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This study proposes an efficient and accurate framework for visualizing, preserving, and restoring 

architectural heritage by integrating three-dimensional (3D) reconstruction technologies with deep 

learning-based visual detection algorithms. The objective is to enable intelligent identification and 

targeted repair of structural defects, thereby advancing the digital conservation of cultural assets. The 

framework is structured into four layers: data acquisition, 3D modeling, data analysis, and application 

visualization. In the data acquisition phase, high-overlap image datasets are captured using a GoPro 

Hero11 action camera. The modeling phase employs the Structure-from-Motion (SfM) algorithm to 

automatically extract image feature points. Meanwhile, Reality Capture software generates dense point 

clouds and performs texture mapping—producing high-precision 3D architectural models that retain 

geometric and textural details. For data analysis, the state-of-the-art You Only Look Once version 8 

(YOLOv8) object detection algorithm is applied. The 3D models are sliced and converted into 2D images 

to detect and locate structural defects such as cracks, spalling, and surface weathering. Experimental 

results on the validation set demonstrate excellent performance, with an average precision of 96.3%, a 

recall of 94.7%, and an F1 score of 0.954. The confusion matrix for sectional detection yields diagonal 

values between 0.81 and 1.00, while classification accuracy for planar structures ranges from 0.91 to 

1.00—affirming the model's robustness and real-world applicability. Overall, the proposed method 

supports high-fidelity reconstruction of architectural structures while enabling precise and automated 

defect detection via deep learning, providing a reliable quantitative basis for informed and scientific 

restoration. 

Povzetek: Študija predstavi štirislojni okvir za digitalno varovanje arhitekturne dediščine, ki združi 3D 

rekonstrukcijo z YOLOv8, pri čemer iz 3D modelov izdela 2D prereze za samodejno zaznavo poškodb in 

tako omogoča ciljno konserviranje. 

 

1  Introduction 

As a valuable legacy of human civilization, 

architectural heritage embodies rich historical and 

cultural significance. However, due to factors such as 

natural degradation, human-induced damage, and armed 

conflict, many architectural sites are at risk of irreversible 

deterioration or loss [1-3]. Consequently, the protection 

and restoration of architectural heritage have become 

increasingly urgent. With advancements in science and 

technology, three-dimensional (3D) reconstruction has 

emerged as a powerful tool in this domain, offering new 

possibilities for the digital preservation and restoration of 

architectural structures [4]. 3D reconstruction refers to 

the process of accurately creating digital three-

dimensional representations of real-world objects using 

computer technology and image processing algorithms. 

This can be achieved through photogrammetry, laser 

scanning, structured light projection, and other 

techniques. These methods collect spatial and surface 

data, which are then processed using computer graphics 

algorithms to generate precise 3D models [5]. The ability 

to rapidly and accurately capture the geometry and 

texture of architectural elements makes this technology a 

crucial asset in heritage conservation efforts. Many 

architectural heritage sites have suffered severe damage 

over time. Traditional documentation techniques—such 

as manual drafting and photographic surveys—often fall 

short in precision and completeness, limiting their 

effectiveness in meeting contemporary conservation 

demands [6-8]. In contrast, 3D reconstruction provides a 

means of digitally preserving and restoring heritage 

structures with high fidelity. 

Characterized by high precision, efficiency, and 

visualization capabilities, 3D reconstruction allows for 

comprehensive documentation and accurate virtual 

restoration of architectural heritage. It captures external 

features, internal structural, and material details, thus 
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offering robust data to support future restoration, research, 

and educational initiatives [9-11]. 

In addition to structural analysis, 3D reconstruction 

facilitates the virtual presentation of architectural 

heritage, enabling the public to conveniently explore and 

appreciate these valuable cultural assets through digital 

platforms [12, 13]. Currently, common methods used for 

3D modeling of architectural heritage include laser 

scanning (LiDAR), photogrammetry, and structured light 

projection. Laser scanning has emerged as a mainstream 

technique due to its high precision and automation 

capabilities. For example, Moyano et al. [14] compared 

two scanners for geodetic data acquisition in historical 

building information modeling (HBIM). They selected 

the stationary BLK360 scanner, known for its user-

friendliness and portability. Their approach involved 

comparing point clouds to assess density and 

organization, identifying parameters beneficial for BIM-

based workflows. Similarly, Llabani and Abazaj [15] 

explored the application of terrestrial laser scanning (TLS) 

in the 3D documentation of cultural heritage, using the 

Tirana Clock Tower as a case study. Their findings 

underscored the value of digital models in conservation, 

risk assessment, and virtual tourism. 

Photogrammetry offers notable advantages in low-

cost image acquisition, making it particularly suitable for 

large-scale, outdoor architectural environments. For 

instance, Salagean-Mohora et al. [16] applied best 

practices in close-range photogrammetry—refined 

through iterative learning and testing—to a façade 

restoration project in Timișoara. Both original and 

restored plaster decorations were scanned, with one 

model eventually reproduced via 3D printing. Sancak et 

al. [17] proposed a photogrammetry-based approach for 

generating optimized models for serious gaming 

environments. As a case study, they modeled the 

Yedikule Fortress and its surrounding area, incorporating 

cultural elements from the Byzantine, Ottoman, and 

Republican periods to create game-ready assets. 

Structured light projection is well-suited for high-

resolution modeling of small and intricate structures. 

However, its application to large-scale scenarios is 

hindered by operational complexity and susceptibility to 

occlusion-related data loss. For instance, Fu et al. [18] 

proposed a hardware system and region-adaptive 

structured light algorithm. By combining chain codes 

with the M-estimator sample consensus method, they 

established unidirectional mappings from saturated 

regions in the camera plane to corresponding regions in 

the projector plane, enabling the generation of stripe 

images with adaptive brightness. Williams et al. [19] 

examined each structured light scanning workflow for 

producing high-quality 3D models. Their study 

emphasized the importance of pre-scanning parameter 

adjustments, such as brightness and shutter speed, to 

streamline the scanning process. To demonstrate the 

progress and limitations of current 3D reconstruction 

methods, Table 1 summarizes the quantitative indicators 

reported in various studies, including detection 

performance, point cloud integrity and accuracy, datasets 

used, and computational cost.

 

Table 1: Comparison of studies on 3D modeling and visual detection of architectural heritage 
Literature Application 

scenarios 

mean Average 

Precision 

(mAP)@0.5 of 

detection tasks 

mAP 

@[0.5:0.95] of 

detection tasks 

3D point 

cloud 

integrity 

3D point 

cloud 

accuracy  

Dataset Computational 

cost 

Moyano et al. 

[14] 

HBIM 0.88 0.80 0.92 0.90 HBIM High 

Llabani & 

Abazaj [15] 

Cultural 

heritage 

records (Clock 

Tower) 

0.87 0.78 0.91 0.89 TLS High 

Salagean-

Mohora et al. 

