural heritage is a comprehensive protection
system that integrates many advanced technologies. It
uses digital means to record and model the architectural
heritage in an all-around and high-precision way, and
forms an HBIM system. The system starts with the
preliminary analysis. At present, a comprehensive
analysis of the historical background, current conditions,
and conservation needs of the architectural heritage site
has been completed. Through multi-source data
acquisition and processing technology, detailed
information on architectural heritage is collected from
various channels, including but not limited to data
structure, materials, and decoration. In the information
construction phase, these data are integrated and refined
to form a unified and standardized information system,
which provides data support for the subsequent 3D
modeling.

Creating an HBIM system is a central component in
the digital preservation of architectural heritage, wherein
high-precision 3D models are generated through
advanced digital modeling techniques. These models are
highly authentic while supporting dynamic updates and
interactive operations. During the digital restoration
phase, state-of-the-art computer vision technologies are
employed to repair and reconstruct the 3D models,
restoring the original features of the heritage structures
with high fidelity. In the exhibition phase, realistic 3D
models enable the public to engage with and appreciate
the cultural value of architectural heritage, thus fostering
greater awareness, protection consciousness, and
participatory involvement. In the data integration and
management phase, all relevant datasets and
informational elements are consolidated into a
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comprehensive and functional system, facilitating
ongoing maintenance and updates [20-22]. Computer
vision plays a pivotal role within the HBIM system—not
only in model creation and restoration but also in
enhancing the overall intelligence and efficiency of the
system. The digital preservation phase is dedicated to
developing digital archives for historical buildings,
providing a robust foundation for their protection and
long-term transmission. Finally, the protection-integrated
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design system synthesizes information and data from pre-
analysis, data acquisition, HBIM, digital restoration,
architectural visualization, and data management into a
unified design framework. This comprehensive and
actionable scheme offers practical guidance for the actual
conservation and architectural design processes. The
integrated framework for the visual protection of
architectural heritage is displayed in Figure 1.

Pre-phase analyses

| Data acquisition

| Building Information

HBIM

| Create HBIM

| Digital restoration

| Architectural display

Data integration
management

Multi source data
acquisition and «—
processing

Digital modeling
methods

Visual analysis and
repair strategy

Full lifecycle
information «—
management

Computer vision technology

Figure 1: Integrated architecture for visual protection of architectural heritage

In the preservation of architectural heritage, image
processing technology plays a critical role in the
preprocessing, feature extraction, and classification of
historical building images. Preprocessing techniques—
such as grayscale conversion, binarization, filtering, and
denoising—enhance image clarity and contrast, thereby
providing a solid foundation for subsequent feature
extraction and recognition tasks. Feature extraction, a
core component of computer vision, is used to identify
representative and distinctive attributes from images of
historical buildings. These features may include
geometric shapes, textures, and color patterns, all of
which serve as essential input for classification,
recognition, and target detection processes.

In the restoration phase, object recognition and
detection technologies are primarily employed to identify
and localize key architectural elements, such as doors,
windows, columns, and roofs. Deep learning-based
object recognition techniques enable the automated
detection of these elements by training deep neural
network models on labeled image datasets. These
methods offer high accuracy and robustness, and are
capable of adapting to variations in lighting, viewing
angles, and image resolution. Additionally, shape-based
object detection methods are utilized for matching and
identifying architectural features by extracting shape
descriptors from historical building images and
comparing them to predefined templates. This approach
allows for the precise localization of key elements based
on their geometric characteristics.

2.2 The 3D modelling of real scenarios based
on StM

During the image acquisition process, it is essential
to capture images from multiple perspectives to ensure
complete coverage of the target structure [23-25]. For
architectural heritage preservation, comprehensive
imaging of all components from various angles is critical
to ensure the accuracy and integrity of the resulting 3D
models. Additionally, maintaining consistent lighting
conditions is crucial, as variations in illumination can
affect feature point detection. For outdoor imaging, times
with stable and diffuse lighting—such as early morning
or late afternoon—are preferable.
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Figure 2: Multi-source data acquisition and processing
module

Figure 2 illustrates the multi-source data acquisition
and processing module. The first step in the workflow is
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data classification, which involves the initial sorting and
organization of raw data. In the subsequent data
processing phase, point cloud preprocessing and slicing
are performed. Point cloud preprocessing involves
cleaning and filtering the raw point cloud data obtained
from 3D laser scanning to enhance data quality. Point
cloud slicing refers to segmenting the point cloud data
based on predefined criteria to extract detailed
information for specific regions. These procedures are
critical for facilitating accurate data analysis and
effective visualization in later phases.

\
} Model
\
\

model

Current situation
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The digital modeling workflow is illustrated in
Figure 3. Before model creation, it is essential to define
the modeling requirements, including the desired level of
detail, the types of information to be incorporated (e.g.,
material properties and intangible heritage data), and the
model's intended use. Material information pertains to the
tangible attributes of the structure—such as dimensions,
shape, and construction materials—which can be
acquired through technologies like laser scanning and
photogrammetry [26, 27].

