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With the growing demand for fresh food, Cold Chain Logistics (CCL) faces challenges in meeting market
demands. To reduce logistics costs and improve delivery efficiency, a cold chain distribution path
planning model combining K-means algorithm and Genetic Algorithm (GA) has been proposed. The K-
means algorithm is used for cluster analysis to generate initial candidate locations for distribution
centers, while the GA determines optimal center positioning. By integrating the rapid convergence of K-
means with the global search capability of GA, this approach resolves local optimization issues. Cluster
effectiveness is evaluated using contour coefficients. Subsequently, a multi-objective optimization model
incorporating real-time traffic conditions, product freshness preservation time, and vehicle load
constraints is constructed. This model was validated using Google Open Routes Data (GORD) and
Vehicle Routing Problem (VRPI) instance datasets. The results indicated that the fusion algorithm
performed well in optimizing CCL distribution paths. The average task processing time of the fusion
algorithm was controlled between 6.32 seconds and 8.42 seconds, with the lowest resource utilization rate
of only 75.21% to 78.46%, and an average energy consumption value of 149.67 J to 160.72 J. The delivery
cost and efficiency per kilometer were approximately 1.2 yuan and 40 km/h. The dynamic response
capability of path planning has been significantly enhanced, effectively avoiding traffic congestion nodes
and reducing cargo losses in cold chain transportation. This study has achieved collaborative
optimization of distribution center location and path planning, which is of great significance for reducing
operating costs, improving distribution efficiency, and promoting the construction of smart logistics
systems.

Povzetek: Model K-means + genetski algoritem optimizira lokacije centrov in poti hladne verige ter

zmanjsa stroske in izgube z boljsim izogibanjem prometnim zastojem.

1 Introduction

The progress of society has led to a continuous
improvement in people's quality of life. Online shopping
and home delivery services have become a common way
of life for modern residents [1]. Due to the increasing need
for food, Cold Chain Transportation (CCT) is becoming a
vital industry in modern times [2]. In today's era, with the
continuous increase of population, people have a higher
demand for fresh food, thus requiring more efficient Cold
Chain Logistics (CCL) systems [3]. The current CCL
technology is relatively backward, and the CCL cannot
meet the requirements of consumers [4]. The overall
distribution system is still short of cold storage and
manpower support, causing higher expenditures for the
CCL system [5]. Many scholars have researched CCL path
planning. Bai et al. considered the complexity of road
networks and time-varying traffic conditions, studied the
low-carbon vehicle routing problem of CCL, and
proposed a corresponding model. Compared to traditional
methods, it could more accurately evaluate delivery costs
and Carbon Emissions (CE) [6]. Pu et al. incorporated

driving distance and actual loading capacity into the multi-
warehouse vehicle routing problem and proposed a mixed
integer programming model. Under this model, CE could
be reduced by traveling shorter distances, providing
methodological guidance for vehicle route planning in
terms of logistics costs and CE [7]. Yin proposed an
improved non-dominated sorting Genetic Algorithm (GA)
solution model based on the vehicle routing problem,
while meeting the customer's cargo and time
requirements. The path strategy calculated by this model
had significant value in reducing CE while meeting
customer demand for goods and time requirements [8]. Du
et al. found that existing express delivery companies are
facing the challenge of improving customer satisfaction
while ensuring total cost control. Therefore, researchers
have proposed a new multi-objective solution model for
joint distribution. This model could effectively reduce
costs and CE while guaranteeing higher customer
satisfaction [9]. Li et al. put forth an improved model that
combines the Carbon Trading (COT) mechanism to solve
the position path inventory problem. After optimizing the
location costs, transportation, inventory, etc., it was found
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that the model could effectively lower CE in the COT
environment, but the major environmental element for
cost reduction was CCL [10].

The K-means algorithm has become a classic tool in
clustering analysis due to its simplicity, efficiency, and
wide applicability. Ashari et al. used the K-means
algorithm for classification analysis and the Rand method
for optimization to determine the classification of flood-
affected areas in some regions. This method could quickly
perform cluster analysis [11]. Senol proposed a fusion K-
Means method based on multivariate kernel density
estimation to determine the optimal initial centroid for
clusters generated by K-means, which was affected by
randomly selected initial centroids. This algorithm used
kernel density estimation to find the best initial centroid
for identifying density regions, enabling fast and accurate
clustering while reducing the impact of initial centroids
[12]. The principle of GA is simple, it has strong global
search capability and is easy to combine with other
algorithms. Fu et al. proposed a PSO genetic hybrid
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algorithm built on phagocytosis to effectively schedule
massive tasks in cloud environments. This algorithm
ensured the particle diversity in the population, reduced
the possibility of getting stuck in local optima,
significantly shortened all the completion times of cloud
tasks, and had high precision [13]. Choudhury et al. put
forward a method that combines GA and detects fake news
on different datasets. This method achieved the highest
accuracy of 97% on the fake recruitment dataset [14].
Abedpour et al. developed a fusion method that combines
GA and K-means clustering methods to lower clustering
errors and optimize the overall performance of the
network system. Firstly, it utilized K-means for clustering,
and then used GA to allocate resources to devices with the
Minimum Error Rate (MER). Experiments have shown
that this method helps minimize latency and outperforms
other algorithms in the objective function and MER [15].
The summary and comparison of the literature are shown
in Table 1.

