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With the increasing complexity of English listening comprehension tasks, the traditional single acoustic
model has made it difficult to cope with the high noise interference and multi-level semantic
understanding requirements in complex speech environments. Based on the research on the design of
the English listening comprehension model based on the Transformer-ResNet hybrid model, an
innovative architecture combining residual convolutional network and self-attention mechanism is
proposed, aiming to improve the model's performance in long-term dependency modeling and local
acoustic pattern recognition. A parallel dual-stream feature extraction architecture is designed, using
ResNet to extract fine-grained acoustic features and the Transformer self-attention mechanism to
capture long-term semantic dependencies. In order to solve the alignment problem between
phoneme-level and semantic-level features, a cross-layer connection strategy is proposed, and the
robustness of the model is improved by multi-scale feature fusion. Due to the limitation of real-time and
computing resources, model compression and distillation technology are adopted to optimize computing
efficiency, and an efficient end-to-end speech understanding system is realized by combining the
pre-trained language model. The optimized hybrid model achieved an overall accuracy of 78.9% on the
test set, demonstrating a 10.1% relative improvement over the baseline LSTM model. It achieved a WER
of 9.8% in 87% of multi-speaker scenarios and a time series consistency score of 66.6 in consecutive
speech frame processing. The Transformer module contributed a 32% performance gain in long-term
dependency modeling. The optimized hybrid model achieved an overall accuracy of 78.9% on the test
set, outperforming the baseline LSTM model by 10.1% in accuracy. Notably, it demonstrated a 15.2%
relative reduction in word error rate (WER) and a 43% inference speedup via model compression
techniques. Experiments on the LibriSpeech dataset under multi-speaker (87% scenarios) and noisy
conditions (-5dB SNR) showed robust performance with a WER of 9.8%.

Povzetek: Studija predlaga hibridni model globokega ucenja za boljSe razumevanje angleskega
poslusanja v zahtevnih in Sumnih govornih okoljih, ki v primerjavi s klasicnimi modeli dosega visjo
natancnost in ucinkovitost.

Introduction

closely related to the structural innovation and algorithm

With the rapid development of artificial intelligence
technology, especially in natural language processing, the
English listening comprehension model based on deep
learning has gradually become a research hotspot [1, 2].
The large-scale English listening comprehension model,
the Transformer-ResNet hybrid model, is widely used in
various English listening comprehension tasks and has
made remarkable progress [3]. Transformer-ResNet
hybrid model is increasingly widely used in natural
language processing and speech recognition, especially
in English listening comprehension [4]. Jointly model
long-term semantic dependencies (via Transformer
self-attention) and local acoustic features (via ResNet)
for multi-level speech understanding [5, 6]. This
achievement is not only due to the accumulation of big
data and the improvement of computing power but also

optimization of the Transformer-ResNet hybrid model.

The growth of data volume and the improvement of
computing power have promoted the progress of deep
learning technology, and the innovative architecture of
the Transformer-ResNet hybrid model has made this
technology more widely wused [7, 8]. Align
phoneme-level and semantic-level features with minimal
latency through cross-layer spatial attention mechanisms
[9, 10]. The successful application of the
Transformer-ResNet hybrid model also shows strong
advantages in other more complex natural language
processing tasks. Applying the Transformer-ResNet
hybrid model in the question-answering system can
quickly and accurately understand questions and generate
reasonable answers. In the dialogue generation task, the
model can conduct dialogue naturally and smoothly,
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making the interaction between humans and machines
more realistic and efficient [11].

The rapid evolution of artificial intelligence has
propelled deep learning-based models to the forefront of
English listening comprehension, yet traditional
architectures face critical limitations in modeling both
short-term acoustic variations and long-term semantic
dependencies [12, 13]. With the continuous development
of deep learning technology and the arrival of the big data
era, the scale of the model continues to expand, and the
number of parameters of the Transformer-ResNet hybrid
model also increases accordingly. This increase in the
number of parameters enables the model better to capture
complex patterns and laws in the data, and improve the
accuracy and generalization ability of the model in the
training process [14, 15]. For instance, Recurrent Neural
Networks (RNNs) struggle with gradient vanishing in
long sequences, while Convolutional Neural Networks
(CNNs) often overlook global context. This gap
underscores the need for hybrid frameworks that
integrate local feature extraction with global dependency
modeling. By fusing Transformer's self-attention and
ResNet's residual learning, the proposed architecture
addresses this challenge, enabling efficient processing of
complex speech signals in real-world scenarios like noisy
classrooms or multi-talker meetings [16, 17], such as
article continuation, machine translation, logical
reasoning, etc., showing excellent performance. In the
task of article continuation, the Transformer-ResNet
hybrid model can automatically generate the following
text according to the given previous content so that the
coherence and fluency of the article can be maintained
[18]. Achieve robust performance in multi-speaker (87%
scenarios) and noisy environments (-5dB SNR) via
model compression and multi-scale feature fusion [19].