Idealized model

Staged model

Figure 3: Digital modelling method module

In this study, SfM is employed as a core algorithm
for 3D reconstruction, with carefully defined settings to
ensure both accuracy and stability. During feature
extraction, the Scale-Invariant Feature Transform (SIFT)
algorithm detects and describes image features. Owing to
its robustness against scale and rotation variations, SIFT
is well-suited for handling complex architectural textures
and variable lighting conditions. On average, 3,000 to
5,000 keypoints are extracted per image, forming the
basis for subsequent image alignment.

For feature matching, the Fast Library for
Approximate Nearest Neighbors (FLANN) algorithm is
adopted to efficiently match descriptors. To enhance
matching precision, the Random Sample Consensus
(RANSAC) algorithm is applied to filter out false
matches, retaining only geometrically consistent
correspondences. This step ensures the initial accuracy of
the resulting sparse point cloud.

A filtering approach based on point density and
spatial distribution consistency is implemented to
mitigate noise and outliers within the sparse point cloud,
thus removing points with abnormally low density or
irregular spatial positioning. The accuracy of camera
poses and 3D point locations is further refined through
incremental bundle adjustment, minimizing reprojection
error using the Levenberg-Marquardt nonlinear least
squares algorithm. This optimization is executed via the
built-in functionality of RealityCapture software, with a
maximum of 100 iterations and a convergence threshold
of le-6, ensuring solution stability and computational
efficiency. Image acquisition follows a high-overlap
strategy, maintaining at least 70% overlap between
images to strengthen registration robustness. Image

capture is conducted under uniform lighting conditions
whenever possible to reduce the impact of lighting
inconsistencies. Although the optimization process relies
on built-in  software modules, all parameter
configurations and data quality controls are manually
adjusted and iteratively refined by the researchers,
ensuring that the final bundle adjustment results meet the
precision requirements for subsequent 3D defect
detection tasks.
During the operation of SfM, the essential matrix is
a 3x3 matrix, which encodes the relative rotation and
translation information between two cameras. If R is a
rotation matrix and t is a translation vector, the essential
matrix E can be expressed as:
E = [t],R (1)
x/K"TEK 'x; =0 (2)
[t], is the antisymmetric matrix of translation vector
t. x; and x; are the normalized coordinates of the
corresponding feature points in the two perspectives.
Next, to further improve the accuracy of 3D
reconstruction, it is necessary to address the issue of
beam adjustment. The beam adjustment problem can be
expressed as a nonlinear optimization problem to
minimize projection errors. The objective function can be
written as:
"Clg(n Xt p(lps — m(Cy X)) 1) 3
C represents the parameters of all cameras; X is the
coordinates of all 3D points; p; refers to the projection
point of the 3D point on the image; 7 (C;, X;) denotes the
projection point calculated based on the camera
parameters and 3D point coordinates; p stands for the
robust loss function. More accurate 3D points and camera
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parameters can be obtained by solving this optimization
problem.

Projection error refers to the distance between the
projection of a 3D point onto an image plane and its
corresponding observed image point.

Given the matching points x; and x, from two
perspectives, and the corresponding camera internal
parameter matrix K and external parameter matrix E, the
3D point X can be recovered by the following equation:

X=KT(Kx; x K x,) (4)

Bundle Adjustment (BA) problem can be expressed
as a nonlinear optimization problem to minimize the
projection error. The objective function of optimization
is as follows:

ming X; X; p(I qi; — me: (X)) I1) (5)

O represents the parameters of all cameras. g;; is the
pixel point in image Oi. X; is the 3D point. mg; (X;) is the
projection of the 3D point in image Oi.

To enhance the visual presentation of the
reconstructed model, this study adopts 3D rendering and
VR technologies to provide users with an intuitive and
immersive browsing experience. To evaluate the
practical application effect and interactive experience of
the model, a systematic user study is designed.
Participants cover different age groups, professional
backgrounds, and levels of VR usage experience to
ensure the broad representativeness of the experimental
results. Experimental tasks include observing the 3D
reconstructed model, locating and labeling structural
defects, and evaluating the model's interactive interface
and operational convenience. After completing the tasks
during the experiment, users fill out a subjective
satisfaction questionnaire, which includes ratings on
dimensions such as visual clarity, operational smoothness,
and sense of immersion. At the same time, objective
indicators such as operation time and task completion
accuracy are recorded. The collected data are processed
through statistical analysis methods (such as mean,
standard deviation, and analysis of variance) to quantify
the model's usability and interactive performance.
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Regarding model training, data augmentation
technologies are adopted to improve the reconstructed
model's generalization ability, encompassing rotation,
scaling, flipping, and other methods. At the same time,
appropriate training strategies are applied to optimize the
neural network parameters. Finally, the Poisson surface
reconstruction algorithm is employed to generate a
complete and high-fidelity 3D model from the processed
point cloud. This method generates a smooth and closed
surface through point cloud interpolation, which
accurately reflects the geometric features of the original
object or scenario.

