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With the increasing complexity of English listening comprehension tasks, the traditional single acoustic 

model has made it difficult to cope with the high noise interference and multi-level semantic 

understanding requirements in complex speech environments. Based on the research on the design of 

the English listening comprehension model based on the Transformer-ResNet hybrid model, an 

innovative architecture combining residual convolutional network and self-attention mechanism is 

proposed, aiming to improve the model's performance in long-term dependency modeling and local 

acoustic pattern recognition. A parallel dual-stream feature extraction architecture is designed, using 

ResNet to extract fine-grained acoustic features and the Transformer self-attention mechanism to 

capture long-term semantic dependencies. In order to solve the alignment problem between 

phoneme-level and semantic-level features, a cross-layer connection strategy is proposed, and the 

robustness of the model is improved by multi-scale feature fusion. Due to the limitation of real-time and 

computing resources, model compression and distillation technology are adopted to optimize computing 

efficiency, and an efficient end-to-end speech understanding system is realized by combining the 

pre-trained language model. The optimized hybrid model achieved an overall accuracy of 78.9% on the 

test set, demonstrating a 10.1% relative improvement over the baseline LSTM model. It achieved a WER 

of 9.8% in 87% of multi-speaker scenarios and a time series consistency score of 66.6 in consecutive 

speech frame processing. The Transformer module contributed a 32% performance gain in long-term 

dependency modeling. The optimized hybrid model achieved an overall accuracy of 78.9% on the test 

set, outperforming the baseline LSTM model by 10.1% in accuracy. Notably, it demonstrated a 15.2% 

relative reduction in word error rate (WER) and a 43% inference speedup via model compression 

techniques. Experiments on the LibriSpeech dataset under multi-speaker (87% scenarios) and noisy 

conditions (-5dB SNR) showed robust performance with a WER of 9.8%. 

Povzetek: Študija predlaga hibridni model globokega učenja za boljše razumevanje angleškega 

poslušanja v zahtevnih in šumnih govornih okoljih, ki v primerjavi s klasičnimi modeli dosega višjo 

natančnost in učinkovitost. 

 

1 Introduction 
With the rapid development of artificial intelligence 

technology, especially in natural language processing, the 

English listening comprehension model based on deep 

learning has gradually become a research hotspot [1, 2]. 

The large-scale English listening comprehension model, 

the Transformer-ResNet hybrid model, is widely used in 

various English listening comprehension tasks and has 

made remarkable progress [3]. Transformer-ResNet 

hybrid model is increasingly widely used in natural 

language processing and speech recognition, especially 

in English listening comprehension [4]. Jointly model 

long-term semantic dependencies (via Transformer 

self-attention) and local acoustic features (via ResNet) 

for multi-level speech understanding [5, 6]. This 

achievement is not only due to the accumulation of big 

data and the improvement of computing power but also  

 

closely related to the structural innovation and algorithm 

optimization of the Transformer-ResNet hybrid model.  

The growth of data volume and the improvement of 

computing power have promoted the progress of deep 

learning technology, and the innovative architecture of 

the Transformer-ResNet hybrid model has made this 

technology more widely used [7, 8]. Align 

phoneme-level and semantic-level features with minimal 

latency through cross-layer spatial attention mechanisms 

[9, 10]. The successful application of the 

Transformer-ResNet hybrid model also shows strong 

advantages in other more complex natural language 

processing tasks. Applying the Transformer-ResNet 

hybrid model in the question-answering system can 

quickly and accurately understand questions and generate 

reasonable answers. In the dialogue generation task, the 

model can conduct dialogue naturally and smoothly, 
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making the interaction between humans and machines 

more realistic and efficient [11]. 

The rapid evolution of artificial intelligence has 

propelled deep learning-based models to the forefront of 

English listening comprehension, yet traditional 

architectures face critical limitations in modeling both 

short-term acoustic variations and long-term semantic 

dependencies [12, 13]. With the continuous development 

of deep learning technology and the arrival of the big data 

era, the scale of the model continues to expand, and the 

number of parameters of the Transformer-ResNet hybrid 

model also increases accordingly. This increase in the 

number of parameters enables the model better to capture 

complex patterns and laws in the data, and improve the 

accuracy and generalization ability of the model in the 

training process [14, 15]. For instance, Recurrent Neural 

Networks (RNNs) struggle with gradient vanishing in 

long sequences, while Convolutional Neural Networks 

(CNNs) often overlook global context. This gap 

underscores the need for hybrid frameworks that 

integrate local feature extraction with global dependency 

modeling. By fusing Transformer's self-attention and 

ResNet's residual learning, the proposed architecture 

addresses this challenge, enabling efficient processing of 

complex speech signals in real-world scenarios like noisy 

classrooms or multi-talker meetings [16, 17], such as 

article continuation, machine translation, logical 

reasoning, etc., showing excellent performance. In the 

task of article continuation, the Transformer-ResNet 

hybrid model can automatically generate the following 

text according to the given previous content so that the 

coherence and fluency of the article can be maintained 

[18]. Achieve robust performance in multi-speaker (87% 

scenarios) and noisy environments (-5dB SNR) via 

model compression and multi-scale feature fusion [19]. 

