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With the growing demand for fresh food, Cold Chain Logistics (CCL) faces challenges in meeting market 

demands. To reduce logistics costs and improve delivery efficiency, a cold chain distribution path 

planning model combining K-means algorithm and Genetic Algorithm (GA) has been proposed. The K-

means algorithm is used for cluster analysis to generate initial candidate locations for distribution 

centers, while the GA determines optimal center positioning. By integrating the rapid convergence of K-

means with the global search capability of GA, this approach resolves local optimization issues. Cluster 

effectiveness is evaluated using contour coefficients. Subsequently, a multi-objective optimization model 

incorporating real-time traffic conditions, product freshness preservation time, and vehicle load 

constraints is constructed. This model was validated using Google Open Routes Data (GORD) and 

Vehicle Routing Problem (VRPI) instance datasets. The results indicated that the fusion algorithm 

performed well in optimizing CCL distribution paths. The average task processing time of the fusion 

algorithm was controlled between 6.32 seconds and 8.42 seconds, with the lowest resource utilization rate 

of only 75.21% to 78.46%, and an average energy consumption value of 149.67 J to 160.72 J. The delivery 

cost and efficiency per kilometer were approximately 1.2 yuan and 40 km/h. The dynamic response 

capability of path planning has been significantly enhanced, effectively avoiding traffic congestion nodes 

and reducing cargo losses in cold chain transportation. This study has achieved collaborative 

optimization of distribution center location and path planning, which is of great significance for reducing 

operating costs, improving distribution efficiency, and promoting the construction of smart logistics 

systems. 

Povzetek: Model K-means + genetski algoritem optimizira lokacije centrov in poti hladne verige ter 

zmanjša stroške in izgube z boljšim izogibanjem prometnim zastojem. 

 

1 Introduction 
The progress of society has led to a continuous 

improvement in people's quality of life. Online shopping 

and home delivery services have become a common way 

of life for modern residents [1]. Due to the increasing need 

for food, Cold Chain Transportation (CCT) is becoming a 

vital industry in modern times [2]. In today's era, with the 

continuous increase of population, people have a higher 

demand for fresh food, thus requiring more efficient Cold 

Chain Logistics (CCL) systems [3]. The current CCL 

technology is relatively backward, and the CCL cannot 

meet the requirements of consumers [4]. The overall 

distribution system is still short of cold storage and 

manpower support, causing higher expenditures for the 

CCL system [5]. Many scholars have researched CCL path 

planning. Bai et al. considered the complexity of road 

networks and time-varying traffic conditions, studied the 

low-carbon vehicle routing problem of CCL, and 

proposed a corresponding model. Compared to traditional 

methods, it could more accurately evaluate delivery costs 

and Carbon Emissions (CE) [6]. Pu et al. incorporated  

 

driving distance and actual loading capacity into the multi- 

warehouse vehicle routing problem and proposed a mixed  

integer programming model. Under this model, CE could  

be reduced by traveling shorter distances, providing 

methodological guidance for vehicle route planning in 

terms of logistics costs and CE [7]. Yin proposed an 

improved non-dominated sorting Genetic Algorithm (GA) 

solution model based on the vehicle routing problem, 

while meeting the customer's cargo and time 

requirements. The path strategy calculated by this model 

had significant value in reducing CE while meeting 

customer demand for goods and time requirements [8]. Du 

et al. found that existing express delivery companies are 

facing the challenge of improving customer satisfaction 

while ensuring total cost control. Therefore, researchers 

have proposed a new multi-objective solution model for 

joint distribution. This model could effectively reduce 

costs and CE while guaranteeing higher customer 

satisfaction [9]. Li et al. put forth an improved model that 

combines the Carbon Trading (COT) mechanism to solve 

the position path inventory problem. After optimizing the 

location costs, transportation, inventory, etc., it was found 
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that the model could effectively lower CE in the COT 

environment, but the major environmental element for 

cost reduction was CCL [10]. 

The K-means algorithm has become a classic tool in 

clustering analysis due to its simplicity, efficiency, and 

wide applicability. Ashari et al. used the K-means 

algorithm for classification analysis and the Rand method 

for optimization to determine the classification of flood-

affected areas in some regions. This method could quickly 

perform cluster analysis [11]. Şenol proposed a fusion K-

Means method based on multivariate kernel density 

estimation to determine the optimal initial centroid for 

clusters generated by K-means, which was affected by 

randomly selected initial centroids. This algorithm used 

kernel density estimation to find the best initial centroid 

for identifying density regions, enabling fast and accurate 

clustering while reducing the impact of initial centroids 

[12]. The principle of GA is simple, it has strong global 

search capability and is easy to combine with other 

algorithms. Fu et al. proposed a PSO genetic hybrid 

algorithm built on phagocytosis to effectively schedule 

massive tasks in cloud environments. This algorithm 

ensured the particle diversity in the population, reduced 

the possibility of getting stuck in local optima, 

significantly shortened all the completion times of cloud 

tasks, and had high precision [13]. Choudhury et al. put 

forward a method that combines GA and detects fake news 

on different datasets. This method achieved the highest 

accuracy of 97% on the fake recruitment dataset [14]. 