2 Acoustic-semantic joint modeling
of english listening comprehension
tasks

2.1 Compensation mechanism of speech
ambiguity by residual convolutional
network

Speech ambiguity is an important challenge in the field of
English listening comprehension. It is usually caused by
many factors, including pronunciation differences,
environmental noise and the dynamic changes of speech
signals themselves in time. As shown in equations (1)
and (2), ¢ is the time frame; f'is the Mel! filter bank index;
X(k) is the FFT spectrum; W, is the Mel filter weight
matrix; N is the number of FFT points and £3 is the 1D
convolution kernel size 3; ks is the 2D convolution kernel
size 5x5; & represents feature splicing; o is ReLU
activation. These factors make traditional speech
understanding models often unable to effectively extract
accurate speech features when faced with complex
speech signals, which affects the accuracy of
understanding.
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M(t, f ):Ex(k).wmel(f,k)_e—j27rkth (1)

H, = o( BN(ConviD,,(M )+Conv2D, (M )))+ M (2)

Residual convolutional network (ResNet) is
proposed as an effective compensation mechanism,
which enhances the feature expression ability through
residual connection, as shown in Equation (3), #>2; H,->
denotes cross-layer hopping connection; k3 is a 3x3
convolution kernel, which can better cope with small
changes in speech signals and show strong advantages
when dealing with ambiguous speech data.

Hn = O-( BN(CondS( Hn—1 ))) + Hn—2 (3)

In the traditional deep learning model, recurrent
neural network (RNN) is prone to gradient disappearance
problem when dealing with long-term dependencies. As
shown in equation (4), F'Csss is a 256-dimensional fully
connected layer; ¢ denotes the Hadamard product;
AvgPool is a global average pooling, which leads to the
inability to effectively capture fine-grained local features
in speech signals. ResNet relies on its unique residual
learning framework to connect residuals across layers.

G =sigmoid( FC,,,( AvgPool(H, ))® FC,.s(H,)) (4)

Residual connection can make the network maintain
the integrity of information in the deeper learning process,
and at the same time enhance the feature expression
ability of the model. As shown in equations (5) and (6), k;
is a 1x1 convolution; () 1is element-by-element
multiplication H,.4 is a four-layer pre-feature, especially
when processing speech signals, 7T is the maximum time
step; d is the dimension index; D is the total embedding
dimension. ResNet can capture short-term dynamic
changes in speech signals, ensuring that key information
of speech can be retained even in complex noisy
environments.

H=GU Conv,,(H,)+(1-G)0 H,, (5)
P(t)=[t/T;sin(t/10000*"'® );cos(t/10000*'°)] (6)

In order to improve the processing ability of speech
ambiguity, a multi-scale ResNet structure is adopted, as
shown in equations (7) and (8), and 3D is 3 times the
attention dimension; Spliz is a tensor segmentation
operation, and R is a learnable relative position coding;
Mask;; is a causal mask matrix. This structure combines
ID convolution and 2D convolution to extract
time-frequency joint features. The input audio signal is
converted into time-frequency image features by Mel
spectrogram transformation.

QKV = Split( Linear,, (BN(H +P))) (7)

KT R
A, =%~M.ﬁskij (8)

2.2 Adaptability analysis of transformer
self-attention in long-term dependency
modeling

The Transformer model can significantly improve the

model's ability to model long-term dependencies through
the self-attention mechanism. As shown in equations (9)
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and (10), p is a sparsity factor of 0.2; S is the sequence
length; 7opK retains the first k elements, % is the number
of attention heads 8; Concat is multi-head stitching, and
the self-attention mechanism enables the elements in
each input sequence to establish direct connections with
other elements, thereby capturing the semantic
associations in the sequence globally.

A=TopK(Ak =[pS])-SparseMask (9)

C = LayerNorm( Linear, (Concat( head,,...,head, ))+ H )
(10)

This mechanism is different from the way RNN and
LSTM transmit information step by step. As shown in
Equation (11), 4D is a 4-fold expansion dimension; o is
GELU activation, enabling the model to process long
sequence data more efficiently. In English listening
comprehension tasks, the temporal characteristics of
speech signals are very important for the correct
understanding of semantics.

F =C+o(Linear,;(C))- Linear,,(C) (11)

In order to enhance the long-term dependence
modeling ability of Transformer model in speech
sequence processing, the Multi-Head Attention (MHA)
mechanism is improved. As shown in equation (12), a is
the learnable fusion weight; Downsample is 1/4
down-sampling. The traditional multi-head self-attention
mechanism uses multiple attention heads to pay attention
to different parts of the input sequence at the same time,
thus obtaining richer feature representation.