2 Acoustic-semantic joint modeling 

of english listening comprehension 

tasks 

2.1 Compensation mechanism of speech 

ambiguity by residual convolutional 

network 

Speech ambiguity is an important challenge in the field of 

English listening comprehension. It is usually caused by 

many factors, including pronunciation differences, 

environmental noise and the dynamic changes of speech 

signals themselves in time. As shown in equations (1) 

and (2), t is the time frame; f is the Mel filter bank index; 

X(k) is the FFT spectrum; Wmel is the Mel filter weight 

matrix; N is the number of FFT points and k3 is the 1D 

convolution kernel size 3; k5 is the 2D convolution kernel 

size 5×5; ⊕ represents feature splicing; σ is ReLU 

activation. These factors make traditional speech 

understanding models often unable to effectively extract 

accurate speech features when faced with complex 

speech signals, which affects the accuracy of 

understanding. 
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Residual convolutional network (ResNet) is 

proposed as an effective compensation mechanism, 

which enhances the feature expression ability through 

residual connection, as shown in Equation (3), n≥2; Hn-2 

denotes cross-layer hopping connection; k3 is a 3×3 

convolution kernel, which can better cope with small 

changes in speech signals and show strong advantages 

when dealing with ambiguous speech data. 

3 1 2n k n nH ( BN(Conv ( H ))) H − −= +  (3) 

In the traditional deep learning model, recurrent 

neural network (RNN) is prone to gradient disappearance 

problem when dealing with long-term dependencies. As 

shown in equation (4), FC256 is a 256-dimensional fully 

connected layer; ⊗ denotes the Hadamard product; 

AvgPool is a global average pooling, which leads to the 

inability to effectively capture fine-grained local features 

in speech signals. ResNet relies on its unique residual 

learning framework to connect residuals across layers. 

256 256n nG sigmoid( FC ( AvgPool( H )) FC ( H ))=   (4) 

Residual connection can make the network maintain 

the integrity of information in the deeper learning process, 

and at the same time enhance the feature expression 

ability of the model. As shown in equations (5) and (6), k1 

is a 1×1 convolution; ⊙ is element-by-element 

multiplication Hn-4 is a four-layer pre-feature, especially 

when processing speech signals, T is the maximum time 

step; d is the dimension index; D is the total embedding 

dimension. ResNet can capture short-term dynamic 

changes in speech signals, ensuring that key information 

of speech can be retained even in complex noisy 

environments. 

1 41k n nĤ G Conv ( H ) ( G ) H −= + −  (5) 

2 210000 10000d / D d / DP(t ) t / T;sin( t / );cos( t / ) =    (6) 

In order to improve the processing ability of speech 

ambiguity, a multi-scale ResNet structure is adopted, as 

shown in equations (7) and (8), and 3D is 3 times the 

attention dimension; Split is a tensor segmentation 

operation, and R is a learnable relative position coding; 

Maskij is a causal mask matrix. This structure combines 

1D convolution and 2D convolution to extract 

time-frequency joint features. The input audio signal is 

converted into time-frequency image features by Mel 

spectrogram transformation. 

3D
ˆQKV Split( Linear ( BN( H P )))= +  (7) 

 
T T

i j i i j

ij ij

Q K Q R
A Mask

D

−
+

=   (8) 

2.2 Adaptability analysis of transformer 

self-attention in long-term dependency 

modeling 

The Transformer model can significantly improve the 

model's ability to model long-term dependencies through 

the self-attention mechanism. As shown in equations (9) 
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and (10), ρ is a sparsity factor of 0.2; S is the sequence 

length; TopK retains the first k elements, h is the number 

of attention heads 8; Concat is multi-head stitching, and 

the self-attention mechanism enables the elements in 

each input sequence to establish direct connections with 

other elements, thereby capturing the semantic 

associations in the sequence globally. 

 

 A TopK( A,k S ) SparseMask= =   (9) 

 

1D h
ˆC LayerNorm( Linear (Concat( head , ,head )) H )=  +

 (10) 

 

This mechanism is different from the way RNN and 

LSTM transmit information step by step. As shown in 

Equation (11), 4D is a 4-fold expansion dimension; σ is 

GELU activation, enabling the model to process long 

sequence data more efficiently. In English listening 

comprehension tasks, the temporal characteristics of 

speech signals are very important for the correct 

understanding of semantics. 

 

4 4D DF C ( Linear (C )) Linear (C )= +   (11) 

 

In order to enhance the long-term dependence 

modeling ability of Transformer model in speech 

sequence processing, the Multi-Head Attention (MHA) 

mechanism is improved. As shown in equation (12), α is 

the learnable fusion weight; Downsample is 1/4 

down-sampling. The traditional multi-head self-attention 

mechanism uses multiple attention heads to pay attention 

to different parts of the input sequence at the same time, 

thus obtaining richer feature representation. 

 

1 4 41/Z Downsample ( ResNet ) ( ) Upsample (Transformer )  =  + −   (12) 

 

When processing speech signals, the continuity and 

sequence of timing information can not be ignored. As 

shown in equation (13), C is the number of categories; 

Context is a Context memory vector, and relative position 

coding is introduced into each attention head. Compared 

with traditional absolute position coding, this method can 

better retain the time series relationship of the speech 

sequence and effectively improve the model's ability to 

capture time series information in the speech signal. 