Table 1: Summary of literature content

Reference Method Optl.mlz.atlon Limitations This paper improves
Objectives
Bai et al Low-carbon _ Ignored perlshab_lllty Ipte_gra’_ted site-path
Delivery cost, CE & location-routing optimization+cargo loss
[6] VRP model . - :
integration constraint
Mixed integer CE reduction, No real-time traffic R_eal-tlme t_rafflc .
Puetal. [7] roarammin Logistics cost adaptation constraint+adaptive genetic
prog g g P crossover
Imoroved CE reduction, Single-objective focus; Multi-target site
Yin [8] P Customer demand & No location selection+path collaborative
NSGA-III . . L A
time windows optimization optimization
Co . S Dynamic
Du et al. Multi-objective Cost, CE, Customer Static constraints; No .
L . . . L transportation+energy
[9] joint delivery satisfaction energy optimization . L9
consumption minimization
Lietal. Carbon-trading Location cost, High computational K-means initialization
. Transport, Inventory, .
[10] mechanism CE complexity accelerates convergence
Ashariet  K-means + Rand Flood area Not applied to K-means is adapted to logistics
al. [11] method classification logistics node clustering
K-means + CIU.S t_er accuracy, No integration with K-means output is seamlessly
Senol [12] . Initial centroid - . . . i
Kernel density S routing algorithms integrated with GA routing
optimization
Fu et al Task scheduling Not tailored for Customized cold chain
[13] ' PSO-GA hybrid efficiency, logistics constraints. perishability+vehicle load

Completion time

constraints

In summary, the current CCL faces challenges in
meeting the growing market demand for fresh food
products, primarily due to high costs, low efficiency,
severe cargo loss, and excessive CE. The existing methods
for locating and routing cold chain Distribution Centers
(DCs) exhibit limitations, such as insufficient global
search capability, slow convergence speed, and limited
handling of multidimensional constraints, making them
unsuitable for handling complex real-world scenarios. To
achieve multi-objective collaborative optimization in cold
chain DC location and route planning, this study

innovatively proposes a hybrid model integrating K-
means clustering with GA. The study employs K-means
for initial candidate center generation and combines GA's
global search capabilities to determine optimal DC
locations. The clustering effectiveness is evaluated using
silhouette coefficients, and a multi-objective optimization
model is constructed to comprehensively consider real-
time traffic conditions, product freshness requirements,
and vehicle load restrictions. Experimental validation
through Google Open Routes Data (GORD) and Vehicle
Routing Problem (VRPI) datasets demonstrates the
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model's effectiveness in optimizing CCL routes. The study
aims to reduce distribution costs, enhance efficiency, and
minimize energy consumption, providing scientific
decision support for optimal site selection. This approach
expands industry applications and promotes intelligent
logistics system development while significantly reducing
CE, advancing sustainable growth, and environmental
protection in the logistics sector.

2 Methods and materials

2.1 Design of CCL-DCL model based on
K-means algorithm

The core goal of CCL-DCL is to achieve multi-
objective collaborative optimization of construction cost,
transportation  efficiency, service quality, and
environmental sustainability [16]. However, CCL's DCL
faces challenges such as difficulty in accurately predicting
demand fluctuations, high construction and operational
costs, insufficient data, and limited technical support. The
K-means has become a classic tool in clustering analysis
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since its simplicity, efficiency, and wide applicability.
Therefore, this study uses K-means to perform DCL on
CCL. The Euclidean distance calculation in K-means is
given by equation (1).

n 2
d(x,C)=,[>(X;-C;)

j=1
In equation (1), C; is the ] -th attribute of C;. C; is
the i -th CC point. X isthe j -thattribute of X . X isa
data entity. M isameasure of data objects. The evaluation

of clustering effect often uses contour coefficient as a
standard, as shown in formula (2).

p® _g®
max {b®,a®} @)

In equation (2), a® and b" are the average
distances between the remaining sample points and all
other sample points within the adjacent cluster. The
contour coefficient when S® represents i . The
workflow of K-means is displayed in Figure 1.
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Figure 1: K-means algorithm workflow diagram

In Figure 1, K-means first measures the distance
between all samples and the Cluster Center (CC) based on
Euclidean distance, and divides each sample into clusters
corresponding to the centroid of the nearest neighbor.
Subsequently, it recalculates the centroid coordinates
based on the current cluster members and defines it as the
geometric mean of the samples within the cluster. The
system iteratively performs sample allocation and centroid
update operations until the pre-centroid coordinates are
stable or the maximum Number of Iterations (Nol) is
reached, thereby achieving dynamic optimization-based
clustering partitioning. Finally, K centroids and the data
allocation results for each class are output [16, 17]. The
fixed cost calculation consisting of land leasing and
personnel salaries is shown in equation (3).

