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Environmental sound classification (ESC) is a challenging task due to the unstructured and overlapping 

nature of ambient sounds, which differ significantly from speech and music. Problems such as class 

imbalance, limited labeled samples, and high inter-class similarity hinder the performance of traditional 

classifiers. In this study, we propose a robust ESC system that combines optimal spectrum feature fusion 

with a stacked ensemble learning strategy. Specifically, we extract three types of spectral features—log Mel 

spectrum, log–log Mel spectrum, and Mel spectrograms—from environmental audio signals using the 

DenseNet-161 architecture. These features are then optimally fused using the Boosted Reptile Squirrel 

Search (BRSS) algorithm to capture both fine- and coarse-grained frequency patterns. For classification, 

we employ a two-level ensemble model: four classical machine learning classifiers (Linear Regression, 

Decision Tree, Random Forest, and Support Vector Machine) in the first stage, followed by a Bayesian 

Tensorized Neural Network (BTNN) for final prediction. Experimental results on three benchmark 

datasets—ESC-10, ESC-50, and UrbanSound8K—demonstrate that our fused spectrum feature approach 

achieves an accuracy of 98.98%, surpassing individual feature types and outperforming state-of-the-art 

models such as Convolutional Recurrent Neural Network (CRNN), EnvNet, and DualResNet. These results 

highlight the effectiveness and superiority of our proposed method for environmental sound classification. 

Povzetek: Predlagan ansambelski pristop z optimalno fuzijo spektralnih značilk doseže 98,98 % 

natančnost in preseže obstoječe modele za klasifikacijo okoljskih zvokov. 

 

1 Introduction 

Modern technology relies on environmental sound 

classification (ESC) to automatically identify and classify 

environmental noises. ESC includes animal calls, traffic 

noise, weather patterns, and industrial machinery, unlike 

standard sound recognition systems that focus on speech 

or music [1]. This field has garnered interest for its 

possible uses in environmental monitoring, urban acoustic 

analysis, wildlife conservation, and smart city 

development [2]. ESC techniques are robust enough to 

discriminate sound classes in complicated and variable 

real-world situations [3]. Additionally, the variety of sound 

sources and lack of standardized databases hinder 

researchers in this subject [4]. Even so, recent advances in 

machine learning, especially deep learning, have improved 

ESC system accuracy and scalability. Hybrid designs 

improve sound recognition performance and versatility by 

combining multiple models [5]. These designs handle 

sound recognition's many issues by combining deep 

learning, classical machine learning, and signal 

processing. Recurrent neural network (RNN) and 

convolutional neural network (CNN) are often used in 

hybrid architectures to capture spatial features from 

spectrograms or Mel-frequency cepstral coefficients 

(MFCCs) and model temporal events [6]. A multi-stage 

procedure extracts significant features from raw audio 

signals before feeding them into the network for 

classification in hybrid sound recognition architecture [7]. 

Time-frequency alterations like short-time Fourier 

transform (STFT) or wavelet transform can convert audio 

inputs for neural network analysis [8]. Hybrid sound 
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recognition architectures can also use ensemble 

approaches, where numerous models are trained separately 

and their predictions are integrated. By lowering variance 

and bias, ensemble approaches like bagging and boosting 

improve system robustness and generalization [9]. ML/DL 

techniques are essential to sophisticated environmental 

sound detection systems [10]. 

With the rise of digital audio data, sound recognition 

systems cannot handle the complexity and variety of real-

world ambient noises. DL algorithms learn hierarchical 

data representations from raw audio waveforms, giving a 

powerful solution [11]. DL algorithms, especially CNNs 

and RNNs, have shown great promise in automatically 

learning discriminative features from audio data for 

environmental sound detection [12]. CNNs are good at 

capturing spatial patterns in spectrograms or other time-

frequency audio representations, while RNNs enjoy 

modeling temporal relationships in sequential audio data. 

CNNs and RNNs complement each other; therefore, 

researchers can use a hybrid framework to improve 

ambient sound identification performance. ML algorithms 

that understand patterns and correlations from labeled 

training data are essential for ambient sound detection 

[13]. The k-nearest neighbors (k-NN), random forest (RF) 

and support vector machine (SVM) are used for 

classification tasks to map audio signal properties to 

predetermined sound categories. Unsupervised and semi-

supervised learning methods allow the investigation of 

latent structures in ambient sound samples. Deep learning 

and machine learning can improve automatic 

environmental sound recognition, enabling innovative 

applications in wildlife monitoring, urban sounds cape 

analysis, and healthcare [14]. Hybrid architecture in sound 

detection helps several sectors autonomously identify and 

analyze environmental sounds. Hybrid sound recognition 

systems can identify and classify animal vocalizations, 

weather patterns, and ecological problems in 

environmental monitoring [15]. Besides environmental 

monitoring, hybrid sound recognition is used in smart 

cities, industrial automation, and healthcare. Smart cities 

can use sound recognition technology to monitor traffic, 

detect emergency sirens, and spot unusual events like 

accidents and disturbances [16]. Hybrid architecture in 

sound recognition can improve automation, efficiency, and 

decision-making across industries [17]. These hybrid 

systems use deep learning and machine learning to adapt 

to varied contexts and learn from enormous amounts of 

audio data to increase accuracy and robustness. As they 

enable proactive environmental risk management, early 

anomaly detection, and quick response to catastrophic 

events, such systems can save money, optimize resources, 

and improve quality of life [18]. Environmental noises' 