 

p C Cy Softmax( Linear ( Z ) Linear (Context ))=   (13) 

3 Transformer-Resnet local 

acoustic mode hybrid architecture 

design 

3.1 Design of parallel two-stream feature 

extraction for English listening 

comprehension model 

In English listening comprehension tasks, effectively 

extracting and fusing multi-level features is the key to 

improving the model's performance. With the 

development of deep learning technology, models based 

on Transformer architecture have achieved remarkable 

results in multiple natural language processing tasks [20, 

21]. The core advantage of the Transformer lies in its 

self-attention mechanism, which can effectively capture 

long-distance dependencies, which makes it excellent for 

semantic understanding of long-term sequences when 

processing sequence data [22, 23]. Although the 

Transformer can capture global semantic information, it 

still has certain limitations when dealing with local 

features, especially in the time-frequency feature 

extraction process of speech signals [24, 25]. A parallel 

dual-stream feature extraction design is proposed, which 

aims to combine the long-term dependence modeling 

ability of the Transformer with the local feature 

extraction energy + force of ResNet to construct a more 

efficient and robust English listening comprehension 

model [26, 27]. The design of this model gives full play 

to the respective advantages of Transformer and ResNet 

architectures. With its deep residual learning framework, 

the ResNet structure can effectively avoid the gradient 

vanishing problem and perform well in acoustic feature 

extraction. By adopting a multi-layer residual 

convolution structure, ResNet can finely characterize 

local acoustic patterns and reduce the dimensionality of 

features through stepwise convolution and pooling 

operations, ensuring that the model can capture 

fine-grained acoustic features in audio signals [28, 29]. 

Figure 1 is a Transformer-ResNet hybrid model diagram. 

Parallel to it is the Transformer branch, responsible for 

modeling long-term dependencies. The diagram 

illustrates a parallel dual-stream feature extraction 

framework, where the ResNet branch (left) extracts 

fine-grained acoustic features (e.g., pitch, volume) via 

residual convolutions, and the Transformer branch (right) 

captures long-term semantic dependencies through 

self-attention mechanisms. Input audio is converted to a 

time-frequency map, processed in parallel by both 

branches, and fused via layer normalization and 

cross-channel attention. The legend highlights key 

components (residual connections, multi-head attention), 

emphasizing the synergy between local acoustic 

modeling and global semantic understanding. 
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Figure 1: Transformer-ResNet hybrid model diagram 
 

The input of the model is preprocessed to generate a 

time-frequency feature map. These feature maps are sent 

to ResNet and Transformer branches for processing 

simultaneously. The ResNet branch extracts local 

acoustic features through its residual convolution 

structure, which can reflect the detailed information at 

each time point in the speech signal, including basic 

acoustic features such as pitch and volume [30]. This 

figure demonstrates the cross-layer connection strategy, 

using skip connections to bridge phoneme-level features 

(basic acoustic patterns) and semantic-level features 

(sentential meaning). The spatial attention mechanism 

dynamically adjusts feature alignment weights, while the 

dynamic reweighting module adapts feature 

contributions based on context. The legend emphasizes 

"multi-scale feature fusion" and "spatial dimension 

alignment," addressing the challenge of feature mismatch 

across hierarchical levels. Layer normalization can 

effectively stabilize the training process of the model and 

improve the convergence speed of the model. At the same 

time, position coding provides time series information 

for input features, ensuring that the time sequence is not 

lost when processing time series data. Figure 2 is a 

cross-layer diagram of feature alignment from the 

phoneme level to the semantic level. The architectural 

flowchart illustrates the end-to-end data flow: raw audio 

input → Mel spectrogram conversion → parallel 

processing by ResNet (local acoustic features) and 

Transformer (long-term dependencies) → cross-layer 

feature alignment via spatial attention → multi-scale 

fusion → final comprehension output. Key components 

like layer normalization and position coding are 

highlighted. 

 

 

 

Figure 2: Cross-layer diagram of phoneme-level to semantic-level feature alignment 
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The LLaMA fusion mechanism functions at the 

semantic decoding stage through three key processes. 

First, speech features generated by the 

Transformer-ResNet are projected into LLaMA's 

768-dimensional semantic space via a trainable linear 

layer, enabling cross-modal feature alignment. Second, a 

CTC loss function is employed to align phoneme 

sequences with LLaMA's text embeddings, which 

reduces temporal misalignment by 27% as shown in 

Figure 8. Third, an attribution loop interprets model 

decisions by back-propagating LLaMA's contextual 

weights to acoustic features—for instance, highlighting 

vowel-consonant pairs that contribute to 85.6% of the 

semantic accuracy, thus enhancing interpretability. 

Feature fusion, feature stitching, and Cross-Channel 

Attention mechanism (Cross-Channel Attention) are 

adopted. Feature splicing splices the features extracted 

by ResNet and Transformer branches in feature 

dimensions to form a richer representation. The 

cross-channel attention mechanism enhances the 

interaction and fusion between features by introducing 

attention mechanisms between different feature channels. 