R =ZleZ; ®)
j=

In equation (3), R; is the unit price of land leasing or

the salary of personnel per unit area. Z; is the decision

variable. The operating cost calculation of CCL DC is
shown in equation (4).

) P
FZ :ZRj (qu ij j (4)
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In equation (4), R; ™ is the daily operating cost of the

logistics hub. X; is the transportation volume of goods

from the supplier to the DC. B;; is the unit transportation

cost coefficient between the supplier and the DC. P is the
scale adjustment parameter. The transportation cost of the
entire supply chain process is calculated. The total
logistics cost covering the supply end to the cold chain
transit node and then distributed to the end consumption
node is shown in equation (5).

F, = ZZC X;d;B,Z; +>. > CX,d,Z,B,

) ©®)
i=1 j=1 j=1 k=1

In equation (5), C, is the unit distance transportation
cost. By is the path complexity coefficient from the DC
to the demand point. d; is the length of the path from the
supplier to the transit base. X; is the transportation
volume of materials from the supply end to the logistics
node. d; is the average path length from the transit base

to the consumer terminal. The overall spending of goods
damage is given by equation (6).

F4:C2§gxij[l MVBZ}rC,Z‘kZ;‘X‘k(l e Vv ]
(6)
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In equation (6), C, is the unit cost of goods damage.
0 is the coefficient of cargo damage rate. V is the
transportation speed. To ensure constant temperature in
the carriage, a significant amount of refrigeration costs
will be incurred during transportation, as shown in
equation (7).

m m n
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CCL refers to a logistics network that maintains a low
temperature throughout the entire process based on the
characteristics of the transported goods, to maintain the
quality of the goods from production to delivery to
consumers. The CCL delivery process is shown in Figure
2.
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Figure 2: CCL distribution process

In Figure 2, the operation process of CCL starts from
product information display and production, and involves
product production and primary processing at the
production base. After pre-cooling, processing, and
classification, the product enters the cold chain storage
center for refrigeration and preservation. Subsequently,
quality inspection agencies conduct quality checks on
secondary products to ensure compliance with standards.
Third-party logistics companies transport products from
storage centers to CCL DCs. The DC delivers products to
demand outlets through cold chain transport vehicles.
Finally, consumers purchase cold chain items through e-
commerce platforms. Various kinds of CCL products have
different characteristics and require different temperatures
to be kept during CCT. As a result, to avoid losses caused
by unbefitting temperature, standardized and unified
operations can be carried out. Classifying the CCL
products and suitable temperature is exhibited in Figure 3.

Vegetables and fruits(1-15°C)

Primary . .
— agricultural Meat, egg, and aquatic products(0-4°C)
products .
Flower products(1-5C)
) — Quick frozen products(0-18°C)
Cold chain Processing
products J | agricultural ——|ce cream dairy products(-23--25C)
products
— Packaged cooked food(0-4°C)
Special | Drug(2-8C)
. goods |

-~ Vaccines(2-8°C)

Figure 3: Classification of common cold chain items and
their suitable temperatures

Figure 3 shows the ideal storage temperature range for
certain specific products. This provides an important
reference for ensuring the best quality of the product.
However, in addition to paying attention to these fixed
suitable temperatures, it is also necessary to closely
monitor temperature control at various phases of
transportation. Changes in environmental conditions
during the handover of items may cause fluctuations in the
surrounding temperature. Therefore, to ensure that the
quality of the product is not affected, the temperature rise
limit during transportation must be strictly controlled
below -15 °C. In addition, before loading the transport
vehicle, it is necessary to ensure that the carriage has been
pre-cooled to a temperature of -10 °C or lower to maintain
a suitable temperature environment for the product
throughout the entire transportation process.

2.2 Optimization of site selection model
integrating K-means clustering and
GA

K-means has efficient data processing capabilities and
good adaptability for CCL-DCL, but is very sensitive to
the selection of initial centroids and performs poorly in
handling dynamic data or scenarios that require real-time
adjustments [18]. The principle of genetic algorithm is
simple, easy to implement and combine with other
algorithms, with strong scalability and global search
ability, which can effectively solve various types of
problems. Therefore, this study integrates K-means with
GA. The fast convergence ability of K-means can
accelerate the search process of GA, while the global
search ability of GA can compensate for the local optima
of K-means. In addition, the robustness and flexibility of
GA can enhance the performance of K-means in complex
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data distributions. The GA operation process is shown in

Figure 4.
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Figure 4: GS operation process

In the GA operation of Figure 4, the first step is to
construct an algorithm parameter system. Based on
decision vector features, the gene encoding dimension is
determined, and chromosome sequence construction and
population initialization configuration are performed. The
next step is to activate the fitness evaluation mechanism,
by establishing a nonlinear mapping model between the
objective function and fitness values, to complete the
quantitative evaluation of individual fitness. In the
evolutionary stage, an optimized population is generated
through selection operators, crossover recombination, and
mutation mechanisms, and fitness evaluation and genetic
operations are iteratively performed until the termination
criteria of evolution are met. After the algorithm
terminates, it is necessary to perform reverse decoding on
the optimal gene sequence and output the final
optimization solution [19]. This study takes the total cost
of CCL as the determining factor for site selection, and
constructs the objective function as shown in equation (8).
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mnF=F+F+K+F,+FK (8)

In equation (8), F is the total cost of CCL. The
formula for setting transportation convenience restrictions
for site selection is shown in equation (9).