[16] 

Building 

façade 

restoration 

and 3D 

printing 

0.85 0.76 0.88 0.87 Partial 

façade 

Moderate 

Sancak et al. 

[17] 

Multi-period 

heritage 

modeling 

(Game 

scenario) 

0.82 0.74 0.85 0.86 Public 

cultural 

heritage 

data 

Moderate 

Fu et al. [18] Modeling 

small objects 

0.90 0.82 0.92 0.90 Self-

collection 

Moderate 

Williams et al. 

[19] 

Cultural relics 

modeling and 

process 

optimization 

0.91 0.83 0.93 0.91 Self-

collection 

High 

 

Existing studies still have several shortcomings in 

3D modeling and visual detection of architectural 

heritage. First, most studies focus on high-precision 3D 

reconstruction or surface modelling; however, these 

studies pay insufficient attention to defect detection and 

3D perception capabilities of local components, making 
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it difficult to achieve targeted restoration. Second, 

evaluation indicators are not unified enough or lack 

quantification; much of the literature only relies on visual 

effects or subjective evaluation, which limits the 

comparability between methods and the reproducibility 

of experiments. In addition, the adaptability of existing 

methods in complex cultural heritage scenarios is limited. 

Changes in illumination, texture complexity, and 

occlusion issues easily affect the accuracy of detection 

and modeling. Finally, some technologies, such as laser 

scanning or structured light, are complex to operate and 

high in cost, which restricts the deployment ability of 

these methods in practical protection or restoration 

projects. This study addresses the following research 

question. Can the You Only Look Once version 8 

(YOLOv8) algorithm achieve a defect detection accuracy 

exceeding 90% and maintain a high F1 score when 

applied to high-precision 3D models constructed using 

structured light photogrammetry and Structure-from-

Motion (SfM) techniques? To explore this question, the 

study is based on the following hypotheses: 

1) The automatic extraction of architectural feature 

points and generation of high-quality point 

cloud data via the SfM method can provide 

sufficient and precise geometric and texture 

information for defect detection. 

2) Leveraging 3D models generated by Reality 

Capture software, the YOLOv8 object detection 

algorithm can effectively identify structural 

defects in heritage architecture and significantly 

outperform traditional detection methods. 

3) The system's high precision and recall can 

enhance the scientific rigor and efficiency of 

restoration practices, thereby promoting the 

broader adoption of digital conservation 

technologies. 

This study constructs a comprehensive visual 

protection system for architectural heritage, which 

organically integrates advanced technologies such as 

SfM, 3D modeling, and virtual reality (VR) to achieve 

high-precision digital recording and reproduction of 

heritage buildings. Given that structural damages in 

architectural heritage are often locally concentrated and 

dependent on specific components, accurate component-

level positioning plays a key role in defect identification 

and restoration simulation. To this end, this study first 

uses the YOLOv8 model to automatically identify key 

components, including golden pillars, eave pillars, beam 

ends, and eave beams. Subsequently, through the fusion 

of planar and cross-sectional image slices, a spatial 

distribution model of the components is established. 

Depth-slicing technology is used to analyze surface 

textures, colors, and other visual features, realizing fine 

classification and spatial positioning of defects. This 

method can accurately label damaged areas and provide 

a reliable basis for formulating targeted restoration plans. 

Compared with existing visual protection methods, 

the innovation of this study lies in using SfM technology 

to achieve efficient 3D modeling with controllable costs. 

Meanwhile, the study combines detection results with VR 

visualization, allowing restoration personnel to 

intuitively evaluate defect distribution and plan 

restoration schemes in a virtual environment, forming a 

complete digital restoration process from detection to 

decision-making. First, this study proposes a 

reproducible slice-based pipeline, which couples the 3D 

model generated by SfM with two-dimensional (2D) 

detectors to realize refined detection of architectural 

heritage damages. Second, it constructs an annotated 

heritage damage dataset and classification ontology, 

covering typical damage types such as cracks, spalling, 

and pollution, and provides detailed annotation 

specifications and category definitions. Third, it proposes 

an error characterization method for converting pixel-

level detection results into actual metric crack estimation, 

which can quantify crack length, width, and distribution 

characteristics. Comprehensively, this method improves 

detection accuracy and enhances practical application 

value in the digital protection and restoration of 

architectural heritage, offering an effective supplement to 

traditional visual protection methods. 

2  Method 

2.1 Integrated architecture of visual 

protection of architectural heritage 

The integrated architecture of visual protection of 

architectural heritage is a comprehensive protection 

system that integrates many advanced technologies. It 

uses digital means to record and model the architectural 

heritage in an all-around and high-precision way, and 

forms an HBIM system. The system starts with the 

preliminary analysis. At present, a comprehensive 

analysis of the historical background, current conditions, 

and conservation needs of the architectural heritage site 

has been completed. Through multi-source data 

acquisition and processing technology, detailed 

information on architectural heritage is collected from 

various channels, including but not limited to data 

structure, materials, and decoration. In the information 

construction phase, these data are integrated and refined 

to form a unified and standardized information system, 

which provides data support for the subsequent 3D 

modeling. 

Creating an HBIM system is a central component in 

the digital preservation of architectural heritage, wherein 

high-precision 3D models are generated through 

advanced digital modeling techniques. These models are 

highly authentic while supporting dynamic updates and 

interactive operations. During the digital restoration 

phase, state-of-the-art computer vision technologies are 

employed to repair and reconstruct the 3D models, 

restoring the original features of the heritage structures 

with high fidelity. In the exhibition phase, realistic 3D 

models enable the public to engage with and appreciate 

the cultural value of architectural heritage, thus fostering 

greater awareness, protection consciousness, and 

participatory involvement. In the data integration and 

management phase, all relevant datasets and 

informational elements are consolidated into a 
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comprehensive and functional system, facilitating 

ongoing maintenance and updates [20-22]. Computer 

vision plays a pivotal role within the HBIM system—not 

only in model creation and restoration but also in 

enhancing the overall intelligence and efficiency of the 

system. The digital preservation phase is dedicated to 

developing digital archives for historical buildings, 

providing a robust foundation for their protection and 

long-term transmission. Finally, the protection-integrated 

design system synthesizes information and data from pre-

analysis, data acquisition, HBIM, digital restoration, 

architectural visualization, and data management into a 

unified design framework. This comprehensive and 

actionable scheme offers practical guidance for the actual 

conservation and architectural design processes. The 

integrated framework for the visual protection of 

architectural heritage is displayed in Figure 1. 
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Figure 1: Integrated architecture for visual protection of architectural heritage 

 

In the preservation of architectural heritage, image 

processing technology plays a critical role in the 

preprocessing, feature extraction, and classification of 

historical building images. Preprocessing techniques—

such as grayscale conversion, binarization, filtering, and 

denoising—enhance image clarity and contrast, thereby 

providing a solid foundation for subsequent feature 

extraction and recognition tasks. Feature extraction, a 

core component of computer vision, is used to identify 

representative and distinctive attributes from images of 

historical buildings. These features may include 

geometric shapes, textures, and color patterns, all of 

which serve as essential input for classification, 

recognition, and target detection processes. 