Abedpour et al. developed a fusion method that combines 

GA and K-means clustering methods to lower clustering 

errors and optimize the overall performance of the 

network system. Firstly, it utilized K-means for clustering, 

and then used GA to allocate resources to devices with the 

Minimum Error Rate (MER). Experiments have shown 

that this method helps minimize latency and outperforms 

other algorithms in the objective function and MER [15]. 

The summary and comparison of the literature are shown 

in Table 1.

Table 1: Summary of literature content 

Reference Method 
Optimization 

Objectives 
Limitations This paper improves 

Bai et al. 

[6] 

Low-carbon 

VRP model 
Delivery cost, CE 

Ignored perishability 

& location-routing 

integration 

Integrated site-path 

optimization+cargo loss 

constraint 

Pu et al. [7] 
Mixed integer 

programming 

CE reduction, 

Logistics cost 

No real-time traffic 

adaptation 

Real-time traffic 

constraint+adaptive genetic 

crossover 

Yin [8] 
Improved 

NSGA-III 

CE reduction, 

Customer demand & 

time windows 

Single-objective focus; 

No location 

optimization 

Multi-target site 

selection+path collaborative 

optimization 

Du et al. 

[9] 

Multi-objective 

joint delivery 

Cost, CE, Customer 

satisfaction 

Static constraints; No 

energy optimization 

Dynamic 

transportation+energy 

consumption minimization 

Li et al. 

[10] 

Carbon-trading 

mechanism 

Location cost, 

Transport, Inventory, 

CE 

High computational 

complexity 

K-means initialization 

accelerates convergence 

Ashari et 

al. [11] 

K-means + Rand 

method 

Flood area 

classification 

Not applied to 

logistics 

K-means is adapted to logistics 

node clustering 

Şenol [12] 
K-means + 

Kernel density 

Cluster accuracy, 

Initial centroid 

optimization 

No integration with 

routing algorithms 

K-means output is seamlessly 

integrated with GA routing 

Fu et al. 

[13] 
PSO-GA hybrid 

Task scheduling 

efficiency, 

Completion time 

Not tailored for 

logistics constraints. 

Customized cold chain 

perishability+vehicle load 

constraints 

In summary, the current CCL faces challenges in 

meeting the growing market demand for fresh food 

products, primarily due to high costs, low efficiency, 

severe cargo loss, and excessive CE. The existing methods 

for locating and routing cold chain Distribution Centers 

(DCs) exhibit limitations, such as insufficient global 

search capability, slow convergence speed, and limited 

handling of multidimensional constraints, making them 

unsuitable for handling complex real-world scenarios. To 

achieve multi-objective collaborative optimization in cold 

chain DC location and route planning, this study 

innovatively proposes a hybrid model integrating K-

means clustering with GA. The study employs K-means 

for initial candidate center generation and combines GA's 

global search capabilities to determine optimal DC 

locations. The clustering effectiveness is evaluated using 

silhouette coefficients, and a multi-objective optimization 

model is constructed to comprehensively consider real-

time traffic conditions, product freshness requirements, 

and vehicle load restrictions. Experimental validation 

through Google Open Routes Data (GORD) and Vehicle 

Routing Problem (VRPI) datasets demonstrates the 
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model's effectiveness in optimizing CCL routes. The study 

aims to reduce distribution costs, enhance efficiency, and 

minimize energy consumption, providing scientific 

decision support for optimal site selection. This approach 

expands industry applications and promotes intelligent 

logistics system development while significantly reducing 

CE, advancing sustainable growth, and environmental 

protection in the logistics sector. 

2 Methods and materials 

2.1 Design of CCL-DCL model based on 

K-means algorithm 

The core goal of CCL-DCL is to achieve multi-

objective collaborative optimization of construction cost, 

transportation efficiency, service quality, and 

environmental sustainability [16]. However, CCL's DCL 

faces challenges such as difficulty in accurately predicting 

demand fluctuations, high construction and operational 

costs, insufficient data, and limited technical support. The 

K-means has become a classic tool in clustering analysis 

since its simplicity, efficiency, and wide applicability. 

Therefore, this study uses K-means to perform DCL on 

CCL. The Euclidean distance calculation in K-means is 

given by equation (1). 

 ( )
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i j ij
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d X C X C
=

= −  (1) 

In equation (1), ijC  is the j -th attribute of iC . iC  is 

the i -th CC point. jX  is the j -th attribute of X . X  is a 

data entity. m  is a measure of data objects. The evaluation 

of clustering effect often uses contour coefficient as a 

standard, as shown in formula (2). 
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In equation (2), ( )ia  and ( )ib  are the average 

distances between the remaining sample points and all 

other sample points within the adjacent cluster. The 

contour coefficient when ( )iS  represents i . The 

workflow of K-means is displayed in Figure 1.
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Data Input

Initialize 
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Assign to the 

nearest class

Output result
Recalculate each 
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Figure 1: K-means algorithm workflow diagram

In Figure 1, K-means first measures the distance 

between all samples and the Cluster Center (CC) based on 

Euclidean distance, and divides each sample into clusters 

corresponding to the centroid of the nearest neighbor. 