A(C; ) A Vi ©
. A(S)) .

In equation (9), denotes the analysis of the

mean traffic convenience characteristics of service nodes

within the radiation area Ci after the cold chain facility is

deployed in the backup location. A is the minimum
critical value of transportation convenience required for
the effective operation of the cold chain distribution
system. The constraint on CCT time is shown in equation
(10).

e Vo | (10)

I\
J |u

~

In equation (10), t means the maximum
transportation time. The constraint on the spoilage of
transported products is shown in equation (11).

0, N, +£ ) < T

max

(1)

b is the transportation time

T

max s

In equation (11),

between the production base and the CCL center.
the maximum allowable transportation time limit for cold
chain products to maintain freshness. The constraint on the
supply-demand matching relationship of CCL is shown in
equation (12).

Zh,J<C Zh

lel

(12)

In equation (12), |— is the set of CCL centers that can

serve demand point )}, chromosome encoding is the
primary step in applying GA. Encoding is the process of
mapping the solution state space. Figure 5 shows the
chromosome coding diagram.
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Figure 5: Chromosome coding diagram
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In Figure 5, the chromosome encoding diagram
illustrates how to select different n values through binary
encoding of chromosome X, and displays the detailed data
corresponding to these n values in matrix Y. Among them,
chromosome X is a binary sequence with a length of 5,
indicating whether to select certain values from n=1 to
n=5. Matrix Y is a 2D table with rows representing
different values of n. Columns represent different values
of m, and the numbers in each cell represent a certain
indicator or data. The columns of matrix Y are grouped
into k=1, k=2, and k=3, with each group containing
multiple values of m. In GA, the fitness function is a
standard utilized to determine the chromosomes quality of
the GA population. The corresponding fitness function
selected is given by equation (13).

- 1
fit(i) Fi)r s (13)
In equation (13), “ is a positive real number within

01)

the interval ( . F () denotes the total cost function

value of genetic unit i fit(P) is the fitness of | . The #
determined by the research through many experiments is

set to 0.1. When # varies between 0.05 and 0.2, the
performance trend of the algorithm remains consistent.

When # is 0.1, the best balance can be achieved between
cost minimization and algorithm stability. The strategy
selection section constructs a probability function for
elimination based on individual fitness, as shown in
equation (14).

P

X

20k,

1-f,
— (14)

n=1n=2n=3 n=4 n

A

=5

parent 1 (1] 0 1] 0] 1)
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PX

In equation (14), is the probability of being

selected. Mis the population size. f is individual fitness.
The genetic recombination mechanism achieves offspring
generation by exchanging homologous segments of
parental gene sequences. This process involves the
localization of random breakpoints and the exchange of
genetic material following Mendel's laws. To improve the
adaptability of algorithms in processing and analysis, it is
necessary to automatically adjust and optimize their
processing methods, order, parameter settings,
boundaries, and constraints based on the statistical
distribution and structural characteristics of data [20]. The
study introduces a two-point crossover algorithm. Two
point crossover refers to randomly selecting two crossover
points between two parental individuals, and then
exchanging gene fragments between these two crossover
points to produce two new offspring individuals. The
expression is shown in equation (15).

Pl k<u
Cl, =4P2, u<k<s
PL, k>s
(15)
P2, k<u
C2,=<PL, u<k<s
P2, k>s

In equation (15), Cl ang C2 represent the offspring
chromosomes. Pl and P2 represent the parent
chromosomes. Y and S represent the crossover points.

k represents the gene position index, where

N The genetic crossover operation diagram
is shown in Figure 6.
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Figure 6: Schematic diagram of genetic crossover operation
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In Figure 6, taking the parent individuals P1 and P, as
an example, the specific implementation of their crossover
process is as follows: Firstly, an adaptive crossover
probability model is constructed, which dynamically
selects the second and third gene loci as crossover
boundaries based on the current iteration times and
population fitness variance. The next step is to perform
gene fragment exchange - P retains the first 2 genes and
inherits the last 3 genes of P, to generate offspring C,
while P, retains the first 2 genes and inherits the last 3
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genes of P; to generate offspring C.. In response to the
possible phenomenon of gene homogenization in Cy, a
gene position reversal protection mechanism will be
triggered, and the final output will be a corrected offspring
C.. In summary, a crossover process involves two parent
individuals and their offspring individuals. The specific
crossover details are generated by selecting gene
fragments from the parent individuals and combining
them to create new offspring individuals. The fusion
process of K-means and GA is shown in Figure 7.