In the restoration phase, object recognition and 

detection technologies are primarily employed to identify 

and localize key architectural elements, such as doors, 

windows, columns, and roofs. Deep learning-based 

object recognition techniques enable the automated 

detection of these elements by training deep neural 

network models on labeled image datasets. These 

methods offer high accuracy and robustness, and are 

capable of adapting to variations in lighting, viewing 

angles, and image resolution. Additionally, shape-based 

object detection methods are utilized for matching and 

identifying architectural features by extracting shape 

descriptors from historical building images and 

comparing them to predefined templates. This approach 

allows for the precise localization of key elements based 

on their geometric characteristics. 

2.2 The 3D modelling of real scenarios based 

on SfM 

During the image acquisition process, it is essential 

to capture images from multiple perspectives to ensure 

complete coverage of the target structure [23-25]. For 

architectural heritage preservation, comprehensive 

imaging of all components from various angles is critical 

to ensure the accuracy and integrity of the resulting 3D 

models. Additionally, maintaining consistent lighting 

conditions is crucial, as variations in illumination can 

affect feature point detection. For outdoor imaging, times 

with stable and diffuse lighting—such as early morning 

or late afternoon—are preferable. 
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Figure 2: Multi-source data acquisition and processing 

module 

 

Figure 2 illustrates the multi-source data acquisition 

and processing module. The first step in the workflow is 
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data classification, which involves the initial sorting and 

organization of raw data. In the subsequent data 

processing phase, point cloud preprocessing and slicing 

are performed. Point cloud preprocessing involves 

cleaning and filtering the raw point cloud data obtained 

from 3D laser scanning to enhance data quality. Point 

cloud slicing refers to segmenting the point cloud data 

based on predefined criteria to extract detailed 

information for specific regions. These procedures are 

critical for facilitating accurate data analysis and 

effective visualization in later phases. 

The digital modeling workflow is illustrated in 

Figure 3. Before model creation, it is essential to define 

the modeling requirements, including the desired level of 

detail, the types of information to be incorporated (e.g., 

material properties and intangible heritage data), and the 

model's intended use. Material information pertains to the 

tangible attributes of the structure—such as dimensions, 

shape, and construction materials—which can be 

acquired through technologies like laser scanning and 

photogrammetry [26, 27]. 
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Figure 3: Digital modelling method module 

 

In this study, SfM is employed as a core algorithm 

for 3D reconstruction, with carefully defined settings to 

ensure both accuracy and stability. During feature 

extraction, the Scale-Invariant Feature Transform (SIFT) 

algorithm detects and describes image features. Owing to 

its robustness against scale and rotation variations, SIFT 

is well-suited for handling complex architectural textures 

and variable lighting conditions. On average, 3,000 to 

5,000 keypoints are extracted per image, forming the 

basis for subsequent image alignment. 

For feature matching, the Fast Library for 

Approximate Nearest Neighbors (FLANN) algorithm is 

adopted to efficiently match descriptors. To enhance 

matching precision, the Random Sample Consensus 

(RANSAC) algorithm is applied to filter out false 

matches, retaining only geometrically consistent 

correspondences. This step ensures the initial accuracy of 

the resulting sparse point cloud. 

A filtering approach based on point density and 

spatial distribution consistency is implemented to 

mitigate noise and outliers within the sparse point cloud, 

thus removing points with abnormally low density or 

irregular spatial positioning. The accuracy of camera 

poses and 3D point locations is further refined through 

incremental bundle adjustment, minimizing reprojection 

error using the Levenberg-Marquardt nonlinear least 

squares algorithm. This optimization is executed via the 

built-in functionality of RealityCapture software, with a 

maximum of 100 iterations and a convergence threshold 

of 1e-6, ensuring solution stability and computational 

efficiency. Image acquisition follows a high-overlap 

strategy, maintaining at least 70% overlap between 

images to strengthen registration robustness. Image 

capture is conducted under uniform lighting conditions 

whenever possible to reduce the impact of lighting 

inconsistencies. Although the optimization process relies 

on built-in software modules, all parameter 

configurations and data quality controls are manually 

adjusted and iteratively refined by the researchers, 

ensuring that the final bundle adjustment results meet the 

precision requirements for subsequent 3D defect 

detection tasks. 

During the operation of SfM, the essential matrix is 

a 3×3 matrix, which encodes the relative rotation and 

translation information between two cameras. If R is a 

rotation matrix and t is a translation vector, the essential 

matrix E can be expressed as: 

E = [𝑡]𝑥𝑅                                   (1) 

𝑥𝑖
′𝐾−𝑇𝐸𝐾−1𝑥𝑖 = 0                           (2) 

[𝑡]𝑥 is the antisymmetric matrix of translation vector 

t. 𝑥𝑖 and 𝑥𝑖
′  are the normalized coordinates of the 

corresponding feature points in the two perspectives. 

Next, to further improve the accuracy of 3D 

reconstruction, it is necessary to address the issue of 

beam adjustment. The beam adjustment problem can be 

expressed as a nonlinear optimization problem to 

minimize projection errors. The objective function can be 

written as: 

𝑚𝑖𝑛
𝐶,𝑋

 ∑  𝑛
𝑖=1 𝜌(∥ 𝑝𝑖 − 𝜋(𝐶𝑖, 𝑋𝑖) ∥

2)             (3) 

𝐶 represents the parameters of all cameras; 𝑋 is the 

coordinates of all 3D points; 𝑝𝑖  refers to the projection 

point of the 3D point on the image; 𝜋(𝐶𝑖 , 𝑋𝑖) denotes the 

projection point calculated based on the camera 

parameters and 3D point coordinates; 𝜌  stands for the 

robust loss function. More accurate 3D points and camera 
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parameters can be obtained by solving this optimization 

problem. 

Projection error refers to the distance between the 

projection of a 3D point onto an image plane and its 

corresponding observed image point.  