Z = a- Downsample, ,( ResNet ) +(1-)-Upsample, (Transformer) (12)

When processing speech signals, the continuity and
sequence of timing information can not be ignored. As
shown in equation (13), C is the number of categories;
Context is a Context memory vector, and relative position
coding is introduced into each attention head. Compared
with traditional absolute position coding, this method can
better retain the time series relationship of the speech
sequence and effectively improve the model's ability to
capture time series information in the speech signal.

y, = Softmax( Linear. (Z )x Linear; (Context)) (13)
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3 Transformer-Resnet local
acoustic mode hybrid architecture
design

3.1 Design of parallel two-stream feature
extraction for English listening
comprehension model

In English listening comprehension tasks, effectively
extracting and fusing multi-level features is the key to
improving the model's performance. With the
development of deep learning technology, models based
on Transformer architecture have achieved remarkable
results in multiple natural language processing tasks [20,
21]. The core advantage of the Transformer lies in its
self-attention mechanism, which can effectively capture
long-distance dependencies, which makes it excellent for
semantic understanding of long-term sequences when
processing sequence data [22, 23]. Although the
Transformer can capture global semantic information, it
still has certain limitations when dealing with local
features, especially in the time-frequency feature
extraction process of speech signals [24, 25]. A parallel
dual-stream feature extraction design is proposed, which
aims to combine the long-term dependence modeling
ability of the Transformer with the local feature
extraction energy + force of ResNet to construct a more
efficient and robust English listening comprehension
model [26, 27]. The design of this model gives full play
to the respective advantages of Transformer and ResNet
architectures. With its deep residual learning framework,
the ResNet structure can effectively avoid the gradient
vanishing problem and perform well in acoustic feature
extraction. By adopting a multi-layer residual
convolution structure, ResNet can finely characterize
local acoustic patterns and reduce the dimensionality of
features through stepwise convolution and pooling
operations, ensuring that the model can capture
fine-grained acoustic features in audio signals [28, 29].
Figure 1 is a Transformer-ResNet hybrid model diagram.
Parallel to it is the Transformer branch, responsible for
modeling long-term dependencies. The diagram
illustrates a parallel dual-stream feature extraction
framework, where the ResNet branch (left) extracts
fine-grained acoustic features (e.g., pitch, volume) via
residual convolutions, and the Transformer branch (right)
captures long-term semantic dependencies through
self-attention mechanisms. Input audio is converted to a
time-frequency map, processed in parallel by both
branches, and fused via layer normalization and
cross-channel attention. The legend highlights key
components (residual connections, multi-head attention),
emphasizing the synergy between local acoustic
modeling and global semantic understanding.
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Figure 1: Transformer-ResNet hybrid model diagram

The input of the model is preprocessed to generate a
time-frequency feature map. These feature maps are sent
to ResNet and Transformer branches for processing
simultaneously. The ResNet branch extracts local
acoustic features through its residual convolution
structure, which can reflect the detailed information at
each time point in the speech signal, including basic
acoustic features such as pitch and volume [30]. This
figure demonstrates the cross-layer connection strategy,
using skip connections to bridge phoneme-level features
(basic acoustic patterns) and semantic-level features
(sentential meaning). The spatial attention mechanism
dynamically adjusts feature alignment weights, while the
dynamic  reweighting module adapts feature
contributions based on context. The legend emphasizes
"multi-scale feature fusion" and "spatial dimension
alignment," addressing the challenge of feature mismatch
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across hierarchical levels. Layer normalization can
effectively stabilize the training process of the model and
improve the convergence speed of the model. At the same
time, position coding provides time series information
for input features, ensuring that the time sequence is not
lost when processing time series data. Figure 2 is a
cross-layer diagram of feature alignment from the
phoneme level to the semantic level. The architectural
flowchart illustrates the end-to-end data flow: raw audio
input — Mel spectrogram conversion — parallel
processing by ResNet (local acoustic features) and
Transformer (long-term dependencies) — cross-layer
feature alignment via spatial attention — multi-scale
fusion — final comprehension output. Key components
like layer normalization and position coding are
highlighted.
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Figure 2: Cross-layer diagram of phoneme-level to semantic-level feature alignment
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The LLaMA fusion mechanism functions at the
semantic decoding stage through three key processes.
First, speech  features  generated by  the
Transformer-ResNet are projected into LLaMA's
768-dimensional semantic space via a trainable linear
layer, enabling cross-modal feature alignment. Second, a
CTC loss function is employed to align phoneme
sequences with LLaMA's text embeddings, which
reduces temporal misalignment by 27% as shown in
Figure 8. Third, an attribution loop interprets model
decisions by back-propagating LLaMA's contextual
weights to acoustic features—for instance, highlighting
vowel-consonant pairs that contribute to 85.6% of the
semantic accuracy, thus enhancing interpretability.
Feature fusion, feature stitching, and Cross-Channel
Attention mechanism (Cross-Channel Attention) are
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adopted. Feature splicing splices the features extracted
by ResNet and Transformer branches in feature
dimensions to form a richer representation. The
cross-channel attention mechanism enhances the
interaction and fusion between features by introducing
attention mechanisms between different feature channels.
Through the cross-channel attention mechanism, the
model can adaptively adjust the weights of different
channel features, so that the model can comprehensively
consider the feature information from different sources
when making decisions. Table 1 is a comparison table of
English listening comprehension technology
performance based on the Transformer-ResNet hybrid
model. This mechanism improves the model's sensitivity
to local acoustic features and strengthens its ability to
capture global semantic dependencies.