high frequency, loudness, and duration unpredictability 

presents a problem [19]. It makes sound classification and 

acoustic pattern differentiation challenging, especially in 

loud or dynamic contexts. Hardware limits, data privacy 

concerns, and interoperability issues may complicate 

hybrid sound recognition system adoption, requiring 

careful planning and mitigation. Future hybrid sound 

recognition research could improve system scalability, 

adaptability, and real-time performance to satisfy changing 

application needs [20]. 

Major contributions 

The key contributions of this work are summarized as 

follows: 

• Hybrid Deep Ensemble Architecture: We propose 

a stacked ensemble learning framework that 

integrates four classical machine learning 

classifiers—Linear Regression, Decision Tree, 

Random Forest, and Support Vector Machine—

with a Bayesian Tensorized Neural Network 

(BTNN). This hybrid architecture enhances 

classification precision and generalization 

compared to standalone classifiers and deep 

models. 

• Adaptive Feature Fusion Strategy: We introduce 

a meta-heuristic optimization approach using the 

Boosted Reptile Squirrel Search (BRSS) 

algorithm to fuse multiple spectrum-based 

representations, including log Mel, log–log Mel, 

and Mel spectrogram features. This fusion 

strategy improves feature discriminability and 

mitigates overfitting. 

• End-to-End Recognition Pipeline: We develop a 

novel end-to-end ESC system that combines 

DenseNet-161-based deep feature extraction, 

adaptive feature fusion, and two-level ensemble 

learning, offering both high accuracy and 

computational efficiency suitable for real-world 

deployment. 

• Advancement Over State-of-the-Art: Evaluated 

on benchmark datasets ESC-10, ESC-50, and 

UrbanSound8K, the proposed system achieves a 

top accuracy of 98.98% using fused features, 

significantly outperforming prior state-of-the-art 

methods such as CRNN, EnvNet, and 

DualResNet. 

2 Review of literature 

In this section, we provide an overview of the literature 

concerning the recognition of environmental sounds using 

ML and DL techniques. Table 1 presents a summary of the 

research gaps identified in existing state-of-the-art works 

on environmental sound recognition. 
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2.1 State of art works 

Yildirim et al. 2024 [21] suggested a hybrid model for PD 

detection using sound data. Sound input is converted into 

spectrograms, and three CNN architectures extract unique 

feature maps. The arithmetic optimization algorithm 

(AOA), an innovative metaheuristic optimum method, 

helps fuse and choose these varied feature maps. SVM and 

KNN classifiers are then used for classification. With an 

accuracy rating of 98.19%, the suggested model diagnoses 

PD well. The suggested model is also compared to Mel-

frequency cestrum coefficients feature maps. RF classifier 

achieved the highest accuracy of 93.98%.  

Mekruksavanich et al. 2023 [22] have explored the field of 

DL for humanoid movement acknowledgment and puts up 

successful methods for recognition. In order to find the 

best architecture for activity recognition, the study first 

investigates various convolutional neural networks. A 

channel attention mechanism–integrated hybrid 

convolutional neural network is the end result of further 

efforts. The network is able to effectively detect different 

human movements in daily life because to this technique, 

which allows it to hierarchically discriminate deep spatio-

temporal properties. The model outperforms methods and 

effectiveness in improving recognition accuracy with 

98.92%, 98.80%, and 98.45% accuracy rates, respectively. 

Ansari et al. 2023 [23] provided a new architecture for 

three-way neural networks that can model speech 

sequences with direct context-awareness: transformer, 

prior trained dual-path recurring neural network, and 

transfer learning. Investigational outcomes show that the 

suggested model outperforms seven advanced deep 

learning-related architectures on a variety of objective 

criteria. It outperforms its closest competition and proves 

its speech separation efficacy with usual development of 

4.60% in brief goal comprehension, 14.84% in from source 

to distort ratio, and 9.87% in scale-invariant proportion of 

noise to signal. 

Wang et al. 2023 [24] came up with a new deep learning 

strategy for multi-class classification, which includes 

ternary and binary tasks, by merging a CNN with a LSTM 

system. This CNN-LSTM hybrid outperforms both 

conventional ML and ultramodern DL models in ternary 

classification. By streamlining the process and doing away 

with manual processes, the suggested method provides a 

more effective diagnostic tool for doctors, which could 

make neurologists' jobs easier when it comes to diagnosing 

epilepsy. It has been widely accepted in acoustic signal 

processing area that the frequency band has more 

characteristics information about target sound than the 

time series.  