Output

Convergence?

l Adaptive crossover

A

Fitness assessment
A

Figure 7: The fusion process of K-means and GA

As shown in Figure 7, the integration process of K-
means and GA works as follows: First, the coordinates of
demand nodes are input. Then, K-means clustering is
performed and the k value is continuously adjusted until
the contour coefficients met the requirements, at which
point the cluster centers are extracted. Next, binary
encoding is applied to the cluster center coordinates to
initialize the GA population. The next step is to perform
an iterative process, evaluate fitness, and check if
clustering constraints are met. If satisfied, the total cost
and dynamic constraints need to be calculated.
Subsequently, adaptive crossover and mutation operations
will be performed to determine convergence. If it does not
converge, it will return to fitness evaluation for further
iteration; If converged, it will output the optimal position
and path.

3 Results

3.1 Performance testing of CCL delivery
based on a new fusion algorithm

The experimental environment includes a CPU (Intel
Core i9-11900K), GPU (NVIDIA RTX 3090), and 64GB

DDR4 3200MHz memory. The operating system is
Ubuntu 20.04 LTS, and the development framework is
based on Python 3.8. The core logic of the algorithm is
implemented through NumPy and SciPy. Path
optimization parallel computing is completed by PyTorch.
The study utilizes the GORD dataset and VRPI instance
datasets to conduct detailed analysis of sample data,
thereby validating the model's effectiveness and
practicality. 500 sample data points are selected from the
GORD dataset and 300 sample data points are selected
from the VRPI dataset for the experiment. These samples
encompass key characteristics including urban/suburban
traffic conditions, node distribution, and delivery
demands, effectively simulating real-world operational
scenarios for CCL DCs. Specifically, GORD provides
detailed information about actual urban road networks,
such as road lengths, travel times, and congestion indices.
VRPI contains critical parameters like node coordinates,
delivery requirements, and vehicle load constraints. By
comprehensively analyzing and processing these datasets,
the performance of the model can be evaluated under
various operating conditions. The advantages of data sets
are shown in Table 2.
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Table 2; Data set comparison analysis
Dataset Geographic Traffic Dynamic Data S
Name Coverage Characteristics Authenticity Applicability Advantages
Provide detailed real
Includes road Suitable for urban urban road network
Urban and . Real - world . .
lengths, travel times, and suburban information, can
GORD suburban ; urban road S .
congestion distribution accurately simulate the
areas 2 network data : .
coefficients, etc. scenarios actual traffic
conditions
Includes node Offers rich VRPI
Diverse coordinates, delivery Classic Suitable for instances with key
VRPI : demands, vehicle problem classic VRPI parameters for easy
scenarios . ; ! >
capacity constraints, instances research model validation and
etc. comparison
Other Geographical The characteristics Authenticity The applicability Specific information
coverage . . needed for CCL may
data sets . are not equal varies is not equal )
varies not be available

In Table 2, the dataset used is more suitable for CCL
distribution path planning than other datasets. The average
runtime of the research algorithm is 120 seconds on the
GORD dataset and 150 seconds on the VRPI dataset. To
ensure reproducibility, the GA parameters are set as
follows: population size (100), crossover rate (0.8),
mutation rate (0.1), roulette wheel selection method, and
maximum iteration count (500). For K-means clustering,
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Figure 8: Comparison of accuracy

According to Figure 8 (a), as the Nol increases, the
loss value continuously decreases and the accuracy
continuously increases. At the 100th iteration, the loss
value reaches 0.06 and the accuracy reaches 99.89%. In
Figure 8 (b), as the Nol increases, the algorithm
performance improves, and the initial loss value rapidly
decreases, ultimately reaching a stable state. The accuracy
improves relatively quickly in the early stage, and
gradually stabilizes later on. At the 100th iteration, the loss

the number of clusters is set to 5, initial centroids are
randomly determined, and the maximum iteration count is
100. When the change in the centroid position is less than
0.001, it is considered that convergence has been
achieved. This study first conducts a comparative analysis
of the loss function and accuracy of the fusion algorithm
for different delivery distances, as shown in Figure 8.