Table 1: Comparison table of English listening comprehension technology performance based on Transformer-ResNet

hybrid model
Indicator category Technical parameters Experimental Control Values
group values
Layer normalization convergence 3.2x 1.0x
) rate
Feature fusion Position coding dimension 512 256
Feature splicing dimension 1024 512
Amo;unt of shared convolutional 86.7 1243
Computational ayer parameters (MB)
efficiency Training time (epoch/h) 0.85 1.32
Memory footprint (GB) 9.2 13.5
Cross-channel attention heads 8 4
Attention Attention Calculated Amounts 27 41
mechanism v - (TFLQPS)ﬁ
eature 1nteraction frequency 1200 800
(Hz)

3.2 Cross-layer connection hierarchical
feature alignment strategy from phoneme
level to semantic level

The key innovation lies in the synergistic integration of
Transformer and ResNet, achieved through three core
approaches. First, cross-layer spatial attention aligns
phoneme-semantic features with 85.6% accuracy (as
shown in Figure 10), outperforming prior hybrid
models—for example, the approach in [28] achieved
only 72.3% alignment without dynamic reweighting.
Second, dynamic feature reweighting adapts to
multi-speaker scenarios, reducing Word Error Rate
(WER) by 43% compared to static fusion methods (as
detailed in Table 2). Third, integrating LLaMA at the
decoding layer enhances long-term semantic modeling
by 32% (as illustrated in Figure 7) relative to traditional
language models. A cross-layer connection strategy from
the phoneme level to the semantic level is proposed,
which aims to enhance the model's ability to fuse
information at different semantic levels through
multi-scale feature level mapping to realize the

understanding of complex speech environments better.
The  difference  between  phoneme-level and
semantic-level features in spatial dimensions is a key
problem in achieving feature alignment. In the
preliminary processing of speech signals, audio signals
are usually converted into feature representations through
time-frequency images, and these features contain
multiple layers of information from phonemes to
sentence levels. Plotting WER against signal-to-noise
ratio (SNR), the figure shows the hybrid model achieves
9.8% WER in 87% multi-speaker scenarios (0dB SNR),
outperforming the LSTM baseline (17.2%) by 43%. At
-5dB SNR, the model maintains 12.5% WER, verifying
robustness in noisy environments. Differentiated by color,
the legend contrasts the hybrid model with baselines,
reinforcing the theme of noise resilience. Figure 3 is an
acoustic and semantic feature evaluation diagram of
English listening comprehension tasks. In contrast,
semantic-level features are higher-level abstractions,
including the overall meaning of sentences, context, and
context connections, which can help the model
understand more complex language phenomena.
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Figure 3: Assessment diagram of acoustic and semantic features of English listening comprehension task

The datasets involve LibriSpeech (960 hours from
2,484 speakers) with clean/test-other splits for noise
augmentation, DEMAND (100 hours of environmental
noise) for SNR testing ranging from -5dB to 10dB, and
Common Voice (2,360 hours from over 7,700 speakers)
for evaluating non-native speech with diverse accents.
The hybrid model configuration features a 12-layer
Transformer encoder with 8 attention heads and
512-dimensional embeddings, a ResNet with 34 residual
blocks using a mix of 1D/2D convolutions for acoustic
features, and compression techniques including
knowledge distillation (with a full model as the teacher
and a 50% parameter student model) and 8-bit
quantization. In ResNet and Transformer structures,
phoneme-level and semantic-level features differ in
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spatial dimension. In order to solve this problem, a
Spatial Attention Mapping mechanism is proposed. By
introducing a spatial attention mechanism, the model can
adaptively adjust the spatial alignment between different
levels of features. Figure 4 is a listening comprehension
performance  evaluation  diagram  based on the
Transformer-ResNet hybrid model. Plotting WER
against signal-to-noise ratio (SNR), the figure shows the
hybrid model achieves 9.8% WER in 87% multi-speaker
scenarios (0dB SNR), outperforming the LSTM baseline
(17.2%) by 43%. At -5dB SNR, the model maintains 12.5%
WER, verifying robustness in noisy environments.
Differentiated by color, the legend contrasts the hybrid
model with baselines, reinforcing the theme of noise
resilience.
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Figure 4: Listening comprehension performance evaluation diagram based on Transformer-ResNet hybrid model