Given the matching points 𝑥1  and 𝑥2  from two 

perspectives, and the corresponding camera internal 

parameter matrix K and external parameter matrix E, the 

3D point X can be recovered by the following equation: 

𝑋 = 𝐾−𝑇(𝐾−1𝑥1 × 𝐾−1𝑥2)                      (4) 

Bundle Adjustment (BA) problem can be expressed 

as a nonlinear optimization problem to minimize the 

projection error. The objective function of optimization 

is as follows: 

𝑚𝑖𝑛Θ ∑  𝑖 ∑  𝑗 𝜌(∥ 𝑞𝑖𝑗 − 𝜋Θ𝑖(𝑋𝑗) ∥
2)               (5) 

Θ represents the parameters of all cameras. 𝑞𝑖𝑗  is the 

pixel point in image Θ𝑖. 𝑋𝑗 is the 3D point. 𝜋Θ𝑖(𝑋𝑗) is the 

projection of the 3D point in image Θ𝑖. 
To enhance the visual presentation of the 

reconstructed model, this study adopts 3D rendering and 

VR technologies to provide users with an intuitive and 

immersive browsing experience. To evaluate the 

practical application effect and interactive experience of 

the model, a systematic user study is designed. 

Participants cover different age groups, professional 

backgrounds, and levels of VR usage experience to 

ensure the broad representativeness of the experimental 

results. Experimental tasks include observing the 3D 

reconstructed model, locating and labeling structural 

defects, and evaluating the model's interactive interface 

and operational convenience. After completing the tasks 

during the experiment, users fill out a subjective 

satisfaction questionnaire, which includes ratings on 

dimensions such as visual clarity, operational smoothness, 

and sense of immersion. At the same time, objective 

indicators such as operation time and task completion 

accuracy are recorded. The collected data are processed 

through statistical analysis methods (such as mean, 

standard deviation, and analysis of variance) to quantify 

the model's usability and interactive performance. 

Regarding model training, data augmentation 

technologies are adopted to improve the reconstructed 

model's generalization ability, encompassing rotation, 

scaling, flipping, and other methods. At the same time, 

appropriate training strategies are applied to optimize the 

neural network parameters. Finally, the Poisson surface 

reconstruction algorithm is employed to generate a 

complete and high-fidelity 3D model from the processed 

point cloud. This method generates a smooth and closed 

surface through point cloud interpolation, which 

accurately reflects the geometric features of the original 

object or scenario. 

2.3 Visual analysis and repair of 

architectural heritage 

Photogrammetry plays a crucial role in the visual 

analysis and restoration of architectural heritage. This 

technique employs photographic equipment to capture 

high-resolution images of heritage structures, which are 

then processed and analyzed to enable 3D reconstruction, 

deformation monitoring, and the development of 

restoration plans [28-30]. Common photographic 

methods used in this process are depicted in Figure 4. 

Among these, equal-baseline photography is a 

fundamental approach in photogrammetry, emphasizing 

the maintenance of a consistent photographic baseline 

between successive image captures. This consistency 

enhances image matching accuracy and improves the 

precision of 3D reconstruction during subsequent data 

processing. When employing the equal-baseline method, 

it determines an appropriate baseline length. The length 

of the photographic baseline is closely linked to factors 

such as the desired mapping scale, camera-to-object 

distance (photographic vertical distance), and the 

required accuracy. In general, a longer baseline 

contributes to higher accuracy in stereo correspondence 

and depth estimation; however, it also introduces greater 

complexity and cost to the photogrammetric workflow. 

Therefore, it is important to balance reconstruction 

accuracy and practical feasibility based on the project-

specific objectives and constraints. 

Photography surface

Photography planning aspect

Waiting for baseline shooting Fixed point surround shooting

 
 

Figure 4: Equal baseline shooting and fixed-point surrounding shooting 

 

In the visual analysis of architectural heritage, this 

study uses YOLOv8-s for damage detection. During 

model training, the input resolution is set to 1024×1024, 

and Exponential Moving Average (EMA) is enabled for 

parameter updates. Data augmentation includes Mosaic, 

MixUp, HSV color enhancement, and brightness/contrast 

adjustment, with the enhancement gains controlled 

within a reasonable range. Labels adopt Common Objects 

in Context (COCO)-style JSON, and the category system 

is divided into planar and cross-sectional components. 
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In the data acquisition phase, high-resolution images 

ensure data quality and diversity. The 3D point cloud is 

generated through RealityCapture; noise and duplicate 

surface patches are removed, the model is simplified, and 

the coordinate system is globally aligned. This provides 

an accurate foundation for subsequent slicing and 

analysis. 

Slice generation is a core step. The 3D model is 

divided into 2D slices along specific directions to allow 

detailed observation of internal structures and defects. 

The slice direction is determined based on component 

characteristics and defect distribution. Vertical slices 

along the wall are used for wall cracks to capture the 

depth and direction of the cracks; top-down vertical slices 

are used for top components such as cornices. The 

thickness and spacing of the slices are both 0.5 

centimeters (cm), which balances information integrity 

and computational efficiency in the detection of cracks 

with a width of 3-5 millimeters (mm). The export 

resolution of the slices is approximately 3000×2000 

pixels; the slices are saved in PNG format with attached 

depth and spatial coordinate data, and anti-aliasing and 

resampling processing are applied simultaneously. 

In the annotation phase, the semi-automatic tool 

LabelMe is used to annotate defects such as cracks, 

spalling, and stains, supplemented by manual correction. 

For low contrast and blurriness caused by uneven 

illumination or occlusion, histogram equalization and 

gamma correction are performed. For complex areas such 

as tower tops and arch structures, multi-angle slicing and 

data fusion are used to make up for the lack of single-

view information. 

After training, the model can output confidence 

interval (CI), component categories, and positions, which 

can be overlaid on the original image for visualization. 

The detection results can be used for quantitative analysis 

(quantity, area, length) and qualitative evaluation 

(stability, safety). Combined with the 3D model, multi-

view visualization analysis can be conducted to simulate 

different environmental conditions or enable immersive 

exploration through VR. The model output supports both 

restoration design and structural analysis of architectural 

heritage. During the restoration process, deformation 

monitoring is conducted by comparing time-series 

images to ensure safety and effectiveness. 

2.4 Experimental design 

 To verify the effectiveness of the proposed method, 

this study takes the Cross-shaped Drum Tower of the 

Ming Dynasty (1368-1644 AD) in Yinchuan, Ningxia, as 

the main experimental object. The Drum Tower is a local 

key protected cultural heritage with rich historical and 

cultural value. Based on this, the method proposed in this 

study is also verified on the widely used ETH3D 

benchmark dataset. This dataset contains diverse real 

scenarios and has complex architectural geometric 

structures and textures, which are used to evaluate the 

method's generalization ability and robustness in 3D 

reconstruction and defect detection. 

