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With the rapid development of the new media industry, animation creation occupies an important position
in the fields of modern film and television, advertising and games. Traditional animation creation process
mostly relies on manual operation, which is inefficient and flexible, especially in the design and
optimization of action path. In order to solve this problem, this study proposes an intelligent control and
optimization scheme using the Deep Deterministic Policy Gradient (DDPG) algorithm to optimize the
action path in new media animation creation. The method constructs a reward function considering path
fluency, precision, creation cost, and user preference, and applies a continuous control strategy within a
reinforcement learning framework. We collected 1000 animation scene data samples and compared the
proposed method against traditional optimization techniques including Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), and Simulated Annealing (SA). Experimental results show that our method
reduces the action path error (MSE) from 0.082 to 0.045 (a 45.1% improvement), increases fluency from
0.87 t0 0.97 (a 11.5% increase), and reduces optimization time by 55% compared with GA. The DDPG-
based approach also demonstrates faster convergence and better stability. These findings confirm the
effectiveness and efficiency of reinforcement learning in enhancing intelligent animation production. The
research results of this paper provide a new idea and method for new media animation creation, which
can greatly improve the automation degree and quality of animation production, and provide theoretical
support and practical guidance for the intelligent animation creation in the future.

Povzetek: Predlagana metoda z ojacitvenim ucenjem (DDPG) optimizira poti animacijskih gibov ter v
primerjavi z GA/PSO/SA zmanjSa napako (MSE 0,082 — 0,045), poveca gladkost (0,87 — 0,97) in

skrajsa cas optimizacije za 55 %.

1 Introduction

With the rapid progress of digital and intelligent
technology, the traditional animation creation mode faces
increasingly severe challenges. With the prosperity of the
new media field, animation creation is no longer
restricted by the conventional restrictions of 2D and 3D
technologies, and the demand for cross-platform and
interactive content has significantly improved the
complexity of animation creation. Especially in the
creative process, the design and optimization of the
movement trajectory of animation characters are always
the core elements that affect the animation effect and
creation speed. Animation creation depends on manual
design and adjustment, which takes a long time and lacks
flexibility. It is even more challenging to do so when
facing large-scale animation output. This need is
particularly urgent given the explosive growth in demand
for digital content in film, television, advertising, virtual
reality, and interactive entertainment. Production studios
are under increasing pressure to deliver high-quality
animations within tight timelines and budget constraints.
Manual design workflows, while artistically valuable, are

no longer sufficient to meet the volume, speed, and
precision required. As a result, the integration of artificial
intelligence  techniques, especially  reinforcement
learning-based automation, is emerging as a
transformative solution. This study directly responds to
this trend by proposing a reinforcement learning
framework tailored for real-world animation production
challenges [1].

Optimization algorithms and Reinforcement
Learning (RL) have made remarkable progress in
artificial intelligence in recent years. Optimization
algorithms can find the best solution under preset
constraints. At the same time, reinforcement learning
gradually improves the decision-making process through
interactive learning with the environment, especially
showing unique performance when dealing with high-
dimensional and nonlinear problems. Building upon
recent advancements in artificial intelligence, this study
adopts a reinforcement learning strategy based on the
DDPG algorithm to address the path optimization
problem in new media animation creation. Rather than
combining multiple optimization techniques, the focus is
placed on evaluating the standalone effectiveness of
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DDPG, which is applied to the intelligent control and
optimization of action path in new media animation
creation. This strategy achieves the adaptive optimization
of the action path innovatively, improving the animation
production speed and ensuring a natural and smooth
animation effect [2].

The innovation of this research lies in integrating
reinforcement learning and optimization algorithms and
constructing an intelligent control system that can
adaptively regulate the animation trajectory. The system
automatically optimizes the action path parameters with
the help of the reward function and learns the best action
design mode. Compared with traditional manual design,
the reinforcement learning approach can create a natural
and plot-appropriate action path in a shorter time.
Experiments have proved that this approach not only
ensures the quality of creation but also significantly
speeds up the animation production speed, reduces the
cost, opens up a new perspective, and provides technical
support for the intelligent evolution of the new media
animation industry [3].

This paper aims to explore the integration and
profound application of optimization algorithms and
reinforcement learning and open up an intelligent path
optimization method for new media animation creation.
With the support of abundant experimental data, this
paper shows the practical effect of this method in action
path planning and confirms its potential to promote
creative efficiency, reduce labor costs, and improve
animation quality. In addition, the research results also
contribute valuable reference and practical experience to
promoting the automation and intelligence process of
new media animation creation in the future [4].

This study identified three main research
objectives: to evaluate whether the DDPG model can
achieve a mean square error (MSE) of less than 0.05 in
animation path planning, compare its improvement
effect on path fluency compared to traditional
algorithms (GA, PSO, SA), and verify its optimization
efficiency in large-scale animation production. Three
hypotheses are proposed accordingly: H1 believes that
DDPG is superior to traditional algorithms in path
error, H2 believes that its path fluency score is higher,
and H3 expects DDPG to significantly outperform GA
and SA in optimization time while maintaining or
improving output quality.

2 Theoretical basis and related

research

2.1 Overview of reinforcement learning
algorithms

Reinforcement learning is one of the three classic
branches of machine learning. Unlike the other two types
of branches, reinforcement learning algorithms do not
rely on external data but on the feedback of the
environment to actions, spontaneously exploring and
learning the optimal model [5].
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The concept of reinforcement learning originates
from behavioral psychology. In specific scenarios,
creatures react closely or distantly to the behavior they
receive. This psychological mechanism prompts
organisms to get rewards or be punished in the
environment according to different behaviors and then
gradually learn adaptive strategies and evolve in a
direction that is beneficial to themselves [6, 7].