Through the cross-channel attention mechanism, the 

model can adaptively adjust the weights of different 

channel features, so that the model can comprehensively 

consider the feature information from different sources 

when making decisions. Table 1 is a comparison table of 

English listening comprehension technology 

performance based on the Transformer-ResNet hybrid 

model. This mechanism improves the model's sensitivity 

to local acoustic features and strengthens its ability to 

capture global semantic dependencies. 

 

Table 1: Comparison table of English listening comprehension technology performance based on Transformer-ResNet 

hybrid model 

Indicator category Technical parameters 
Experimental 

group values 
Control Values 

Feature fusion 

Layer normalization convergence 

rate 
3.2× 1.0× 

Position coding dimension 512 256 

Feature splicing dimension 1024 512 

Computational 

efficiency 

Amount of shared convolutional 

layer parameters (MB) 
86.7 124.3 

Training time (epoch/h) 0.85 1.32 

Memory footprint (GB) 9.2 13.5 

Attention 

mechanism 

Cross-channel attention heads 8 4 

Attention Calculated Amounts 

(TFLOPs) 
2.7 4.1 

Feature interaction frequency 

(Hz) 
1200 800 

3.2 Cross-layer connection hierarchical 

feature alignment strategy from phoneme 

level to semantic level 

The key innovation lies in the synergistic integration of 

Transformer and ResNet, achieved through three core 

approaches. First, cross-layer spatial attention aligns 

phoneme-semantic features with 85.6% accuracy (as 

shown in Figure 10), outperforming prior hybrid 

models—for example, the approach in [28] achieved 

only 72.3% alignment without dynamic reweighting. 

Second, dynamic feature reweighting adapts to 

multi-speaker scenarios, reducing Word Error Rate 

(WER) by 43% compared to static fusion methods (as 

detailed in Table 2). Third, integrating LLaMA at the 

decoding layer enhances long-term semantic modeling 

by 32% (as illustrated in Figure 7) relative to traditional 

language models. A cross-layer connection strategy from 

the phoneme level to the semantic level is proposed, 

which aims to enhance the model's ability to fuse 

information at different semantic levels through 

multi-scale feature level mapping to realize the  

 

 

understanding of complex speech environments better. 

The difference between phoneme-level and 

semantic-level features in spatial dimensions is a key 

problem in achieving feature alignment. In the 

preliminary processing of speech signals, audio signals 

are usually converted into feature representations through 

time-frequency images, and these features contain 

multiple layers of information from phonemes to 

sentence levels. Plotting WER against signal-to-noise 

ratio (SNR), the figure shows the hybrid model achieves 

9.8% WER in 87% multi-speaker scenarios (0dB SNR), 

outperforming the LSTM baseline (17.2%) by 43%. At 

-5dB SNR, the model maintains 12.5% WER, verifying 

robustness in noisy environments. Differentiated by color, 

the legend contrasts the hybrid model with baselines, 

reinforcing the theme of noise resilience. Figure 3 is an 

acoustic and semantic feature evaluation diagram of 

English listening comprehension tasks. In contrast, 

semantic-level features are higher-level abstractions, 

including the overall meaning of sentences, context, and 

context connections, which can help the model 

understand more complex language phenomena. 
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Figure 3: Assessment diagram of acoustic and semantic features of English listening comprehension task 

 

The datasets involve LibriSpeech (960 hours from 

2,484 speakers) with clean/test-other splits for noise 

augmentation, DEMAND (100 hours of environmental 

noise) for SNR testing ranging from -5dB to 10dB, and 

Common Voice (2,360 hours from over 7,700 speakers) 

for evaluating non-native speech with diverse accents. 

The hybrid model configuration features a 12-layer 

Transformer encoder with 8 attention heads and 

512-dimensional embeddings, a ResNet with 34 residual 

blocks using a mix of 1D/2D convolutions for acoustic 

features, and compression techniques including 

knowledge distillation (with a full model as the teacher 

and a 50% parameter student model) and 8-bit 

quantization. In ResNet and Transformer structures, 

phoneme-level and semantic-level features differ in 

spatial dimension. In order to solve this problem, a 

Spatial Attention Mapping mechanism is proposed. By 

introducing a spatial attention mechanism, the model can 

adaptively adjust the spatial alignment between different 

levels of features. Figure 4 is a listening comprehension 

performance evaluation diagram based on the 

Transformer-ResNet hybrid model. Plotting WER 

against signal-to-noise ratio (SNR), the figure shows the 

hybrid model achieves 9.8% WER in 87% multi-speaker 

scenarios (0dB SNR), outperforming the LSTM baseline 

(17.2%) by 43%. At -5dB SNR, the model maintains 12.5% 

WER, verifying robustness in noisy environments. 

Differentiated by color, the legend contrasts the hybrid 

model with baselines, reinforcing the theme of noise 

resilience. 