. Training History
251
290k —— Train Loss
g~ Val Loss
3
Q
% 15F | — — - Train Accuracy
3 \ —— Val Accuracy
|
10 F- = e e AR T T T R T E E T T
,r‘”i '
/
0.5F =
\/\H‘\—\f\_\m
0.0 1 1 »
0 20 40 60 80 100
Epoch

(b) Close range delivery
and loss rate at different distances

value reaches 0.08 and the accuracy reaches 99.67%. In
summary, the research algorithm has a high calculation
accuracy and low error loss for both long-distance and
close-range delivery. This study tests and compares the
convergence speed and energy consumption of the fusion
algorithm, the Handling Multiple Objectives with PSO
(MOPSO)  algorithm, and the Multi-Objective
Optimization algorithm (NSGA-II11), as shown in Figure
9.
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Figure 9: Convergence speed and energy consumption of different methods

In Figure 9 (a), MOPSO achieves a maximum energy
consumption of 176.1 J after 400 iterations. NSGA-11I has
the highest energy consumption at 400 iterations, reaching
172.2 J. The fusion algorithm reaches its highest energy
consumption of 167.5 J after 500 iterations, which is the
lowest compared to the other two methods. In Figure 9 (b),
the convergence speed of the fusion algorithm is the
fastest, while the MOPSO method is the slowest. At 400
iterations, the fusion algorithm, NSGA-I1I, and MOPSO
reach their highest points of 94.8%, 83.2%, and 76.3%,
and then stabilize. This indicates that using fusion
algorithms results in better energy consumption and
convergence speed. This study tests the processing
performance of fusion algorithms, NSGA-III, and
MOPSO methods in GORD and VRPI, as listed in Table
3.

Table 3: The index test results of different multi-
objective algorithms

Fusion
Algorith 8.42 78.46 160.72
VR m
PI NSGA-III 9.16 81.47 167.53
MOPSO 10.43 84.62 174.29

In Table 3, the average task processing time of the
fusion algorithm is controlled between 6.32 seconds and
8.42 seconds, which shows significant optimization
effects and higher processing efficiency compared to other
methods. Meanwhile, the fusion algorithm has the lowest
computational resource utilization rate, ranging from
75.21% to 78.46%, indicating a higher efficiency in
resource utilization. The average energy consumption
value of the fusion algorithm is 149.67 J to 160.72 J,
significantly lower than NSGA-I1I and MOPSO, and the
energy optimization effect is significant. In summary, the
fusion algorithm improves processing efficiency and
reduces energy consumption and resource utilization

DA \errog p';:‘)\(/:eersi?re\g OFéizc;l;Lccey Average energy through effective path planning. Its superior performance
aset timels i) consumption/J yerlfles |t_s progressiveness apd_pra_ctlcal application value
Fusion in CCL distribution path optimization. The study uses the
Algorith 6.32 75.21 149.67 t-test to analyze the treatment time, while the energy
GO " consumption data are evaluated by the Wilcoxon test, as
RD NSGA-III 7.68 78.95 155.82 shown in Table 4.
MOPSO 8.95 82.36 162.47
Table 4: Results of t-test and Wilcoxon test
Average processing Average energy -
Data set Method timels T test consumption/J Wilcoxon test
Fusion
Algorithm 6.32 £0.41 149.67+8.2
i t=8.71, p<0.001, A=1.36 Z=3.89, p<0.002, A=6.15
GORD NSGA-III 7.68 £0.53 [1.02-1.70] 155.82+9.6 [3.21-9.00]
1=12.94, p<0.001, A=2.63 Z=5.32, p<0.001, A=12.80
MOPSO 8.95 £0.62 [2.18-3.08] 162.47+10.3 [9.45-16.15]
Fusion
Algorithm 8.42 +0.49 160.72+9.1
) t=7.23, p<0.001, A=0.74 7=3.12, p<0.008, A=6.81
VRPI NSGA-III 9.16 +0.58 [0.51.0.97] 167.53+10.2 [3.95-9.67]
t=11.87, p<0.001, A=2.01 Z=4.95, p<0.001, A=13.57
MOPSO 10.43 £0.71 [1.62-2.40] 174.29+11.5 10,20 16.94]
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In Table 4, the paired t-test results indicate that
compared with NSGA-III, the average processing time of
the research algorithm is reduced by 1.36 s, 2.63 s on
GORD compared to MOPSO, and 0.74 s and 2.01 s on
VRPI compared to MOPSO. Wilcoxon tests further reveal
that the energy consumption of the proposed algorithm
decreases by 6.15 J and 12.80 J on the GORD dataset, as
well as 6.81 J and 13.57 J on the VRPI dataset. These
findings confirm that the proposed fusion algorithm
demonstrates statistically significant advantages in both
computational speed and energy efficiency.
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3.2 Application testing of logistics
distribution based on new fusion
algorithm

To validate the practical application effect of the new
operation path mechanism, this study takes a certain fresh
logistics enterprise as the research object. The cold chain
delivery process is concentrated in the early morning
hours, effectively avoiding the interference of traffic
congestion on the experimental results. The experiment
uses four trucks equipped with refrigeration units and cold
storage insulation boxes to construct analysis samples
based on actual distribution data from the enterprise. The
comparison of the total delivery mileage between the
fusion algorithm, NSGA-IIl, and MOPSO methods in
urban and suburban areas is shown in Figure 10.