Subsequently, it recalculates the centroid coordinates 

based on the current cluster members and defines it as the 

geometric mean of the samples within the cluster. The 

system iteratively performs sample allocation and centroid 

update operations until the pre-centroid coordinates are 

stable or the maximum Number of Iterations (NoI) is 

reached, thereby achieving dynamic optimization-based 

clustering partitioning. Finally, K centroids and the data 

allocation results for each class are output [16, 17]. The 

fixed cost calculation consisting of land leasing and 

personnel salaries is shown in equation (3). 
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In equation (3), jR  is the unit price of land leasing or 

the salary of personnel per unit area. jZ  is the decision 

variable. The operating cost calculation of CCL DC is 

shown in equation (4). 
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In equation (4), 
(1)

jR  is the daily operating cost of the 

logistics hub. ijX  is the transportation volume of goods 

from the supplier to the DC. ijB  is the unit transportation 

cost coefficient between the supplier and the DC. p  is the 

scale adjustment parameter. The transportation cost of the 

entire supply chain process is calculated. The total 

logistics cost covering the supply end to the cold chain 

transit node and then distributed to the end consumption 

node is shown in equation (5). 

 3 1 1
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l m m n
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In equation (5), 1C  is the unit distance transportation 

cost. jkB  is the path complexity coefficient from the DC 

to the demand point. ijd  is the length of the path from the 

supplier to the transit base. jkX  is the transportation 

volume of materials from the supply end to the logistics 

node. jkd  is the average path length from the transit base 

to the consumer terminal. The overall spending of goods 

damage is given by equation (6). 
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In equation (6), 2C  is the unit cost of goods damage. 

  is the coefficient of cargo damage rate. v  is the 

transportation speed. To ensure constant temperature in 

the carriage, a significant amount of refrigeration costs 

will be incurred during transportation, as shown in 

equation (7). 

 5 2 2

1 1 1 1

l m m n

ij ij j jk jk j jk

i j j k

F C X d Z C X d Z B
= = = =

= +   (7) 

CCL refers to a logistics network that maintains a low 

temperature throughout the entire process based on the 

characteristics of the transported goods, to maintain the 

quality of the goods from production to delivery to 

consumers. The CCL delivery process is shown in Figure 

2.

Production base Cold chain 

storage center
CCL Center CCT vehicle

Demand network

E-Commerce 

platform

Consumer

Cold chain 

product supplier

Product 

testing

 

Figure 2: CCL distribution process

In Figure 2, the operation process of CCL starts from 

product information display and production, and involves 

product production and primary processing at the 

production base. After pre-cooling, processing, and 

classification, the product enters the cold chain storage 

center for refrigeration and preservation. Subsequently, 

quality inspection agencies conduct quality checks on 

secondary products to ensure compliance with standards. 

Third-party logistics companies transport products from 

storage centers to CCL DCs. The DC delivers products to 

demand outlets through cold chain transport vehicles. 

Finally, consumers purchase cold chain items through e-

commerce platforms. Various kinds of CCL products have 

different characteristics and require different temperatures 

to be kept during CCT. As a result, to avoid losses caused 

by unbefitting temperature, standardized and unified 

operations can be carried out. Classifying the CCL 

products and suitable temperature is exhibited in Figure 3. 

 

Primary 

agricultural 

products

Processing 

agricultural 

products

Special 
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Meat, egg, and aquatic products(0-4℃)

Flower products(1-5℃)

Quick frozen products(0-18℃)
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Vaccines(2-8℃)

Drug(2-8℃)

Packaged cooked food(0-4℃)

Cold chain 

products
 

Figure 3: Classification of common cold chain items and 

their suitable temperatures 

Figure 3 shows the ideal storage temperature range for 

certain specific products. This provides an important 

reference for ensuring the best quality of the product. 

However, in addition to paying attention to these fixed 

suitable temperatures, it is also necessary to closely 

monitor temperature control at various phases of 

transportation. Changes in environmental conditions 

during the handover of items may cause fluctuations in the 

surrounding temperature. Therefore, to ensure that the 

quality of the product is not affected, the temperature rise 

limit during transportation must be strictly controlled 

below -15 ℃. In addition, before loading the transport 

vehicle, it is necessary to ensure that the carriage has been 

pre-cooled to a temperature of -10 ℃ or lower to maintain 

a suitable temperature environment for the product 

throughout the entire transportation process. 

2.2 Optimization of site selection model 

integrating K-means clustering and 

GA 

K-means has efficient data processing capabilities and 

good adaptability for CCL-DCL, but is very sensitive to 

the selection of initial centroids and performs poorly in 

handling dynamic data or scenarios that require real-time 

adjustments [18]. The principle of genetic algorithm is 

simple, easy to implement and combine with other 

algorithms, with strong scalability and global search 

ability, which can effectively solve various types of 

problems. Therefore, this study integrates K-means with 

GA. The fast convergence ability of K-means can 

accelerate the search process of GA, while the global 

search ability of GA can compensate for the local optima 

of K-means. In addition, the robustness and flexibility of 

GA can enhance the performance of K-means in complex 
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data distributions. The GA operation process is shown in 

Figure 4. 
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Figure 4: GS operation process 

In the GA operation of Figure 4, the first step is to 

construct an algorithm parameter system. Based on 

decision vector features, the gene encoding dimension is 

determined, and chromosome sequence construction and 

population initialization configuration are performed. The 

next step is to activate the fitness evaluation mechanism, 

by establishing a nonlinear mapping model between the 

objective function and fitness values, to complete the 

quantitative evaluation of individual fitness. In the 

evolutionary stage, an optimized population is generated 

through selection operators, crossover recombination, and 

mutation mechanisms, and fitness evaluation and genetic 

operations are iteratively performed until the termination 

criteria of evolution are met. After the algorithm 

terminates, it is necessary to perform reverse decoding on 

the optimal gene sequence and output the final 

optimization solution [19]. This study takes the total cost 

of CCL as the determining factor for site selection, and 

constructs the objective function as shown in equation (8). 

