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Environmental sound classification (ESC) is a challenging task due to the unstructured and overlapping
nature of ambient sounds, which differ significantly from speech and music. Problems such as class
imbalance, limited labeled samples, and high inter-class similarity hinder the performance of traditional
classifiers. In this study, we propose a robust ESC system that combines optimal spectrum feature fusion
with a stacked ensemble learning strategy. Specifically, we extract three types of spectral features—log Mel
spectrum, log—log Mel spectrum, and Mel spectrograms—from environmental audio signals using the
DenseNet-161 architecture. These features are then optimally fused using the Boosted Reptile Squirrel
Search (BRSS) algorithm to capture both fine- and coarse-grained frequency patterns. For classification,
we employ a two-level ensemble model: four classical machine learning classifiers (Linear Regression,
Decision Tree, Random Forest, and Support Vector Machine) in the first stage, followed by a Bayesian
Tensorized Neural Network (BTNN) for final prediction. Experimental results on three benchmark
datasets—ESC-10, ESC-50, and UrbanSound8K—demonstrate that our fused spectrum feature approach
achieves an accuracy of 98.98%, surpassing individual feature types and outperforming state-of-the-art
models such as Convolutional Recurrent Neural Network (CRNN), EnvNet, and DualResNet. These results
highlight the effectiveness and superiority of our proposed method for environmental sound classification.

Povzetek: Predlagan ansambelski pristop z optimalno fuzijo spektralnih znacilk doseze 98,98 %
natancnost in preseze obstojece modele za klasifikacijo okoljskih zvokov.

1 Introduction ESC system accuracy and scalability. Hybrid designs
improve sound recognition performance and versatility by
combining multiple models [5]. These designs handle
sound recognition's many issues by combining deep
learning, classical machine learning, and signal
processing. Recurrent neural network (RNN) and
convolutional neural network (CNN) are often used in
hybrid architectures to capture spatial features from
spectrograms or Mel-frequency cepstral coefficients
(MFCCs) and model temporal events [6]. A multi-stage
procedure extracts significant features from raw audio
signals before feeding them into the network for
classification in hybrid sound recognition architecture [7].
Time-frequency alterations like short-time Fourier
transform (STFT) or wavelet transform can convert audio
inputs for neural network analysis [8]. Hybrid sound

Modern technology relies on environmental sound
classification (ESC) to automatically identify and classify
environmental noises. ESC includes animal calls, traffic
noise, weather patterns, and industrial machinery, unlike
standard sound recognition systems that focus on speech
or music [1]. This field has garnered interest for its
possible uses in environmental monitoring, urban acoustic
analysis, wildlife conservation, and smart city
development [2]. ESC techniques are robust enough to
discriminate sound classes in complicated and variable
real-world situations [3]. Additionally, the variety of sound
sources and lack of standardized databases hinder
researchers in this subject [4]. Even so, recent advances in
machine learning, especially deep learning, have improved
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recognition architectures can also use ensemble
approaches, where numerous models are trained separately
and their predictions are integrated. By lowering variance
and bias, ensemble approaches like bagging and boosting
improve system robustness and generalization [9]. ML/DL
techniques are essential to sophisticated environmental
sound detection systems [10].

With the rise of digital audio data, sound recognition
systems cannot handle the complexity and variety of real-
world ambient noises. DL algorithms learn hierarchical
data representations from raw audio waveforms, giving a
powerful solution [11]. DL algorithms, especially CNNs
and RNNs, have shown great promise in automatically
learning discriminative features from audio data for
environmental sound detection [12]. CNNs are good at
capturing spatial patterns in spectrograms or other time-
frequency audio representations, while RNNs enjoy
modeling temporal relationships in sequential audio data.
CNNs and RNNs complement each other; therefore,
researchers can use a hybrid framework to improve
ambient sound identification performance. ML algorithms
that understand patterns and correlations from labeled
training data are essential for ambient sound detection
[13]. The k-nearest neighbors (k-NN), random forest (RF)
and support vector machine (SVM) are used for
classification tasks to map audio signal properties to
predetermined sound categories. Unsupervised and semi-
supervised learning methods allow the investigation of
latent structures in ambient sound samples. Deep learning
and machine learning can improve automatic
environmental sound recognition, enabling innovative
applications in wildlife monitoring, urban sounds cape
analysis, and healthcare [14]. Hybrid architecture in sound
detection helps several sectors autonomously identify and
analyze environmental sounds. Hybrid sound recognition
systems can identify and classify animal vocalizations,
weather  patterns, and ecological problems in
environmental monitoring [15]. Besides environmental
monitoring, hybrid sound recognition is used in smart
cities, industrial automation, and healthcare. Smart cities
can use sound recognition technology to monitor traffic,
detect emergency sirens, and spot unusual events like
accidents and disturbances [16]. Hybrid architecture in
sound recognition can improve automation, efficiency, and
decision-making across industries [17]. These hybrid
systems use deep learning and machine learning to adapt
to varied contexts and learn from enormous amounts of
audio data to increase accuracy and robustness. As they
enable proactive environmental risk management, early
anomaly detection, and quick response to catastrophic
events, such systems can save money, optimize resources,
and improve quality of life [18]. Environmental noises'
high frequency, loudness, and duration unpredictability
presents a problem [19]. It makes sound classification and
acoustic pattern differentiation challenging, especially in
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loud or dynamic contexts. Hardware limits, data privacy
concerns, and interoperability issues may complicate
hybrid sound recognition system adoption, requiring
careful planning and mitigation. Future hybrid sound
recognition research could improve system scalability,
adaptability, and real-time performance to satisfy changing
application needs [20].