Rashmi et al. 2023 [25] exploring the use of CNN to 

mechanically study topographies from audio signals of the 

English alphabet. They used MFCC-based features and the 

other that uses a hybrid feature extraction method 

including LM, MFCC, chroma, spectral contrast, and 

Tonnetz features. The suggested strategy outperforms 

current CNN methods using single extraction of features 

techniques in terms of taxonomic accuracy, and it does this 

by combining multiple sets of features and training them 

using separate CNNs. Results show that CNNs work well 

for sound recognition, especially when combined with 

hybrid feature extraction techniques; this opens up exciting 

new possibilities for research in the area. 

Jahangir et al. 2023 [26] discussed the neural network 

system that because babies primarily use crying to express 

what they need; parents must be extremely careful and 

keep a close eye on them at all times. With recall, f1-score, 

and precision rates of 98.39%, 98.05%, and 98.72%, 

respectively, stacked classifier CNN-SCNet stood up as 

the most successful. An encouraging answer for worried 

parents, this study highlights the importance of strong ML 

models like CNN-SCNet in improving the capacity of 

baby monitoring systems to identify screams in busy home 

settings. 

Ullo et al. 2020 [27] have proposed the hybrid ESC model 

based on OAS to extract meaningful samples from each 

sound class. The time-frequency-amplitude representation 

is generated by subjecting these representative samples to 

short-Time Fourier Transform (STFT). These features 

were trained using prior training AlexNet and VGG-16 

networks. Tests on the ESC-10 dataset show that the 

suggested strategy is as good as, or better than, current 

state-of-the-art approaches, with accuracies ranging from 

87.9% to 95.8%. 

Liu et al. 2023 [28] have suggested a ship-radiated 

extremely fine noise detection scheme consuming 

amplitude–frequency–time domain multi-scale 

characteristics and an adaptive generalized network. 

Superior signal decomposition methods like permutation 

entropy-based analysis generate six learnable amplitude–

time–frequency components from ship-radiated noise 

signals. 1D CNN and LSTM systems integrate aggregated 

seasonal characteristics and excellent regional data to 

focus on time–frequency information in MFAGNet. 

Testfindings show that MFAGNet outperforms baseline 

approaches in distinguishing 12 ship noises from ShipsEar 

dataset and classifying four common ship types from 

multiple datasets with 98.89% accuracy.  

Chen et al. 2024 [29] have promoted heterogeneous coding 

techniques for comprehensive SNN architecture design. 

They present a hybrid neural coding and learning system 

that combines many neuroscience-discovered neural 
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coding schemes. The system also includes unique layer-

wise learning algorithms for hybrid coding SNNs and a 

variable neural coding allocation strategy for task-specific 

needs. The experiments on image categorization and 

localization of sounds show that the planned outline 

outclasses advanced SNNs in accuracy, inference delay, 

energy consumption, and noise robustness. This study 

illuminate’s hybrid neural coding architectures, paving the 

way for high-performance neuromorphic devices. 

Demir et al. 2020 [30] employed a CNN model trained 

end-to-end with spectrogram data to improve classification 

accuracy through the inclusion of deep features. In order 

to construct a feature vector, the fully linked layers of the 

suggested CNN model are used to extract deep features. To 

measure its efficacy, the K-NN ensemble classifier takes 

this vector as input. The proposed CNN-based technique is 

effective in ESC tasks, as demonstrated by the remarkable 

classification accuracies of 96.23% and 86.70% on the 

DCASE-2017 ASC and UrbanSound8K datasets, 

respectively. 

2.2 Problem description and definition 

The task of environmental sound classification (ESC) 

presents several core challenges that hinder the 

development of robust, scalable, and accurate models. 

These challenges are particularly evident in real-world 

audio environments, where sounds are diverse, 

overlapping, and often unstructured [31]. The key issues 

include: 

• Unstructured Nature of Environmental Sounds: 

Unlike speech or music, environmental sounds 

lack consistent temporal and spectral patterns, 

making them more difficult to model and classify 

effectively. 

• Data Imbalance and Limited Samples: Many ESC 

datasets contain an uneven distribution of sound 

classes and limited recordings per class, which 

can bias model performance and reduce 

generalization. 

• Large Number of Sound Categories: ESC often 

involves classification across a wide range of 

classes with overlapping acoustic characteristics, 

increasing the complexity of the task. 

• Computationally Intensive Feature Extraction: 

Extracting high-quality features from raw 

audio—especially using complex or non-linear 

methods—requires substantial computational 

resources, making it difficult to scale or deploy in 

resource-constrained environments. 

• Risk of Overfitting: Deep learning models trained 

on limited or imbalanced data are prone to 

overfitting, resulting in poor generalization on 

unseen data. 

• Lack of Robustness in Existing Models: Many 

existing ESC models show inconsistent 

performance across datasets and real-world 

scenarios due to suboptimal architectures or 

feature representation limitations. 

These challenges highlight the need for novel, efficient, 

and generalizable approaches to environmental sound 

classification that can improve both accuracy and 

computational. 

 

 

Table 1: Summary of research gap 

Ref. 

