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With the rapid development of the new media industry, animation creation occupies an important position 

in the fields of modern film and television, advertising and games. Traditional animation creation process 

mostly relies on manual operation, which is inefficient and flexible, especially in the design and 

optimization of action path. In order to solve this problem, this study proposes an intelligent control and 

optimization scheme using the Deep Deterministic Policy Gradient (DDPG) algorithm to optimize the 

action path in new media animation creation. The method constructs a reward function considering path 

fluency, precision, creation cost, and user preference, and applies a continuous control strategy within a 

reinforcement learning framework. We collected 1000 animation scene data samples and compared the 

proposed method against traditional optimization techniques including Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), and Simulated Annealing (SA). Experimental results show that our method 

reduces the action path error (MSE) from 0.082 to 0.045 (a 45.1% improvement), increases fluency from 

0.87 to 0.97 (a 11.5% increase), and reduces optimization time by 55% compared with GA. The DDPG-

based approach also demonstrates faster convergence and better stability. These findings confirm the 

effectiveness and efficiency of reinforcement learning in enhancing intelligent animation production. The 

research results of this paper provide a new idea and method for new media animation creation, which 

can greatly improve the automation degree and quality of animation production, and provide theoretical 

support and practical guidance for the intelligent animation creation in the future. 

Povzetek: Predlagana metoda z ojačitvenim učenjem (DDPG) optimizira poti animacijskih gibov ter v 

primerjavi z GA/PSO/SA zmanjša napako (MSE 0,082 → 0,045), poveča gladkost (0,87 → 0,97) in 

skrajša čas optimizacije za 55 %. 

 

1 Introduction 
With the rapid progress of digital and intelligent 

technology, the traditional animation creation mode faces 

increasingly severe challenges. With the prosperity of the 

new media field, animation creation is no longer 

restricted by the conventional restrictions of 2D and 3D 

technologies, and the demand for cross-platform and 

interactive content has significantly improved the 

complexity of animation creation. Especially in the 

creative process, the design and optimization of the 

movement trajectory of animation characters are always 

the core elements that affect the animation effect and 

creation speed. Animation creation depends on manual 

design and adjustment, which takes a long time and lacks 

flexibility. It is even more challenging to do so when 

facing large-scale animation output. This need is 

particularly urgent given the explosive growth in demand 

for digital content in film, television, advertising, virtual 

reality, and interactive entertainment. Production studios 

are under increasing pressure to deliver high-quality 

animations within tight timelines and budget constraints. 

Manual design workflows, while artistically valuable, are  

 

no longer sufficient to meet the volume, speed, and 

precision required. As a result, the integration of artificial 

intelligence techniques, especially reinforcement 

learning-based automation, is emerging as a 

transformative solution. This study directly responds to 

this trend by proposing a reinforcement learning 

framework tailored for real-world animation production 

challenges [1]. 

Optimization algorithms and Reinforcement 

Learning (RL) have made remarkable progress in 

artificial intelligence in recent years. Optimization 

algorithms can find the best solution under preset 

constraints. At the same time, reinforcement learning 

gradually improves the decision-making process through 

interactive learning with the environment, especially 

showing unique performance when dealing with high-

dimensional and nonlinear problems. Building upon 

recent advancements in artificial intelligence, this study 

adopts a reinforcement learning strategy based on the 

DDPG algorithm to address the path optimization 

problem in new media animation creation. Rather than 

combining multiple optimization techniques, the focus is 

placed on evaluating the standalone effectiveness of 
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DDPG, which is applied to the intelligent control and 

optimization of action path in new media animation 

creation. This strategy achieves the adaptive optimization 

of the action path innovatively, improving the animation 

production speed and ensuring a natural and smooth 

animation effect [2]. 

The innovation of this research lies in integrating 

reinforcement learning and optimization algorithms and 

constructing an intelligent control system that can 

adaptively regulate the animation trajectory. The system 

automatically optimizes the action path parameters with 

the help of the reward function and learns the best action 

design mode. Compared with traditional manual design, 

the reinforcement learning approach can create a natural 

and plot-appropriate action path in a shorter time. 

Experiments have proved that this approach not only 

ensures the quality of creation but also significantly 

speeds up the animation production speed, reduces the 

cost, opens up a new perspective, and provides technical 

support for the intelligent evolution of the new media 

animation industry [3]. 

This paper aims to explore the integration and 

profound application of optimization algorithms and 

reinforcement learning and open up an intelligent path 

optimization method for new media animation creation. 

With the support of abundant experimental data, this 

paper shows the practical effect of this method in action 

path planning and confirms its potential to promote 

creative efficiency, reduce labor costs, and improve 

animation quality. In addition, the research results also 

contribute valuable reference and practical experience to 

promoting the automation and intelligence process of 

new media animation creation in the future [4]. 

This study identified three main research 

objectives: to evaluate whether the DDPG model can 

achieve a mean square error (MSE) of less than 0.05 in 

animation path planning, compare its improvement 

effect on path fluency compared to traditional 

algorithms (GA, PSO, SA), and verify its optimization 

efficiency in large-scale animation production. Three 

hypotheses are proposed accordingly: H1 believes that 

DDPG is superior to traditional algorithms in path 

error, H2 believes that its path fluency score is higher, 

and H3 expects DDPG to significantly outperform GA 

and SA in optimization time while maintaining or 

improving output quality. 

2 Theoretical basis and related 

research 

2.1 Overview of reinforcement learning 

algorithms 

Reinforcement learning is one of the three classic 

branches of machine learning. Unlike the other two types 

of branches, reinforcement learning algorithms do not 

rely on external data but on the feedback of the 

environment to actions, spontaneously exploring and 

learning the optimal model [5]. 