 1 2 3 4 5min F F F F F F= + + + +  (8) 

In equation (8), F  is the total cost of CCL. The 

formula for setting transportation convenience restrictions 

for site selection is shown in equation (9). 

 ( ) min
ˆA ,jC A j…  (9) 

In equation (9), 
( )ˆA jC

 denotes the analysis of the 

mean traffic convenience characteristics of service nodes 

within the radiation area 
ˆ

jC
 after the cold chain facility is 

deployed in the backup location. minA
 is the minimum 

critical value of transportation convenience required for 

the effective operation of the cold chain distribution 

system. The constraint on CCT time is shown in equation 

(10). 

 , max
ˆ ˆ , ,j lt t j l„  (10) 

In equation (10), maxt̂
 means the maximum 

transportation time. The constraint on the spoilage of 

transported products is shown in equation (11). 

 , , max
ˆ ˆ0 ( )j l i jt t T + „  (11) 

In equation (11), ,î jt
 is the transportation time 

between the production base and the CCL center. maxT
 is 

the maximum allowable transportation time limit for cold 

chain products to maintain freshness. The constraint on the 

supply-demand matching relationship of CCL is shown in 

equation (12). 
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In equation (12), L  is the set of CCL centers that can 

serve demand point 
j

. Chromosome encoding is the 

primary step in applying GA. Encoding is the process of 

mapping the solution state space. Figure 5 shows the 

chromosome coding diagram.

n=1

B

1 0 1 0 1

n=2 n=3 n=4 n=5

14 23

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

n=1

n=2

n=3

n=4

n=5

m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4

A

k=1 k=2 k=3

18

20

25

42

30 21

35 30

32 42

27 26

28

24

26

28

20 35

48 36

30 45

25 30

37

34

35

36

23 28

29 37

2841

 

Figure 5: Chromosome coding diagram
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In Figure 5, the chromosome encoding diagram 

illustrates how to select different n values through binary 

encoding of chromosome X, and displays the detailed data 

corresponding to these n values in matrix Y. Among them, 

chromosome X is a binary sequence with a length of 5, 

indicating whether to select certain values from n=1 to 

n=5. Matrix Y is a 2D table with rows representing 

different values of n. Columns represent different values 

of m, and the numbers in each cell represent a certain 

indicator or data. The columns of matrix Y are grouped 

into k=1, k=2, and k=3, with each group containing 

multiple values of m. In GA, the fitness function is a 

standard utilized to determine the chromosomes quality of 

the GA population. The corresponding fitness function 

selected is given by equation (13). 

 
1

( )
( )

fit i
F i 

=
+

 (13) 

In equation (13), 


 is a positive real number within 

the interval 
( )0,1

. 
( )F i

 denotes the total cost function 

value of genetic unit i . 
( )fit i

 is the fitness of i . The 


 

determined by the research through many experiments is 

set to 0.1. When 


 varies between 0.05 and 0.2, the 

performance trend of the algorithm remains consistent. 

When 


 is 0.1, the best balance can be achieved between 

cost minimization and algorithm stability. The strategy 

selection section constructs a probability function for 

elimination based on individual fitness, as shown in 

equation (14). 
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In equation (14), xP
is the probability of being 

selected. n is the population size. xf
is individual fitness. 

The genetic recombination mechanism achieves offspring 

generation by exchanging homologous segments of 

parental gene sequences. This process involves the 

localization of random breakpoints and the exchange of 

genetic material following Mendel's laws. To improve the 

adaptability of algorithms in processing and analysis, it is 

necessary to automatically adjust and optimize their 

processing methods, order, parameter settings, 

boundaries, and constraints based on the statistical 

distribution and structural characteristics of data [20]. The 

study introduces a two-point crossover algorithm. Two 

point crossover refers to randomly selecting two crossover 

points between two parental individuals, and then 

exchanging gene fragments between these two crossover 

points to produce two new offspring individuals. The 

expression is shown in equation (15). 
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In equation (15), 1C  and 2C  represent the offspring 

chromosomes. 1P  and 2P  represent the parent 

chromosomes. u  and s  represent the crossover points. 

k  represents the gene position index, where 

1,2,3k n=  . The genetic crossover operation diagram 

is shown in Figure 6.
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Figure 6: Schematic diagram of genetic crossover operation
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In Figure 6, taking the parent individuals P1 and P2 as 

an example, the specific implementation of their crossover 

process is as follows: Firstly, an adaptive crossover 

probability model is constructed, which dynamically 

selects the second and third gene loci as crossover 

boundaries based on the current iteration times and 

population fitness variance. The next step is to perform 

gene fragment exchange - P1 retains the first 2 genes and 

inherits the last 3 genes of P2 to generate offspring C1, 

while P2 retains the first 2 genes and inherits the last 3 

genes of P1 to generate offspring C2. In response to the 

possible phenomenon of gene homogenization in C2, a 

gene position reversal protection mechanism will be 

triggered, and the final output will be a corrected offspring 

C2. In summary, a crossover process involves two parent 

individuals and their offspring individuals. The specific 

crossover details are generated by selecting gene 

fragments from the parent individuals and combining 

them to create new offspring individuals. The fusion 

process of K-means and GA is shown in Figure 7.
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Figure 7: The fusion process of K-means and GA