After a long accumulation period, reinforcement
learning has gradually been integrated into many
engineering projects. The core purpose is to explain and
solve the problem of what strategies agents adopt to
maximize benefits or achieve specific goals when
interacting with the environment. In a given scenario, the
agent accumulates knowledge through trial-and-error
learning to select the optimal action to win the greatest
return. Specifically, the agent takes actions in an
unknown environment, continuously accumulates
experience according to the feedback of the environment,
constantly improves its decision-making process, and
finally establishes a behavioral decision-making system
that can obtain higher rewards [8].

In the field of reinforcement learning, the Markov
Decision Process (MDP) is a common model, and almost
all  reinforcement learning problems can be
mathematically transformed into MDP. Because of its
feasibility in practical application, this model has become
the most widely adopted form to define reinforcement
learning problems and constitutes the core cornerstone of
reinforcement learning algorithms [9].

As the field of reinforcement learning continues to
evolve, many complex problems increasingly rely on its
solutions. However, such issues often lack suitable
models, making implementing model-based methods
difficult. Faced with the lack of model information, the
state transition probability P is in an unknown state, and
the subsequent state prediction becomes difficult. It is
difficult to derive the state value and state-action value
function directly from the Bellman equation to obtain the
optimal strategy. This situation forces the agent to
interact directly with the surrounding environment and
continuously learn strategy from the interactive
experience to overcome the complex problems that
traditional planning methods can't overcome [10].

2.2 Overview of action path of new media
animation creation under reinforcement
learning of optimization algorithm

In creating new media animation, designing and
optimizing the action path is the key to the natural and
smooth animation effect. In traditional animation
production, animators need to personally adjust the
subtleties of character movements, such as character
walking posture, posture conversion, rate control, etc.
[11]. Faced with the increasingly complex demand of
animation production, manual design has made it
challenging to meet the needs of efficient creation.
Especially when making large-scale and high-quality
animations, manual adjustment is time-consuming,
laborious, and error-prone. Therefore, optimizing the
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action path and improving the animation production
automation level are essential topics in animation
creation [12].

Optimization algorithm is a skill that uses
mathematical means to find the best solution and has been
widely used in many fields. New media animation
production can help animation teams quickly produce up-
to-standard action trajectories under established
restrictions. Through the optimization algorithm, the
labor of manual adjustment can be significantly reduced,
and the creation speed can be improved. Under the
coordination of multiple parameters, a more natural and
harmonious animation effect can be achieved. Standard
methods such as genetic algorithms, particle swarm
optimization, and simulated annealing algorithms can
provide efficient and feasible solutions to path planning,
action adjustment, and other problems [13].

As an intelligent algorithm, reinforcement learning
continuously optimizes the decision-making process
when interacting with the environment. It has now
become a powerful assistant in dealing with high-
dimensional complex problems. The field of animation
creation relies on the set reward mechanism to guide the
model in learning and adjusting the action path, striving
to present the best effect. Unlike traditional optimization
algorithms, reinforcement learning does not need to
preset all possible action paths but relies on continuous
training and feedback to improve the action path
generation strategy [14, 15]. This model can
independently explore the action path that best matches
the specific scene and needs, significantly improving
animation creation's intelligence.

Combining the essence of optimization algorithms
and reinforcement learning, this research innovatively
proposes a methodological framework to optimize the
action path in new media animation creation. The
architecture dynamically adjusts the action path
parameters with the help of a reinforcement learning
mechanism. It incorporates optimization algorithms to
precisely carve the details to ensure the action's fidelity,
coherence, and plot fit. This intelligent control method
accelerates the animation creation process and presents a
more vivid and expressive visual feast for the audience.
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To sum up, the research results have contributed a
cutting-edge intelligent control strategy to the new media
animation field, laying the foundation for the future
automation and intelligence of animation production
[16]. The comparison of animation path optimization
methods is shown in Table 1.

Table 1: Comparison of animation path
optimization methods

Representative Evaluation
Method Type Techniques Metrics
GA, PSO,
Heuristic-based Simulated Path error
Annealing
GAN-based GA.NS Wﬁh Visual realism
motion priors
Classical A*, RRT, Path length,
planning Dijkstra smoothness

3 Establishment of new media
animation creation model based on

optimization algorithm
reinforcement learning
3.1 Formulation of dynamic path

optimization model based on reinforcement
learning

Aiming at the dynamic path optimization model and final
optimization objective function of new media animation
creation, it is necessary to ensure the accuracy and
smoothness of the creation process's action path and
consider the creation efficiency and resource
consumption. Against this background, formulating a
dynamic path optimization algorithm mechanism is
critical [17, 18]. The flow of the dynamic path

optimization algorithm for new media animation creation
is shown in Figure 1.

Smooth
path

knlj' New Media Animation

Dynamic path

|

Dynamic mechanism

Creation cost

Figure 1: Dynamic path optimization algorithm process for new media animation creation
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New media animation creation: Dynamic path
optimization strategy construction, according to the
creation cost, action path accuracy, time demand, and
user smooth and natural preference adjustment, striving
for a win-win situation between the animation team and
users [19]. Facing the changeable new media animation
environment, the existing schemes and algorithms have
poor results. Reinforcement learning is progressing
rapidly, exploring new directions for dynamic path
optimization [20]. The objective function formula of
creation cost and demand optimization is shown in (1).
The various indicators in equation (1) quantify the key
factors of animation path optimization, including total
creation cost, path accuracy error, path smoothness, and
user satisfaction. This reward design reflects the
methodological integration of traditional optimization
theory into the reinforcement learning framework. The
key optimization goals— path accuracy, fluency, cost
minimization, and user preference alignment — are
incorporated as components of the reward function. This
allows the RL agent to optimize the action policy while
being guided by interpretable, optimization-derived
objectives. In particular, the DDPG algorithm benefits
from this integration by learning a deterministic policy
that maximizes cumulative reward, effectively balancing
exploration with precision, and ensuring alignment with
classic path planning constraints while leveraging the
adaptive learning capacity of deep RL.