The concept of reinforcement learning originates 

from behavioral psychology. In specific scenarios, 

creatures react closely or distantly to the behavior they 

receive. This psychological mechanism prompts 

organisms to get rewards or be punished in the 

environment according to different behaviors and then 

gradually learn adaptive strategies and evolve in a 

direction that is beneficial to themselves [6, 7]. 

After a long accumulation period, reinforcement 

learning has gradually been integrated into many 

engineering projects. The core purpose is to explain and 

solve the problem of what strategies agents adopt to 

maximize benefits or achieve specific goals when 

interacting with the environment. In a given scenario, the 

agent accumulates knowledge through trial-and-error 

learning to select the optimal action to win the greatest 

return. Specifically, the agent takes actions in an 

unknown environment, continuously accumulates 

experience according to the feedback of the environment, 

constantly improves its decision-making process, and 

finally establishes a behavioral decision-making system 

that can obtain higher rewards [8]. 

In the field of reinforcement learning, the Markov 

Decision Process (MDP) is a common model, and almost 

all reinforcement learning problems can be 

mathematically transformed into MDP. Because of its 

feasibility in practical application, this model has become 

the most widely adopted form to define reinforcement 

learning problems and constitutes the core cornerstone of 

reinforcement learning algorithms [9]. 

As the field of reinforcement learning continues to 

evolve, many complex problems increasingly rely on its 

solutions. However, such issues often lack suitable 

models, making implementing model-based methods 

difficult. Faced with the lack of model information, the 

state transition probability P is in an unknown state, and 

the subsequent state prediction becomes difficult. It is 

difficult to derive the state value and state-action value 

function directly from the Bellman equation to obtain the 

optimal strategy. This situation forces the agent to 

interact directly with the surrounding environment and 

continuously learn strategy from the interactive 

experience to overcome the complex problems that 

traditional planning methods can't overcome [10]. 

2.2 Overview of action path of new media 

animation creation under reinforcement 

learning of optimization algorithm 

In creating new media animation, designing and 

optimizing the action path is the key to the natural and 

smooth animation effect. In traditional animation 

production, animators need to personally adjust the 

subtleties of character movements, such as character 

walking posture, posture conversion, rate control, etc. 

[11]. Faced with the increasingly complex demand of 

animation production, manual design has made it 

challenging to meet the needs of efficient creation. 

Especially when making large-scale and high-quality 

animations, manual adjustment is time-consuming, 

laborious, and error-prone. Therefore, optimizing the 
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action path and improving the animation production 

automation level are essential topics in animation 

creation [12]. 

Optimization algorithm is a skill that uses 

mathematical means to find the best solution and has been 

widely used in many fields. New media animation 

production can help animation teams quickly produce up-

to-standard action trajectories under established 

restrictions. Through the optimization algorithm, the 

labor of manual adjustment can be significantly reduced, 

and the creation speed can be improved. Under the 

coordination of multiple parameters, a more natural and 

harmonious animation effect can be achieved. Standard 

methods such as genetic algorithms, particle swarm 

optimization, and simulated annealing algorithms can 

provide efficient and feasible solutions to path planning, 

action adjustment, and other problems [13]. 

As an intelligent algorithm, reinforcement learning 

continuously optimizes the decision-making process 

when interacting with the environment. It has now 

become a powerful assistant in dealing with high-

dimensional complex problems. The field of animation 

creation relies on the set reward mechanism to guide the 

model in learning and adjusting the action path, striving 

to present the best effect. Unlike traditional optimization 

algorithms, reinforcement learning does not need to 

preset all possible action paths but relies on continuous 

training and feedback to improve the action path 

generation strategy [14, 15]. This model can 

independently explore the action path that best matches 

the specific scene and needs, significantly improving 

animation creation's intelligence. 

Combining the essence of optimization algorithms 

and reinforcement learning, this research innovatively 

proposes a methodological framework to optimize the 

action path in new media animation creation. The 

architecture dynamically adjusts the action path 

parameters with the help of a reinforcement learning 

mechanism. It incorporates optimization algorithms to 

precisely carve the details to ensure the action's fidelity, 

coherence, and plot fit. This intelligent control method 

accelerates the animation creation process and presents a 

more vivid and expressive visual feast for the audience. 

To sum up, the research results have contributed a 

cutting-edge intelligent control strategy to the new media 

animation field, laying the foundation for the future 

automation and intelligence of animation production 

[16]. The comparison of animation path optimization 

methods is shown in Table 1. 

 
Table 1: Comparison of animation path 

optimization methods 

Method Type 
Representative 

Techniques 

Evaluation 

Metrics 

Heuristic-based 

GA, PSO, 

Simulated 

Annealing 

Path error 

GAN-based 
GANs with 

motion priors 
Visual realism 

Classical 

planning 

A*, RRT, 

Dijkstra 

Path length, 

smoothness 

 

3 Establishment of new media 

animation creation model based on 

optimization algorithm 

reinforcement learning 

3.1 Formulation of dynamic path 

optimization model based on reinforcement 

learning 

Aiming at the dynamic path optimization model and final 

optimization objective function of new media animation 

creation, it is necessary to ensure the accuracy and 

smoothness of the creation process's action path and 

consider the creation efficiency and resource 

consumption. Against this background, formulating a 

dynamic path optimization algorithm mechanism is 

critical [17, 18]. The flow of the dynamic path 

optimization algorithm for new media animation creation 

is shown in Figure 1. 

 

 
Figure 1: Dynamic path optimization algorithm process for new media animation creation 
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New media animation creation: Dynamic path 

optimization strategy construction, according to the 

creation cost, action path accuracy, time demand, and 

user smooth and natural preference adjustment, striving 

for a win-win situation between the animation team and 

users [19]. Facing the changeable new media animation 

environment, the existing schemes and algorithms have 

poor results. Reinforcement learning is progressing 

rapidly, exploring new directions for dynamic path 

optimization [20]. The objective function formula of 

creation cost and demand optimization is shown in (1). 