 

 

Figure 4: Listening comprehension performance evaluation diagram based on Transformer-ResNet hybrid model 

 

The experimental setup comprises baseline models, 

diverse datasets, and a hybrid model configuration. The 

baseline models include a standard ResNet-18 without 

Transformer components for feature extraction and a 

traditional 2-layer LSTM architecture with 256 hidden 

units and an attention mechanism, commonly used in 

classic speech comprehension tasks. By dynamically 

adjusting the weights of features, the model can handle 

1.8 R
o
b
u

st
n

es
s 

In
d

ex
-R

T
Q

2

1.9

2.0

2.1

1.7
0.5 1.5 2.0 2.51.0

Noise Level
3.0

2.2

1.8

1.9

2.0

2.1

1.7
0.5 1.5 2.0 2.51.0

Noise Level
3.0

2.2

2.3
R

o
b
u

st
n

es
s 

In
d

ex
-R

T
Q

1

Vanilla T1 Vanilla T2

1.8

T
ra

n
sl

a
ti

o
n

 L
a
te

n
cy

-M
L

K
A

L
1

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Beam Search Width

3.0

2.2

2.3

3.5 4.0 4.5

1.8
T

ra
n

sl
a
ti

o
n

 L
a
te

n
cy

-M
L

K
A

L
2

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Beam Search Width

3.0

2.2

2.3

3.5 4.0 4.5

Trans1 Trans2 Trans3

1.8

T
ra

in
in

g
 T

h
ro

u
g
h

p
u

t-
Q

W
A

1

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Batch Size

3.0

2.2

2.3

1.8

T
ra

in
in

g
 T

h
ro

u
g
h

p
u

t-
Q

W
A

2

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Batch Size

3.0

2.2

Res1 Res2



A Transformer-ResNet Hybrid Architecture for Multi-Level…                            Informatica 49 (2025) 39–52  45 

different listening scenarios more flexibly, ensuring that 

it can maintain a relatively stable understanding ability in 

the face of the complexity and variability of speech 

signals. The innovation of this cross-layer connection 

strategy is that it not only enhances the model's ability to 

integrate phoneme-level and semantic-level features but 

also solves the challenges caused by feature dimension 

mismatch and context changes through spatial attention 

mechanism and dynamic reweighting mechanism. Table 

2 is the technical dimension performance evaluation table 

based on the Transformer-ResNet hybrid model. The 

model can more accurately capture the hierarchical 

information in the speech signal. In the complex 

language environment, the model can flexibly adjust the 

focus of features and improve the overall understanding 

performance. 

 

Table 2: Technical dimension performance evaluation table based on Transformer-ResNet hybrid model 

Technical dimension Performance parameters Quantitative value 

Feature alignment 

Number of cross-layer hop connections 8 

Number of spatial attention mapping 

layers 
5 

Feature dimension alignment error 

(pixels) 
2.3 

Computational 

efficiency 

Dynamic reweighting computational 

delay (ms) 
14.7 

Multi-scale feature fusion speed (FPS) 240 

Spatial attention parameter quantity (M) 3.8 

Model Performance 

Phoneme recognition accuracy (%) 96.5 

Improvement in semantic understanding 

accuracy (%) 
12.7 

Relative decrease in WER for complex 

scenarios (%) 
34.2 

4 Model optimization for listening 

comprehension in non-stationary 

noise environment 

4.1 Model compression under real-time 

constraints 

With the popularity of the Transformer architecture, it 

has shown powerful performance in various natural 

language processing tasks, including tasks such as speech 

understanding that need to capture long-distance 

dependencies. As the core component of the Transformer, 

the self-attention mechanism enables the model to 

consider the relationship between each word and 

semantic information when processing the input 

sequence, greatly improving speech understanding 

accuracy. The computational complexity of the 

Transformer architecture is high. When processing 

large-scale speech data, its multi-head self-attention  

 

mechanism must consume many computing resources 

and memory, which poses a severe challenge to real-time 

speech understanding tasks. Under the constraint of 

real-time, how to effectively compress the 

Transformer-ResNet hybrid model to ensure its higher 

computational efficiency and response speed while 

ensuring its accuracy is an important direction of current 

research.Unlike conventional hybrid models that 

statically combine Transformer and ResNet, our 

architecture introduces a novel dynamic feature 

reweighting mechanism. This mechanism adaptively 

adjusts the contribution of phoneme-level and 

semantic-level features based on input complexity, as 

validated by a 12.7% improvement in semantic 

understanding accuracy. The cross-layer spatial attention 

further enables 85.6% feature alignment accuracy, 

outperforming static fusion methods by 18.4%. Table 3 is 

comparative analysis of previous English listening 

comprehension models. 

 

Table 3: Comparative analysis of previous english listening comprehension models 

Method Key Metrics Dataset Domain 

RNN WER: 15.3%, Latency: 280ms TIMIT Isolated speech 

LSTM WER: 12.7%, Latency: 220ms WSJ Broadcast news 

BiLSTM WER: 10.5%, Latency: 310ms CHiME-4 Noisy environment 

CNN+Attention WER: 9.8%, Latency: 180ms LibriSpeech Academic lectures 

Conformer WER: 4.2%, Latency: 110ms LibriLight Large-scale speech corpus 
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With attention heads (4, 8, 16) on the x-axis, the plot 

shows an alignment score of 66.6 at 8 heads—matching 

the text's "time series consistency score" for 44 

consecutive speech frames. Increasing to 16 heads yields 

marginal gains (67.1), validating 8 heads as the optimal 

balance between computation and feature correlation. 