Objectivefunction = ﬂ'l ' Ccost + j'2 ! Dprecision + 23 ’ Dflow - /14 ' Puser (1)

Among them, Cey represents the creation cost,
Dpyrecision Tepresents the accuracy of the action path, Dy
represents the fluency of the action path, Py represents
the user's preference for fluency and naturalness, and 1,,
A2, A3, A4 represent the weight factors.

Because of the complex composition and large scale
of new media animation creation, accompanied by highly
creative uncertainty, it can be regarded as the research of
exploring dynamic path optimization strategies in
unknown fields [21]. According to the reinforcement

learning theory, the agent accumulates creative
experience through continuous exploration and
interaction with the surrounding environment,

understands the relationship between animation path and
innovative action, and then uses path optimization means
to adjust the fluency and accuracy of animation creation
to achieve the established dynamic path optimization
mechanism goal. The animation path optimization
objective function formula is shown in (2).

Objectivefunction = &, - Ly, + @ * Lyvecision =% *Coost (2)

Among them, Lg,, represents path fluency, Lpyrecision
represents path accuracy, C.. represents creation cost,
and a;, a, and a3 represent weight coefficients. The
reinforcement learning path optimization reward letter
formula is shown in (3).

C.Zouetal.

R(@) =7 -ENV(s.)1-V(s)+r (3)

Where R(a,) represents the reward obtained when
the action at is performed at time ¢, y represents the
discount factor, V(s,) represents the value of the current
state st, £/V(s:+1)] represents the expected value of the
following state s;+;, and 7, represents the immediate
reward. Within the reinforcement learning framework,
the animation creation team is regarded as an agent, its
creation environment is the learning situation, and the
action is defined as the path optimization strategy. This
action changes state variables such as accuracy,
smoothness, and audience experience of the animation
path, Creative efficiency, and audience satisfaction as
reward signals for learning feedback [22]. This research
aims to maximize the reward through policy actions,
model this as a Markov decision process, and use the deep
deterministic policy gradient algorithm to solve it. The
formula of the Markov decision process model of the path
optimization strategy is shown in (4). Where P(s, a,)
represents the probability of the combination of the
current state s, and the current action a, P(si+i|s, ay)
represents the state transition probability, and z(als)
represents the policy function.

P(St'at) = P(St+1 | St’at)'”'(at |St) @

3.2 Deep deterministic policy gradient
algorithm

To address the challenges of continuous and high-
dimensional action path optimization in new media
animation, this study adopts the DDPG algorithm as the
core method within the reinforcement learning
framework. DDPG is a specific type of deep
reinforcement learning algorithm developed by Google
DeepMind, designed for environments with continuous
action spaces. Compared with discrete-action methods
like DQN, DDPG provides more precise control and
better scalability for complex motion path generation
tasks, which uses discrete action space, DDPG performs
excellently in continuous action domains and high-
dimensional situations. The objective function formula of
the DDPG algorithm is shown in (5).

JO)=E,_, [r+7Q(su1a.1)— Qs )] (5)

Where J(6) represents the optimization objective
function, s; represents the current state, a; represents the
action selected in state s;, 7, represents the instant reward,
y represents the discount factor, Q(s;, a, represents the
value of taking an action in this state, and Q'(s/+1, ar+1)
represents the target network calculation. For the
complex path optimization model of new media
animation creation, if a stochastic strategy is adopted,
such as the DON algorithm, to evaluate the probability of
each action one by one, the computational complexity
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will be extremely high, which significantly hinders the
algorithm efficiency and optimal path selection [23]. In
contrast, the DDPG algorithm uses a deterministic
strategy, approximates the strategy function p with the
help of a neural network, and directly obtains the unique
optimal path strategy, effectively eliminating the
disturbance of probabilistic factors. The pseudocode for
DDPG animation path optimization is shown in Table 2.

Table 2: Pseudo code for DDPG animation path
optimization

critic  Q(s,a/0Q),

Initialize actor
networks p', Q'
Initialize replay buffer B and noise process N
for each episode do
Initialize state so from animation scene
for each step t do
Select action a; = pu(s) + N;
Execute a,, observe reward r, and next state s+
Store (s, ai, I, Se+1) in B
Sample minibatch from B
Compute target: y=r+ v - Q'(s', '(s")
Update critic: minimize (Q(s,a) - y)?
Update actor via policy gradient
Soft-update target networks
end for
end for
The DDPG deterministic strategy formula is shown
in (6).

H(s|Op), target

a, =u(s 16,) (6)

Where a; represents the action selected at time step
t, i(st |6,) represents the optimal action, and 6, represents
the parameters of the policy network. The DDPG policy
update formula is shown in (7).

0,=0,+a-V, 30, (7)

Where 6, represents the parameters of the policy
network, a represents the learning rate, and J(6,)
represents the gradient of the policy network parameters.
At the same time, as an algorithm in the field of
reinforcement learning, it needs to deepen the
reinforcement of exploration and development during
training to broaden the search space and explore better
strategies. Therefore, in the action selection stage, the
DDPG algorithm integrates random processes into the
deterministic strategy architecture, samples actions with
random noise, and applies them to the environment. The
summary of DDPG hyperparameters is shown in Table 3.