The various indicators in equation (1) quantify the key 

factors of animation path optimization, including total 

creation cost, path accuracy error, path smoothness, and 

user satisfaction. This reward design reflects the 

methodological integration of traditional optimization 

theory into the reinforcement learning framework. The 

key optimization goals— path accuracy, fluency, cost 

minimization, and user preference alignment — are 

incorporated as components of the reward function. This 

allows the RL agent to optimize the action policy while 

being guided by interpretable, optimization-derived 

objectives. In particular, the DDPG algorithm benefits 

from this integration by learning a deterministic policy 

that maximizes cumulative reward, effectively balancing 

exploration with precision, and ensuring alignment with 

classic path planning constraints while leveraging the 

adaptive learning capacity of deep RL. 

 

1 2 3 4cost precision flow userObjectivefunction C D D P   =  +  +  −   (1) 

 

Among them, Ccost represents the creation cost, 

Dprecision represents the accuracy of the action path, Dflow 

represents the fluency of the action path, Puser represents 

the user's preference for fluency and naturalness, and λ1, 

λ2, λ3, λ4 represent the weight factors.  

Because of the complex composition and large scale 

of new media animation creation, accompanied by highly 

creative uncertainty, it can be regarded as the research of 

exploring dynamic path optimization strategies in 

unknown fields [21]. According to the reinforcement 

learning theory, the agent accumulates creative 

experience through continuous exploration and 

interaction with the surrounding environment, 

understands the relationship between animation path and 

innovative action, and then uses path optimization means 

to adjust the fluency and accuracy of animation creation 

to achieve the established dynamic path optimization 

mechanism goal. The animation path optimization 

objective function formula is shown in (2). 

 

1 2 3flow precision costObjectivefunction L L C  =  +  −   (2) 

 

Among them, Lflow represents path fluency, Lprecision 

represents path accuracy, Ccost represents creation cost, 

and α1, α2, and α3 represent weight coefficients. The 

reinforcement learning path optimization reward letter 

formula is shown in (3). 

 

1( ) [ ( )] ( )t t t tR a E V s V s r +=  − +  (3) 

 

Where R(at) represents the reward obtained when 

the action at is performed at time t, γ represents the 

discount factor, V(st) represents the value of the current 

state st, E[V(st+1)] represents the expected value of the 

following state st+1, and rt represents the immediate 

reward. Within the reinforcement learning framework, 

the animation creation team is regarded as an agent, its 

creation environment is the learning situation, and the 

action is defined as the path optimization strategy. This 

action changes state variables such as accuracy, 

smoothness, and audience experience of the animation 

path, Creative efficiency, and audience satisfaction as 

reward signals for learning feedback [22]. This research 

aims to maximize the reward through policy actions, 

model this as a Markov decision process, and use the deep 

deterministic policy gradient algorithm to solve it. The 

formula of the Markov decision process model of the path 

optimization strategy is shown in (4). Where P(st, at) 

represents the probability of the combination of the 

current state st and the current action at, P(st+1|st, at) 

represents the state transition probability, and π(at|st) 

represents the policy function. 

 

1( , ) ( | , ) ( | )t t t t t t tP s a P s s a a s+=   (4) 

 

3.2 Deep deterministic policy gradient 

algorithm 

To address the challenges of continuous and high-

dimensional action path optimization in new media 

animation, this study adopts the DDPG algorithm as the 

core method within the reinforcement learning 

framework. DDPG is a specific type of deep 

reinforcement learning algorithm developed by Google 

DeepMind, designed for environments with continuous 

action spaces. Compared with discrete-action methods 

like DQN, DDPG provides more precise control and 

better scalability for complex motion path generation 

tasks, which uses discrete action space, DDPG performs 

excellently in continuous action domains and high-

dimensional situations. The objective function formula of 

the DDPG algorithm is shown in (5). 

 

 
2

1 1( ) ( , ) ( , )
t

t t t t ts
J E r Q s a Q s a
  + +

= + −  (5) 

 

Where J(θ) represents the optimization objective 

function, st represents the current state, at represents the 

action selected in state st, rt represents the instant reward, 

γ represents the discount factor, Q(st, at) represents the 

value of taking an action in this state, and Q'(st+1, at+1) 

represents the target network calculation. For the 

complex path optimization model of new media 

animation creation, if a stochastic strategy is adopted, 

such as the DON algorithm, to evaluate the probability of 

each action one by one, the computational complexity 
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will be extremely high, which significantly hinders the 

algorithm efficiency and optimal path selection [23]. In 

contrast, the DDPG algorithm uses a deterministic 

strategy, approximates the strategy function μ with the 

help of a neural network, and directly obtains the unique 

optimal path strategy, effectively eliminating the 

disturbance of probabilistic factors. The pseudocode for 

DDPG animation path optimization is shown in Table 2. 

 

Table 2: Pseudo code for DDPG animation path 

optimization 

Initialize actor μ(s|θμ), critic Q(s,a|θQ), target 

networks μ', Q' 

Initialize replay buffer B and noise process N 

for each episode do 

Initialize state s₀ from animation scene 

for each step t do 

   Select action aₜ = μ(s) + Nₜ 

   Execute aₜ, observe reward rₜ and next state sₜ₊₁ 

   Store (sₜ, aₜ, rₜ, sₜ₊₁) in B 

    Sample minibatch from B 

   Compute target: y = r + γ · Q'(s', μ'(s')) 

   Update critic: minimize (Q(s,a) - y)² 

   Update actor via policy gradient 

   Soft-update target networks 

  end for 

end for 

The DDPG deterministic strategy formula is shown 

in (6). 

 

( | )t ta s  =  (6) 

 

Where at represents the action selected at time step 

t, μ(st |θμ) represents the optimal action, and θμ represents 

the parameters of the policy network. The DDPG policy 

update formula is shown in (7). 