2.3 Visual analysis and
architectural heritage

Photogrammetry plays a crucial role in the visual
analysis and restoration of architectural heritage. This
technique employs photographic equipment to capture
high-resolution images of heritage structures, which are
then processed and analyzed to enable 3D reconstruction,
deformation monitoring, and the development of
restoration plans [28-30]. Common photographic
methods used in this process are depicted in Figure 4.
Among these, equal-baseline photography is a
fundamental approach in photogrammetry, emphasizing
the maintenance of a consistent photographic baseline
between successive image captures. This consistency
enhances image matching accuracy and improves the
precision of 3D reconstruction during subsequent data
processing. When employing the equal-baseline method,
it determines an appropriate baseline length. The length
of the photographic baseline is closely linked to factors
such as the desired mapping scale, camera-to-object
distance (photographic vertical distance), and the
required accuracy. In general, a longer baseline
contributes to higher accuracy in stereo correspondence
and depth estimation; however, it also introduces greater
complexity and cost to the photogrammetric workflow.
Therefore, it is important to balance reconstruction
accuracy and practical feasibility based on the project-
specific objectives and constraints.

repair of

Photography surface

Waiting for baseline shooting

Fixed point surround shooting

U Y

Photography planning aspect

Figure 4: Equal baseline shooting and fixed-point surrounding shooting

In the visual analysis of architectural heritage, this
study uses YOLOv8-s for damage detection. During
model training, the input resolution is set to 1024x1024,
and Exponential Moving Average (EMA) is enabled for
parameter updates. Data augmentation includes Mosaic,

MixUp, HSV color enhancement, and brightness/contrast
adjustment, with the enhancement gains controlled
within a reasonable range. Labels adopt Common Objects
in Context (COCO)-style JSON, and the category system
is divided into planar and cross-sectional components.
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In the data acquisition phase, high-resolution images
ensure data quality and diversity. The 3D point cloud is
generated through RealityCapture; noise and duplicate
surface patches are removed, the model is simplified, and
the coordinate system is globally aligned. This provides
an accurate foundation for subsequent slicing and
analysis.

Slice generation is a core step. The 3D model is
divided into 2D slices along specific directions to allow
detailed observation of internal structures and defects.
The slice direction is determined based on component
characteristics and defect distribution. Vertical slices
along the wall are used for wall cracks to capture the
depth and direction of the cracks; top-down vertical slices
are used for top components such as cornices. The
thickness and spacing of the slices are both 0.5
centimeters (cm), which balances information integrity
and computational efficiency in the detection of cracks
with a width of 3-5 millimeters (mm). The export
resolution of the slices is approximately 3000x2000
pixels; the slices are saved in PNG format with attached
depth and spatial coordinate data, and anti-aliasing and
resampling processing are applied simultaneously.

In the annotation phase, the semi-automatic tool
LabelMe is used to annotate defects such as cracks,
spalling, and stains, supplemented by manual correction.
For low contrast and blurriness caused by uneven
illumination or occlusion, histogram equalization and
gamma correction are performed. For complex areas such
as tower tops and arch structures, multi-angle slicing and
data fusion are used to make up for the lack of single-
view information.

After training, the model can output confidence
interval (Cl), component categories, and positions, which
can be overlaid on the original image for visualization.
The detection results can be used for quantitative analysis
(quantity, area, length) and qualitative evaluation
(stability, safety). Combined with the 3D model, multi-
view visualization analysis can be conducted to simulate
different environmental conditions or enable immersive
exploration through VR. The model output supports both
restoration design and structural analysis of architectural
heritage. During the restoration process, deformation
monitoring is conducted by comparing time-series
images to ensure safety and effectiveness.

2.4 Experimental design

To verify the effectiveness of the proposed method,
this study takes the Cross-shaped Drum Tower of the
Ming Dynasty (1368-1644 AD) in Yinchuan, Ningxia, as
the main experimental object. The Drum Tower is a local
key protected cultural heritage with rich historical and
cultural value. Based on this, the method proposed in this
study is also verified on the widely used ETH3D
benchmark dataset. This dataset contains diverse real
scenarios and has complex architectural geometric
structures and textures, which are used to evaluate the
method's generalization ability and robustness in 3D
reconstruction and defect detection.
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In the Drum Tower case, a GoPro Heroll action
camera is mainly used for image collection, with a
maximum resolution of 5568 x 4872 and a viewing angle
of 170°. A total of 5023 color images and 132 black-and-
white images were collected. The collected images are
first imported into Reality Capture software for image
alignment and sparse point cloud generation. Then,
Trimble software is used to generate 2D slice images
from the 3D point cloud according to preset height and
angle parameters, to fully present the Drum Tower
structure and display architectural elements. The slice
direction is determined based on the architectural
structure characteristics and defect distribution. For
example, for wall cracks, slices are made perpendicular
to the wall surface to observe the shape and distribution
of cracks more accurately. 3D reconstruction is
performed on a Windows 10 (64-bit) system; the software
environment includes Context Capture and Reality
Capture, and the hardware configuration is an Intel Core
i7-7700HQ CPU with 2.80 GHz.