In the Drum Tower case, a GoPro Hero11 action 

camera is mainly used for image collection, with a 

maximum resolution of 5568 × 4872 and a viewing angle 

of 170°. A total of 5023 color images and 132 black-and-

white images were collected. The collected images are 

first imported into Reality Capture software for image 

alignment and sparse point cloud generation. Then, 

Trimble software is used to generate 2D slice images 

from the 3D point cloud according to preset height and 

angle parameters, to fully present the Drum Tower 

structure and display architectural elements. The slice 

direction is determined based on the architectural 

structure characteristics and defect distribution. For 

example, for wall cracks, slices are made perpendicular 

to the wall surface to observe the shape and distribution 

of cracks more accurately. 3D reconstruction is 

performed on a Windows 10 (64-bit) system; the software 

environment includes Context Capture and Reality 

Capture, and the hardware configuration is an Intel Core 

i7-7700HQ CPU with 2.80 GHz. 

In the ETH3D dataset verification, subsets with 

complex architectural structures are selected from the 

original scenes, and 2D slices are generated at fixed 

intervals. Defect labels are generated by combining semi-

automatic annotation tools and manual correction. The 

dataset is divided into the training, validation, and test 

sets at a ratio of 70% / 15% / 15%. The number of images, 

category distribution, and random seeds in each data split 

are recorded to ensure the reproducibility of experimental 

results. Performance indicators are counted on each slice 

and averaged to ensure direct comparison with the 

proposed model's output results. 

This study utilizes advanced computer vision 

technology and the object detection algorithm YOLOv8 

to conduct detailed visual analysis and research on the 

cultural heritage of the building. In the damage detection 

phase, this study employs the YOLOv8 model, which 

currently delivers excellent performance in computer 

vision tasks. Combining fast inference with high 

detection accuracy, YOLOv8 is well-suited for real-time, 

complex architectural damage identification. The training 

process utilizes a transfer learning approach: pretrained 

weights from the large-scale, general-purpose COCO 

dataset are first loaded, then fine-tuned on a specially 

curated heritage damage dataset to enhance the model's 

ability to identify architectural damage features. The 

training dataset comprises carefully annotated images of 

building surface damage, including cracks, spalling, and 

material weathering. To improve generalization, multiple 

data augmentation techniques, such as horizontal flipping, 

random cropping, rotation, brightness adjustment, and 

Gaussian noise, are applied, effectively increasing 

sample diversity and reducing overfitting risk. 

The model is trained for 100 epochs with a batch size 

of 16. The adaptive Adam optimizer is used, starting with 

an initial learning rate of 0.001, which is dynamically 

adjusted using a cosine annealing decay schedule. To 

prevent overfitting, early stopping and model 

checkpointing are implemented to save weights at the 

point of best validation performance. Training is 

conducted on a high-performance computing setup 
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featuring an NVIDIA RTX 3090 GPU, using the PyTorch 

framework and the official Ultralytics YOLOv8 

implementation to ensure stability and reproducibility. 

Model performance is evaluated using precision, recall, 

and F1 score, providing a comprehensive assessment of 

accuracy and completeness. 

To evaluate the stability of the results, this study 

adopts 5-fold cross-validation and calculates the scene-

level bootstrap CI. To thoroughly assess the model's 

performance, the study analyzes the impact of varying the 

confidence threshold. The Intersection over Union (IoU) 

threshold for Non-Maximum Suppression (NMS) is set 

to 0.5 to remove overlapping detection boxes; the 

confidence threshold is 0.25 to filter high-confidence 

predictions; the input image size is uniformly adjusted to 

640×640 pixels to balance detection accuracy and 

computational efficiency. In addition, to improve the 

model's generalization ability and robustness, various 

data augmentation strategies are adopted during training, 

including random horizontal flipping, rotation, scaling, 

brightness adjustment, and Gaussian noise injection. The 

intensity of augmentation is controlled within a 

reasonable range to ensure that sample diversity is 

expanded while excessive distortion is avoided. 

3  Results and discussion 

3.1 Detection results of architectural 

heritage targets 

This experiment uses the YOLOv8 object detection 

model to analyze the Cross-shaped Drum Tower of the 

Ming Dynasty. Planar annotations include Left Behind 

Jin Zhu (this refers to a golden pillar) (LB-JZ), Left 

Behind Yan Zhu (this refers to an eave pillar) (LB-YZ), 

Left Front Jin Zhu (LF-JZ), Left Front Yan Zhu (LF-YZ), 

Right Behind Jin Zhu (RB-JZ), Right Behind Yan Zhu 

(RB-YZ), Right Front Jin Zhu (RF-JZ), Right Front Yan 

Zhu (RF-YZ), and scale (SC). The planar detection 

confusion matrix (Figure 5) shows diagonal values 

between 0.89 and 1.00, indicating high classification 

accuracy. Notably, the SC category achieves perfect 

accuracy (1.00), reflecting strong model performance in 

this class. Section annotations encompass Behind Jin Lin 

(B-JL), Behind Yan Lin (B-YL), Front Jin Lin (F-JL), 

Front Yan Lin (F-YL), ground (GD), Ji Lin (JL), and SC. 

The section detection confusion matrix (Figure 6) reveals 

diagonal values from 0.67 to 1.00. While slightly less 

accurate than the planar model, it still performs well. 

Categories such as RF-YZ and LB-YZ reach 1.00 

accuracy, demonstrating reliable predictions in these 

cases. 
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Figure 5: Confusion matrix of the planar detection model 
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Figure 6: Confusion matrix of the cross-sectional detection model 

 

Table 2 summarizes the performance of the YOLOv8 

detection model in recognizing both planar and cross-

sectional components, demonstrating strong overall 

results. The precision and recall of planar components 

both remain at a high level of 0.935-0.970, with the F1 

score fluctuating between 0.933-0.965. This indicates 

that YOLOv8 can identify the position and category of 

building components relatively accurately while 

achieving a high coverage rate of positive samples. 

Among them, the detection accuracy of the RF-JZ & RB-
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JZ and RF-YZ & RB-YZ is slightly higher than that of 

the left-side components, which may be related to 

shooting angles and lighting conditions. The SC category 

achieves a perfect score of 1.000, showing that the 

identification of calibration points is very stable and 

reliable, providing a solid foundation for subsequent 3D 

reconstruction. The detection performance of cross-

sectional components is slightly lower than that of planar 

components, but remains in the range of 0.875-0.960, 

with an overall average F1 score of approximately 0.954. 

The detection accuracy of front components (F-JL, F-YL, 

JL) is relatively high, while the precision and recall of 

rear components (B-JL, B-YL) and the GD category are 

slightly lower. This is mainly because components have 

smaller sizes and complex textures from the cross-

sectional perspective. Meanwhile, there are also 

occlusion and overlap phenomena, which increase the 

difficulty of detection. In addition, changes in 

illumination, shadows, and background complexity of 

cross-sectional components may also cause some feature 

points to be difficult for the network to capture accurately. 

Overall, the mAP value of planar component detection is 

generally higher than that of cross-sectional components. 

This reflects that YOLOv8 still maintains high stability 

under multi-view slice information, but cross-sectional 

components have certain information loss or blurriness. 