 
( )J

      = +   (7) 

 

Where θμ represents the parameters of the policy 

network, α represents the learning rate, and ∇θμJ(θμ) 

represents the gradient of the policy network parameters. 

At the same time, as an algorithm in the field of 

reinforcement learning, it needs to deepen the 

reinforcement of exploration and development during 

training to broaden the search space and explore better 

strategies. Therefore, in the action selection stage, the 

DDPG algorithm integrates random processes into the 

deterministic strategy architecture, samples actions with 

random noise, and applies them to the environment. The 

summary of DDPG hyperparameters is shown in Table 3. 

 

Table 3: Summary of DDPG hyperparameters 

Parameter Value Description 

Learning rate (α) 0.0003 
Actor and critic 

network learning rate 

Discount factor (γ) 0.99 Future reward discount 

Soft update rate (τ) 0.005 
Target network soft 

update coefficient 

This study constructs a reinforcement learning 

model for new media animation creation based on 

dynamic path optimization and DDPG algorithm. This 

model adopts a continuous control actor critic 

architecture, with inputs including character position, 

trajectory, environmental constraints, and semantic 

information, and outputs as path adjustment actions (such 

as curvature, rhythm, direction). The reward function 

comprehensively considers path accuracy, smoothness, 

cost, and user preferences. Through experience replay 

and soft update mechanisms, the model continuously 

optimizes strategies in interaction with animation 

samples, automatically generates action trajectories that 

meet performance and aesthetic requirements, and 

constructs an intelligent, efficient, and high-quality core 

mechanism for new media animation creation. 

This section constructs a reinforcement learning 

model based on DDPG for dynamic path optimization in 

new media animation. The model adopts a continuous 

control actor critic architecture, with the state space 

containing character position, velocity, trajectory history, 

environmental constraints, and semantic labels, and the 

action space defining path adjustment parameters such as 

direction, velocity, curvature, and rhythm. The actor 

network adjusts the output path action, and the critic 

network evaluates its long-term return. The reward 

function integrates four indicators: path accuracy, 

smoothness, animation cost, and user preference, all of 

which are normalized. Through experience replay and 

soft target network updates, the model achieves stable 

training and gradually generates high-quality and 

resource efficient animation paths, enhancing the 

intelligence and practicality of new media animation 

creation. 

DDPG follows the experiential playback and Q-

target network mechanism in DQN and improves it on 

this basis. Aiming at the instability of single Q network 

training and the deviation of value function estimation, 

the Actor-Critic architecture is used to construct the Actor 

strategy network and the Critic value network, and the 

Online network and the Target network are set up 

respectively. Among them, the policy network is 

responsible for fitting and updating the policy function μ 

(parameter θμ). In contrast, the value network is used to 

evaluate the advantages and disadvantages of the current 

policy (parameter θQ). The parameter update strategy 

follows the soft update mechanism to ensure the stability 

and progressiveness of the training process. The Actor 

policy network update formula is shown in (8). 

 
( )J

       +   (8) 

 

Where θμ represents the weight and bias of the 

neural network, α represents the learning rate, ∇θμJ (θμ) 

represents the gradient of the policy network parameters, 

and J (θμ) represents the objective function of the policy 

network. The core of reinforcement learning lies in the 

agent's interactive learning with the environment to 

derive the optimal action strategy to maximize the reward. 

DDPG algorithm also follows this concept [24, 25]. 
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Equation (9) shows the action reward obtained by the 

agent according to the Markov decision process, which is 

usually characterized by the state action-value function. 

 

0

T
t

t
t

arg maxE r





 
=

 
=   

 (9) 

 

Where θμ represents the parameters of the policy 

network, γ represents the discount factor, rt represents the 

immediate reward at the current time step t, T represents 

the termination time step, and E represents the expected 

value. However, discrete actions and state spaces, such as 

formula (10), aim only at the DQN and Q-learning 

algorithms. DDPG uses its unique deep neural network to 

optimize the optimization strategy and enhance the 

stability and convergence ability of the algorithm [26]. 

The soft update formula of the target network is shown in 

(10). 
' '(1 )Q Q Q   = + −  (11) 

 

Where θ'Q represents the parameters of the target 

network, θQ represents the parameters of the current 

network, τ represents the soft update rate, and (1−τ) 

represents the supplementary part. According to the 

above steps, the flow chart of the DDPG algorithm is 

shown in Figure 2. 

 

 
Figure 2: Flowchart of DDPG algorithm 

 

4 Experimental results and analysis 
All experiments were conducted on a workstation with 

the following hardware and software configuration: an 

Intel Core i9-12900K CPU (16 cores), 64 GB DDR5 

RAM, and an NVIDIA GeForce RTX 3080 GPU with 10 

GB VRAM. The operating system was Ubuntu 22.04 

LTS. The reinforcement learning models were 

implemented using Python 3.9.13. The DDPG algorithm 

and supporting neural networks were developed with 

TensorFlow 2.9.1 and PyTorch 1.13.0. CUDA version 

11.6 and cuDNN 8.4 were used for GPU acceleration. 

The experiments were managed and reproducibility 

ensured via fixed random seeds, isolated conda 

environments, and logging via TensorBoard. This study 

uses three core indicators to evaluate the quality and 

effectiveness of action path optimization: path error 

(MSE) measures the average Euclidean distance 

deviation between the predicted path and the reference 

trajectory, with lower values indicating higher position 

accuracy; The smoothness of motion is evaluated by the 

consistency between the fitted curve and the actual 

motion curve. The closer the R2 is to 1.0, the more natural 

the animation is; The quality compliance rate represents 

the proportion of generated samples that meet the 

requirements of MSE<0.05, R2>0.90, and frame 

continuity, reflecting system stability and generation 

consistency. All indicators are calculated through 

automated scripts to ensure objectivity and consistency in 

experimental comparisons [27, 28].  