 

Feature fusion Classifier Findings Research gaps 

[21] AOA-CNN k-NN and SVM Accuracy 98.19% They use only one single vector to extract features 

[22] UNet Hybrid CNN Accuracy 98.92% It is challenging to identify sounds from limited 

samples 

[23] DenseNet SVM and RF Accuracy 85.965% Difficult to achieve the complex time–frequency 

features  

[24] Space–time algorithm CNN-LSTM Accuracy 91.253% Fail to consider the temporal structure, frequency 

characteristics 

[25] LM, MFCC, and CST CNN Accuracy 87.523% Insufficient structural information of the audio signal 

[26] SCNet CNN Precision 98.72% Limited by number of samples, the network cannot 

learn more features 

[27] OAS, STFT, VGG-16 k-NN and SVM Accuracy 95.8% Often demand computationally intensive operations 

[28] MFAGNet LSTM Accuracy 98.9% Time-consuming and high-effort task 

[29] UNet and DenseNet Spiking neural networks 

(SNN) 

Accuracy 90.56% Achieving the classification effect of feature is 

complex issue  

[30] Deep CNN k-NN and SVM Accuracy 96.23% The feature fusion is not effectively handled which 

limits the performance 
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3  Methodology 

Our proposed system addresses the challenge of 

environmental sound classification by transforming raw 

audio signals into image-based representations and 

leveraging a stacked ensemble deep learning (DL) 

architecture for robust and accurate recognition. In Figure 

1 the flowchart illustrates the complete methodology of the 

proposed ESC system. Raw audio signals are first 

collected from benchmark datasets and undergo 

preprocessing and augmentation. These signals are then 

converted into spectrograms using log-Mel, log–log-Mel, 

and Mel transformations. The extracted features are fused 

optimally using the Boosted Reptile Squirrel Search 

(BRSS) algorithm. The fused features are passed to a 

stacked ensemble learning model consisting of a first layer 

of machine learning classifiers (Logistic Regression, 

Decision Tree, Random Forest, and Support Vector 

Machine), followed by a Bayesian Tensorized Neural 

Network (BTNN) as the meta-learner. The final output is 

the predicted environmental sound class. 

 

 

Figure1: Workflow of the proposed environmental sound 

classification system 

 

3.1 Overview of the proposed system 

As shown in Figure 2, the system comprises five main 

steps. First, raw environmental sound signals undergo 

preprocessing and augmentation to improve quality and 

enhance variability. Second, the preprocessed signals are 

transformed into spectrogram representations using log-

Mel based methods, which convert the audio into a two-

dimensional time-frequency format. Third, these 

spectrograms are input into DenseNet-161, a 

convolutional neural network that extracts high-level 

discriminative features. Fourth, the extracted deep features 

are fused using the Boosted Reptile Squirrel Search 

(BRSS) algorithm to maximize feature diversity and 

reduce overfitting. Finally, in the fifth stage, the fused 

features are classified using a stacked ensemble learning 

approach. This ensemble includes four base classifiers—

linear regression (LR), decision tree (DT), random forest 

(RF), and support vector machine (SVM)—whose outputs 

are combined by a meta-learner, the Bayesian Tensorized 

Neural Network (BTNN), to produce the final prediction. 

3.2. Stacked ensemble deep learning 

architecture 

The classification stage utilizes a two-layer stacked 

ensemble DL architecture: 

• First Layer (Base Learners): Four traditional 

machine learning classifiers—Linear Regression 

(LR), Decision Tree (DT), Random Forest (RF), 

and Support Vector Machine (SVM)—are trained 

independently on the optimized fused features. 

Each base learner outputs class probabilities for 

each input sample. 

• Second Layer (Meta Learner): The outputs from 

the first-layer classifiers are concatenated and 

input into a Bayesian Tensorized Neural Network 

(BTNN). BTNN leverages tensor-train 

decomposition and Bayesian inference to capture 

high-dimensional interdependencies, enhancing 

classification robustness and effectively 

modeling uncertainty. 

3.3 Feature extraction using DenseNet-161 

Audio spectrograms are processed by a pre-trained 

DenseNet-161 model, which efficiently extracts deep 

frequency domain features. DenseNet’s dense connectivity 

and feature reuse capabilities enable it to capture subtle 

variations and complex patterns in environmental sound 

data, resulting in richer and more informative feature 

representations. 
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3.4 Optimal feature fusion with BRSS 

To further enhance model generalization, the Boosted 

Reptile Squirrel Search (BRSS) algorithm is applied for 

feature fusion. BRSS, inspired by animal foraging 

behavior, optimally combines feature vectors extracted 

from DenseNet-161 across multiple spectrogram types. 

This approach enhances the discriminative power of the 

final feature set while mitigating the risk of overfitting. 