This suggests that in practical applications, multi-view 

fusion or feature enhancement strategies can be 

combined to improve detection accuracy. 

The performance distribution of different categories 

through Precision-Recall (PR) curves and per-class 

Average Precision (AP) is further observed, as 

demonstrated in Figures 7 and 8. It shows that the overall 

PR curve of planar components is relatively smooth, and 

precision and recall are highly consistent. This indicates 

that YOLOv8 has high accuracy and a low false detection 

rate in positioning and identifying planar components, 

with AP values close to F1 scores. The SC category 

achieves a perfect score, reflecting the high reliability of 

calibration point identification. The PR curve of cross-

sectional components exhibits a slight downward trend, 

especially for the B-JL, B-YL, and GD categories, where 

precision and recall fluctuate to a certain extent. This is 

mainly due to the increased detection difficulty caused by 

complex textures, occlusions, and small-sized 

components from the cross-sectional perspective. 

Compared with planar components, the AP of cross-

sectional components is slightly lower, but remains above 

0.875, illustrating that YOLOv8 is relatively robust in 

extracting 3D slice information. The AP of planar 

components is higher than that of cross-sectional 

components, with all values in the range of 0.935-0.970; 

the AP of cross-sectional components ranges from 0.875-

0.960. Small or complex components (B-JL, B-YL, GD) 

are more difficult to detect, with relatively lower AP; the 

AP of SC calibration points remains 1.0 at all times. 

 

Table 2: Performance of YOLOv8 in planar and cross-sectional component detection 

Component 

category 

Precision Recall F1 score mAP@0.5 mAP@[0.5:0.95] CI (95%) 

Planar components 
      

LB-JZ 0.935 0.930 0.933 0.935 0.912 ±0.012 

LB-YZ 0.940 0.935 0.937 0.940 0.918 ±0.011 

LF-JZ 0.947 0.940 0.943 0.946 0.925 ±0.010 

LF-YZ 0.950 0.945 0.947 0.950 0.928 ±0.010 

RB-JZ 0.970 0.960 0.965 0.970 0.950 ±0.009 

RB-YZ 0.968 0.958 0.963 0.968 0.948 ±0.009 

RF-JZ 0.965 0.960 0.963 0.965 0.947 ±0.009 

RF-YZ 0.962 0.958 0.960 0.962 0.944 ±0.010 

SC 1.000 1.000 1.000 1.000 1.000 ±0.000 

Cross-sectional 

components 

      

F-JL 0.960 0.950 0.955 0.960 0.938 ±0.011 

F-YL 0.950 0.940 0.945 0.950 0.930 ±0.012 

JL 0.957 0.952 0.955 0.957 0.935 ±0.011 

B-JL 0.875 0.870 0.873 0.875 0.852 ±0.015 

B-YL 0.880 0.870 0.875 0.880 0.855 ±0.015 

GD 0.880 0.870 0.875 0.880 0.854 ±0.015 

SC 1.000 1.000 1.000 1.000 1.000 ±0.000 

Overall average 0.963 0.947 0.954 0.963 0.941 ±0.010 
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Figure 7: PR curve (planar components) 
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Figure 8: PR curve (cross-sectional component) 

 

3.2 Error detection and analysis of 

architectural heritage 

Building on the YOLOv8 detection results, this study 

further extracts images of crack regions. It then conducts 

measurements and error analyses on key geometric 

parameters, including length, width, and depth. This 

validates the visual detection system's performance in 

estimating defect scales. In a slice image of the Drum 

Tower, this study measures a crack with a length of 2.5cm, 

a width of 0.03cm, and a depth of 1.2cm. Based on these 

measurement results, it is determined that the crack is a 

minor crack that has little impact on the overall stability 

of the Drum Tower, but still needs to be repaired to 

prevent further expansion of the crack. To verify the 

feasibility of YOLOv8 in measuring crack dimensions 

and structural detection in heritage buildings, model 

predictions are compared with manually annotated 

ground truth values, as shown in Table 3. 

 

Table 3: Error analysis of model detection performance 

 

Detection 

Parameter 

Actual 

Value 

Model 

Prediction 
Error (cm) 

Relative 

Error (%) 
IOU 

Error Std. Dev. 

(cm) 

Error 

Skewness 

Crack Length 2.50 cm 2.45 cm 0.05 2.0% 0.89 0.03 0.12 

Crack Width 0.03 cm 0.029 cm 0.01 3.3% 0.86 0.0005 0.09 

Crack Depth 1.20 cm 1.15 cm 0.05 4.2% 0.91 0.04 0.15 

 

Table 3 presents measurements of cracks identified 

in the image slices as an example. The model estimates a 

crack length of 2.45 cm, width of 0.029 cm, and depth of 

1.15 cm, closely matching the manual measurements of 

2.50 cm, 0.30 mm, and 1.20 cm, respectively. The 

absolute errors for these parameters are 0.05 cm, 0.01 cm, 

and 0.05 cm, with relative errors ranging from 2.0% to 

4.2%, demonstrating high measurement accuracy. 

Additionally, the IoU values for these key parameters 

exceed 0.85, indicating strong boundary localization 

performance for small targets. The error distribution 
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skewness is near zero, suggesting a symmetrical 

distribution of errors. 

In Figure 9, the error range of most parameters is 1-

2cm, illustrating that the model can accurately predict the 

position and size of the target in most cases. However, 

there are cases where a small part of the parameter error 

is close to 3cm. This may be related to noise and errors in 

data acquisition and processing. Moreover, the error 

values are unevenly distributed in different parameters 

and directions. For example, in cross-sectional errors, the 

error in depth dimension 1 is 2.23 cm, while the error in 

depth dimension 2 reaches 14.95 cm. This shows that 

there are significant differences in the model's prediction 

accuracy across different dimensions. Such differences 

mainly stem from the following aspects. Crack edges in 

cross-sectional images may be blurred due to oblique 

viewing angles, shadows, or local occlusion, which 

reduces the matching accuracy between anchor boxes and 

target regions in the YOLO model. At the same time, 

depth information in a single-frame image is often 

transmitted indirectly and needs to be inferred based on 

clues such as texture and light contrast. Therefore, the 

estimation of depth dimensions is more susceptible to 

deviations. To further improve measurement accuracy 

and reduce the impact of depth errors, future research can 

introduce a pixel-actual size calibration method. A 

correspondence between pixels and real sizes is 

established by arranging calibration rulers at the 

collection site or using 3D-printed reference objects. This 

enables quantitative correction of depth and planar errors, 

enhancing the reliability of the model's predictions of 3D 

positions and sizes in complex building environments. 
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Figure 9: Test results of cross-sectional and planar errors 

 

3.3 Comparison of different methods 

To validate the effectiveness of the proposed method 

for architectural heritage damage detection, this study 

benchmarks it against mainstream models YOLOv5, 

YOLOv6, and YOLOv7. The used model size, training 

budget, data augmentation strategy, and input resolution 

are all consistent with those of YOLOv8. Performance is 

compared based on precision, recall, mAP, and F1 score, 

with results summarized in Table 4. The classic two-stage 

detection model Mask R-CNN and the Transformer-

based detector Deformable DETR are also used as 

baselines. For damage features such as cracks, the 

semantic segmentation baseline DeepLabV3+ is added, 

and its output is converted into indicators comparable to 

object detection results through instantiation. To further 

quantify the robustness of the results, this study also 

calculates the 95% CI for each indicator to reflect the 

model's fluctuation across different test samples.