Major contributions

The key contributions of this work are summarized as
follows:

e Hybrid Deep Ensemble Architecture: We propose
a stacked ensemble learning framework that
integrates learning
classifiers—Linear Regression, Decision Tree,
Random Forest, and Support Vector Machine—
with a Bayesian Tensorized Neural Network
(BTNN). This hybrid architecture enhances
classification precision and generalization

four classical machine

compared to standalone classifiers and deep
models.

e Adaptive Feature Fusion Strategy: We introduce
a meta-heuristic optimization approach using the
Boosted Reptile Squirrel Search (BRSS)
algorithm to fuse multiple spectrum-based
representations, including log Mel, log—log Mel,
and Mel spectrogram features. This fusion
strategy improves feature discriminability and
mitigates overfitting.

e End-to-End Recognition Pipeline: We develop a
novel end-to-end ESC system that combines
DenseNet-161-based deep feature extraction,
adaptive feature fusion, and two-level ensemble
learning, offering both high accuracy and
computational efficiency suitable for real-world
deployment.

e Advancement Over State-of-the-Art: Evaluated
on benchmark datasets ESC-10, ESC-50, and
UrbanSound8K, the proposed system achieves a
top accuracy of 98.98% using fused features,
significantly outperforming prior state-of-the-art
methods such as CRNN, EnvNet, and
DualResNet.

2 Review of literature

In this section, we provide an overview of the literature
concerning the recognition of environmental sounds using
ML and DL techniques. Table 1 presents a summary of the
research gaps identified in existing state-of-the-art works
on environmental sound recognition.
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2.1 State of art works

Yildirim et al. 2024 [21] suggested a hybrid model for PD
detection using sound data. Sound input is converted into
spectrograms, and three CNN architectures extract unique
feature maps. The arithmetic optimization algorithm
(AOA), an innovative metaheuristic optimum method,
helps fuse and choose these varied feature maps. SVM and
KNN classifiers are then used for classification. With an
accuracy rating of 98.19%, the suggested model diagnoses
PD well. The suggested model is also compared to Mel-
frequency cestrum coefficients feature maps. RF classifier
achieved the highest accuracy of 93.98%.

Mekruksavanich et al. 2023 [22] have explored the field of
DL for humanoid movement acknowledgment and puts up
successful methods for recognition. In order to find the
best architecture for activity recognition, the study first
investigates various convolutional neural networks. A
channel  attention = mechanism—integrated  hybrid
convolutional neural network is the end result of further
efforts. The network is able to effectively detect different
human movements in daily life because to this technique,
which allows it to hierarchically discriminate deep spatio-
temporal properties. The model outperforms methods and
effectiveness in improving recognition accuracy with
98.92%, 98.80%, and 98.45% accuracy rates, respectively.

Ansari et al. 2023 [23] provided a new architecture for
three-way neural networks that can model speech
sequences with direct context-awareness: transformer,
prior trained dual-path recurring neural network, and
transfer learning. Investigational outcomes show that the
suggested model outperforms seven advanced deep
learning-related architectures on a variety of objective
criteria. It outperforms its closest competition and proves
its speech separation efficacy with usual development of
4.60% in brief goal comprehension, 14.84% in from source
to distort ratio, and 9.87% in scale-invariant proportion of
noise to signal.