Technical equations and algorithmic steps for BRSS are 

provided in Section 5.1. To enhance the representational 

power of spectral features and overcome the limitations of 

traditional fusion approaches, we adopt an optimization-

driven feature fusion strategy based on the Boosted Reptile 

Squirrel Search (BRSS) algorithm. While conventional 

fusion techniques such as Principal Component Analysis 

(PCA), direct concatenation, and Deep Canonical 

Correlation Analysis (DCCA) have been widely used for 

combining audio features, they often suffer from 

redundancy, suboptimal weighting, or lack of adaptability 

to nonlinear feature interactions [32]. Unlike these 

methods, our BRSS-based approach leverages 

metaheuristic search principles to dynamically select and 

combine complementary features, thereby minimizing 

redundancy and maximizing classification-relevant 

information. Metaheuristic optimization has proven 

especially effective in complex search spaces where 

gradient-based or fixed-rule strategies fail to generalize 

[33]. The integration of BRSS enables adaptive feature 

weighting and selection tailored to the target dataset, 

offering a significant performance boost over both shallow 

and deep baseline fusion models. 

3.5. Final classification using BTNN 

The Bayesian Tensorized Neural Network (BTNN) in the 

meta-learner layer efficiently handles high-dimensional 

fused features via tensor-train decomposition. Its Bayesian 

modeling framework incorporates uncertainty, leading to 

improved accuracy and reliability in environmental sound 

classification. The detailed training process for BTNN is 

outlined in Algorithm 2. 

 

Figure 2. System architecture for automatic ESC using 

BRSS-based feature fusion and stacked ensemble DL 

with BTNN meta-learner 

4  Background 

This section provides brief descriptions of the machine 

learning algorithms used as base learners in our stacked 

ensemble model. These classical classifiers serve as the 

foundation for the first-layer predictions in our architecture 

and are chosen for their complementary strengths in 

handling diverse feature patterns in environmental sound 

classification. 

4.1 Linear regression (LR) 

Linear Regression models the relationship between input 

features and the target variable as a linear function: 

𝑦̂ = Xw + b       (1) 
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where X is the feature matrix, www is the weight vector, 

and bbb is the bias term. Model parameters are estimated 

by minimizing the mean squared error (MSE) between 

predicted and actual values [34]. 

4.2 Decision Tree (DT) 

A Decision Tree recursively partitions the feature space by 

selecting optimal feature splits at each node to maximize 

information gain or minimize impurity (e.g., Gini index), 

resulting in a hierarchical structure for classification. 

4.3 Random Forest (RF) 

Random Forest is an ensemble of decision trees trained on 

different bootstrapped subsets of the data. It uses majority 

voting among trees to make robust predictions and helps 

reduce variance and overfitting. 

4.4 Support Vector Machine (SVM) 

SVM finds the optimal hyperplane that maximizes the 

margin between classes. When the data is non-linearly 

separable, kernel functions are employed to project it into 

a higher-dimensional space for improved class separation. 

5  Algorithmic details 

This section describes the core algorithms used in the 

proposed system: the BRSS algorithm for optimal feature 

fusion and the BTNN classifier for final prediction. 

5.1 Boosted Reptile Squirrel Search (BRSS) 

for feature fusion 

BRSS is a metaheuristic optimization algorithm inspired 

by reptilian and foraging behaviors, designed to fuse 

feature vectors extracted by DenseNet-161. It updates 

candidate solutions iteratively to improve classification 

performance while mitigating overfitting [35]. 

F𝑆𝑢,ℎ = F𝑆𝑘 + U(0,1) × (𝐹𝑆𝑖 − 𝐹𝑆𝑙)(𝑢 =

1,2, … ,𝑚)(ℎ = 1,2, … , 𝑓)  (2) 

 where huFS , represents the u-th position of the 

squirrel in the h-th dimension. We calculate the fitness 

value corresponding to each squirrel position as follows.  

F𝑆𝑢,ℎ = F𝑆𝑘 + U(0,1)(𝐹𝑆𝑖 −

𝐹𝑆𝑙)(𝑢1,2, … ,𝑚)(ℎ1,2, … , 𝑓)            (3)                                           

                                                                              

where y addresses the ongoing emphasis, the e1 represents 

an irregular number in the scope of [0, 1] and the vH  is a 

skimming consistent. fooe 1  addresses the likelihood of 

the presence of hunters. The dg is the arbitrary sliding 

distance steady. At the point when fooe 1 without any 

hunters in the woodland, squirrels skim to find food 

squirrels have free rummaging exercises. As indicated by 

the occasional consistent and occasional recognition 

condition (
r

vA ) are determined to decide if entering 

winter.  

𝐴𝑣
𝑟 = √∑ (𝐹𝑆𝑠,𝑙

𝑟 − 𝐹𝑆𝑔,𝑙)
2𝑓

𝑙=1                      (4) 

where 
r

vA  addresses the element of the issue. 

( )lg

r

ls FSFS ,, − , separately, signify the squirrel on the 

walnut tree (best arrangement) and the squirrels on oak 

trees. 

𝐴
10𝑒−6

(365)𝑦/(𝑦𝑚/2.5)
𝑚𝑖𝑛

     

  (5) 

where 
m

y  represents the maximum number of iterations. 