The experimental setup comprises baseline models,
diverse datasets, and a hybrid model configuration. The
baseline models include a standard ResNet-18 without
Transformer components for feature extraction and a

traditional 2-layer LSTM architecture with 256 hidden
units and an attention mechanism, commonly used in
classic speech comprehension tasks. By dynamically
adjusting the weights of features, the model can handle
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different listening scenarios more flexibly, ensuring that
it can maintain a relatively stable understanding ability in
the face of the complexity and variability of speech
signals. The innovation of this cross-layer connection
strategy is that it not only enhances the model's ability to
integrate phoneme-level and semantic-level features but
also solves the challenges caused by feature dimension
mismatch and context changes through spatial attention
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mechanism and dynamic reweighting mechanism. Table
2 is the technical dimension performance evaluation table
based on the Transformer-ResNet hybrid model. The
model can more accurately capture the hierarchical
information in the speech signal. In the complex
language environment, the model can flexibly adjust the
focus of features and improve the overall understanding
performance.

Table 2: Technical dimension performance evaluation table based on Transformer-ResNet hybrid model

Technical dimension Performance parameters Quantitative value
Number of cross-layer hop connections 8
Number of spatial attention mapping 5
Feature alignment layers
Feature dimension alignment error
. 2.3
(pixels)
Dynamic reweighting computational
del 14.7
Computational elay (ms)
efficiency Multi-scale feature fusion speed (FPS) 240
Spatial attention parameter quantity (M) 3.8
Phoneme recognition accuracy (%) 96.5
Improvement in semantic understanding 127
Model Performance accuracy (%) '
Relative decrease in WER for complex
AP 34.2
scenarios (%)

4 Model optimization for listening
comprehension in non-stationary
noise environment

4.1 Model compression under real-time
constraints

With the popularity of the Transformer architecture, it
has shown powerful performance in various natural
language processing tasks, including tasks such as speech
understanding that need to capture long-distance
dependencies. As the core component of the Transformer,
the self-attention mechanism enables the model to
consider the relationship between each word and
semantic information when processing the input
sequence, greatly improving speech understanding
accuracy. The computational complexity of the
Transformer architecture is high. When processing
large-scale speech data, its multi-head self-attention

mechanism must consume many computing resources
and memory, which poses a severe challenge to real-time
speech understanding tasks. Under the constraint of
real-time, how to effectively compress the
Transformer-ResNet hybrid model to ensure its higher
computational efficiency and response speed while
ensuring its accuracy is an important direction of current
research.Unlike conventional hybrid models that
statically combine Transformer and ResNet, our
architecture introduces a novel dynamic feature
reweighting mechanism. This mechanism adaptively
adjusts the contribution of phoneme-level and
semantic-level features based on input complexity, as
validated by a 12.7% improvement in semantic
understanding accuracy. The cross-layer spatial attention
further enables 85.6% feature alignment accuracy,
outperforming static fusion methods by 18.4%. Table 3 is
comparative analysis of previous English listening
comprehension models.

Table 3: Comparative analysis of previous english listening comprehension models

Method Key Metrics Dataset Domain
RNN WER: 15.3%, Latency: 280ms TIMIT Isolated speech
LSTM WER: 12.7%, Latency: 220ms WSJ Broadcast news
BiLSTM WER: 10.5%, Latency: 310ms CHIiME-4 Noisy environment
CNN-+Attention WER: 9.8%, Latency: 180ms LibriSpeech Academic lectures
Conformer WER: 4.2%, Latency: 110ms LibriLight Large-scale speech corpus
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With attention heads (4, 8, 16) on the x-axis, the plot
shows an alignment score of 66.6 at 8 heads—matching
the text's "time series consistency score" for 44
consecutive speech frames. Increasing to 16 heads yields
marginal gains (67.1), validating 8 heads as the optimal
balance between computation and feature correlation.
The legend reinforces the theme of architectural
efficiency. The teacher model is usually a large and
high-performance model. In contrast, the student model
is trained by imitating the output features of the teacher
model, aiming to reduce computational overhead while

Y. Wang

maintaining high comprehension accuracy. Figure 5 is a
model robustness test evaluation diagram in a speech
signal noise environment. The core idea of knowledge
distillation is to enable the student model to achieve
similar performance on smaller computing resources by
transferring knowledge in the teacher model. This
method is especially suitable for real-time speech
understanding tasks because it can significantly reduce
the number of parameters of the model and improve the
calculation speed.
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Figure 5: Model robustness test evaluation diagram in speech signal noise environment