Wang et al. 2023 [24] came up with a new deep learning
strategy for multi-class classification, which includes
ternary and binary tasks, by merging a CNN with a LSTM
system. This CNN-LSTM hybrid outperforms both
conventional ML and ultramodern DL models in ternary
classification. By streamlining the process and doing away
with manual processes, the suggested method provides a
more effective diagnostic tool for doctors, which could
make neurologists' jobs easier when it comes to diagnosing
epilepsy. It has been widely accepted in acoustic signal
processing area that the frequency band has more
characteristics information about target sound than the
time series.
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Rashmi et al. 2023 [25] exploring the use of CNN to
mechanically study topographies from audio signals of the
English alphabet. They used MFCC-based features and the
other that uses a hybrid feature extraction method
including LM, MFCC, chroma, spectral contrast, and
Tonnetz features. The suggested strategy outperforms
current CNN methods using single extraction of features
techniques in terms of taxonomic accuracy, and it does this
by combining multiple sets of features and training them
using separate CNNs. Results show that CNNs work well
for sound recognition, especially when combined with
hybrid feature extraction techniques; this opens up exciting
new possibilities for research in the area.

Jahangir et al. 2023 [26] discussed the neural network
system that because babies primarily use crying to express
what they need; parents must be extremely careful and
keep a close eye on them at all times. With recall, f1-score,
and precision rates of 98.39%, 98.05%, and 98.72%,
respectively, stacked classifier CNN-SCNet stood up as
the most successful. An encouraging answer for worried
parents, this study highlights the importance of strong ML
models like CNN-SCNet in improving the capacity of
baby monitoring systems to identify screams in busy home
settings.

Ullo et al. 2020 [27] have proposed the hybrid ESC model
based on OAS to extract meaningful samples from each
sound class. The time-frequency-amplitude representation
is generated by subjecting these representative samples to
short-Time Fourier Transform (STFT). These features
were trained using prior training AlexNet and VGG-16
networks. Tests on the ESC-10 dataset show that the
suggested strategy is as good as, or better than, current
state-of-the-art approaches, with accuracies ranging from
87.9% to 95.8%.

Liu et al. 2023 [28] have suggested a ship-radiated
extremely fine noise detection scheme consuming
amplitude—frequency—time domain multi-scale
characteristics and an adaptive generalized network.
Superior signal decomposition methods like permutation
entropy-based analysis generate six learnable amplitude—
time—frequency components from ship-radiated noise
signals. 1D CNN and LSTM systems integrate aggregated
seasonal characteristics and excellent regional data to
focus on time—frequency information in MFAGNet.
Testfindings show that MFAGNet outperforms baseline
approaches in distinguishing 12 ship noises from ShipsEar
dataset and classifying four common ship types from
multiple datasets with 98.89% accuracy.

Chen et al. 2024 [29] have promoted heterogeneous coding
techniques for comprehensive SNN architecture design.
They present a hybrid neural coding and learning system
that combines many neuroscience-discovered neural
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coding schemes. The system also includes unique layer-
wise learning algorithms for hybrid coding SNNs and a
variable neural coding allocation strategy for task-specific
needs. The experiments on image categorization and
localization of sounds show that the planned outline
outclasses advanced SNNs in accuracy, inference delay,
energy consumption, and noise robustness. This study
illuminate’s hybrid neural coding architectures, paving the
way for high-performance neuromorphic devices.

Demir et al. 2020 [30] employed a CNN model trained
end-to-end with spectrogram data to improve classification
accuracy through the inclusion of deep features. In order
to construct a feature vector, the fully linked layers of the
suggested CNN model are used to extract deep features. To
measure its efficacy, the K-NN ensemble classifier takes
this vector as input. The proposed CNN-based technique is
effective in ESC tasks, as demonstrated by the remarkable
classification accuracies of 96.23% and 86.70% on the
DCASE-2017 ASC and UrbanSound8K datasets,
respectively.

2.2 Problem description and definition

The task of environmental sound classification (ESC)
presents several core challenges that hinder the
development of robust, scalable, and accurate models.
These challenges are particularly evident in real-world
audio environments, where sounds are diverse,
overlapping, and often unstructured [31]. The key issues
include:

e Unstructured Nature of Environmental Sounds:
Unlike speech or music, environmental sounds
lack consistent temporal and spectral patterns,
making them more difficult to model and classify
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e Data Imbalance and Limited Samples: Many ESC
datasets contain an uneven distribution of sound
classes and limited recordings per class, which
can bias model performance and reduce
generalization.

e Large Number of Sound Categories: ESC often
involves classification across a wide range of
classes with overlapping acoustic characteristics,
increasing the complexity of the task.

e Computationally Intensive Feature Extraction:
Extracting high-quality features from raw
audio—especially using complex or non-linear
methods—requires substantial computational
resources, making it difficult to scale or deploy in
resource-constrained environments.

e Risk of Overfitting: Deep learning models trained
on limited or imbalanced data are prone to
overfitting, resulting in poor generalization on
unseen data.

e Lack of Robustness in Existing Models: Many
existing ESC models show inconsistent

performance across datasets and real-world

scenarios due to suboptimal architectures or
feature representation limitations.