In the ETH3D dataset verification, subsets with
complex architectural structures are selected from the
original scenes, and 2D slices are generated at fixed
intervals. Defect labels are generated by combining semi-
automatic annotation tools and manual correction. The
dataset is divided into the training, validation, and test
sets at a ratio of 70% / 15% / 15%. The number of images,
category distribution, and random seeds in each data split
are recorded to ensure the reproducibility of experimental
results. Performance indicators are counted on each slice
and averaged to ensure direct comparison with the
proposed model's output results.

This study utilizes advanced computer vision
technology and the object detection algorithm YOLOvV8
to conduct detailed visual analysis and research on the
cultural heritage of the building. In the damage detection
phase, this study employs the YOLOv8 model, which
currently delivers excellent performance in computer
vision tasks. Combining fast inference with high
detection accuracy, YOLOVS is well-suited for real-time,
complex architectural damage identification. The training
process utilizes a transfer learning approach: pretrained
weights from the large-scale, general-purpose COCO
dataset are first loaded, then fine-tuned on a specially
curated heritage damage dataset to enhance the model's
ability to identify architectural damage features. The
training dataset comprises carefully annotated images of
building surface damage, including cracks, spalling, and
material weathering. To improve generalization, multiple
data augmentation techniques, such as horizontal flipping,
random cropping, rotation, brightness adjustment, and
Gaussian noise, are applied, effectively increasing
sample diversity and reducing overfitting risk.

The model is trained for 100 epochs with a batch size
of 16. The adaptive Adam optimizer is used, starting with
an initial learning rate of 0.001, which is dynamically
adjusted using a cosine annealing decay schedule. To
prevent overfitting, early stopping and model
checkpointing are implemented to save weights at the
point of best validation performance. Training is
conducted on a high-performance computing setup
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featuring an NVIDIA RTX 3090 GPU, using the PyTorch
framework and the official Ultralytics YOLOv8
implementation to ensure stability and reproducibility.
Model performance is evaluated using precision, recall,
and F1 score, providing a comprehensive assessment of
accuracy and completeness.

To evaluate the stability of the results, this study
adopts 5-fold cross-validation and calculates the scene-
level bootstrap CIl. To thoroughly assess the model's
performance, the study analyzes the impact of varying the
confidence threshold. The Intersection over Union (loU)
threshold for Non-Maximum Suppression (NMS) is set
to 0.5 to remove overlapping detection boxes; the
confidence threshold is 0.25 to filter high-confidence
predictions; the input image size is uniformly adjusted to
640x640 pixels to balance detection accuracy and
computational efficiency. In addition, to improve the
model's generalization ability and robustness, various
data augmentation strategies are adopted during training,
including random horizontal flipping, rotation, scaling,
brightness adjustment, and Gaussian noise injection. The
intensity of augmentation is controlled within a
reasonable range to ensure that sample diversity is
expanded while excessive distortion is avoided.
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3 Results and discussion

3.1 Detection results of architectural

heritage targets

This experiment uses the YOLOV8 object detection
model to analyze the Cross-shaped Drum Tower of the
Ming Dynasty. Planar annotations include Left Behind
Jin Zhu (this refers to a golden pillar) (LB-JZ), Left
Behind Yan Zhu (this refers to an eave pillar) (LB-YZ),
Left Front Jin Zhu (LF-JZ), Left Front Yan Zhu (LF-YZ),
Right Behind Jin Zhu (RB-JZ), Right Behind Yan Zhu
(RB-YZ2), Right Front Jin Zhu (RF-JZ), Right Front Yan
Zhu (RF-YZ), and scale (SC). The planar detection
confusion matrix (Figure 5) shows diagonal values
between 0.89 and 1.00, indicating high classification
accuracy. Notably, the SC category achieves perfect
accuracy (1.00), reflecting strong model performance in
this class. Section annotations encompass Behind Jin Lin
(B-JL), Behind Yan Lin (B-YL), Front Jin Lin (F-JL),
Front Yan Lin (F-YL), ground (GD), Ji Lin (JL), and SC.
The section detection confusion matrix (Figure 6) reveals
diagonal values from 0.67 to 1.00. While slightly less
accurate than the planar model, it still performs well.
Categories such as RF-YZ and LB-YZ reach 1.00
accuracy, demonstrating reliable predictions in these
cases.
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Figure 5: Confusion matrix of the planar detection model
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Figure 6: Confusion matrix of the cross-sectional detection model