When k

new

my FSFS = the positions of those flying 

squirrels without food sources are updated as follows   

F𝑆𝑚𝑦
𝑛𝑒𝑤 = F𝑆𝑘 + levy(𝑚) × (𝐹𝑆𝑖 − 𝐹𝑆𝑘)   

  (6) 

Levy Flight allows squirrels to find new locations close to 

their current sweet spot by 

𝑙𝑒𝑣𝑦 = 0.01 ×
𝑒𝑠×𝜎

|𝑒𝑣|
1
𝛽

     

 (7) 

where, ra and rb are two typically circulated arbitrary 

numbers in the scope of [0, 1]. The β is an example 

boundary of the Duty appropriation, utilized to describe 

the circulation's shape. The σ is a boundary inside the Duty 

flight model, overseeing the extent of step lengths. It 

imitates the jump distance of a Duty flight, processed as 

follows.  

σ = (
Γ(1+β)×𝑠𝑖𝑛(

πβ

2
)

Γ(
1+β

2
)×β×2

(
β−1
2 )
)

1/β

                  (8) 
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where ( ) ( )1−= zz . By using the BRSS algorithm for 

feature fusion, we effectively combine the deep features 

extracted from DenseNet-161 with other relevant features, 

resulting in an optimized feature set that enhances the 

discriminative power of the classification model while 

mitigating the risk of overfitting. Algorithm 1 describes the 

working process of optimal feature fusion using BRSS.  

 

Algorithm 1: Optimal feature fusion using BRSS 

Input    : Optimization problem information 

Output :  Feature fusion  

1 Set control parameters population (m),  

2 Generate random locations for n flying squirrels using 

 ( ) ( )( )( )fhmuFSFSUFSFS likhu ,...,2,1,...,2,11,0, ==−+=  

3 Evaluate the fitness of each flying squirrel’s location. 

4 Sort flying squirrel locations by fitness value. 

5 The best value is defined as the squirrel on the pecan tree 

6 While do 

7 For t = 1 to n 

8 Update flying squirrel locations which are on oak trees and moving towards pecan trees using 

Equation 
( )





 −+

=+

otherwiselocationRandom

oeFSFSHfFS
FS

fo

r

m

r

gvh

r

mr

m

11
,

 

9 Update flying squirrel locations which are on normal trees and moving towards oak trees 

using 
( )





 −+

=+

otherwiselocationRandom

oeFSFSHfFS
FS

fo

r

m

r

gvh

r

mr

m

11
,

 

10 Evaluate the fitness of each flying squirrel’s location. 

11 Update flying squirrel locations which are on normal trees and moving towards pecan trees 

using 
( )





 −+

=+

otherwiselocationRandom

oeFSFSHfFS
FS

fo

r

m

r

gvh

r

mr

m

11
,

 

12 Evaluate the fitness of each flying squirrel location. 

13 End 

14 

Calculate seasonal constant ( )
=

−=
f

l

lg

r

ls

r

v FSFSA
1

2

,,
 

15 

Update the minimum value of seasonal constant ( minA ) 
( ) ( )5.2//

6

min
365

10
myy

e
A

−

=  

16 If (Seasonal monitoring condition is satisfied) 

17 Randomly relocate flying squirrels on normal trees using 

( ) ( )kik

new

my FSFSmlevyFSFS −+=  

18 Evaluate the fitness of each flying squirrel’s location 

19 End 

20 The best value is defined as the squirrel on the pecan tree 

21 End 

22 The location of the squirrel on the pecan tree is the final optimal solution 

23 End 
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5.2 Bayesian Tensorized Neural Network 

(BTNN) for classification 

The Bayesian Tensorized Neural Network (BTNN) serves 

as the meta-learner in the second layer of our stacked 

ensemble architecture. It is designed to model high-

dimensional fused feature representations generated by the 

Boosted Reptile Squirrel Search (BRSS) algorithm, using 

a compact tensor-train (TT) structure and Bayesian 

inference. This design enables efficient parameterization 

while capturing uncertainty in model predictions, 

improving generalization performance on unseen 

environmental sound samples. 

The BTNN models the high-dimensional weight tensor 

using tensor-train decomposition. A tensor of order is 

represented as a sequence of 3-way tensor cores: 

M = {𝐺(1), 𝐺(2), … , 𝐺(𝑑)}                (8)                                                                                      

Each core tensor G⁽ⁱ⁾ ∈ ℝ^ (rᵢ₋₁ × nᵢ × rᵢ), where rᵢ are the 

TT-ranks, and nᵢ is the size of the i-th dimension of the 

input. 

Given a matrix Z, the tensor-train factorization is defined 

as: 

Z = 𝐺(1) ×1 𝐺
(2) ×2 ⋯×𝑑−1 𝐺

(𝑑)      (9)                                                                           

This decomposition allows for a compact representation of 

the weight matrix using significantly fewer parameters 

[37]. 

A single-layer BTNN prediction can be expressed as: 

𝑦̂ = f(𝑊 ⋅ 𝑥 + 𝑏)              (10) 

                                                                                             

where W is the TT-decomposed weight tensor, x is the 

fused feature input, b is the bias, and f(·) is the activation 

function (e.g., ReLU or SoftMax). 