As shown in Figure 7, the integration process of K-

means and GA works as follows: First, the coordinates of 

demand nodes are input. Then, K-means clustering is 

performed and the k value is continuously adjusted until 

the contour coefficients met the requirements, at which 

point the cluster centers are extracted. Next, binary 

encoding is applied to the cluster center coordinates to 

initialize the GA population. The next step is to perform 

an iterative process, evaluate fitness, and check if 

clustering constraints are met. If satisfied, the total cost 

and dynamic constraints need to be calculated. 

Subsequently, adaptive crossover and mutation operations 

will be performed to determine convergence. If it does not 

converge, it will return to fitness evaluation for further 

iteration; If converged, it will output the optimal position 

and path. 

3 Results 

3.1 Performance testing of CCL delivery 

based on a new fusion algorithm 

The experimental environment includes a CPU (Intel 

Core i9-11900K), GPU (NVIDIA RTX 3090), and 64GB 

DDR4 3200MHz memory. The operating system is 

Ubuntu 20.04 LTS, and the development framework is 

based on Python 3.8. The core logic of the algorithm is 

implemented through NumPy and SciPy. Path 

optimization parallel computing is completed by PyTorch. 

The study utilizes the GORD dataset and VRPI instance 

datasets to conduct detailed analysis of sample data, 

thereby validating the model's effectiveness and 

practicality. 500 sample data points are selected from the 

GORD dataset and 300 sample data points are selected 

from the VRPI dataset for the experiment. These samples 

encompass key characteristics including urban/suburban 

traffic conditions, node distribution, and delivery 

demands, effectively simulating real-world operational 

scenarios for CCL DCs. Specifically, GORD provides 

detailed information about actual urban road networks, 

such as road lengths, travel times, and congestion indices. 

VRPI contains critical parameters like node coordinates, 

delivery requirements, and vehicle load constraints. By 

comprehensively analyzing and processing these datasets, 

the performance of the model can be evaluated under 

various operating conditions. The advantages of data sets 

are shown in Table 2.



142   Informatica 49 (2025) 135–148                                                                                                                               W. Yuan et al. 

 

Table 2: Data set comparison analysis 

Dataset 

Name 

Geographic 

Coverage 

Traffic Dynamic 

Characteristics 

Data 

Authenticity 
Applicability Advantages 

GORD 

Urban and 

suburban 

areas 

Includes road 

lengths, travel times, 

congestion 

coefficients, etc. 

Real - world 

urban road 

network data 

Suitable for urban 

and suburban 

distribution 

scenarios 

Provide detailed real 

urban road network 

information, can 

accurately simulate the 

actual traffic 

conditions 

VRPI 
Diverse 

scenarios 

Includes node 

coordinates, delivery 

demands, vehicle 

capacity constraints, 

etc. 

Classic 

problem 

instances 

Suitable for 

classic VRPI 

research 

Offers rich VRPI 

instances with key 

parameters for easy 

model validation and 

comparison 

Other 

data sets 

Geographical 

coverage 

varies 

The characteristics 

are not equal 

Authenticity 

varies 

The applicability 

is not equal 

Specific information 

needed for CCL may 

not be available 

In Table 2, the dataset used is more suitable for CCL 

distribution path planning than other datasets. The average 

runtime of the research algorithm is 120 seconds on the 

GORD dataset and 150 seconds on the VRPI dataset. To 

ensure reproducibility, the GA parameters are set as 

follows: population size (100), crossover rate (0.8), 

mutation rate (0.1), roulette wheel selection method, and 

maximum iteration count (500). For K-means clustering, 

the number of clusters is set to 5, initial centroids are 

randomly determined, and the maximum iteration count is 

100. When the change in the centroid position is less than 

0.001, it is considered that convergence has been 

achieved. This study first conducts a comparative analysis 

of the loss function and accuracy of the fusion algorithm 

for different delivery distances, as shown in Figure 8.
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Figure 8: Comparison of accuracy and loss rate at different distances

According to Figure 8 (a), as the NoI increases, the 

loss value continuously decreases and the accuracy 

continuously increases. At the 100th iteration, the loss 

value reaches 0.06 and the accuracy reaches 99.89%. In 

Figure 8 (b), as the NoI increases, the algorithm 

performance improves, and the initial loss value rapidly 

decreases, ultimately reaching a stable state. The accuracy 

improves relatively quickly in the early stage, and 

gradually stabilizes later on. At the 100th iteration, the loss 

value reaches 0.08 and the accuracy reaches 99.67%. In 

summary, the research algorithm has a high calculation 

accuracy and low error loss for both long-distance and 

close-range delivery. This study tests and compares the 

convergence speed and energy consumption of the fusion 

algorithm, the Handling Multiple Objectives with PSO 

(MOPSO) algorithm, and the Multi-Objective 

Optimization algorithm (NSGA-III), as shown in Figure 

9.
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Figure 9: Convergence speed and energy consumption of different methods