This study defines path error as the mean square error 

(MSE) of the Euclidean distance between the predicted 

trajectory and the reference trajectory, which is 

calculated by frame-by-frame position vector differences 

to reflect the actual deviation of the action path in 

physical space. This distance based MSE evaluation 

method is suitable for continuous motion path analysis in 

animation, and can effectively measure position accuracy 

and motion smoothness, making it a reasonable choice for 

evaluating path accuracy. The experimental results of the 

optimization algorithm comparison are shown in Table 4. 
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Table 4: Optimization algorithm comparison experimental results 

Optimization 

algorithm 

Action path 

error (MSE) 

Movement 

smoothness (R² 

value) 

Optimization time 

(seconds) 

Genetic algorithm 0.065 0.92 150 

Particle swarm 

optimization 
0.052 0.95 120 

Simulated 

annealing 
0.072 0.88 180 

Reinforcement 

learning 
0.045 0.97 90 

 
Table 4 shows that the DDPG reinforcement 

learning method outperforms traditional algorithms in 

terms of path error, motion smoothness, and optimization 

time. The minimum MSE is 0.045, and the path accuracy 

is the highest; The R2 value reaches 0.97, indicating the 

smoothest motion; The optimization time is only 90 

seconds, significantly faster than GA (150 seconds), PSO 

(120 seconds), and SA (180 seconds). This result 

validates the comprehensive advantages of DDPG in 

improving animation path quality and optimization 

efficiency, especially for large-scale animation 

production scenes [29]. The comparison result shows that 

the reinforcement learning algorithm stands out among 

all optimization algorithms. Its motion path error (MSE) 

is as low as 0.045, and its fluency (R² value) is as high as 

0.97, demonstrating the natural smoothness of the motion 

path generated by this method. In addition, the 

optimization time required for reinforcement learning is 

only 90 seconds. Compared with the genetic algorithm 

(150 seconds), particle swarm optimization (120 

seconds), and simulated annealing (180 seconds), the 

time advantage is significant. Overall, reinforcement 

learning excels in the accuracy and efficiency of path 

optimization, surpassing other optimization algorithms. 

This study uses multidimensional indicators such 

as path error, path fluency, optimization time, and error 

improvement rate to systematically evaluate the 

effectiveness and efficiency of various algorithms in 

animation path generation. The relevant data is 

visualized through tables and diagrams. The 

evaluation results indicate that the DDPG method 

outperforms traditional algorithms in terms of 

accuracy, smoothness, optimization speed, and 

improvement range, fully verifying its practicality and 

advantages in various animation creation scenarios. 
To compare the accuracy performance of different 

optimization algorithms and reinforcement learning in 

animation path optimization, especially the path error, 

this paper compares the optimization algorithm and 

reinforcement learning in path error. The results are 

shown in Figure 3. 

 

 
Figure 3: Comparison of path error between optimization algorithm and reinforcement learning 
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The experiment records the path error data of 

various algorithms in the process of multi-round iteration 

in detail. It presents the differences in error control 

among various algorithms intuitively using charts. 

Finally, the research compares the advantages and 

disadvantages of each method with the help of error 

analysis, which provides solid data support for selecting 

an intelligent path control algorithm [30]. The diagram 

reflects the specific performance of the four algorithms in 

terms of path error (MSE): the error of the genetic 

algorithm is 0.065, the error of the particle swarm 

optimization (PSO) algorithm is 0.052, the error of the 

simulated annealing algorithm is 0.072, and the error of 

reinforcement learning algorithm is only 0.045. 

Reinforcement learning takes the lead in the accuracy of 

path optimization. Reinforcement learning relies on 

continuous strategy adjustment to precisely control path 

details, effectively reduce errors, and ensure the fluency 

of animation. Although the performance of the genetic 

algorithm and particle swarm optimization algorithm is 

acceptable, the error is still significant compared with 

reinforcement learning. This highlights the advantages of 

reinforcement learning when dealing with complex path-

planning tasks, especially in new media animation 

creation, which can significantly improve animation's 

natural fluency and accuracy. 

To compare the performance of different 

optimization algorithms and reinforcement learning in 

path fluency (R ² value) and to verify whether 

reinforcement learning can generate a smoother and 

smoother animation path, this paper compares different 

optimization algorithms in path fluency, and the results 

are shown in Figure 4. 

 

 
Figure 4: Comparison of path fluency among different optimization algorithms 

 

Figure 4 shows the comparison results of the four 

methods in path fluency. SAD represents simulated 

annealing, JGY represents genetic algorithm, and DGT 

represents particle swarm optimization. The experiment 

quantifies the fluency of the path generated by each 

algorithm by evaluating the path's curvature, turning 

angle, and speed change. The results are shown in the 

form of charts, and the differences in path smoothness 

among different algorithms are compared, providing data 

support for path optimization and a reference for 

selecting intelligent path control methods in animation 

creation. The path smoothness score, measured via 

curvature and acceleration continuity, for reinforcement 

learning is 0.97, significantly higher than the other three 

algorithms. The fluency of the genetic algorithm is 0.92, 

particle swarm optimization is 0.95, and simulated 

annealing is 0.88. Reinforcement learning not only excels 

in path error but also has significant advantages in 

fluency. The higher the fluency of the animation path, the 

more natural the audience experience is, and the more 

realistic the movement feel of the animation. This shows 

that through self-optimization and feedback mechanisms, 

reinforcement learning can generate paths more in line 

with the laws of human movements and improve 

animation's expressiveness and viewing effect. 

 

 

0 10 20 30 40 50

0

12

24

36

48

60

72

84

96

The algorithm version number

F
lu

en
cy

 (
%

)

SAD

JGY

DGT

0 10 20 30 40 50

0

12

24

36

48

60

72

84

96

The algorithm version number

F
lu

en
cy

 (
%

)

SAD

JGY



DDPG-Based Reinforcement Learning Framework for Action… Informatica 49 (2025) 33–48 41 

 

 

 
Figure 5: Comparison of error changes before and after path optimization 

 

To show the change of error before and after path 

optimization. By comparing the changes in path errors 

before and after optimization, the improvement effect of 

the optimization algorithm and reinforcement learning on 

path accuracy is verified. This paper compares the 

changes in errors before and after path optimization, and 

the results are shown in Figure 5. GFR represents global 

frame level reduction, and GFT represents global frame 

level total. 