To incorporate uncertainty and avoid overfitting, BTNN 

is trained using a Bayesian objective that combines the 

standard cross-entropy loss with a regularization term 

based on the Kullback-Leibler (KL) divergence between 

the approximate where q(θ) denotes the posterior 

distribution and p(θ) represents the prior distribution over 

the model parameters θ. 

ℒ = −∑ 𝑦𝑖 log(𝑦𝑖̂)
𝑁
𝑖=1 + λ ⋅ 𝐾L(𝑞(θ)|𝑝(θ))   (11)                                           

where λ is the regularization coefficient, and θ 

encompasses all TT-cores and biases in the model. 

The posterior distribution over parameters is estimated as: 

                           q(θ) ∝ exp (−
1

𝑇
ℒ(θ))          (12)                                                   

Where T is a temperature scaling factor that controls the 

sharpness of the posterior distribution. 

By integrating tensor-train decomposition and Bayesian 

inference, the BTNN provides an expressive yet 

computationally efficient approach for environmental 

sound classification. It serves as a powerful meta-learner 

that consolidates predictions from the base learners in the 

stacked ensemble architecture. 

Algorithm 2 presents the BTNN-based classification 

process, where a stacked ensemble integrates traditional 

ML and DL models to enhance recognition accuracy by 

capturing diverse patterns in environmental sound data. 

 

Algorithm 2: Automatic environmental sound recognition using BTNN classifier 

Input    : Number of features, training samples and testing samples  

Output : Environmental sound classification  

1. Initialize the population and fitness value 

2. Define the set of matrix products of the C-path tensor M: 

):,(:,)...:,(:,):,(:,)...,,,( 221121 ccc hJhJhJhhhM =  

3. While do 

4. 
Compute magnitudes of each layer 

==

==
c

K

K

c

K

K GGAA
11

 

5. Compute TT-matrix factoring of matrix Z 


=

=
c

K

KKKcc gVaJgVagVaZ
1

11 :)),(),((:,))(),(....,),(),((   
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6 Compute L-layer tensor neural network as ( )l

L

LZpjq 1

)( }{| =  

7. Update the fitness value 

8. 
Define Bayesian model ( ) 

=

= =
B

h

chh

c

KK JJpjQxJCx
1

11 ]]))...,,[[|(,(}{|  

7. Compute absolute distribution for threshold set function 

),()()|(
)(

)()|(
)|( 


 CxxCx

Cx

xCx
Cx ==  

8. End if  

9. Update the final value 

10. End 

 

6  Results and discussion 

This section presents and interprets the performance of the 

proposed environmental sound classification (ESC) 

system. We evaluate the model using three benchmark 

datasets—ESC-10, ESC-50, and UrbanSound8K—

reporting standard metrics such as accuracy, precision, 

recall, and F1-score. Performance is analyzed using 

confusion matrices, per-class evaluation metrics, and 

ensemble configuration comparisons [38][39]. All 

experiments were conducted using Python 3.7, with 

TensorFlow 2.x and supporting scientific libraries. The 

Python version was selected due to compatibility 

requirements with pre-trained modules and BRSS 

optimization code. 

6.1 ESC-10 performance 

Figure 3 shows Confusion matrix for ESC-10 

classification using the proposed SVM+BTNN ensemble 

model with fused spectrum features. As shown in Figure 2, 

the model achieves high per-class accuracy, particularly on 

classes such as 'rain' and 'clock_tick'. Minor confusions 

occur between acoustically similar classes like 'dog' and 

'rooster'. 

Figure 3: 

Confusion Matrix for ESC-10 dataset 

6.2 ESC-50 performance 

As shown in Figure 4, the proposed model performs 

reliably across diverse ESC-50 categories, with most 

classes achieving over 85% per-class accuracy. 

Misclassifications are concentrated among sound types 

with overlapping frequency textures, such as 'wind' and 

'rain' or 'airplane' and 'thunderstorm', which suggests 

potential areas for future refinement.  
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Figure 4: Confusion matrix for ESC-50 Dataset 

6.3 UrbanSound8K performance 

Figure 5. Confusion matrix of the UrbanSound8K 

classification task using the proposed SVM+BTNN model 

with fused features. The system achieves high accuracy on 

most urban sound classes, while exhibiting 

misclassifications primarily between structurally similar 

or overlapping sounds, such as “car horn” and 

“jackhammer.” 

 
Figure 5: Confusion matrix for UrbanSound8K Dataset 

6.4 Feature type comparison 

Figure 6 shows that fused features obtained via BRSS 

significantly outperform individual spectral 

representations. The fused features achieve 98.98% 

accuracy, highlighting the benefit of combining 

complementary information from multiple spectrogram 

types.

 Figure 6: Accuracy across spectral feature types
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6.5 Ensemble model comparison 

Figure 8 compares the performance of three ensemble 

configurations. Among them, RF+BTNN achieves the 

highest accuracy (97.45%), demonstrating strong 

generalization and robustness

. 