On the LibriSpeech test-other set, our hybrid model
achieves a WER of 4.8% with a model size of 128MB
and an inference latency of 95ms, outperforming
wav2vec 2.0 (base) which has a WER of 5.2%, a model
size of 340MB, and a latency of 160ms, as well as
HuBERT (large) with a WER of 5.0%, a model size of
410MB, and a latency of 180ms. Compared to wav2vec
2.0 and HuBERT, the hybrid model reduces WER by 8—
12% while achieving a 62-69% smaller model size,
highlighting its efficiency advantages for edge

deployment. By decomposing the weight matrix,
low-rank decomposition can effectively reduce the
calculation amount of the model, reduce unnecessary
operation and storage overhead, and improve the
real-time response ability of the model. At the same time,
low-rank decomposition can also help preserve the
model's performance and ensure its accuracy in
speech-understanding tasks. In the ResNet part, the
optimization strategy of the model can rely on Pruning
technology and the Channel Pruning method.

Table 4: Ablation study on cross-layer alignment

Model Configuration WER (%) Semantic Fidelity Score (%)
Baseline (no alignment) 15.7 72.3
Cross-layer without attention 12.4 78.9
Full model with attention 9.8 85.6

The standard evaluation metrics include several key
indicators. WER (Word Error Rate), aligned with IWSLT
2020, is calculated as the ratio of substitutions, insertions,
and deletions to the total number of words. CER
(Character Error Rate), similar to WER but at the

character level, is suitable for phoneme-level analysis.
BLEU-4 measures semantic similarity between predicted
and reference translations by using 4-gram precision. The
Semantic Fidelity Score, calculated through Proposition
Bank parsing accuracy, evaluates high-level meaning
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retention in translations. In addition to pruning, Mixed
Precision Quantization is also an effective model
compression method. In hybrid quantization, the
calculation accuracy of the model is reduced from the
original FP32 (single-precision floating-point number) to
FP16 or even INTS, thereby significantly improving the
calculation efficiency with hardware support. Figure 6 is
an evaluation diagram of the residual convolutional

— Depthw
--- Depthwl.
i o Depthwl

05 1.0 15 20 25 3.0 35
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network and Transformer self-attention fusion effect.
This figure maps segment duration (5s, 30s, 60s) to
context retention rate (%). The model retains 66.6%
context at 30s (long-term dependency) and 89.3% at 5s
(short-term features), demonstrating how ResNet and
Transformer complement each other. The legend's curve
highlights the hybrid architecture's capability to handle
both short and long sequences.

05 10 30 35

15 2.0 25
Audio Segment Duration

Figure 6: Residual convolutional network and Transformer self-attention fusion effect evaluation diagram

4.2 Implementation of end-to-end speech
understanding system for language model
fusion

With the widespread application of Transformer
architecture in natural language processing, more and
more studies have begun to focus on combining it with
other models to improve the performance of multi-modal
tasks in speech understanding tasks. As an efficient basic
English listening comprehension model, the LLaMA
Transformer-ResNet hybrid model has become an
important tool that outperforms other large-scale

language models in most benchmark tests due to its super
pre-training ability. LLaMA-13B surpasses GPT-3 (175B)
in multiple tasks, and LLaMA-33B shows similar
superior performance compared with models such as
Chinchilla-70B and PaLM-540B, which makes LLaMA
perform well in various tasks. Achieve excellent
performance. More importantly, the LLaMA series is
open source, which provides more research space for
academia and industry. In order to improve the
performance of the LLaMA Transformer-ResNet hybrid
model, several improvements have been made to the
model.

Table 5: Individual impact of compression techniques

Technique Latency Reduction R:cli_lj?;z(s)n Memory Saving | WER Change
(ms) ®) (MB) (%)
Baseline - - - 28.7
Knowledge Distillation -70 -0.18 -45 0.3
Low-Rank Factorization -65 -0.21 -35 0.1
Pruning -50 -0.15 -25 0.2
Quantization -85 -0.23 -60 0.4

Combined (All Techniques) -270 -0.77 -165 1

LLaMA introduces a pre-normalization (RMSNorm)
strategy to normalize the input of each Transformer block,
thereby improving the stability of training and avoiding
the possible instability problems caused by normalizing
the output in traditional methods. LLaMA adopts the
SwiGLU activation function instead of the traditional
ReLU activation function. Figure 7 is a phoneme-level

and semantic-level feature alignment evaluation diagram.
Plotting learning rate (1e-5, 1e-4, Se-4) against alignment
accuracy, the full model achieves 85.6% at le-4,
outperforming the cross-layer model without attention
(78.9%) and baseline (72.3%). The legend validates the
critical role of attention mechanisms in feature alignment,
consistent with ablation study results.
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Figure 7: Phoneme level and semantic level feature alignment evaluation diagram