These challenges highlight the need for novel, efficient,
and generalizable approaches to environmental sound
classification that can improve both accuracy and
computational.

Table 1: Summary of research gap

Findings

Research gaps

effectively.

Ref. Feature fusion Classifier

[21] AOA-CNN k-NN and SVM

[22] UNet Hybrid CNN

[23] DenseNet SVM and RF

[24] Space-time algorithm CNN-LSTM

[25] LM, MFCC, and CST CNN

[26] SCNet CNN

[27] OAS, STFT, VGG-16 k-NN and SVM

[28] MFAGNet LSTM

[29] UNet and DenseNet Spiking neural networks
(SNN)

[30] Deep CNN k-NN and SVM

Accuracy 98.19%
Accuracy 98.92%

Accuracy 85.965%
Accuracy 91.253%

Accuracy 87.523%
Precision 98.72%

Accuracy 95.8%
Accuracy 98.9%
Accuracy 90.56%

Accuracy 96.23%

They use only one single vector to extract features
It is challenging to identify sounds from limited
samples

Difficult to achieve the complex time—frequency
features

Fail to consider the temporal structure, frequency
characteristics

Insufficient structural information of the audio signal
Limited by number of samples, the network cannot
learn more features

Often demand computationally intensive operations
Time-consuming and high-effort task

Achieving the classification effect of feature is
complex issue

The feature fusion is not effectively handled which
limits the performance
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3 Methodology

Our proposed system addresses the challenge of
environmental sound classification by transforming raw
audio signals into image-based representations and
leveraging a stacked ensemble deep learning (DL)
architecture for robust and accurate recognition. In Figure
1 the flowchart illustrates the complete methodology of the
proposed ESC system. Raw audio signals are first
collected from benchmark datasets and undergo
preprocessing and augmentation. These signals are then
converted into spectrograms using log-Mel, log—log-Mel,
and Mel transformations. The extracted features are fused
optimally using the Boosted Reptile Squirrel Search
(BRSS) algorithm. The fused features are passed to a
stacked ensemble learning model consisting of a first layer
of machine learning classifiers (Logistic Regression,
Decision Tree, Random Forest, and Support Vector
Machine), followed by a Bayesian Tensorized Neural
Network (BTNN) as the meta-learner. The final output is
the predicted environmental sound class.

Data collection
Signal preprocesssing
[ Spectrogram conversion |
\(log-MeI, log-log-Mel, Mll

!

Optimal feature fusion
L using BRSS )

Stacked ensemble
classification

Final prediction
output

/ /

Figurel: Workflow of the proposed environmental sound
classification system
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3.1 Overview of the proposed system

As shown in Figure 2, the system comprises five main
steps. First, raw environmental sound signals undergo
preprocessing and augmentation to improve quality and
enhance variability. Second, the preprocessed signals are
transformed into spectrogram representations using log-
Mel based methods, which convert the audio into a two-
dimensional time-frequency format. Third, these
spectrograms are input into DenseNet-161, a
convolutional neural network that extracts high-level
discriminative features. Fourth, the extracted deep features
are fused using the Boosted Reptile Squirrel Search
(BRSS) algorithm to maximize feature diversity and
reduce overfitting. Finally, in the fifth stage, the fused
features are classified using a stacked ensemble learning
approach. This ensemble includes four base classifiers—
linear regression (LR), decision tree (DT), random forest
(RF), and support vector machine (SVM)—whose outputs
are combined by a meta-learner, the Bayesian Tensorized
Neural Network (BTNN), to produce the final prediction.