Table 3: Summary of DDPG hyperparameters

Parameter Value Description
. Actor and critic
Learning rate () 0.0003 network learning rate
Discount factor (y) 0.99 Future reward discount
Target network soft
Soft update rate (1) 0.005 update coefficient
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This study constructs a reinforcement learning
model for new media animation creation based on
dynamic path optimization and DDPG algorithm. This
model adopts a continuous control actor critic
architecture, with inputs including character position,
trajectory, environmental constraints, and semantic
information, and outputs as path adjustment actions (such
as curvature, rhythm, direction). The reward function
comprehensively considers path accuracy, smoothness,
cost, and user preferences. Through experience replay
and soft update mechanisms, the model continuously
optimizes strategies in interaction with animation
samples, automatically generates action trajectories that
meet performance and aesthetic requirements, and
constructs an intelligent, efficient, and high-quality core
mechanism for new media animation creation.

This section constructs a reinforcement learning
model based on DDPG for dynamic path optimization in
new media animation. The model adopts a continuous
control actor critic architecture, with the state space
containing character position, velocity, trajectory history,
environmental constraints, and semantic labels, and the
action space defining path adjustment parameters such as
direction, velocity, curvature, and rhythm. The actor
network adjusts the output path action, and the critic
network evaluates its long-term return. The reward
function integrates four indicators: path accuracy,
smoothness, animation cost, and user preference, all of
which are normalized. Through experience replay and
soft target network updates, the model achieves stable
training and gradually generates high-quality and
resource efficient animation paths, enhancing the
intelligence and practicality of new media animation
creation.

DDPG follows the experiential playback and Q-
target network mechanism in DQN and improves it on
this basis. Aiming at the instability of single Q network
training and the deviation of value function estimation,
the Actor-Critic architecture is used to construct the Actor
strategy network and the Critic value network, and the
Online network and the Target network are set up
respectively. Among them, the policy network is
responsible for fitting and updating the policy function u
(parameter 6,). In contrast, the value network is used to
evaluate the advantages and disadvantages of the current
policy (parameter 6p). The parameter update strategy
follows the soft update mechanism to ensure the stability
and progressiveness of the training process. The Actor
policy network update formula is shown in (8).

0,<0,+a-v,30,) (8)

Where 6, represents the weight and bias of the
neural network, o represents the learning rate, ./ (6,)
represents the gradient of the policy network parameters,
and J (8,) represents the objective function of the policy
network. The core of reinforcement learning lies in the
agent's interactive learning with the environment to
derive the optimal action strategy to maximize the reward.
DDPG algorithm also follows this concept [24, 25].
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Equation (9) shows the action reward obtained by the
agent according to the Markov decision process, which is
usually characterized by the state action-value function.

]
0, ~argmaxe| 3w | (9)

Where 6, represents the parameters of the policy
network, y represents the discount factor, 7, represents the
immediate reward at the current time step ¢, 7 represents
the termination time step, and E represents the expected
value. However, discrete actions and state spaces, such as
formula (10), aim only at the DQN and Q-learning
algorithms. DDPG uses its unique deep neural network to

Q-learming
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optimize the optimization strategy and enhance the
stability and convergence ability of the algorithm [26].
The soft update formula of the target network is shown in
(10).

49('3 =760, + (177)6?('2 (11)

Where 6'p represents the parameters of the target
network, 0o represents the parameters of the current
network, 7 represents the soft update rate, and (/—7)
represents the supplementary part. According to the
above steps, the flow chart of the DDPG algorithm is
shown in Figure 2.
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Figure 2: Flowchart of DDPG algorithm

4 Experimental results and analysis

All experiments were conducted on a workstation with
the following hardware and software configuration: an
Intel Core i9-12900K CPU (16 cores), 64 GB DDR5
RAM, and an NVIDIA GeForce RTX 3080 GPU with 10
GB VRAM. The operating system was Ubuntu 22.04
LTS. The reinforcement learning models were
implemented using Python 3.9.13. The DDPG algorithm
and supporting neural networks were developed with
TensorFlow 2.9.1 and PyTorch 1.13.0. CUDA version
11.6 and cuDNN 8.4 were used for GPU acceleration.
The experiments were managed and reproducibility
ensured via fixed random seeds, isolated conda
environments, and logging via TensorBoard. This study
uses three core indicators to evaluate the quality and
effectiveness of action path optimization: path error
(MSE) measures the average Euclidean distance
deviation between the predicted path and the reference
trajectory, with lower values indicating higher position
accuracy; The smoothness of motion is evaluated by the

consistency between the fitted curve and the actual
motion curve. The closer the R? is to 1.0, the more natural
the animation is; The quality compliance rate represents
the proportion of generated samples that meet the
requirements of MSE<0.05, R?>0.90, and frame
continuity, reflecting system stability and generation
consistency. All indicators are calculated through
automated scripts to ensure objectivity and consistency in
experimental comparisons [27, 28].