The legend reinforces the theme of architectural 

efficiency. The teacher model is usually a large and 

high-performance model. In contrast, the student model 

is trained by imitating the output features of the teacher 

model, aiming to reduce computational overhead while 

maintaining high comprehension accuracy. Figure 5 is a 

model robustness test evaluation diagram in a speech 

signal noise environment. The core idea of knowledge 

distillation is to enable the student model to achieve 

similar performance on smaller computing resources by 

transferring knowledge in the teacher model. This 

method is especially suitable for real-time speech 

understanding tasks because it can significantly reduce 

the number of parameters of the model and improve the 

calculation speed. 

 

 

Figure 5: Model robustness test evaluation diagram in speech signal noise environment 
 

On the LibriSpeech test-other set, our hybrid model 

achieves a WER of 4.8% with a model size of 128MB 

and an inference latency of 95ms, outperforming 

wav2vec 2.0 (base) which has a WER of 5.2%, a model 

size of 340MB, and a latency of 160ms, as well as 

HuBERT (large) with a WER of 5.0%, a model size of 

410MB, and a latency of 180ms. Compared to wav2vec 

2.0 and HuBERT, the hybrid model reduces WER by 8–

12% while achieving a 62–69% smaller model size, 

highlighting its efficiency advantages for edge 

deployment. By decomposing the weight matrix, 

low-rank decomposition can effectively reduce the 

calculation amount of the model, reduce unnecessary 

operation and storage overhead, and improve the 

real-time response ability of the model. At the same time, 

low-rank decomposition can also help preserve the 

model's performance and ensure its accuracy in 

speech-understanding tasks. In the ResNet part, the 

optimization strategy of the model can rely on Pruning 

technology and the Channel Pruning method. 

 

Table 4: Ablation study on cross-layer alignment 

Model Configuration WER (%) Semantic Fidelity Score (%) 

Baseline (no alignment) 15.7 72.3 

Cross-layer without attention 12.4 78.9 

Full model with attention 9.8 85.6 

 

The standard evaluation metrics include several key 

indicators. WER (Word Error Rate), aligned with IWSLT 

2020, is calculated as the ratio of substitutions, insertions, 

and deletions to the total number of words. CER 

(Character Error Rate), similar to WER but at the 

character level, is suitable for phoneme-level analysis. 

BLEU-4 measures semantic similarity between predicted 

and reference translations by using 4-gram precision. The 

Semantic Fidelity Score, calculated through Proposition 

Bank parsing accuracy, evaluates high-level meaning 
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retention in translations. In addition to pruning, Mixed 

Precision Quantization is also an effective model 

compression method. In hybrid quantization, the 

calculation accuracy of the model is reduced from the 

original FP32 (single-precision floating-point number) to 

FP16 or even INT8, thereby significantly improving the 

calculation efficiency with hardware support. Figure 6 is 

an evaluation diagram of the residual convolutional 

network and Transformer self-attention fusion effect. 

This figure maps segment duration (5s, 30s, 60s) to 

context retention rate (%). The model retains 66.6% 

context at 30s (long-term dependency) and 89.3% at 5s 

(short-term features), demonstrating how ResNet and 

Transformer complement each other. The legend's curve 

highlights the hybrid architecture's capability to handle 

both short and long sequences. 

 

 

Figure 6: Residual convolutional network and Transformer self-attention fusion effect evaluation diagram

4.2 Implementation of end-to-end speech 

understanding system for language model 

fusion 

With the widespread application of Transformer 

architecture in natural language processing, more and 

more studies have begun to focus on combining it with 

other models to improve the performance of multi-modal 

tasks in speech understanding tasks. As an efficient basic 

English listening comprehension model, the LLaMA 

Transformer-ResNet hybrid model has become an 

important tool that outperforms other large-scale  

 

 

language models in most benchmark tests due to its super 

pre-training ability. LLaMA-13B surpasses GPT-3 (175B) 

in multiple tasks, and LLaMA-33B shows similar 

superior performance compared with models such as 

Chinchilla-70B and PaLM-540B, which makes LLaMA 

perform well in various tasks. Achieve excellent 

performance. More importantly, the LLaMA series is 

open source, which provides more research space for 

academia and industry. In order to improve the 

performance of the LLaMA Transformer-ResNet hybrid 

model, several improvements have been made to the 

model. 

 

Table 5: Individual impact of compression techniques 

 

Technique 
Latency Reduction 

(ms) 

FLOPs 

Reduction 

(B) 

Memory Saving 

(MB) 

WER Change 

(%) 

Baseline - - - 28.7 

Knowledge Distillation -70 -0.18 -45 0.3 

Low-Rank Factorization -65 -0.21 -35 0.1 

Pruning -50 -0.15 -25 0.2 

Quantization -85 -0.23 -60 0.4 

Combined (All Techniques) -270 -0.77 -165 1 

 

LLaMA introduces a pre-normalization (RMSNorm) 

strategy to normalize the input of each Transformer block, 

thereby improving the stability of training and avoiding 

the possible instability problems caused by normalizing 

the output in traditional methods. LLaMA adopts the 

SwiGLU activation function instead of the traditional 

ReLU activation function. Figure 7 is a phoneme-level  

 

and semantic-level feature alignment evaluation diagram. 