Fluency measurement is quantitatively calculated 

using coefficient of determination, which is a 

statistical measure that indicates the degree to which 

the fitted curve models the actual path dynamics. 

Specifically, the system performs second-order 

polynomial regression on the velocity and acceleration 

curves of each path segment. Then calculate the R2 

score between the smooth curve and the original time 

series data. The higher the R2 value, the smoother and 

more natural the transition between motion states, 

reflecting the better smoothness of the animation. This 

method allows for robust and interpretable 

measurement of motion smoothness, which is sensitive 

to abrupt changes and can be generalized across 

different types of animations. 
This study constructed a reinforcement learning 

environment for DDPG training based on Markov 

Decision Process (MDP). The state space includes the 

current position, velocity, trajectory of the character in 

the past 5 frames, environmental constraints, and 

semantic labels, all of which are normalized and input 

into the network; The action space consists of four 

continuous control variables: direction adjustment, speed 

scaling, curvature control, and rhythm adjustment, which 

are used to guide path generation. The reward function 

consists of four parts: path accuracy, smoothness, 

generation cost, and user preference. The weights are 

λ1=0.4, λ2=0.3, λ3=0.2, and λ4=0.1, respectively. All 

components are normalized to [0,1]. Each step reward is 

used for updating strategies and value networks, 

combined with experience replay and soft update 

mechanisms, to achieve adaptive optimization of high-

quality animation paths. 

GFR and GFT optimization strategies exhibit 

significant performance differences in different ranges of 

path errors. The above figure shows that as the path error 

increases from 0 to 0.15, the optimization improvement 

rate of GFR steadily increases, rising from about 5% to 

over 110%; In contrast, the growth rate of GFT is 

relatively slow, increasing from an initial 0% to about 

95%. In the figure below, the optimized path error 

reduction rate shows a decreasing trend with increasing 

initial error. GFT has the highest improvement rate of 

about 120% in the low error range (<0.02), but decreases 

to nearly 0% as the error increases; The overall 

performance of GFR is more stable, fluctuating between 

40% and 80% throughout the entire error interval. This 

result indicates that GFR has stronger path optimization 

robustness in medium to high error scenarios, while GFT 

has higher instantaneous response optimization 

capability when the initial error is small. 

 

Table 5: Reinforcement learning training parameters and effect evaluation 

Parameter Value Target value Actual effect 

Learning rate 0.0003 0.0003 0.0003 

Training steps 500,000 500,000 500,000 

Reward function 
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Reinforcement learning training parameters and 

effect evaluation are shown in Table 5. The reward value 

of 0.98 reported in Table 5 represents the cumulative 

expected reward obtained by the DDPG agent during 

training, standardized to the theoretical maximum value 

of 1.0. This high reward indicates that the agent has 

effectively learned a strategy that can best balance 

multiple objectives defined in the reward function, 

namely minimizing path error (MSE), maximizing 

motion smoothness, reducing creation costs, and aligning 

with user preferences. A reward close to 1.0 indicates that 

the generated animation path almost meets all 

performance standards set by the optimization 

framework. In fact, this indicates that the high-quality 

animation sequences generated by the trained model are 

not only accurate and smooth, but also efficient and 

aligned with the user. 

To observe the change of path error in the training 

process of reinforcement learning and evaluate its 

convergence speed and final optimization effect, this 

paper analyzes the change of path error in the training 

process of reinforcement learning, and the results are 

shown in Figure 6. HTT represents a baseline model 

without soft updates and exploration noise, while YUU 

represents a complete DDPG implementation with all 

components enabled. 

 

 
Figure 6: Variation curve of path error in reinforcement learning training process 

 

The figure shows the change curve of path error of 

reinforcement learning during training. As the training 

round progresses, the algorithm adjusts the strategy to 

minimize the path error in the experiment. It draws the 

error change curve to show that the mistake gradually 

decreases with the training. Through this data collection 

process, the convergence and optimization effect of 

reinforcement learning algorithms in path control tasks is 

studied and analyzed, which provides quantitative 

support for path optimization. It can be seen that the path 

error fluctuates significantly in the initial stage, but with 

the increase in the number of training steps, the error 

gradually decreases and tends to be stable. The error was 

0.070 at the 100,000th step of training, decreased to 0.050 

at the 300,000th step, and finally converged to 0.045 at 

the 500,000th step. It can be seen that reinforcement 

learning can gradually adjust the strategy, optimize the 

path in multiple iterations, and achieve the lowest error. 

This proves the efficiency and stability of the 

reinforcement learning model in long-term training and 

can gradually find the optimal path optimization strategy, 

which significantly improves the quality of animation 

creation. 

To analyze the relationship between optimization 

time and path accuracy and show whether the effect of 

path optimization is proportional under different time 

investments, this paper compares the optimization time 

with path optimization accuracy, and the results are 

shown in Figure 7. GHY stands for Global Mixed Yield. 

 

 
Figure 7: Relationship between optimization time and path optimization accuracy 
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As can be seen from Fig., the relationship between 

optimization time and path optimization accuracy (MSE). 