 

Table 4: Performance comparison of different detection methods in architectural heritage damage identification 

task (Including 95% CI) 

 

Method Precision (%) 

[95% CI] 

Recall (%) [95% 

CI] 

F1 score [95% CI] mAP@0.5 

(%) 

mAP@[0.5:0.95] 

(%) 

YOLOv5 90.1 (89.5-90.7) 88.5 (87.8-89.2) 0.893 (0.886-0.900) 89.7 65.2 

YOLOv6 91.3 (90.7-91.9) 89.0 (88.3-89.7) 0.902 (0.895-0.909) 90.8 67.5 

YOLOv7 93.0 (92.4-93.6) 91.2 (90.5-91.9) 0.922 (0.916-0.928) 92.9 70.1 

YOLOv8 96.3 (95.8-96.8) 94.7 (94.1-95.3) 0.954 (0.948-0.960) 95.6 74.8 

Mask R-CNN 92.5 (91.8-93.2) 90.5 (89.8-91.2) 0.915 (0.908-0.922) 91.4 69.3 

Deformable 

DETR 

94.0 (93.4-94.6) 92.1 (91.4-92.8) 0.930 (0.924-0.936) 93.6 72.0 

DeepLabV3+ 89.8 (89.0-90.6) 91.7 (91.0-92.4) 0.907 (0.900-0.914) 90.2* 68.7* 
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Table 4 shows that YOLOv8 outperforms other 

methods in all indicators. Among them, its precision is 

96.3% (95% CI: 95.8-96.8%), which is 3.3 percentage 

points higher than that of YOLOv7. This indicates that 

YOLOv8 distinguishes between damaged and non-

damaged areas more accurately and reduces the false 

alarm rate. Its recall is 94.7% (95% CI: 94.1-95.3%), 

which is 6.2 percentage points higher than YOLOv5. This 

shows that its ability to detect small or edge-damaged 

areas under complex texture backgrounds is enhanced. 

The F1-score reaches 0.954 (95% CI: 0.948-0.960), 

ranking the best among all models. These improvements 

are mainly due to the structural and algorithmic 

optimizations of YOLOv8. The introduced C2f feature 

extraction module enhances multi-scale feature 

integration; the adaptive anchor box mechanism 

improves the matching accuracy between candidate 

boxes and actual targets, effectively reducing 

interference from low-quality samples; the optimized loss 

function enhances the robustness of bounding box 

localization, allowing the model to perform stably in 

complex components and partially occluded areas. 

The classic two-stage method Mask R-CNN 

performs well in recall and mAP, especially showing 

greater stability in detecting damages with blurred 

boundaries (such as erosion and weathering); however, 

its inference speed is relatively slow. The Transformer-

based Deformable DETR is close to YOLOv8 in recall 

and mAP@[0.5:0.95], demonstrating its ability to model 

long-range dependencies under complex backgrounds, 

but its training convergence is slow. Although 

DeepLabV3+ is essentially a semantic segmentation 

model, it can better capture continuous damage through 

pixel-level segmentation of crack and defect areas. Its 

recall is higher than that of YOLOv5/6, but its precision 

is relatively low, and the overall mAP indicator is lower 

than that of detection models after instantiation 

processing. 

3.4 Ablation experiments 

To verify the contribution of each key link to the 

performance of architectural heritage damage detection, 

a systematic ablation experiment is designed to examine 

the effects of slicing strategy, network backbone, data 

source composition, and image preprocessing, 

respectively. All experiments are based on the YOLOv8-

s variant, with a unified input resolution of 640×640 and 

consistent other training parameters. The results are listed 

in Table 5: 

 

Table 5: Ablation study of YOLOv8 in architectural heritage damage detection 

 

Configuration Precision (%) Recall (%) F1 Score mAP@0.5 Inference time 

(milliseconds (ms)) 

No Slicing (Original 

3D rendering) 

91.2 84.5 0.878 0.902 25 

Slicing (2 mm) 95.8 93.5 0.947 0.956 36 (+45%) 

Slicing (5 mm) 96.1 91.2 0.936 0.948 30 (+20%) 

Slicing (10 mm) 94.0 87.6 0.905 0.922 27 (+8%) 

Slicing (adaptive 

interval) 

96.3 92.8 0.947 0.955 32 (+28%) 

Backbone: CSPDarknet 96.3 92.8 0.947 0.955 32 

Backbone: ConvNeXt 95.5 91.9 0.936 0.950 35 

Training set: Photos 

only 

94.2 89.1 0.915 0.932 30 

Training set: Photo 

+ETH3D rendering  

96.3 92.8 0.947 0.955 32 

Pre-processing: No 

enhancement 

94.8 89.7 0.919 0.935 30 

Pre-processing: 

Histogram equalization 

and Gamma correction  

96.3 92.8 0.947 0.955 32 

 

In Table 5, compared with the "no slicing" setting, 

the model with slicing shows significant improvements 

in both recall and mAP, especially performing 

prominently in the detection of tiny cracks. A 2 mm 

interval achieves the best recall (93.5%), but increases the 

computational cost by 45%; a 5 mm interval strikes a 

balance between performance and efficiency; a 10 mm 

interval leads to obvious missed detections. The adaptive 

interval ensures accuracy while taking efficiency into 

account. Both CSPDarknet and ConvNeXt can be well 

adapted to the task, but CSPDarknet is slightly better in 

inference speed and mAP, so it is selected as the final 

backbone. The introduction of ETH3D rendered data 

remarkably improves the recall and mAP, indicating that 

synthetic samples play a positive role in enhancing the 

model's generalization ability to complex damage 

patterns. Histogram equalization and Gamma correction 

effectively improve the detection performance under 

conditions of low contrast and uneven local illumination, 
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increasing recall by approximately 3%, which verifies the 

importance of preprocessing. 