Plotting learning rate (1e-5, 1e-4, 5e-4) against alignment 

accuracy, the full model achieves 85.6% at 1e-4, 

outperforming the cross-layer model without attention 

(78.9%) and baseline (72.3%). The legend validates the 

critical role of attention mechanisms in feature alignment, 

consistent with ablation study results. 
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Figure 7: Phoneme level and semantic level feature alignment evaluation diagram 
 

The datasets used in the experiment are diverse and 

cover different domains and testing requirements. 

Specifically, the LibriSpeech dataset contains 960 hours 

of speech from 2,484 speakers, focusing on audiobooks, 

with its clean subset and test-other subset suitable for 

pure speech and noise scenario testing. The DEMAND 

dataset provides 100 hours of environmental noise, 

which can be added to LibriSpeech to simulate SNR 

scenarios ranging from -5dB to 10dB. The Common 

Voice dataset spans 2,360 hours with over 7,700 speakers, 

including diverse accents to evaluate non-native speech 

comprehension. The TED-LIUM dataset, comprising 

150 hours of academic lecture speeches, is designed for 

long-form speech testing tasks. This method plays a vital 

role in improving the interpretability of the model. When 

faced with complex speech signals, it can reveal the 

dependence of the model on various input features. In 

order to improve the performance of the model in a 

complex speech environment, a language model fusion 

strategy is proposed to optimize the end-to-end speech 

understanding system. Specifically, in the speech coding 

stage, a CTC (Connectionist Temporal Classification) 

loss function can be introduced to ensure the alignment of 

phoneme-level speech features in the temporal dimension, 

thereby improving the robustness of the decoding stage. 

Table 6 is comparison with state-of-the-art speech 

models. 

 

Table 6: Comparison with state-of-the-art speech models 

 

Model Dataset WER (%) 
Model Size 

(MB) 
Inference Latency (ms) 

Ours LibriSpeech 4.8 128 95 

wav2vec 

2.0 (base) 
LibriSpeech 5.2 340 160 

HuBERT 

(large) 
LibriSpeech 5 410 180 

Conformer LibriSpeech 4.2 203 160 

 

This method can effectively overcome the time 

delay problem in speech signals and enable the model to 

predict phoneme-level features accurately. In the 

sequence modeling part of the Transformer layer, 

pre-trained language models such as BERT or GPT can 

be combined to align speech features with text semantic 

information across modalities. The model can better map 

speech features to the text semantic space through this 

alignment method, thereby improving the ability of 

speech-text joint modeling. Figure 8 is a multi-layer 

feature extraction evaluation diagram in English listening 

comprehension tasks. This plot shows FLOPs reduction 

from 2.7B (12-layer Transformer) to 0.93B (compressed 

model with 6 layers and low-rank factorization), a 65.6% 

decrease. The legend contrasts "original" and 

"compressed" curves, emphasizing the model's 

lightweight design and computational efficiency gains. 
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Figure 8: Multi-layer feature extraction assessment diagram in English listening comprehension task 

 

5 Experimental analysis of special 

assessment system for listening 

comprehension 
In developing a speech understanding system, accurately 

evaluating the model's performance has always been a 

key issue. Comparing ResNet-18, -34, and -50, the plot 

shows ResNet-34 achieves 950 samples/s—22% faster 

than ResNet-50 (780 samples/s)—balancing accuracy 

and speed. The legend's bar chart supports ResNet-34 as 

the optimal depth for the hybrid architecture. Figure 9 is 

the evaluation diagram of reasoning speed and accuracy 

before and after model compression optimization, but 

also needs to comprehensively consider semantic 

retention, Context comprehension ability, and other 

aspects. 

 

 

Figure 9: Reasoning speed and accuracy evaluation diagram before and after model compression optimization 

 

Optimizer: AdamW with weight decay 0.01, 

Learning rate: 1e-4 (cosine annealing with 1000-step 

warmup), Hardware: 4× NVIDIA A100 40GB GPUs, 

Batch size: 32 per GPU (gradient accumulation over 4 

steps), Training duration: 11 hours (150 epochs), 

Framework: PyTorch 2.1 with NVIDIA Apex for mixed 

precision. In order to comprehensively evaluate the 

performance of the Transformer-ResNet hybrid model in 

English listening comprehension tasks, an automated 

loop-finding technique was employed. The core goal of 

this technology is to identify and construct a loop 

subgraph that can effectively implement 

decision-making. This process combines identification 

loop, subnet detection, and head importance scoring 

technology. Figure 10 is a cross-layer connection feature 

fusion effect evaluation diagram. By iteratively 

calculating the nodes in the model, the connection 

between nodes and their child nodes is gradually deleted, 

and the impact of deletion on the output vector is 

measured. 
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Figure 10: Cross-layer connection feature fusion effect evaluation diagram 
 

The figure demonstrates fusion accuracy (85.6% at 

15s) for the full model, versus 78.9% without dynamic 

reweighting, verifying the mechanism's role in 

multi-speaker scenarios. The legend's trend line 

highlights how dynamic reweighting adapts to sequence 

complexity, reinforcing the theme of context-aware 

feature fusion. Figure 11 is an error evaluation diagram 

of the listening comprehension model in different noise 

environments, which can more comprehensively evaluate 

the stability and anti-interference ability of the 

Transformer-ResNet hybrid model. 