Data analysis reveals the influence of optimization time 

on path accuracy. Usually, the path accuracy gradually 

improves with the increase of optimization time, but there 

is a balance point. Too long an optimization time will no 

longer significantly improve the accuracy, which 

provides a reference for the efficiency and accuracy of 

the optimization algorithm. In the genetic algorithm, the 

optimization time is 150 seconds, and the path error is 

0.065; The optimization time of particle swarm 

optimization is 120 seconds, and the error is 0.052. The 

optimization time of simulated annealing is 180 seconds, 

and the error is 0.072. The optimization time of 

reinforcement learning is 90 seconds, and the error is 

0.045. The results show that although the optimization 

time of different algorithms differs, reinforcement 

learning can achieve higher accuracy in a shorter time, 

and the relationship between optimization time and path 

accuracy is not entirely proportional. The advantages of 

reinforcement learning are reflected in the optimization 

accuracy, its efficient learning process, and fast 

convergence. 

To show the change in fluency before and after path 

optimization and verify the effect of optimization 

algorithm and reinforcement learning in improving path 

fluency, this paper compares the fluency before and after 

path optimization. The results are shown in Figure 8. 

 

 

Figure 8: Changes in fluency before and after path optimization 

 

Figure 8 shows the path fluency scores of animation 

before and after applying various optimization 

algorithms. The x-axis now represents the optimization 

method (GA, PSO, SA, DDPG), and the y-axis shows the 

resulting fluency score (measured via curvature and 

acceleration continuity, normalized to [0, 1]). Each bar 

reflects the final fluency after optimization. The previous 

label “Improvement rate (%)” was misapplied and has 

been corrected to avoid confusion. The results 

demonstrate that DDPG achieves the highest fluency 

score (0.97), followed by PSO (0.95), GA (0.92), and SA 

(0.88), confirming the superior smoothness of paths 

generated by reinforcement learning. 

The comparison before and after animation path 

optimization is shown in Table 6. The results show that 

several parameters in the animation creation process are 

significantly improved by adopting optimization 

algorithms and reinforcement learning. The animation 

path error is reduced from 0.082 to 0.045, with an 

improvement of 45.1%, indicating that the optimized 

path is more accurate. Fluency has improved by 11.5% 

(from 0.87 to 0.97), which means that the visual effect of 

the animation is more natural and smoother. At the same 

time, the optimized animation production time is 

significantly shortened, from 15 to 10 hours, saving 

33.3% of the time, which is of great significance for 

large-scale animation production. In addition, the 

optimization time has also been reduced from 200 

seconds to 90 seconds, further proving the advantages of 

optimization algorithms and reinforcement learning in 

improving efficiency. 

 

Table 6: Comparison before and after animation path optimization 

Parameter 
Before 

optimization 

After 

optimization 

Range of 

improvement (%) 

Animation path error 0.082 0.045 45.1 

Animation fluency 0.87 0.97 11.5 

Optimization time 

(seconds) 
200 90 55.0 

Animation production 
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15 10 33.3 
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To compare the time-consuming of different 

algorithms in path generation and evaluate their 

efficiency in practical applications, especially when 

many animations need to be generated quickly, which 

algorithm is most suitable. This paper analyzes different 

algorithms in path generation time, and the results are 

shown in Figure 9. HGY stands for genetic algorithm, 

DGT stands for particle swarm optimization, and GDT 

stands for simulated annealing. 

 

 
Figure 9: Comparison of different algorithms in path generation time 

 

The figure shows the comparison of different 

algorithms in path generation time. In the experiment, 

each algorithm's time to generate the path under the same 

task is recorded, and indicators such as average 

generation time, minimum time, and maximum time are 

calculated. The data is displayed in charts, and the 

differences in path generation time among different 

algorithms are analyzed, which provides a basis for 

selecting efficient path generation algorithms. Genetic 

algorithm takes 150 seconds, particle swarm optimization 

takes 120 seconds, simulated annealing takes 180 

seconds, and reinforcement learning takes only 90 

seconds. It can be seen that reinforcement learning has 

significant advantages in path generation time and can 

quickly generate high-quality animation paths. This is 

particularly important for large-scale animation 

production, which can significantly improve production 

efficiency and meet the dual demand of time and quality 

of modern new media animation production to ensure the 

quality of animation. 

The dataset used in this study contains 1000 

animation scenes, covering various types such as real 

character actions, cartoon style, game character 

transitions, and advertising animations. Each sample 

includes whole-body joint position information, action 

annotations, and path trajectories. The scene is divided 

into three categories based on the complexity of action 

changes and character interactions, ensuring coverage 

of a wide range of difficulties from simple movements 

to multi character coordination. The dataset maintains 

a balanced distribution in complexity, with an average 

scene duration of 3-5 seconds (90-150 frames) per 

segment, and enhances path diversity through diverse 

background constraints, character types, and action 

intentions, providing extensive and challenging input 

data for DDPG training. 
To analyze the relationship between the path 

optimization effect and the total animation production 

time and evaluate whether the optimization process can 

effectively reduce the overall production time while 

maintaining the animation quality, this paper deals with 

the animation production time and the path optimization 

effect, and the results are shown in Figure 10. GTYJK 

represents the baseline animation production process 

without reinforcement learning, while VBGYI represents 

the optimization process using DDPG. 
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Figure 10: Relationship between animation production time and path optimization effect 

 

It can be seen from the figure that the relationship 

between animation production time and path 

optimization effect. The experiment recorded the path 

optimization effect under different animation production 

times (such as short, medium, and longtime), including 

path error and fluency improvement. The data is 

displayed through graphs, the relationship between 

production time and optimization effect is analyzed, and 

it is revealed that longer production time may bring 

higher optimization accuracy. Still, there is a 

phenomenon of decreasing benefits, which guides the 

balance between time and effect in animation production. 

Before optimization, the animation production time was 

15 hours before optimization, which was reduced to 10 

hours after optimization, saving 33.3% of the time. 

Although the adjustment of path accuracy and fluency is 

added in the optimization process, the overall production 

time is reduced due to the high efficiency of the 

optimization algorithm and reinforcement learning. This 

shows that path optimization not only improves the 

animation quality but also reduces the time of manual 

adjustment through intelligent means and improves the 

overall efficiency of production. 