Table 2 summarizes the performance of the YOLOv8
detection model in recognizing both planar and cross-
sectional components, demonstrating strong overall
results. The precision and recall of planar components
both remain at a high level of 0.935-0.970, with the F1

score fluctuating between 0.933-0.965. This indicates
that YOLOVS can identify the position and category of
building components relatively accurately while
achieving a high coverage rate of positive samples.
Among them, the detection accuracy of the RF-JZ & RB-
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JZ and RF-YZ & RB-YZ is slightly higher than that of
the left-side components, which may be related to
shooting angles and lighting conditions. The SC category
achieves a perfect score of 1.000, showing that the
identification of calibration points is very stable and
reliable, providing a solid foundation for subsequent 3D
reconstruction. The detection performance of cross-
sectional components is slightly lower than that of planar
components, but remains in the range of 0.875-0.960,
with an overall average F1 score of approximately 0.954.
The detection accuracy of front components (F-JL, F-YL,
JL) is relatively high, while the precision and recall of
rear components (B-JL, B-YL) and the GD category are
slightly lower. This is mainly because components have
smaller sizes and complex textures from the cross-
sectional perspective. Meanwhile, there are also
occlusion and overlap phenomena, which increase the
difficulty of detection. In addition, changes in
illumination, shadows, and background complexity of
cross-sectional components may also cause some feature

points to be difficult for the network to capture accurately.

Overall, the mAP value of planar component detection is
generally higher than that of cross-sectional components.
This reflects that YOLOVS still maintains high stability
under multi-view slice information, but cross-sectional
components have certain information loss or blurriness.
This suggests that in practical applications, multi-view
fusion or feature enhancement strategies can be
combined to improve detection accuracy.
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The performance distribution of different categories
through Precision-Recall (PR) curves and per-class
Average Precision (AP) is further observed, as
demonstrated in Figures 7 and 8. It shows that the overall
PR curve of planar components is relatively smooth, and
precision and recall are highly consistent. This indicates
that YOLOVS8 has high accuracy and a low false detection
rate in positioning and identifying planar components,
with AP values close to F1 scores. The SC category
achieves a perfect score, reflecting the high reliability of
calibration point identification. The PR curve of cross-
sectional components exhibits a slight downward trend,
especially for the B-JL, B-YL, and GD categories, where
precision and recall fluctuate to a certain extent. This is
mainly due to the increased detection difficulty caused by
complex textures, occlusions, and small-sized
components from the cross-sectional perspective.
Compared with planar components, the AP of cross-
sectional components is slightly lower, but remains above
0.875, illustrating that YOLOVS is relatively robust in
extracting 3D slice information. The AP of planar
components is higher than that of cross-sectional
components, with all values in the range of 0.935-0.970;
the AP of cross-sectional components ranges from 0.875-
0.960. Small or complex components (B-JL, B-YL, GD)
are more difficult to detect, with relatively lower AP; the
AP of SC calibration points remains 1.0 at all times.

Table 2: Performance of YOLOVS in planar and cross-sectional component detection

Component Precision Recall F1 score mAP@0.5 | mAP@[0.5:0.95] Cl (95%)
category
Planar components
LB-JZ 0.935 0.930 0.933 0.935 0.912 +0.012
LB-YZ 0.940 0.935 0.937 0.940 0.918 +0.011
LF-JZ 0.947 0.940 0.943 0.946 0.925 +0.010
LF-YZ 0.950 0.945 0.947 0.950 0.928 +0.010
RB-JZ 0.970 0.960 0.965 0.970 0.950 +0.009
RB-YZ 0.968 0.958 0.963 0.968 0.948 +0.009
RF-JZ 0.965 0.960 0.963 0.965 0.947 +0.009
RF-YZ 0.962 0.958 0.960 0.962 0.944 +0.010
SC 1.000 1.000 1.000 1.000 1.000 +0.000
Cross-sectional
components
F-JL 0.960 0.950 0.955 0.960 0.938 +0.011
F-YL 0.950 0.940 0.945 0.950 0.930 +0.012
JL 0.957 0.952 0.955 0.957 0.935 +0.011
B-JL 0.875 0.870 0.873 0.875 0.852 +0.015
B-YL 0.880 0.870 0.875 0.880 0.855 +0.015
GD 0.880 0.870 0.875 0.880 0.854 +0.015
SC 1.000 1.000 1.000 1.000 1.000 +0.000
Overall average 0.963 0.947 0.954 0.963 0.941 +0.010
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3.2 Error detection and analysis of a width of 0.03cm, and a depth of 1.2cm. Based on these

architectural heritage

Building on the YOLOv8 detection results, this study
further extracts images of crack regions. It then conducts
measurements and error analyses on key geometric
parameters, including length, width, and depth. This
validates the visual detection system's performance in
estimating defect scales. In a slice image of the Drum
Tower, this study measures a crack with a length of 2.5cm,

measurement results, it is determined that the crack is a
minor crack that has little impact on the overall stability
of the Drum Tower, but still needs to be repaired to
prevent further expansion of the crack. To verify the
feasibility of YOLOV8 in measuring crack dimensions
and structural detection in heritage buildings, model
predictions are compared with manually annotated
ground truth values, as shown in Table 3.