This study defines path error as the mean square error
(MSE) of the Euclidean distance between the predicted
trajectory and the reference trajectory, which is
calculated by frame-by-frame position vector differences
to reflect the actual deviation of the action path in
physical space. This distance based MSE evaluation
method is suitable for continuous motion path analysis in
animation, and can effectively measure position accuracy
and motion smoothness, making it a reasonable choice for
evaluating path accuracy. The experimental results of the
optimization algorithm comparison are shown in Table 4.
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Table 4: Optimization algorithm comparison experimental results

Optimization Action path Movement Optimization time
. smoothness (R?
algorithm error (MSE) (seconds)
value)
Genetic algorithm 0.065 0.92 150
Particle swarm 0.052 0.95 120
optimization
Simulated 0.072 0.88 180
annealing
Remforc'ement 0.045 0.97 90
learning

Table 4 shows that the DDPG reinforcement
learning method outperforms traditional algorithms in
terms of path error, motion smoothness, and optimization
time. The minimum MSE is 0.045, and the path accuracy
is the highest; The R? value reaches 0.97, indicating the
smoothest motion; The optimization time is only 90
seconds, significantly faster than GA (150 seconds), PSO
(120 seconds), and SA (180 seconds). This result
validates the comprehensive advantages of DDPG in
improving animation path quality and optimization
efficiency, especially for large-scale animation
production scenes [29]. The comparison result shows that
the reinforcement learning algorithm stands out among
all optimization algorithms. Its motion path error (MSE)
is as low as 0.045, and its fluency (R2 value) is as high as
0.97, demonstrating the natural smoothness of the motion
path generated by this method. In addition, the
optimization time required for reinforcement learning is
only 90 seconds. Compared with the genetic algorithm
(150 seconds), particle swarm optimization (120
seconds), and simulated annealing (180 seconds), the

time advantage is significant. Overall, reinforcement
learning excels in the accuracy and efficiency of path
optimization, surpassing other optimization algorithms.

This study uses multidimensional indicators such
as path error, path fluency, optimization time, and error
improvement rate to systematically evaluate the
effectiveness and efficiency of various algorithms in
animation path generation. The relevant data is
visualized through tables and diagrams. The
evaluation results indicate that the DDPG method
outperforms traditional algorithms in terms of
accuracy, smoothness, optimization speed, and
improvement range, fully verifying its practicality and
advantages in various animation creation scenarios.

To compare the accuracy performance of different
optimization algorithms and reinforcement learning in
animation path optimization, especially the path error,
this paper compares the optimization algorithm and
reinforcement learning in path error. The results are
shown in Figure 3.

T T T T T T T

6 —2—Gen_etic algorithmerror . --@- - Simulated annealing .
~5| —A —Particle swarm optimization —@- - Reinforcement Learnin
S
— 4
o
=
(1) 3
-
< 2
o L 4

L 4
‘e e
O I
0 2 4 .8 10 12 14 16
Time (min)
T T T T T T T

6 e —z—Genetic algorithmerror . --@-- Simulated annealing
—5 — A —Particle swarm optimization —@- - Reinforcement Learning
E\O/ ’
— 4
o
=
q.) 3
=
< 2
o

1

O I

8
Time (min)

10 12 16

Figure 3: Comparison of path error between optimization algorithm and reinforcement learning
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The experiment records the path error data of
various algorithms in the process of multi-round iteration
in detail. It presents the differences in error control
among various algorithms intuitively using charts.
Finally, the research compares the advantages and
disadvantages of each method with the help of error
analysis, which provides solid data support for selecting
an intelligent path control algorithm [30]. The diagram
reflects the specific performance of the four algorithms in
terms of path error (MSE): the error of the genetic
algorithm is 0.065, the error of the particle swarm
optimization (PSO) algorithm is 0.052, the error of the
simulated annealing algorithm is 0.072, and the error of
reinforcement learning algorithm is only 0.045.
Reinforcement learning takes the lead in the accuracy of
path optimization. Reinforcement learning relies on
continuous strategy adjustment to precisely control path

Fluency (%)
&

—8— SAD
> o —a— JGY

—8— DGT
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details, effectively reduce errors, and ensure the fluency
of animation. Although the performance of the genetic
algorithm and particle swarm optimization algorithm is
acceptable, the error is still significant compared with
reinforcement learning. This highlights the advantages of
reinforcement learning when dealing with complex path-
planning tasks, especially in new media animation
creation, which can significantly improve animation's
natural fluency and accuracy.

To compare the performance of different
optimization algorithms and reinforcement learning in
path fluency (R 2 value) and to verify whether
reinforcement learning can generate a smoother and
smoother animation path, this paper compares different
optimization algorithms in path fluency, and the results
are shown in Figure 4.
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Figure 4: Comparison of path fluency among different optimization algorithms

Figure 4 shows the comparison results of the four
methods in path fluency. SAD represents simulated
annealing, JGY represents genetic algorithm, and DGT
represents particle swarm optimization. The experiment
quantifies the fluency of the path generated by each
algorithm by evaluating the path's curvature, turning
angle, and speed change. The results are shown in the
form of charts, and the differences in path smoothness
among different algorithms are compared, providing data
support for path optimization and a reference for
selecting intelligent path control methods in animation
creation. The path smoothness score, measured via
curvature and acceleration continuity, for reinforcement
learning is 0.97, significantly higher than the other three

algorithms. The fluency of the genetic algorithm is 0.92,
particle swarm optimization is 0.95, and simulated
annealing is 0.88. Reinforcement learning not only excels
in path error but also has significant advantages in
fluency. The higher the fluency of the animation path, the
more natural the audience experience is, and the more
realistic the movement feel of the animation. This shows
that through self-optimization and feedback mechanisms,
reinforcement learning can generate paths more in line
with the laws of human movements and improve
animation's expressiveness and viewing effect.
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Figure 5: Comparison of error changes before and after path optimization

To show the change of error before and after path
optimization. By comparing the changes in path errors
before and after optimization, the improvement effect of
the optimization algorithm and reinforcement learning on
path accuracy is verified. This paper compares the
changes in errors before and after path optimization, and
the results are shown in Figure 5. GFR represents global
frame level reduction, and GFT represents global frame
level total.