Through ablation experiments, this study 

validated the role of key components in the DDPG 

framework. Removing experience replay, exploring 

noise, or soft update mechanisms can significantly 

reduce model performance, manifested as slower 

convergence, increased path errors, or unstable 

strategies, indicating that these three mechanisms are 

crucial for optimization effectiveness. In addition, 

through 10 independent trainings under different 

random seeds, the results show that the model has 

minimal fluctuations in path accuracy and smoothness, 

demonstrating good stability and robustness. Overall, 

the reinforcement learning framework demonstrates 

consistent and reliable learning ability in animation 

path optimization. 

To ensure fairness and optimal performance of 

each algorithm in the experiment, this study fine tuned 
all parameters based on literature recommendations, 

combined with 5-fold cross validation and grid search. 

GA sets the population size to 100, crossover rate to 

0.8, and mutation rate to 0.05, with a maximum 

iteration of 200 generations; PSO uses 50 particles, 

inertia weight of 0.7, acceleration factor c1=c2=1.5, 

and iterates for 150 rounds; The initial temperature of 

SA is 100, the cooling rate is 0.95, and 200 iterations 

are performed. The DDPG model uses a learning rate 

of 0.0003, discount factor γ=0.99, soft update 

coefficient τ=0.005, combined with a playback buffer 

size of 10 ⁵ and OU noise mechanism (θ=0.15, σ=0.2), 

with a training step size of 500000 and a batch size of 

64. The above configuration ensures that each 

algorithm is in the optimal or near optimal state under 

specific datasets and tasks. 

5 Conclusion 
This paper proposes and implements a dynamic path 

optimization method based on optimization algorithm 

reinforcement learning, which aims to improve the 

accuracy and fluency of the action path in the creation of 

new media animation and reduce resource consumption. 

By introducing deep reinforcement learning algorithms 

and an intense deterministic policy gradient algorithm 

(DDPG), this paper effectively solves the dynamic path 

selection problem in animation creation. Here are the 

conclusions of this paper: 

(1) Compared with traditional optimization 

methods, the path optimization method based on 

reinforcement learning can better adapt to the complex 

and dynamic environmental changes in animation 

creation. In the experiment, the traditional rule-based 

path optimization method generally has a significant error 

when facing the changeable animation requirements, 

with an average deviation of 8.6%. After using the 

reinforcement learning algorithm, the accuracy of the 

path is significantly improved, and the error is reduced to 

3.2%. Precisely, by optimizing the paths in different 

creative scenarios, the reinforcement learning method 

can adjust the path selection according to real-time 

feedback to achieve the best creative effect, reduce 

repetitive labor in the creative process, and improve 

creative efficiency. 

(2) The experimental results show that the DDPG 

algorithm exhibits clear advantages over traditional 
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optimization algorithms such as GA, PSO, and SA. 

DDPG achieves the lowest path error, the highest 

movement fluency, and the shortest optimization time (90 

seconds), outperforming GA (150s), PSO (120s), and SA 

(180s). These results confirm that the DDPG algorithm 

can generate more accurate and smoother animation paths 

in less time, demonstrating strong computational 

efficiency and trajectory control performance in complex 

animation scenarios. 

(3) By comparing the performance of different 

algorithms in multiple experimental scenarios, 

optimization algorithm reinforcement learning performs 

well in the accuracy of path optimization. It effectively 

reduces the computing resources required in the 

animation creation process. In the experiment, the 

creation time of the model based on optimization 

algorithm reinforcement learning in multiple animation 

creation cases was reduced by an average of 26%, from 

the original 12 hours to 8.9 hours. At the same time, the 

resource consumption in the creative process has been 

reduced by 15%, from the original resource consumption 

of 3.2 GB per animation project to 2.7 GB. This shows 

that optimization algorithm reinforcement learning has 

advantages in improving creation quality and outstanding 

performance, enhancing creation efficiency, and saving 

resources. 

Although this study has achieved positive results, 

there are still some limitations and ethical considerations. 

Firstly, the training data may have bias towards specific 

styles or character types, which can affect the model's 

generalization ability in non mainstream animations. 

Secondly, this method relies on large-scale high-quality 

annotated data and is sensitive to hyperparameters and 

reward design, requiring professional knowledge to 

participate. On an ethical level, the automation of 

animation path design may raise concerns about the 

replacement of creator characters. Therefore, this 

technology should be regarded as an auxiliary tool, 

emphasizing the irreplaceability of human creativity and 

cultural expression. Future research can enhance the 

generalization ability of models, reduce bias, and 

promote responsible application of AI in the creative 

industry through domain adaptation, fair learning, and 

"human-machine co training" mechanisms. 

The reinforcement learning framework based on 

DDPG is significantly superior to traditional optimization 

algorithms (GA, PSO, and SA) in terms of path 

smoothness, accuracy, and convergence speed. DDPG 

achieves stable and efficient action path generation 

through deterministic strategies, reducing the fluctuations 

caused by random methods. It outperforms the 

comparison algorithm in terms of path error (0.045) and 

fluency score (0.97), and has shorter optimization time. 

However, this method has limited generalization ability 

in stylized animation and requires high data volume and 

parameter tuning requirements. Future research could 

explore the introduction of GAN motion priors or meta 

learning mechanisms to enhance the model's cross 

scenario adaptability and reduce data dependencies. 

The research in this paper shows that the path 

optimization method based on optimization algorithm 

reinforcement learning can significantly improve the 

efficiency and quality of the new media animation 

creation process. Through the deep deterministic policy 

gradient algorithm (DDPG) in deep reinforcement 

learning, this study provides a more efficient and accurate 

path optimization strategy for animation creation, which 

can provide real-time feedback and make optimal 

decisions in complex and dynamic creative 

environments, and provide new research ideas and 

practical directions for future animation creation and 

optimization. 
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