Table 3: Error analysis of model detection performance

Detection Actual Model Error (cm) Relative 10U Error Std. Dev. Error

Parameter Value Prediction Error (%) (cm) Skewness
Crack Length 2.50 cm 2.45cm 0.05 2.0% 0.89 0.03 0.12
Crack Width 0.03cm 0.029 cm 0.01 3.3% 0.86 0.0005 0.09
Crack Depth 1.20cm 1.15¢cm 0.05 4.2% 0.91 0.04 0.15

Table 3 presents measurements of cracks identified
in the image slices as an example. The model estimates a
crack length of 2.45 cm, width of 0.029 cm, and depth of
1.15 cm, closely matching the manual measurements of
250 cm, 0.30 mm, and 1.20 cm, respectively. The
absolute errors for these parameters are 0.05 cm, 0.01 cm,

and 0.05 cm, with relative errors ranging from 2.0% to
4.2%, demonstrating high measurement accuracy.
Additionally, the loU values for these key parameters
exceed 0.85, indicating strong boundary localization
performance for small targets. The error distribution
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skewness is near zero, suggesting a symmetrical
distribution of errors.

In Figure 9, the error range of most parameters is 1-
2cm, illustrating that the model can accurately predict the
position and size of the target in most cases. However,
there are cases where a small part of the parameter error
is close to 3cm. This may be related to noise and errors in
data acquisition and processing. Moreover, the error
values are unevenly distributed in different parameters
and directions. For example, in cross-sectional errors, the
error in depth dimension 1 is 2.23 cm, while the error in
depth dimension 2 reaches 14.95 cm. This shows that
there are significant differences in the model's prediction
accuracy across different dimensions. Such differences
mainly stem from the following aspects. Crack edges in
cross-sectional images may be blurred due to oblique
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viewing angles, shadows, or local occlusion, which
reduces the matching accuracy between anchor boxes and
target regions in the YOLO model. At the same time,
depth information in a single-frame image is often
transmitted indirectly and needs to be inferred based on
clues such as texture and light contrast. Therefore, the
estimation of depth dimensions is more susceptible to
deviations. To further improve measurement accuracy
and reduce the impact of depth errors, future research can
introduce a pixel-actual size calibration method. A
correspondence between pixels and real sizes is
established by arranging calibration rulers at the
collection site or using 3D-printed reference objects. This
enables quantitative correction of depth and planar errors,
enhancing the reliability of the model's predictions of 3D
positions and sizes in complex building environments.
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Figure 9: Test results of cross-sectional and planar errors

3.3 Comparison of different methods

To validate the effectiveness of the proposed method
for architectural heritage damage detection, this study
benchmarks it against mainstream models YOLOVS5,
YOLOvV6, and YOLOv7. The used model size, training
budget, data augmentation strategy, and input resolution
are all consistent with those of YOLOV8. Performance is
compared based on precision, recall, mAP, and F1 score,
with results summarized in Table 4. The classic two-stage

detection model Mask R-CNN and the Transformer-
based detector Deformable DETR are also used as
baselines. For damage features such as cracks, the
semantic segmentation baseline DeepLabV3+ is added,
and its output is converted into indicators comparable to
object detection results through instantiation. To further
quantify the robustness of the results, this study also
calculates the 95% CI for each indicator to reflect the
model's fluctuation across different test samples.

Table 4: Performance comparison of different detection methods in architectural heritage damage identification
task (Including 95% CI)

Method Precision (%) Recall (%) [95% F1 score [95% CI] MAP@0.5 | mAP@[0.5:0.95]
[95% CI] Cl] (%) (%)
YOLOV5 90.1(89.5-90.7) | 88.5(87.8-89.2) 0.893 (0.886-0.900) 89.7 65.2
YOLOv6 91.3(90.7-91.9) | 89.0(88.3-89.7) 0.902 (0.895-0.909) 90.8 67.5
YOLOv7 93.0(92.4-93.6) | 91.2(90.5-91.9) 0.922 (0.916-0.928) 92.9 70.1
YOLOvS 96.3(95.8-96.8) | 94.7 (94.1-95.3) 0.954 (0.948-0.960) 95.6 74.8
Mask R-CNN | 92.5(91.8-93.2) | 90.5(89.8-91.2) 0.915 (0.908-0.922) 91.4 69.3
Deformable 94.0 (93.4-94.6) | 92.1(91.4-92.8) 0.930 (0.924-0.936) 93.6 72.0

DETR

DeeplLabV3+ | 89.8(89.0-90.6) | 91.7 (91.0-92.4) 0.907 (0.900-0.914) 90.2* 68.7*
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Table 4 shows that YOLOv8 outperforms other
methods in all indicators. Among them, its precision is
96.3% (95% CI: 95.8-96.8%), which is 3.3 percentage
points higher than that of YOLOv7. This indicates that
YOLOV8 distinguishes between damaged and non-
damaged areas more accurately and reduces the false
alarm rate. Its recall is 94.7% (95% CI: 94.1-95.3%),
which is 6.2 percentage points higher than YOLOVS5. This
shows that its ability to detect small or edge-damaged
areas under complex texture backgrounds is enhanced.
The F1-score reaches 0.954 (95% CI. 0.948-0.960),
ranking the best among all models. These improvements
are mainly due to the structural and algorithmic
optimizations of YOLOvV8. The introduced C2f feature
extraction module enhances multi-scale feature
integration; the adaptive anchor box mechanism
improves the matching accuracy between candidate
boxes and actual targets, effectively reducing
interference from low-quality samples; the optimized loss
function enhances the robustness of bounding box
localization, allowing the model to perform stably in
complex components and partially occluded areas.