Fluency measurement is quantitatively calculated
using coefficient of determination, which is a
statistical measure that indicates the degree to which
the fitted curve models the actual path dynamics.
Specifically, the system performs second-order
polynomial regression on the velocity and acceleration
curves of each path segment. Then calculate the R?
score between the smooth curve and the original time
series data. The higher the R? value, the smoother and
more natural the transition between motion states,
reflecting the better smoothness of the animation. This
method allows for robust and interpretable
measurement of motion smoothness, which is sensitive
to abrupt changes and can be generalized across
different types of animations.

This study constructed a reinforcement learning
environment for DDPG training based on Markov
Decision Process (MDP). The state space includes the
current position, velocity, trajectory of the character in
the past 5 frames, environmental constraints, and
semantic labels, all of which are normalized and input

into the network; The action space consists of four
continuous control variables: direction adjustment, speed
scaling, curvature control, and rhythm adjustment, which
are used to guide path generation. The reward function
consists of four parts: path accuracy, smoothness,
generation cost, and user preference. The weights are
M=0.4, 2,=0.3, A3=0.2, and A,=0.1, respectively. All
components are normalized to [0,1]. Each step reward is
used for updating strategies and value networks,
combined with experience replay and soft update
mechanisms, to achieve adaptive optimization of high-
quality animation paths.

GFR and GFT optimization strategies exhibit
significant performance differences in different ranges of
path errors. The above figure shows that as the path error
increases from 0 to 0.15, the optimization improvement
rate of GFR steadily increases, rising from about 5% to
over 110%; In contrast, the growth rate of GFT is
relatively slow, increasing from an initial 0% to about
95%. In the figure below, the optimized path error
reduction rate shows a decreasing trend with increasing
initial error. GFT has the highest improvement rate of
about 120% in the low error range (<0.02), but decreases
to nearly 0% as the error increases; The overall
performance of GFR is more stable, fluctuating between
40% and 80% throughout the entire error interval. This
result indicates that GFR has stronger path optimization
robustness in medium to high error scenarios, while GFT
has higher instantaneous response optimization
capability when the initial error is small.

Table 5: Reinforcement learning training parameters and effect evaluation

Parameter Value Target value Actual effect
Learning rate 0.0003 0.0003 0.0003
Training steps 500,000 500,000 500,000

Reward. function | 1 0.98
maximum
Average path error 0.045 <0.05 0.045
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Reinforcement learning training parameters and
effect evaluation are shown in Table 5. The reward value
of 0.98 reported in Table 5 represents the cumulative
expected reward obtained by the DDPG agent during
training, standardized to the theoretical maximum value
of 1.0. This high reward indicates that the agent has
effectively learned a strategy that can best balance
multiple objectives defined in the reward function,
namely minimizing path error (MSE), maximizing
motion smoothness, reducing creation costs, and aligning
with user preferences. A reward close to 1.0 indicates that
the generated animation path almost meets all
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framework. In fact, this indicates that the high-quality
animation sequences generated by the trained model are
not only accurate and smooth, but also efficient and
aligned with the user.

To observe the change of path error in the training
process of reinforcement learning and evaluate its
convergence speed and final optimization effect, this
paper analyzes the change of path error in the training
process of reinforcement learning, and the results are
shown in Figure 6. HTT represents a baseline model
without soft updates and exploration noise, while YUU
represents a complete DDPG implementation with all

performance standards set by the optimization components enabled.
71 HTT 7] HTT
@ YUU -®- Yuu
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Figure 6: Variation curve of path error in reinforcement learning training process

The figure shows the change curve of path error of
reinforcement learning during training. As the training
round progresses, the algorithm adjusts the strategy to
minimize the path error in the experiment. It draws the
error change curve to show that the mistake gradually
decreases with the training. Through this data collection
process, the convergence and optimization effect of
reinforcement learning algorithms in path control tasks is
studied and analyzed, which provides quantitative
support for path optimization. It can be seen that the path
error fluctuates significantly in the initial stage, but with
the increase in the number of training steps, the error
gradually decreases and tends to be stable. The error was
0.070 at the 100,000th step of training, decreased to 0.050
at the 300,000th step, and finally converged to 0.045 at

the 500,000th step. It can be seen that reinforcement
learning can gradually adjust the strategy, optimize the
path in multiple iterations, and achieve the lowest error.
This proves the efficiency and stability of the
reinforcement learning model in long-term training and
can gradually find the optimal path optimization strategy,
which significantly improves the quality of animation
creation.

To analyze the relationship between optimization
time and path accuracy and show whether the effect of
path optimization is proportional under different time
investments, this paper compares the optimization time
with path optimization accuracy, and the results are
shown in Figure 7. GHY stands for Global Mixed Yield.