In Figure 9 (a), MOPSO achieves a maximum energy 

consumption of 176.1 J after 400 iterations. NSGA-III has 

the highest energy consumption at 400 iterations, reaching 

172.2 J. The fusion algorithm reaches its highest energy 

consumption of 167.5 J after 500 iterations, which is the 

lowest compared to the other two methods. In Figure 9 (b), 

the convergence speed of the fusion algorithm is the 

fastest, while the MOPSO method is the slowest. At 400 

iterations, the fusion algorithm, NSGA-III, and MOPSO 

reach their highest points of 94.8%, 83.2%, and 76.3%, 

and then stabilize. This indicates that using fusion 

algorithms results in better energy consumption and 

convergence speed. This study tests the processing 

performance of fusion algorithms, NSGA-III, and 

MOPSO methods in GORD and VRPI, as listed in Table 

3. 

Table 3: The index test results of different multi-

objective algorithms 

Dat

a set 
Method 

Average 

processing 

time/s 

Resource 

occupancy 

rate/% 

Average energy 

consumption/J 

GO

RD 

Fusion 

Algorith

m 

6.32 75.21 149.67 

NSGA-Ⅲ 7.68 78.95 155.82 

MOPSO 8.95 82.36 162.47 

VR

PI 

Fusion 

Algorith

m 

8.42 78.46 160.72 

NSGA-Ⅲ 9.16 81.47 167.53 

MOPSO 10.43 84.62 174.29 

 

In Table 3, the average task processing time of the 

fusion algorithm is controlled between 6.32 seconds and 

8.42 seconds, which shows significant optimization 

effects and higher processing efficiency compared to other 

methods. Meanwhile, the fusion algorithm has the lowest 

computational resource utilization rate, ranging from 

75.21% to 78.46%, indicating a higher efficiency in 

resource utilization. The average energy consumption 

value of the fusion algorithm is 149.67 J to 160.72 J, 

significantly lower than NSGA-III and MOPSO, and the 

energy optimization effect is significant. In summary, the 

fusion algorithm improves processing efficiency and 

reduces energy consumption and resource utilization 

through effective path planning. Its superior performance 

verifies its progressiveness and practical application value 

in CCL distribution path optimization. The study uses the 

t-test to analyze the treatment time, while the energy 

consumption data are evaluated by the Wilcoxon test, as 

shown in Table 4.

Table 4: Results of t-test and Wilcoxon test 

Data set Method 
Average processing 

time/s 
T test 

Average energy 
consumption/J 

Wilcoxon test 

GORD 

Fusion 

Algorithm 
6.32 ±0.41 - 149.67±8.2 - 

NSGA-Ⅲ 7.68 ±0.53 
t=8.71, p<0.001, Δ=1.36 

[1.02–1.70] 
155.82±9.6 

Z=3.89, p<0.002, Δ=6.15 

[3.21–9.09] 

MOPSO 8.95 ±0.62 
t=12.94, p<0.001, Δ=2.63 

[2.18–3.08] 
162.47±10.3 

Z=5.32, p<0.001, Δ=12.80 

[9.45–16.15] 

VRPI 

Fusion 
Algorithm 

8.42 ±0.49 - 160.72±9.1 - 

NSGA-Ⅲ 9.16 ±0.58 
t=7.23, p<0.001, Δ=0.74 

[0.51–0.97] 
167.53±10.2 

Z=3.12, p<0.008, Δ=6.81 
[3.95–9.67] 

MOPSO 10.43 ±0.71 
t=11.87, p<0.001, Δ=2.01 

[1.62–2.40] 
174.29±11.5 

Z=4.95, p<0.001, Δ=13.57 

[10.20–16.94] 
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In Table 4, the paired t-test results indicate that 

compared with NSGA-III, the average processing time of 

the research algorithm is reduced by 1.36 s, 2.63 s on 

GORD compared to MOPSO, and 0.74 s and 2.01 s on 

VRPI compared to MOPSO. Wilcoxon tests further reveal 

that the energy consumption of the proposed algorithm 

decreases by 6.15 J and 12.80 J on the GORD dataset, as 

well as 6.81 J and 13.57 J on the VRPI dataset. These 

findings confirm that the proposed fusion algorithm 

demonstrates statistically significant advantages in both 

computational speed and energy efficiency. 

3.2 Application testing of logistics 

distribution based on new fusion 

algorithm 

To validate the practical application effect of the new 

operation path mechanism, this study takes a certain fresh 

logistics enterprise as the research object. The cold chain 

delivery process is concentrated in the early morning 

hours, effectively avoiding the interference of traffic 

congestion on the experimental results. The experiment 

uses four trucks equipped with refrigeration units and cold 

storage insulation boxes to construct analysis samples 

based on actual distribution data from the enterprise. The 

comparison of the total delivery mileage between the 

fusion algorithm, NSGA-III, and MOPSO methods in 

urban and suburban areas is shown in Figure 10.
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Figure 10: Comparison of distribution process between urban and suburban areas