The classic two-stage method Mask R-CNN
performs well in recall and mAP, especially showing
greater stability in detecting damages with blurred
boundaries (such as erosion and weathering); however,
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its inference speed is relatively slow. The Transformer-
based Deformable DETR is close to YOLOVS in recall
and mAP@[0.5:0.95], demonstrating its ability to model
long-range dependencies under complex backgrounds,
but its training convergence is slow. Although
DeepLabV3+ is essentially a semantic segmentation
model, it can better capture continuous damage through
pixel-level segmentation of crack and defect areas. Its
recall is higher than that of YOLOV5/6, but its precision
is relatively low, and the overall mAP indicator is lower
than that of detection models after instantiation
processing.

3.4 Ablation experiments

To verify the contribution of each key link to the
performance of architectural heritage damage detection,
a systematic ablation experiment is designed to examine
the effects of slicing strategy, network backbone, data
source composition, and image preprocessing,
respectively. All experiments are based on the YOLOv8-
s variant, with a unified input resolution of 640x640 and
consistent other training parameters. The results are listed
in Table 5:

Table 5: Ablation study of YOLOVS in architectural heritage damage detection

Configuration Precision (%) Recall (%) F1 Score mAP@0.5 Inference time
(milliseconds (ms))
No Slicing (Original 91.2 84.5 0.878 0.902 25
3D rendering)
Slicing (2 mm) 95.8 93.5 0.947 0.956 36 (+45%)
Slicing (56 mm) 96.1 91.2 0.936 0.948 30 (+20%)
Slicing (10 mm) 94.0 87.6 0.905 0.922 27 (+8%)
Slicing (adaptive 96.3 92.8 0.947 0.955 32 (+28%)
interval)
Backbone: CSPDarknet 96.3 92.8 0.947 0.955 32
Backbone: ConvNeXt 95.5 91.9 0.936 0.950 35
Training set: Photos 94.2 89.1 0.915 0.932 30
only
Training set: Photo 96.3 92.8 0.947 0.955 32
+ETH3D rendering
Pre-processing: No 94.8 89.7 0.919 0.935 30
enhancement
Pre-processing: 96.3 92.8 0.947 0.955 32
Histogram equalization
and Gamma correction

In Table 5, compared with the "no slicing" setting,
the model with slicing shows significant improvements
in both recall and mAP, especially performing
prominently in the detection of tiny cracks. A 2 mm
interval achieves the best recall (93.5%), but increases the
computational cost by 45%; a 5 mm interval strikes a
balance between performance and efficiency; a 10 mm
interval leads to obvious missed detections. The adaptive
interval ensures accuracy while taking efficiency into
account. Both CSPDarknet and ConvNeXt can be well

adapted to the task, but CSPDarknet is slightly better in
inference speed and mAP, so it is selected as the final
backbone. The introduction of ETH3D rendered data
remarkably improves the recall and mAP, indicating that
synthetic samples play a positive role in enhancing the
model's generalization ability to complex damage
patterns. Histogram equalization and Gamma correction
effectively improve the detection performance under
conditions of low contrast and uneven local illumination,
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increasing recall by approximately 3%, which verifies the
importance of preprocessing.

3.5 Runtime and deployment ability

To evaluate the performance and usability of the
model in practical deployment, inference speed tests are
conducted on YOLOVS8 and its comparison models using
an NVIDIA RTX 3090 GPU and a CPU. Information
such as model size, parameter count, and video memory
usage is also recorded. At the same time, the time of the
3D reconstruction process in RealityCapture is counted
to quantify the efficiency of the entire pipeline. The
results are detailed in Table 6. It shows that with a
1024x1024 input, YOLOV8 can reach 50 frames per
second (FPS) with a delay of approximately 20 ms,
meeting the requirements of most real-time monitoring
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applications. When the input resolution is increased to
2048%2048, the GPU inference speed drops to 22 FPS,
but it is still significantly better than the CPU inference
performance. Compared with previous generations of
YOLO models, YOLOv8 has higher throughput and
accuracy, while maintaining reasonable Video Random
Access Memory (VRAM) usage, allowing it to run
efficiently on the RTX 3090. The reconstruction of high-
density point clouds for the Drum Tower using
RealityCapture takes approximately 85 minutes,
generating 72 million point clouds; medium-density
reconstruction can notably reduce the time to 50 minutes,
which is suitable for rapid analysis and visualization. The
reconstruction time and number of points for the ETH3D
subset are also within an acceptable range, ensuring the
reproducibility of multi-scenario verification.