40
< 3

Path error (%
cuBLERY

50 100 150
Optimization time (s)

200 250 300

N
o

35
30

Path error (%)
588

=
o

o o

50 100 150

200 250 300
Optimization time (s)

Figure 7: Relationship between optimization time and path optimization accuracy
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As can be seen from Fig., the relationship between
optimization time and path optimization accuracy (MSE).
Data analysis reveals the influence of optimization time
on path accuracy. Usually, the path accuracy gradually
improves with the increase of optimization time, but there
is a balance point. Too long an optimization time will no
longer significantly improve the accuracy, which
provides a reference for the efficiency and accuracy of
the optimization algorithm. In the genetic algorithm, the
optimization time is 150 seconds, and the path error is
0.065; The optimization time of particle swarm
optimization is 120 seconds, and the error is 0.052. The
optimization time of simulated annealing is 180 seconds,
and the error is 0.072. The optimization time of

Informatica 49 (2025) 3348 43

reinforcement learning is 90 seconds, and the error is
0.045. The results show that although the optimization
time of different algorithms differs, reinforcement
learning can achieve higher accuracy in a shorter time,
and the relationship between optimization time and path
accuracy is not entirely proportional. The advantages of
reinforcement learning are reflected in the optimization
accuracy, its efficient learning process, and fast
convergence.

To show the change in fluency before and after path
optimization and verify the effect of optimization
algorithm and reinforcement learning in improving path
fluency, this paper compares the fluency before and after
path optimization. The results are shown in Figure 8.
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Figure 8: Changes in fluency before and after path optimization

Figure 8 shows the path fluency scores of animation
before and after applying various optimization
algorithms. The x-axis now represents the optimization
method (GA, PSO, SA, DDPG), and the y-axis shows the
resulting fluency score (measured via curvature and
acceleration continuity, normalized to [0, 1]). Each bar
reflects the final fluency after optimization. The previous
label “Improvement rate (%)” was misapplied and has
been corrected to avoid confusion. The results
demonstrate that DDPG achieves the highest fluency
score (0.97), followed by PSO (0.95), GA (0.92), and SA
(0.88), confirming the superior smoothness of paths
generated by reinforcement learning.

The comparison before and after animation path
optimization is shown in Table 6. The results show that

several parameters in the animation creation process are
significantly improved by adopting optimization
algorithms and reinforcement learning. The animation
path error is reduced from 0.082 to 0.045, with an
improvement of 45.1%, indicating that the optimized
path is more accurate. Fluency has improved by 11.5%
(from 0.87 to 0.97), which means that the visual effect of
the animation is more natural and smoother. At the same
time, the optimized animation production time is
significantly shortened, from 15 to 10 hours, saving
33.3% of the time, which is of great significance for
large-scale animation production. In addition, the
optimization time has also been reduced from 200
seconds to 90 seconds, further proving the advantages of
optimization algorithms and reinforcement learning in
improving efficiency.

Table 6: Comparison before and after animation path optimization

Parameter Before After Range of
optimization optimization improvement (%)
Animation path error 0.082 0.045 45.1
Animation fluency 0.87 0.97 11.5
Optimization time 200 90 550
(seconds)
Anlmatlop production 15 10 333
time
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To compare the time-consuming of different
algorithms in path generation and evaluate their
efficiency in practical applications, especially when
many animations need to be generated quickly, which
algorithm is most suitable. This paper analyzes different
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algorithms in path generation time, and the results are
shown in Figure 9. HGY stands for genetic algorithm,
DGT stands for particle swarm optimization, and GDT
stands for simulated annealing.
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Figure 9: Comparison of different algorithms in path generation time

The figure shows the comparison of different
algorithms in path generation time. In the experiment,
each algorithm's time to generate the path under the same
task is recorded, and indicators such as average
generation time, minimum time, and maximum time are
calculated. The data is displayed in charts, and the
differences in path generation time among different
algorithms are analyzed, which provides a basis for
selecting efficient path generation algorithms. Genetic
algorithm takes 150 seconds, particle swarm optimization
takes 120 seconds, simulated annealing takes 180
seconds, and reinforcement learning takes only 90
seconds. It can be seen that reinforcement learning has
significant advantages in path generation time and can
quickly generate high-quality animation paths. This is
particularly important for large-scale animation
production, which can significantly improve production
efficiency and meet the dual demand of time and quality
of modern new media animation production to ensure the
quality of animation.

The dataset used in this study contains 1000
animation scenes, covering various types such as real
character actions, cartoon style, game character

transitions, and advertising animations. Each sample
includes whole-body joint position information, action
annotations, and path trajectories. The scene is divided
into three categories based on the complexity of action
changes and character interactions, ensuring coverage
of a wide range of difficulties from simple movements
to multi character coordination. The dataset maintains
a balanced distribution in complexity, with an average
scene duration of 3-5 seconds (90-150 frames) per
segment, and enhances path diversity through diverse
background constraints, character types, and action
intentions, providing extensive and challenging input
data for DDPG training.

To analyze the relationship between the path
optimization effect and the total animation production
time and evaluate whether the optimization process can
effectively reduce the overall production time while
maintaining the animation quality, this paper deals with
the animation production time and the path optimization
effect, and the results are shown in Figure 10. GTYJK
represents the baseline animation production process
without reinforcement learning, while VBGY | represents
the optimization process using DDPG.
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Figure 10: Relationship between animation production time and path optimization effect

It can be seen from the figure that the relationship
between animation production time and path
optimization effect. The experiment recorded the path
optimization effect under different animation production
times (such as short, medium, and longtime), including
path error and fluency improvement. The data is
displayed through graphs, the relationship between
production time and optimization effect is analyzed, and
it is revealed that longer production time may bring
higher optimization accuracy. Still, there is a
phenomenon of decreasing benefits, which guides the
balance between time and effect in animation production.
Before optimization, the animation production time was
15 hours before optimization, which was reduced to 10
hours after optimization, saving 33.3% of the time.
Although the adjustment of path accuracy and fluency is
added in the optimization process, the overall production
time is reduced due to the high efficiency of the
optimization algorithm and reinforcement learning. This
shows that path optimization not only improves the
animation quality but also reduces the time of manual
adjustment through intelligent means and improves the
overall efficiency of production.