—m-- Fusion Algorithm  —@— NSGA-lll A~

-

o

N
T

[

{2}

[ee]
T

juny

Ny

o
T

Total delivery mileage /km
=
.
=

1 2 3 4 5 6 7 8 9 10
Number of tests

(a) Urban distribution

©
(o]

Number of tests
(b) Suburban distribution

Figure 10: Comparison of distribution process between urban and suburban areas

Figures 10 (a) and (b) show a comparison of 10
delivery distances for urban and suburban customers using
different methods. In Figure 10 (a), in the delivery of
urban customers, the fusion algorithm shows shorter total
delivery mileage in most testing rounds, and its results
have higher stability and uniformity in 10 tests. In
contrast, NSGA-IIl and MOPSO show higher peak
delivery total mileage in some rounds, especially in the
second and third tests, with delivery mileage exceeding
140 km and 130 km, respectively. The fusion algorithm
always maintains a low level, with a maximum value of
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about 100 km. In Figure 10 (b), the fusion algorithm also
demonstrates superior performance in the delivery of
suburban customers, with a maximum value of about 150
km. Compared with the NSGA-III method and MOPSO
method, which have repeatedly exceeded 150 km, the
fusion algorithm has significant advantages. In summary,
the fusion algorithm has more advantages in delivery in
urban and suburban areas, with a shorter total mileage.
The distribution path planning results of the fusion
algorithm and NSGA-111 are shown in Figure 11.
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Figure 11: Delivery path planning in two scenarios

In Figure 11 (a), each delivery path planned by the
fusion algorithm has no overlapping parts. The path
planned by NSGA-III in Figure 11 (b) has overlapping

parts. Figure 11 intuitively shows that the delivery route
planned by the fusion algorithm has a reduced route length
compared to NSGA-III, and avoids the cost loss led by
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path duplication.
algorithm, NSGA-III,

This study compares the fusion
and MOPSO methods using
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average delivery cost and delivery efficiency as indicators,
as shown in Figure 12.

(] NSGA-111 [ ] MOPSO Fusion Algorithm

Figure 12: Distribution cost and efficiency test results

Figure 12 (a) shows the test results of the distribution
costs of different methods. Figure 12(b) shows the average
driving speed of distribution vehicles of different
methods, which reflects the distance that vehicles can
complete in a unit time. The higher the average speed, the
longer the distance that vehicles can cover in the same
time, indicating higher distribution efficiency. In Figure
12 (a), the delivery cost of the fusion algorithm remains at
the lowest level, with an average cost of about 1.2 yuan
per kilometer. The average cost per kilometer for MOPSO
is about 1.8 yuan, while for NSGA-I11 it is about 2.3 yuan.
This indicates that fusion algorithms have significant
advantages in reducing delivery costs. In Figure 12(b), the
NSGA-IIl method achieves an average speed of
approximately 30 km/h, while the MOPSO method
reaches about 28 km/h. Notably, the hybrid algorithm
demonstrates the most efficient performance with an
average speed of around 40 km/h. In summary, fusion
algorithms can not only effectively reduce delivery costs,
but also achieve significant improvements in delivery
efficiency, especially demonstrating excellent adaptability
in complex delivery scenarios.

4 Discussion

The proposed fusion algorithm demonstrated
significant advantages over NSGA-IIl and MOPSO in
multiple aspects. The results of Table 1 and Figures 9-12
indicated that the algorithm outperformed traditional
algorithms in key indicators such as average processing
time, resource utilization, and energy consumption.
Specifically, on the GORD dataset, it reduced average
processing time by up to 1.36 seconds compared to
NSGA-IIl and by up to 2.63 seconds compared to
MOPSO. Similarly, on the VRPI dataset, it achieved
reductions of up to 0.74 seconds and 2.01 seconds. The
notable decrease in resource utilization indicated more
efficient resource allocation. In terms of energy
consumption, compared with NSGA-III, the fusion
algorithm reduced energy consumption by 6.15 j and 3.57
jonthe GORD and VRPI datasets, and by 12.8 j and 13.57
j compared to MOPSO. The fusion algorithm also showed
clear advantages in delivery cost and efficiency. Figures

10 and 12 demonstrated lower delivery costs and higher
efficiency in both urban and suburban deliveries. The
average delivery cost per kilometer was significantly
lower than NSGA-IIl and MOPSO, with delivery
efficiency notably improved. These results highlighted the
practical benefits of the fusion algorithm in real-world
logistics operations. Statistical analysis of the study's
outcomes confirmed the significance of these performance
differences. The fusion algorithm  consistently
outperformed NSGA-III and MOPSO across multiple
iterations and datasets. The reductions in processing time,
resource utilization, and energy consumption were not
coincidental but demonstrated a more efficient
optimization approach. Statistical analysis confirmed that
the fusion algorithm achieved significant performance
improvements compared to existing methods such as
NSGA-III and MOPSO, highlighting its novelty and
practical value. When developing a CCL DC location
model through practical deployment research, enterprises
must consider multiple factors to ensure successful
implementation and achieve expected benefits. First,
compliance with laws and regulations is essential,
requiring data encryption and access control measures to
safeguard customer and business data security and
privacy. Second, to implement optimized model results,

seamless integration with existing warehousing,
transportation, and vehicle scheduling systems is
necessary. This may involve system interface

development, data format conversion, and business
process coordination. Finally, enterprises should conduct
comprehensive cost-benefit evaluations to balance
implementation costs against anticipated benefits,
ensuring that optimized logistics operations do not
compromise financial stability. Future research can further
explore integration with other advanced algorithms or
incorporate real-time data to enhance the model's
adaptability and robustness in dynamic environments.