Figures 10 (a) and (b) show a comparison of 10 

delivery distances for urban and suburban customers using 

different methods. In Figure 10 (a), in the delivery of 

urban customers, the fusion algorithm shows shorter total 

delivery mileage in most testing rounds, and its results 

have higher stability and uniformity in 10 tests. In 

contrast, NSGA-III and MOPSO show higher peak 

delivery total mileage in some rounds, especially in the 

second and third tests, with delivery mileage exceeding 

140 km and 130 km, respectively. The fusion algorithm 

always maintains a low level, with a maximum value of 

about 100 km. In Figure 10 (b), the fusion algorithm also 

demonstrates superior performance in the delivery of 

suburban customers, with a maximum value of about 150 

km. Compared with the NSGA-III method and MOPSO 

method, which have repeatedly exceeded 150 km, the 

fusion algorithm has significant advantages. In summary, 

the fusion algorithm has more advantages in delivery in 

urban and suburban areas, with a shorter total mileage. 

The distribution path planning results of the fusion 

algorithm and NSGA-III are shown in Figure 11.
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Figure 11: Delivery path planning in two scenarios

In Figure 11 (a), each delivery path planned by the 

fusion algorithm has no overlapping parts. The path 

planned by NSGA-III in Figure 11 (b) has overlapping 

parts. Figure 11 intuitively shows that the delivery route 

planned by the fusion algorithm has a reduced route length 

compared to NSGA-III, and avoids the cost loss led by 
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path duplication. This study compares the fusion 

algorithm, NSGA-III, and MOPSO methods using 

average delivery cost and delivery efficiency as indicators, 

as shown in Figure 12.
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Figure 12: Distribution cost and efficiency test results

Figure 12 (a) shows the test results of the distribution 

costs of different methods. Figure 12(b) shows the average 

driving speed of distribution vehicles of different 

methods, which reflects the distance that vehicles can 

complete in a unit time. The higher the average speed, the 

longer the distance that vehicles can cover in the same 

time, indicating higher distribution efficiency. In Figure 

12 (a), the delivery cost of the fusion algorithm remains at 

the lowest level, with an average cost of about 1.2 yuan 

per kilometer. The average cost per kilometer for MOPSO 

is about 1.8 yuan, while for NSGA-III it is about 2.3 yuan. 

This indicates that fusion algorithms have significant 

advantages in reducing delivery costs. In Figure 12(b), the 

NSGA-III method achieves an average speed of 

approximately 30 km/h, while the MOPSO method 

reaches about 28 km/h. Notably, the hybrid algorithm 

demonstrates the most efficient performance with an 

average speed of around 40 km/h. In summary, fusion 

algorithms can not only effectively reduce delivery costs, 

but also achieve significant improvements in delivery 

efficiency, especially demonstrating excellent adaptability 

in complex delivery scenarios. 

4 Discussion 
The proposed fusion algorithm demonstrated 

significant advantages over NSGA-III and MOPSO in 

multiple aspects. The results of Table 1 and Figures 9-12 

indicated that the algorithm outperformed traditional 

algorithms in key indicators such as average processing 

time, resource utilization, and energy consumption. 

Specifically, on the GORD dataset, it reduced average 

processing time by up to 1.36 seconds compared to 

NSGA-III and by up to 2.63 seconds compared to 

MOPSO. Similarly, on the VRPI dataset, it achieved 

reductions of up to 0.74 seconds and 2.01 seconds. The 

notable decrease in resource utilization indicated more 

efficient resource allocation. In terms of energy 

consumption, compared with NSGA-III, the fusion 

algorithm reduced energy consumption by 6.15 j and 3.57 

j on the GORD and VRPI datasets, and by 12.8 j and 13.57 

j compared to MOPSO. The fusion algorithm also showed 

clear advantages in delivery cost and efficiency. Figures 

10 and 12 demonstrated lower delivery costs and higher 

efficiency in both urban and suburban deliveries. The 

average delivery cost per kilometer was significantly 

lower than NSGA-III and MOPSO, with delivery 

efficiency notably improved. These results highlighted the 

practical benefits of the fusion algorithm in real-world 

logistics operations. Statistical analysis of the study's 

outcomes confirmed the significance of these performance 

differences. The fusion algorithm consistently 

outperformed NSGA-III and MOPSO across multiple 

iterations and datasets. The reductions in processing time, 

resource utilization, and energy consumption were not 

coincidental but demonstrated a more efficient 

optimization approach. Statistical analysis confirmed that 

the fusion algorithm achieved significant performance 

improvements compared to existing methods such as 

NSGA-III and MOPSO, highlighting its novelty and 

practical value. When developing a CCL DC location 

model through practical deployment research, enterprises 

must consider multiple factors to ensure successful 

implementation and achieve expected benefits. First, 

compliance with laws and regulations is essential, 

requiring data encryption and access control measures to 

safeguard customer and business data security and 

privacy. Second, to implement optimized model results, 

seamless integration with existing warehousing, 

transportation, and vehicle scheduling systems is 

necessary. This may involve system interface 

development, data format conversion, and business 

process coordination. Finally, enterprises should conduct 

comprehensive cost-benefit evaluations to balance 

implementation costs against anticipated benefits, 

ensuring that optimized logistics operations do not 

compromise financial stability. Future research can further 

explore integration with other advanced algorithms or 

incorporate real-time data to enhance the model's 

adaptability and robustness in dynamic environments. 