 

 

Figure 11: Error assessment diagram of listening comprehension model in different noise environments 

6 Discussion 
The Transformer-ResNet hybrid architecture 

outperforms traditional models in noisy environments, 

achieving a 21% relative WER reduction under -5dB 

SNR compared to the CNN+Attention baseline. This is 

attributed to the complementary design: Transformer's 

self-attention captures long-term semantic dependencies 

(e.g., maintaining context in 44-frame consecutive 

speech), while ResNet's residual connections preserve 

local acoustic details (e.g., pitch variations in 

multi-speaker scenarios). For short speech segments 

(<5s), the model shows 18% higher accuracy than LSTM 

due to rapid local feature extraction; for long segments 

(>30s), Transformer's global modeling reduces context 

loss by 34%. The model's generalizability is validated on 

the CHiME-6 dataset, maintaining a WER of 12.1% in 

reverberant environments. 

 

X experience an even higher error rate of 27%. In 

multilingual scenarios, the model's performance declines 

by 19.5% when processing non-English speech, 

primarily due to its lack of cross-lingual phoneme 

modeling. For edge device inference, although the model 

has been compressed, it still incurs a latency of 95ms on 

the Qualcomm 8cx Gen3, which fails to meet the 

stringent real-time requirement of less than 50ms. 

Regarding compression, while combined techniques 

successfully reduce the model size by 45%, they also 

cause a 1.0% degradation in WER, suggesting that more 

fine-tuned pruning strategies are necessary to strike a 

better balance between compression and accuracy. 

The model's deployment entails critical ethical and 

social considerations, starting with privacy risks—using 

it in public spaces like classrooms or offices raises 

concerns about unauthorized speech recording, mitigated 

by proposed on-device processing and differential 
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privacy (ε=3.0, δ=1e-5) to prevent data leakage. A 

fairness analysis reveals an 8.2% accuracy gap between 

native (82.3%) and non-native (74.1%) English speakers, 

largely due to accent-related phoneme misalignment, 

though curating a training dataset with 30% non-native 

samples reduces this disparity to 4.5%. To ensure ethical 

deployment, guidelines include obtaining explicit user 

consent for recording, implementing real-time audio 

anonymization, and regularly auditing for bias across 

demographic groups. 

7 Conclusion 
The proposed English listening comprehension model 

based on the Transformer-ResNet hybrid model has made 

remarkable progress at multiple levels. A new model 

architecture is proposed by combining the residual 

convolutional network and the self-attention mechanism 

of Transformer, which can effectively improve the 

accuracy and robustness of speech understanding in 

multi-level feature modeling. 

This study proposes an acoustic-semantic joint 

modeling method based on the Transformer-ResNet 

hybrid model by analyzing the differences between 

acoustic and semantic features in English listening 

comprehension tasks. The model can better capture 

fine-grained local acoustic features when processing 

audio signals by introducing ResNet architecture. In 

contrast, the Transformer architecture effectively 

captures long-term dependent semantic information in 

audio signals. Our model achieves a WER of 4.8% vs. 

Conformer's 4.2%, with 37% smaller model size (128MB 

vs. 203MB) and 41% faster inference (95ms vs. 160ms). 

Compared to wav2vec 2.0 on the CHiME-5 noisy 

dataset, our model shows a 19% lower WER (8.7% vs. 

10.7%) under multi-talker conditions. 

When dealing with the alignment problem of 

phoneme-level to semantic-level features, the proposed 

cross-layer connection strategy effectively overcomes 

the mismatch of different levels of features in spatial 

dimensions through multi-scale feature fusion. The 

Transformer-ResNet hybrid model advances English 

listening comprehension by integrating local-acoustic 

and global-semantic modeling. Key future directions 

include extending the architecture to multilingual 

scenarios (current non-English WER is 19.5% higher) 

and incorporating dynamic task adaptation for real-time 

translation. The open-source implementation (available 

at [repository link]) enables reproducibility and 

community-driven improvements in speech 

understanding technology. 

The real-time requirements of the model in practical 

applications effectively reduce the computational 

complexity through model compression and distillation 

technologies while maintaining a high understanding 

accuracy. In the design of the English listening 

comprehension model based on the Transformer-ResNet 

hybrid model, experimental results show that by 

introducing the deep fusion of a 12-layer Transformer 

encoder and 34.2 residual blocks, the accuracy rate of the 

model in the Mel spectral feature extraction task reaches 

89%, which is 23.5% higher than the traditional model. 

The model achieved an overall accuracy of 78.9% (10.1% 

higher than the LSTM baseline) and a WER of 9.8% in 

complex environments. The Transformer-ResNet hybrid 

architecture improved time series consistency by 24% 

(score 66.6) and reduced WER by 43% compared to 

traditional models. Experiments using 45% augmented 

training data showed robust performance with an average 

sequence alignment score of 67.8 in 56% noisy scenarios, 

converging within 11 hours.   
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