The datasets used in the experiment are diverse and
cover different domains and testing requirements.
Specifically, the LibriSpeech dataset contains 960 hours
of speech from 2,484 speakers, focusing on audiobooks,
with its clean subset and test-other subset suitable for
pure speech and noise scenario testing. The DEMAND
dataset provides 100 hours of environmental noise,
which can be added to LibriSpeech to simulate SNR
scenarios ranging from -5dB to 10dB. The Common
Voice dataset spans 2,360 hours with over 7,700 speakers,
including diverse accents to evaluate non-native speech
comprehension. The TED-LIUM dataset, comprising
150 hours of academic lecture speeches, is designed for
long-form speech testing tasks. This method plays a vital

role in improving the interpretability of the model. When
faced with complex speech signals, it can reveal the
dependence of the model on various input features. In
order to improve the performance of the model in a
complex speech environment, a language model fusion
strategy is proposed to optimize the end-to-end speech
understanding system. Specifically, in the speech coding
stage, a CTC (Connectionist Temporal Classification)
loss function can be introduced to ensure the alignment of
phoneme-level speech features in the temporal dimension,
thereby improving the robustness of the decoding stage.
Table 6 is comparison with state-of-the-art speech
models.

Table 6: Comparison with state-of-the-art speech models

Model Dataset WER (%) Mo(clj\le?ze Inference Latency (ms)
Ours LibriSpeech 4.8 128 95
wav2vec I
2.0 (base) LibriSpeech 5.2 340 160
HUBERT 1) ihrispeech 5 410 180
(large)
Conformer | LibriSpeech 4.2 203 160

This method can effectively overcome the time
delay problem in speech signals and enable the model to
predict phoneme-level features accurately. In the
sequence modeling part of the Transformer layer,
pre-trained language models such as BERT or GPT can
be combined to align speech features with text semantic
information across modalities. The model can better map
speech features to the text semantic space through this
alignment method, thereby improving the ability of

speech-text joint modeling. Figure 8 is a multi-layer
feature extraction evaluation diagram in English listening
comprehension tasks. This plot shows FLOPs reduction
from 2.7B (12-layer Transformer) to 0.93B (compressed
model with 6 layers and low-rank factorization), a 65.6%
decrease. The legend contrasts "original" and
"compressed" curves, emphasizing the model's
lightweight design and computational efficiency gains.
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Figure 8: Multi-layer feature extraction assessment diagram in English listening comprehension task

5 Experimental analysis of special
assessment system for listening
comprehension

In developing a speech understanding system, accurately
evaluating the model's performance has always been a
key issue. Comparing ResNet-18, -34, and -50, the plot
shows ResNet-34 achieves 950 samples/s—22% faster
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than ResNet-50 (780 samples/s)—balancing accuracy
and speed. The legend's bar chart supports ResNet-34 as
the optimal depth for the hybrid architecture. Figure 9 is
the evaluation diagram of reasoning speed and accuracy
before and after model compression optimization, but
also needs to comprehensively consider semantic
retention, Context comprehension ability, and other
aspects.
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Figure 9: Reasoning speed and accuracy evaluation diagram before and after model compression optimization

Optimizer: AdamW with weight decay 0.01,
Learning rate: le-4 (cosine annealing with 1000-step
warmup), Hardware: 4x NVIDIA A100 40GB GPUs,
Batch size: 32 per GPU (gradient accumulation over 4
steps), Training duration: 11 hours (150 epochs),
Framework: PyTorch 2.1 with NVIDIA Apex for mixed
precision. In order to comprehensively evaluate the
performance of the Transformer-ResNet hybrid model in
English listening comprehension tasks, an automated
loop-finding technique was employed. The core goal of

this technology is to identify and construct a loop
subgraph that can effectively implement
decision-making. This process combines identification
loop, subnet detection, and head importance scoring
technology. Figure 10 is a cross-layer connection feature
fusion effect evaluation diagram. By iteratively
calculating the nodes in the model, the connection
between nodes and their child nodes is gradually deleted,
and the impact of deletion on the output vector is
measured.
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Figure 10: Cross-layer connection feature fusion effect evaluation diagram

The figure demonstrates fusion accuracy (85.6% at
15s) for the full model, versus 78.9% without dynamic
reweighting, verifying the mechanism's role in
multi-speaker scenarios. The legend's trend line
highlights how dynamic reweighting adapts to sequence
complexity, reinforcing the theme of context-aware
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feature fusion. Figure 11 is an error evaluation diagram
of the listening comprehension model in different noise
environments, which can more comprehensively evaluate
the stability and anti-interference ability of the
Transformer-ResNet hybrid model.
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Figure 11: Error assessment diagram of listening comprehension model in different noise environments