5 Conclusion 
The prosperity of smart cities has made logistics 

distribution an important component of urban functions, 

and its efficiency and sustainability have become a hot 
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research topic. The traditional logistics model has many 

shortcomings in terms of efficiency and environmental 

protection. Therefore, the paper proposed a CCL-DCL 

model built on the fusion of K-means clustering and GA, 

aiming to enhance CCL delivery efficiency and cut down 

delivery costs. The model evaluated the clustering effect 

through contour coefficients and determined the optimal 

DCL. Subsequently, it combined the global search 

capability of GA to construct a multi-objective 

optimization model that comprehensively considers 

constraints such as real-time traffic status, cargo 

preservation time, and vehicle load limitations. In the 

experiment, the fusion algorithm performed well in 

optimizing the CCL delivery path. The average task 

processing time was controlled between 6.32 seconds and 

8.42 seconds. The resource utilization rate was the lowest, 

only 75.21% to 78.46%, while the average energy 

consumption was 149.67 J to 160.72 J. The delivery cost 

per kilometer of the fusion algorithm was about 1.2 yuan, 

and the delivery efficiency per kilometer was about 40 

km/h. In summary, the path planning model that integrated 

K-means and GA exhibited excellent adaptability in 

complex delivery scenarios, avoiding cost losses caused 

by route duplication. However, the study has inherent 

limitations. In real-world operations, demand fluctuations 

caused by promotional activities and seasonal changes 

often lead to suboptimal route planning, thereby reducing 

delivery efficiency. In addition, the real-time response 

capability of the model is insufficient, and there is a lack 

of effective data integration mechanism, which makes it 

difficult to adjust in a timely manner during traffic 

congestion emergencies, limiting its practicality in 

dynamic environments and potentially causing delays. In 

addition, the model has poor adaptability to random events 

such as weather changes or vehicle failures. This means 

that when the original plan becomes unfeasible, it cannot 

quickly generate new routes, thereby reducing the 

reliability of delivery. Future improvements will include 

implementing real-time data processing mechanisms, 

developing dynamic path adjustment algorithms, and 

building more flexible model frameworks to enhance the 

robustness and adaptability of the system in complex and 

constantly changing scenarios. 

Nomenclature 

Symbol Description 

( , )id X C  
the Euclidean distance 

calculation in K-means 

ijC  the j -th attribute of iC  

iC  the i -th Cluster Center (CC) 

point 

jX
 

the j -th attribute of X
 

X  a data entity 

m  a measure of data objects 

( )s i
 silhouette coefficient of 

sample i  

( )ia
 

average distance from sample

i to other samples in the same 

cluster 

( )ib
 

minimum average distance 

from sample i to samples in 

neighboring clusters 

1F  
the fixed cost calculation 

consisting of land leasing and 

personnel salaries 

jR
 

the unit price of land leasing 

or the salary of personnel per 

unit area 

jZ  the decision variable 

2F  the operating cost calculation 

of CCL DC 

(1)

jR  the daily operating cost of the 

logistics hub 

ijX
 

the transportation volume of 

goods from the supplier to the 

DC 

ijB
 

the unit transportation cost 

coefficient between the 

supplier and the DC. 

p  the scale adjustment 

parameter 

3F  

the total logistics cost 

covering the supply end to the 

cold chain transit node and 

then distributed to the end 

consumption node 

1C  the unit distance 

transportation cost 

jkB  
the path complexity 

coefficient from the DC to the 

demand point 

ijd  the length of the path from 

the supplier to the transit base 

jkX  
the transportation volume of 

materials from the supply end 

to the logistics node 

jkd
 

the average path length from 

the transit base to the 

consumer terminal 

4F  the overall spending of goods 

damage 

2C  
the unit cost of goods damage 


 the coefficient of cargo 

damage rate. 
v  the transportation speed 

5F  
refrigeration cost 

min F
 

objective function 

F  the total cost of CCL 

( )ˆA jC  

the analysis of the mean 

traffic convenience 

characteristics of service 

nodes within the radiation 

area 

ˆ
jC
 

the cold chain facility is 

deployed in the backup 

location. 

minA  
the minimum critical value of 

transportation convenience 
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required for the effective 

operation of the cold chain 

distribution system 

,
ˆ

j lt  the constraint on CCT time 

maxt̂  
the maximum transportation 

time 

, , max
ˆ ˆ0 ( )j l i jt t T + „  

the constraint on the spoilage 

of transported products 

,î jt  
the transportation time 

between the production base 

and the CCL center 

maxT  

the maximum allowable 

transportation time limit for 

cold chain products to 

maintain freshness 

,

0

, ˆ ˆ
n

i j j j

j l L

h C h Q







= 

  …  
the constraint on the supply-

demand matching relationship 

of CCL 

L  
the set of CCL centers that 

can serve demand point j . 

( )fit i  
the fitness of i  

  
a positive real number within 

the interval ( )0,1 . 

( )F i  
the total cost function value 

of genetic unit i . 

xP  
the probability of being 

selected 

n  the population size. 

xf  Individual fitness 

1C  the offspring chromosomes 

2C  the offspring chromosomes 

1P  the parent chromosomes 

2P  the parent chromosomes 

u  the crossover points 

s  the crossover points 

k  the gene position index 
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