Through ablation experiments, this study
validated the role of key components in the DDPG
framework. Removing experience replay, exploring
noise, or soft update mechanisms can significantly
reduce model performance, manifested as slower
convergence, increased path errors, or unstable
strategies, indicating that these three mechanisms are
crucial for optimization effectiveness. In addition,
through 10 independent trainings under different
random seeds, the results show that the model has
minimal fluctuations in path accuracy and smoothness,
demonstrating good stability and robustness. Overall,
the reinforcement learning framework demonstrates
consistent and reliable learning ability in animation
path optimization.

To ensure fairness and optimal performance of
each algorithm in the experiment, this study fine tuned
all parameters based on literature recommendations,
combined with 5-fold cross validation and grid search.
GA sets the population size to 100, crossover rate to

0.8, and mutation rate to 0.05, with a maximum
iteration of 200 generations; PSO uses 50 particles,
inertia weight of 0.7, acceleration factor ci=c,=1.5,
and iterates for 150 rounds; The initial temperature of
SA is 100, the cooling rate is 0.95, and 200 iterations
are performed. The DDPG model uses a learning rate
of 0.0003, discount factor y=0.99, soft update
coefficient 7=0.005, combined with a playback buffer
size of 10 * and OU noise mechanism (6=0.15, 6=0.2),
with a training step size of 500000 and a batch size of
64. The above configuration ensures that each
algorithm is in the optimal or near optimal state under
specific datasets and tasks.

5 Conclusion

This paper proposes and implements a dynamic path
optimization method based on optimization algorithm
reinforcement learning, which aims to improve the
accuracy and fluency of the action path in the creation of
new media animation and reduce resource consumption.
By introducing deep reinforcement learning algorithms
and an intense deterministic policy gradient algorithm
(DDPG), this paper effectively solves the dynamic path
selection problem in animation creation. Here are the
conclusions of this paper:

(1) Compared with traditional optimization
methods, the path optimization method based on
reinforcement learning can better adapt to the complex
and dynamic environmental changes in animation
creation. In the experiment, the traditional rule-based
path optimization method generally has a significant error
when facing the changeable animation requirements,
with an average deviation of 8.6%. After using the
reinforcement learning algorithm, the accuracy of the
path is significantly improved, and the error is reduced to
3.2%. Precisely, by optimizing the paths in different
creative scenarios, the reinforcement learning method
can adjust the path selection according to real-time
feedback to achieve the best creative effect, reduce
repetitive labor in the creative process, and improve
creative efficiency.

(2) The experimental results show that the DDPG
algorithm exhibits clear advantages over traditional
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optimization algorithms such as GA, PSO, and SA.
DDPG achieves the lowest path error, the highest
movement fluency, and the shortest optimization time (90
seconds), outperforming GA (150s), PSO (120s), and SA
(180s). These results confirm that the DDPG algorithm
can generate more accurate and smoother animation paths
in less time, demonstrating strong computational
efficiency and trajectory control performance in complex
animation scenarios.

(3) By comparing the performance of different
algorithms in  multiple  experimental  scenarios,
optimization algorithm reinforcement learning performs
well in the accuracy of path optimization. It effectively
reduces the computing resources required in the
animation creation process. In the experiment, the
creation time of the model based on optimization
algorithm reinforcement learning in multiple animation
creation cases was reduced by an average of 26%, from
the original 12 hours to 8.9 hours. At the same time, the
resource consumption in the creative process has been
reduced by 15%, from the original resource consumption
of 3.2 GB per animation project to 2.7 GB. This shows
that optimization algorithm reinforcement learning has
advantages in improving creation quality and outstanding
performance, enhancing creation efficiency, and saving
resources.

Although this study has achieved positive results,
there are still some limitations and ethical considerations.
Firstly, the training data may have bias towards specific
styles or character types, which can affect the model's
generalization ability in non mainstream animations.
Secondly, this method relies on large-scale high-quality
annotated data and is sensitive to hyperparameters and
reward design, requiring professional knowledge to
participate. On an ethical level, the automation of
animation path design may raise concerns about the
replacement of creator characters. Therefore, this
technology should be regarded as an auxiliary tool,
emphasizing the irreplaceability of human creativity and
cultural expression. Future research can enhance the
generalization ability of models, reduce bias, and
promote responsible application of Al in the creative
industry through domain adaptation, fair learning, and
"human-machine co training" mechanisms.

The reinforcement learning framework based on
DDPG is significantly superior to traditional optimization
algorithms (GA, PSO, and SA) in terms of path
smoothness, accuracy, and convergence speed. DDPG
achieves stable and efficient action path generation
through deterministic strategies, reducing the fluctuations
caused by random methods. It outperforms the
comparison algorithm in terms of path error (0.045) and
fluency score (0.97), and has shorter optimization time.
However, this method has limited generalization ability
in stylized animation and requires high data volume and
parameter tuning requirements. Future research could
explore the introduction of GAN motion priors or meta
learning mechanisms to enhance the model's cross
scenario adaptability and reduce data dependencies.

The research in this paper shows that the path
optimization method based on optimization algorithm
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reinforcement learning can significantly improve the
efficiency and quality of the new media animation
creation process. Through the deep deterministic policy
gradient algorithm (DDPG) in deep reinforcement
learning, this study provides a more efficient and accurate
path optimization strategy for animation creation, which
can provide real-time feedback and make optimal
decisions in complex and dynamic creative
environments, and provide new research ideas and
practical directions for future animation creation and
optimization.
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