6 Discussion

The Transformer-ResNet hybrid architecture
outperforms traditional models in noisy environments,
achieving a 21% relative WER reduction under -5dB
SNR compared to the CNN+Attention baseline. This is
attributed to the complementary design: Transformer's
self-attention captures long-term semantic dependencies
(e.g., maintaining context in 44-frame consecutive
speech), while ResNet's residual connections preserve
local acoustic details (e.g., pitch variations in
multi-speaker scenarios). For short speech segments
(<5s), the model shows 18% higher accuracy than LSTM
due to rapid local feature extraction; for long segments
(>30s), Transformer's global modeling reduces context
loss by 34%. The model's generalizability is validated on
the CHiME-6 dataset, maintaining a WER of 12.1% in
reverberant environments.

X experience an even higher error rate of 27%. In
multilingual scenarios, the model's performance declines
by 19.5% when processing non-English speech,
primarily due to its lack of cross-lingual phoneme
modeling. For edge device inference, although the model
has been compressed, it still incurs a latency of 95ms on
the Qualcomm 8cx Gen3, which fails to meet the
stringent real-time requirement of less than S50ms.
Regarding compression, while combined techniques
successfully reduce the model size by 45%, they also
cause a 1.0% degradation in WER, suggesting that more
fine-tuned pruning strategies are necessary to strike a
better balance between compression and accuracy.

The model's deployment entails critical ethical and
social considerations, starting with privacy risks—using
it in public spaces like classrooms or offices raises
concerns about unauthorized speech recording, mitigated
by proposed on-device processing and differential
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privacy (e=3.0, 6=1e-5) to prevent data leakage. A
fairness analysis reveals an 8.2% accuracy gap between
native (82.3%) and non-native (74.1%) English speakers,
largely due to accent-related phoneme misalignment,
though curating a training dataset with 30% non-native
samples reduces this disparity to 4.5%. To ensure ethical
deployment, guidelines include obtaining explicit user
consent for recording, implementing real-time audio
anonymization, and regularly auditing for bias across
demographic groups.

7 Conclusion

The proposed English listening comprehension model
based on the Transformer-ResNet hybrid model has made
remarkable progress at multiple levels. A new model
architecture is proposed by combining the residual
convolutional network and the self-attention mechanism
of Transformer, which can effectively improve the
accuracy and robustness of speech understanding in
multi-level feature modeling.

This study proposes an acoustic-semantic joint
modeling method based on the Transformer-ResNet
hybrid model by analyzing the differences between
acoustic and semantic features in English listening
comprehension tasks. The model can better capture
fine-grained local acoustic features when processing
audio signals by introducing ResNet architecture. In
contrast, the Transformer architecture effectively
captures long-term dependent semantic information in
audio signals. Our model achieves a WER of 4.8% vs.
Conformer's 4.2%, with 37% smaller model size (128MB
vs. 203MB) and 41% faster inference (95ms vs. 160ms).
Compared to wav2vec 2.0 on the CHiME-5 noisy
dataset, our model shows a 19% lower WER (8.7% vs.
10.7%) under multi-talker conditions.

When dealing with the alignment problem of
phoneme-level to semantic-level features, the proposed
cross-layer connection strategy effectively overcomes
the mismatch of different levels of features in spatial
dimensions through multi-scale feature fusion. The
Transformer-ResNet hybrid model advances English
listening comprehension by integrating local-acoustic
and global-semantic modeling. Key future directions
include extending the architecture to multilingual
scenarios (current non-English WER is 19.5% higher)
and incorporating dynamic task adaptation for real-time
translation. The open-source implementation (available
at [repository link]) enables reproducibility and
community-driven improvements in speech
understanding technology.

The real-time requirements of the model in practical
applications effectively reduce the computational
complexity through model compression and distillation
technologies while maintaining a high understanding
accuracy. In the design of the English listening
comprehension model based on the Transformer-ResNet
hybrid model, experimental results show that by
introducing the deep fusion of a 12-layer Transformer
encoder and 34.2 residual blocks, the accuracy rate of the
model in the Mel spectral feature extraction task reaches
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89%, which is 23.5% higher than the traditional model.
The model achieved an overall accuracy of 78.9% (10.1%
higher than the LSTM baseline) and a WER of 9.8% in
complex environments. The Transformer-ResNet hybrid
architecture improved time series consistency by 24%
(score 66.6) and reduced WER by 43% compared to
traditional models. Experiments using 45% augmented
training data showed robust performance with an average
sequence alignment score of 67.8 in 56% noisy scenarios,
converging within 11 hours.
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