3.5 Runtime and deployment ability 

To evaluate the performance and usability of the 

model in practical deployment, inference speed tests are 

conducted on YOLOv8 and its comparison models using 

an NVIDIA RTX 3090 GPU and a CPU. Information 

such as model size, parameter count, and video memory 

usage is also recorded. At the same time, the time of the 

3D reconstruction process in RealityCapture is counted 

to quantify the efficiency of the entire pipeline. The 

results are detailed in Table 6. It shows that with a 

1024×1024 input, YOLOv8 can reach 50 frames per 

second (FPS) with a delay of approximately 20 ms, 

meeting the requirements of most real-time monitoring 

applications. When the input resolution is increased to 

2048×2048, the GPU inference speed drops to 22 FPS, 

but it is still significantly better than the CPU inference 

performance. Compared with previous generations of 

YOLO models, YOLOv8 has higher throughput and 

accuracy, while maintaining reasonable Video Random 

Access Memory (VRAM) usage, allowing it to run 

efficiently on the RTX 3090. The reconstruction of high-

density point clouds for the Drum Tower using 

RealityCapture takes approximately 85 minutes, 

generating 72 million point clouds; medium-density 

reconstruction can notably reduce the time to 50 minutes, 

which is suitable for rapid analysis and visualization. The 

reconstruction time and number of points for the ETH3D 

subset are also within an acceptable range, ensuring the 

reproducibility of multi-scenario verification. 

 

Table 6: Model inference and hardware performance 

 

Model Input size GPU 

FPS 

GPU 

inference 

delay 

(ms) 

CPU 

FPS 

CPU 

inference 

delay 

(ms) 

Model 

size 

(MB) 

Parameter 

count (M) 

VRAM usage (GB) 

YOLOv5 1024×1024 45 22.2 8 125 92 7.2 4.5 

YOLOv5 2048×2048 18 55.6 2 500 92 7.2 9.8 

YOLOv6 1024×1024 48 20.8 9 120 105 8.0 5.0 

YOLOv6 2048×2048 20 50 2.2 455 105 8.0 10.2 

YOLOv7 1024×1024 42 23.8 7.5 130 125 9.5 5.5 

YOLOv7 2048×2048 17 58.8 2 510 125 9.5 11.0 

YOLOv8 1024×1024 50 20 9.5 105 136 12.1 6.2 

YOLOv8 2048×2048 22 45.5 2.5 420 136 12.1 12.0 

3.6 Discussion 

Based on the above results, the proposed slice-based 

2D YOLOv8 detection framework performs excellently 

in the task of architectural heritage defect identification. 

By comparing with mainstream object detection models 

(YOLOv5, YOLOv6, and YOLOv7), YOLOv8 achieves 

the best performance in precision, recall, and F1-score. 

The stability of its performance is further verified through 

CI analysis. 

When compared with existing multi-view/3D and 

semantic segmentation methods, the proposed slice-to-

2D method shows obvious advantages. By slicing the 3D 

point cloud model into 2D images for defect detection, it 

can more accurately identify tiny defects such as cracks 

and spalling while reducing computational complexity. 

As noted by Adamopoulos et al. [31] and Patrucco et al. 

[32], traditional 2D methods usually struggled to capture 

the real shape and spatial relationships of architectural 

elements, easily leading to blind spots and positioning 

errors. The introduction of 3D spatial information helps 

improve defect positioning accuracy and provides 

support for digital restoration. However, during the use 

of YOLOv8, depth estimation may still be affected by 

complex surface textures, occlusions, and detailed 

structures common in historical buildings, resulting in 

errors. Similarly, Wang et al. [33] observed that during 

high-resolution reconstruction, shadows and lighting 

changes might cause data loss and error accumulation. 

Therefore, the slice-to-2D method captures local details 

through 2D slices and conducts a comprehensive analysis 

by combining 3D spatial information. This makes up for 

the shortcomings of the full 3D pipeline while improving 

the accuracy and reliability of defect detection in 

practical applications. 

Nevertheless, the method still has limited 

performance under extreme lighting conditions or highly 

occluded areas, which offers directions for further 

optimization in the future. Based on the current results, 

combining the Transformer architecture and other new 

models with strong global feature extraction capabilities 

can improve the accuracy and robustness of heritage 

damage detection. In addition, expanding and 

diversifying annotated damage datasets and increasing 

the number of training samples are crucial for enhancing 

the model's generalization ability. Moreover, combining 

multi-view or laser scanning data can markedly improve 

the accuracy and robustness of depth estimation, which is 

especially suitable for complex architectural structures or 

heavily occluded areas. In future research, it is planned to 

explore the fusion of YOLOv8 detection results with 

stereo or LiDAR reconstruction to achieve more accurate 

3D positioning and depth measurement. Thus, it can 

provide more reliable data support for the digital 

restoration of architectural heritage. 
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4  Conclusion 
Architectural heritage is an important part of human 

civilization, bearing rich historical and cultural 

information. However, due to natural erosion, man-made 

destruction, and other reasons, many precious 

architectural heritages are facing serious threats. This 

study focuses on the digital protection and restoration of 

architectural heritage. Meanwhile, through the in-depth 

application of 3D reconstruction technology, the accurate 

recording and reproduction of architectural heritage can 

be realized. This study covers the entire process from data 

acquisition, 3D modeling, to digital protection and 

restoration, exploring innovative applications of VR and 

other technologies in the visual display of architectural 

heritage. This study utilizes the SfM method to 

automatically extract feature points from numerous 

overlapping images and reconstruct 3D point clouds and 

texture information through matching and optimization 

algorithms. Reality Capture software is employed for 

image registration and 3D modeling, resulting in a high-

precision 3D model of the Cross-shaped Drum Tower of 

the Ming Dynasty. 

Following the generation of the 3D model, computer 

vision techniques combined with the YOLOv8 object 

detection algorithm are applied for visualization analysis 

and assisted restoration. A series of 2D slice images is 

created to examine architectural structural features and 

the distribution of potential damage. Notably, YOLOv8 

is primarily used to identify and classify architectural 

components within these slice images (e.g., golden pillars, 

eaves columns), thus establishing a foundation for 

structural feature recognition. Subsequently, through 

integration with manual measurements and geometric 

feature analysis, damage parameters such as cracks are 

further extracted and subjected to error evaluation, 

enabling a seamless transition from structural 

identification to damage analysis. In terms of restoration, 

this study preliminarily proposes a conservation plan 

based on the 3D model, leveraging visual information to 

support the development of more targeted protection 

strategies. 

While this study marks initial progress in the digital 

preservation and restoration of architectural heritage, 

certain limitations remain. Although YOLOv8 

demonstrates high accuracy for some architectural 

element categories, false positives and missed detections 

persist in complex scenarios. To further enhance the 

algorithm's accuracy and generalization, future work 

should focus on optimizing algorithm parameters and 

training datasets, as well as exploring more advanced 

deep learning models. Moreover, the damage detection 

module can benefit from incorporating multimodal data 

and temporal analysis to improve the understanding and 

prediction of damage progression. 
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