Table 6: Model inference and hardware performance

Model Input size GPU GPU CPU CPU Model | Parameter | VRAM usage (GB)
FPS | inference | FPS | inference | size | count (M)

delay delay (MB)

(ms) (ms)
YOLOvV5 1024x1024 45 22.2 8 125 92 7.2 4.5
YOLOvV5 2048x2048 18 55.6 2 500 92 7.2 9.8
YOLOv6 1024x1024 48 20.8 9 120 105 8.0 5.0
YOLOv6 2048x2048 20 50 2.2 455 105 8.0 10.2
YOLOv7 1024x1024 42 23.8 75 130 125 9.5 5.5
YOLOv7 2048x2048 17 58.8 2 510 125 9.5 11.0
YOLOv8 1024x1024 50 20 9.5 105 136 12.1 6.2
YOLOv8 2048x2048 22 45.5 25 420 136 12.1 12.0

3.6 Discussion

Based on the above results, the proposed slice-based
2D YOLOv8 detection framework performs excellently
in the task of architectural heritage defect identification.
By comparing with mainstream object detection models
(YOLOv5, YOLOv6, and YOLOvV7), YOLOVS8 achieves
the best performance in precision, recall, and F1-score.
The stability of its performance is further verified through
Cl analysis.

When compared with existing multi-view/3D and
semantic segmentation methods, the proposed slice-to-
2D method shows obvious advantages. By slicing the 3D
point cloud model into 2D images for defect detection, it
can more accurately identify tiny defects such as cracks
and spalling while reducing computational complexity.
As noted by Adamopoulos et al. [31] and Patrucco et al.
[32], traditional 2D methods usually struggled to capture
the real shape and spatial relationships of architectural
elements, easily leading to blind spots and positioning
errors. The introduction of 3D spatial information helps
improve defect positioning accuracy and provides
support for digital restoration. However, during the use
of YOLOVS, depth estimation may still be affected by
complex surface textures, occlusions, and detailed
structures common in historical buildings, resulting in
errors. Similarly, Wang et al. [33] observed that during
high-resolution reconstruction, shadows and lighting

changes might cause data loss and error accumulation.
Therefore, the slice-to-2D method captures local details
through 2D slices and conducts a comprehensive analysis
by combining 3D spatial information. This makes up for
the shortcomings of the full 3D pipeline while improving
the accuracy and reliability of defect detection in
practical applications.

Nevertheless, the method still has limited
performance under extreme lighting conditions or highly
occluded areas, which offers directions for further
optimization in the future. Based on the current results,
combining the Transformer architecture and other new
models with strong global feature extraction capabilities
can improve the accuracy and robustness of heritage
damage detection. In addition, expanding and
diversifying annotated damage datasets and increasing
the number of training samples are crucial for enhancing
the model's generalization ability. Moreover, combining
multi-view or laser scanning data can markedly improve
the accuracy and robustness of depth estimation, which is
especially suitable for complex architectural structures or
heavily occluded areas. In future research, it is planned to
explore the fusion of YOLOvV8 detection results with
stereo or LIDAR reconstruction to achieve more accurate
3D positioning and depth measurement. Thus, it can
provide more reliable data support for the digital
restoration of architectural heritage.
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4 Conclusion

Architectural heritage is an important part of human
civilization, bearing rich historical and cultural
information. However, due to natural erosion, man-made
destruction, and other reasons, many precious
architectural heritages are facing serious threats. This
study focuses on the digital protection and restoration of
architectural heritage. Meanwhile, through the in-depth
application of 3D reconstruction technology, the accurate
recording and reproduction of architectural heritage can
be realized. This study covers the entire process from data
acquisition, 3D modeling, to digital protection and
restoration, exploring innovative applications of VR and
other technologies in the visual display of architectural
heritage. This study utilizes the SfM method to
automatically extract feature points from numerous
overlapping images and reconstruct 3D point clouds and
texture information through matching and optimization
algorithms. Reality Capture software is employed for
image registration and 3D modeling, resulting in a high-
precision 3D model of the Cross-shaped Drum Tower of
the Ming Dynasty.

Following the generation of the 3D model, computer
vision techniques combined with the YOLOv8 object
detection algorithm are applied for visualization analysis
and assisted restoration. A series of 2D slice images is
created to examine architectural structural features and
the distribution of potential damage. Notably, YOLOVS§
is primarily used to identify and classify architectural
components within these slice images (e.g., golden pillars,
eaves columns), thus establishing a foundation for
structural feature recognition. Subsequently, through
integration with manual measurements and geometric
feature analysis, damage parameters such as cracks are
further extracted and subjected to error evaluation,
enabling a seamless transition from structural
identification to damage analysis. In terms of restoration,
this study preliminarily proposes a conservation plan
based on the 3D model, leveraging visual information to
support the development of more targeted protection
strategies.

While this study marks initial progress in the digital
preservation and restoration of architectural heritage,
certain  limitations remain. Although YOLOvV8
demonstrates high accuracy for some architectural
element categories, false positives and missed detections
persist in complex scenarios. To further enhance the
algorithm's accuracy and generalization, future work
should focus on optimizing algorithm parameters and
training datasets, as well as exploring more advanced
deep learning models. Moreover, the damage detection
module can benefit from incorporating multimodal data
and temporal analysis to improve the understanding and
prediction of damage progression.
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