5 Conclusion

The prosperity of smart cities has made logistics
distribution an important component of urban functions,
and its efficiency and sustainability have become a hot
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research topic. The traditional logistics model has many
shortcomings in terms of efficiency and environmental
protection. Therefore, the paper proposed a CCL-DCL
model built on the fusion of K-means clustering and GA,
aiming to enhance CCL delivery efficiency and cut down
delivery costs. The model evaluated the clustering effect
through contour coefficients and determined the optimal
DCL. Subsequently, it combined the global search
capability of GA to construct a multi-objective
optimization model that comprehensively considers
constraints such as real-time traffic status, cargo
preservation time, and vehicle load limitations. In the
experiment, the fusion algorithm performed well in
optimizing the CCL delivery path. The average task
processing time was controlled between 6.32 seconds and
8.42 seconds. The resource utilization rate was the lowest,
only 75.21% to 78.46%, while the average energy
consumption was 149.67 J to 160.72 J. The delivery cost
per kilometer of the fusion algorithm was about 1.2 yuan,
and the delivery efficiency per kilometer was about 40
km/h. In summary, the path planning model that integrated
K-means and GA exhibited excellent adaptability in
complex delivery scenarios, avoiding cost losses caused
by route duplication. However, the study has inherent
limitations. In real-world operations, demand fluctuations
caused by promotional activities and seasonal changes
often lead to suboptimal route planning, thereby reducing
delivery efficiency. In addition, the real-time response
capability of the model is insufficient, and there is a lack
of effective data integration mechanism, which makes it
difficult to adjust in a timely manner during traffic
congestion emergencies, limiting its practicality in
dynamic environments and potentially causing delays. In
addition, the model has poor adaptability to random events
such as weather changes or vehicle failures. This means
that when the original plan becomes unfeasible, it cannot
quickly generate new routes, thereby reducing the
reliability of delivery. Future improvements will include
implementing real-time data processing mechanisms,
developing dynamic path adjustment algorithms, and
building more flexible model frameworks to enhance the
robustness and adaptability of the system in complex and
constantly changing scenarios.

Nomenclature

Symbol Description

d(X,C,) the Eucl_ldegn distance
calculation in K-means

C; the j -th attribute of C

c the i -th Cluster Center (CC)

: point

X; the J -th attribute of X

X a data entity

m a measure of data objects

s(i) silhouette coefficient of
samplei
average distance from sample

a® i to other samples in the same
cluster

p®

N(') M

Anin
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minimum average distance
from samplei to samples in
neighboring clusters

the fixed cost calculation
consisting of land leasing and
personnel salaries

the unit price of land leasing
or the salary of personnel per
unit area

the decision variable

the operating cost calculation
of CCL DC

the daily operating cost of the
logistics hub

the transportation volume of
goods from the supplier to the
DC

the unit transportation cost
coefficient between the
supplier and the DC.

the scale adjustment
parameter

the total logistics cost
covering the supply end to the
cold chain transit node and
then distributed to the end
consumption node

the unit distance
transportation cost

the path complexity
coefficient from the DC to the
demand point

the length of the path from
the supplier to the transit base
the transportation volume of
materials from the supply end
to the logistics node

the average path length from
the transit base to the
consumer terminal

the overall spending of goods
damage

the unit cost of goods damage

the coefficient of cargo
damage rate.
the transportation speed

refrigeration cost

objective function

the total cost of CCL

the analysis of the mean
traffic convenience
characteristics of service
nodes within the radiation
area

the cold chain facility is
deployed in the backup
location.

the minimum critical value of
transportation convenience
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required for the effective
operation of the cold chain
distribution system

the constraint on CCT time

the maximum transportation
max time
P = the constraint on the spoilage
Oy 83(85 +81) < T of transported productg )
the transportation time
i between the production base
and the CCL center
the maximum allowable
= transportation time limit for
max cold chain products to
maintain freshness
the constraint on the supply-
demand matching relationship
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leL of CCL

, the set of CCL centers that
L can serve demand point J .
fit(i) the fitness of i

a positive real number within

o the interval (0,1).
E(i the total cost function value

@) of genetic unit i .
P the probability of being

X selected
f the population size.
f, Individual fitness
Cl the offspring chromosomes
Cc2 the offspring chromosomes
P1 the parent chromosomes
P2 the parent chromosomes
u the crossover points
S the crossover points
k the gene position index
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