 

                       

 

 

 

 

Figure 8: Ensemble model accuracy comparison 

6.6 Comparative evaluation with existing models

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CNN 46.05 45.76 45.11 45.43 

Dilated CNN 52.02 51.73 51.08 51.40 

EnvNet 57.99 57.70 57.04 57.37 

CRNN 63.95 63.66 63.01 63.33 

Dual ResNet 69.92 69.63 68.98 69.30 

LR 75.24 74.95 74.30 74.63 

DT 80.57 80.28 79.63 79.95 

RF 85.89 85.61 84.95 85.28 

SVM 91.22 90.93 90.28 90.60 

LR + BTNN 96.55 96.26 95.61 95.93 

DT + BTNN 96.87 96.58 95.93 96.26 

RF + BTNN 97.20 96.91 96.26 96.58 

SVM + BTNN 97.53 97.24 96.58 96.91 

Table 2: Comparative analysis of existing and proposed methods using LM spectrum features 

To further evaluate the superiority of our proposed 

ensemble framework, we conducted a detailed comparison 

using LM (Log-Mel) spectrum features, as shown in Table 

2. The results highlight the performance of baseline deep 

learning models (CNN, CRNN, Dual ResNet), 

conventional machine learning classifiers (LR, DT, RF, 

SVM), and our proposed two-level stacked ensembles (ML 

+ BTNN) [40][41]. Notably, the SVM+BTNN 

configuration outperforms all other models, achieving the 

highest accuracy of 97.53%, precision of 97.24%, recall of 

96.58%, and F1-score of 96.91%. These results confirm 

that the integration of BTNN as a meta-classifier 

significantly boosts classification performance, especially 

when paired with robust feature fusion. 

6.7. Per-class performance analysis 

Figure 9 presents the per-class F1-scores for RF+BTNN. 

Most values exceed 0.98, with minimal variance between 

classes, indicating consistency 
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Figure 9: Per-Class F1-Score – RF+BTNN 

Figure 8 provide additional insights into class-wise 

precision and recall, confirming that RF+BTNN maintains 

high performance across diverse acoustic environments. 

 

Figure 10: Per-Class Precision and Recall Bar chart for 

RF+BTNN 

6.8. Summary Metrics 

Table 3 summarizes the overall classification performance 

of the best-performing model (RF+BTNN) across the 

combined dataset. 

 

 

 

Table 3: Overall evaluation metrics (combined datasets) 

Metric Score 

Accuracy 93.30% 

Precision 93.66% 

Recall 94.55% 

F1-Score 93.69% 

6.9. Discussion 

The proposed model demonstrates high accuracy and 

generalization across curated and real-world datasets. The 

BRSS-based fusion method enhances feature richness, 

while the RF+BTNN ensemble captures both linear and 

non-linear decision boundaries. The confusion matrices 

reveal most misclassifications occur in acoustically similar 

classes, suggesting room for improvement using temporal 

or attention-based modeling in future work. The per-class 

performance highlights the robustness of the system across 

minority and majority classes. The model maintains stable 

precision and recall even under class imbalance, validating 

its suitability for real-world deployment. 

In terms of computational performance, the model 

processes samples with an average inference time of 8.3 

ms, enabled by a compact BTNN with approximately 2.1 

million parameters. This supports real-time ESC 

applications on resource-constrained devices. In 

conclusion, the proposed framework delivers robust and 

efficient environmental sound classification using stacked 

ensemble learning and optimal feature fusion. It 

outperforms baseline and traditional approaches, 

demonstrating clear applicability in domains like smart 

surveillance, wildlife monitoring, and ambient scene 

understanding. 
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7  Conclusion 

This work presents a novel and efficient framework for 

automatic environmental sound classification that 

integrates BRSS-based optimal feature fusion with a 

stacked ensemble learning strategy. The system leverages 

DenseNet-161 to extract deep audio representations, 

which are then optimally combined using the Boosted 

Reptile Squirrel Search algorithm to reduce overfitting and 

improve generalization. Final classification is achieved 

through a two-level ensemble model comprising 

traditional classifiers (LR, DT, RF, SVM) and a Bayesian 

Tensorized Neural Network (BTNN) as a meta-learner. 

Experimental evaluations were conducted using ESC-10, 

ESC-50, and UrbanSound8K datasets. Our approach 

consistently outperformed baseline models across all 

datasets and feature types. Notably, the fused spectral 

features achieved the highest accuracy of 98.98%, 

confirming the advantage of multimodal fusion. Among 

ensemble configurations, RF+BTNN delivered the best 

results, demonstrating its ability to generalize across 

diverse sound classes. Compared to existing models such 

as Dual ResNet, the proposed system showed marked 

improvements in accuracy ranging from approximately 

26% to 47% across different features. These gains 

emphasize the strength of combining lightweight deep 

feature extraction with optimization-driven fusion and a 

robust stacked ensemble. Overall, this work provides a 

scalable, accurate, and computationally efficient solution 

for environmental sound recognition and offers promising 

potential for deployment in edge devices, smart city 

infrastructure, and acoustic monitoring applications. 
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