3.2. Stacked

architecture
The classification stage utilizes a two-layer stacked
ensemble DL architecture:

ensemble deep learning

e First Layer (Base Learners): Four traditional
machine learning classifiers—Linear Regression
(LR), Decision Tree (DT), Random Forest (RF),
and Support Vector Machine (SVM)—are trained
independently on the optimized fused features.
Each base learner outputs class probabilities for
each input sample.

o Second Layer (Meta Learner): The outputs from
the first-layer classifiers are concatenated and
input into a Bayesian Tensorized Neural Network
(BTNN). BTNN  leverages
decomposition and Bayesian inference to capture
high-dimensional interdependencies, enhancing
classification  robustness and effectively
modeling uncertainty.

tensor-train

3.3 Feature extraction using DenseNet-161

Audio spectrograms are processed by a pre-trained
DenseNet-161 model, which efficiently extracts deep
frequency domain features. DenseNet’s dense connectivity
and feature reuse capabilities enable it to capture subtle
variations and complex patterns in environmental sound
data, resulting in richer and more informative feature
representations.
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3.4 Optimal feature fusion with BRSS

To further enhance model generalization, the Boosted
Reptile Squirrel Search (BRSS) algorithm is applied for
feature fusion. BRSS, inspired by animal foraging
behavior, optimally combines feature vectors extracted
from DenseNet-161 across multiple spectrogram types.

This approach enhances the discriminative power of the
final feature set while mitigating the risk of overfitting.
Technical equations and algorithmic steps for BRSS are
provided in Section 5.1. To enhance the representational
power of spectral features and overcome the limitations of
traditional fusion approaches, we adopt an optimization-
driven feature fusion strategy based on the Boosted Reptile
Squirrel Search (BRSS) algorithm. While conventional
fusion techniques such as Principal Component Analysis
(PCA), direct concatenation, and Deep Canonical
Correlation Analysis (DCCA) have been widely used for
combining audio features, they often suffer from
redundancy, suboptimal weighting, or lack of adaptability
to nonlinear feature interactions [32]. Unlike these
methods, our BRSS-based approach leverages
metaheuristic search principles to dynamically select and
combine complementary features, thereby minimizing
redundancy and maximizing classification-relevant
information. Metaheuristic optimization has proven
especially effective in complex search spaces where
gradient-based or fixed-rule strategies fail to generalize
[33]. The integration of BRSS enables adaptive feature
weighting and selection tailored to the target dataset,
offering a significant performance boost over both shallow
and deep baseline fusion models.

3.5. Final classification using BTNN

The Bayesian Tensorized Neural Network (BTNN) in the
meta-learner layer efficiently handles high-dimensional
fused features via tensor-train decomposition. Its Bayesian
modeling framework incorporates uncertainty, leading to
improved accuracy and reliability in environmental sound
classification. The detailed training process for BTNN is
outlined in Algorithm 2.
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Figure 2. System architecture for automatic ESC using
BRSS-based feature fusion and stacked ensemble DL
with BTNN meta-learner

4 Background

This section provides brief descriptions of the machine
learning algorithms used as base learners in our stacked
ensemble model. These classical classifiers serve as the
foundation for the first-layer predictions in our architecture
and are chosen for their complementary strengths in
handling diverse feature patterns in environmental sound
classification.

4.1 Linear regression (LR)

Linear Regression models the relationship between input
features and the target variable as a linear function:

§=Xw+b (1)
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where X is the feature matrix, www is the weight vector,
and bbb is the bias term. Model parameters are estimated
by minimizing the mean squared error (MSE) between
predicted and actual values [34].

4.2 Decision Tree (DT)

A Decision Tree recursively partitions the feature space by
selecting optimal feature splits at each node to maximize
information gain or minimize impurity (e.g., Gini index),
resulting in a hierarchical structure for classification.

4.3 Random Forest (RF)

Random Forest is an ensemble of decision trees trained on
different bootstrapped subsets of the data. It uses majority
voting among trees to make robust predictions and helps
reduce variance and overfitting.

4.4 Support Vector Machine (SVM)

SVM finds the optimal hyperplane that maximizes the
margin between classes. When the data is non-linearly
separable, kernel functions are employed to project it into
a higher-dimensional space for improved class separation.

5 Algorithmic details

This section describes the core algorithms used in the
proposed system: the BRSS algorithm for optimal feature
fusion and the BTNN classifier for final prediction.

5.1 Boosted Reptile Squirrel Search (BRSS)
for feature fusion

BRSS is a metaheuristic optimization algorithm inspired
by reptilian and foraging behaviors, designed to fuse
feature vectors extracted by DenseNet-161. It updates
candidate solutions iteratively to improve classification
performance while mitigating overfitting [35].

FS,; = FS; + U(0,1) X (FS; — FS))(u =
1,2, .., m)(h=12,...f) (2)

where FSu’h represents the u-th position of the

squirrel in the h-th dimension. We calculate the fitness
value corresponding to each squirrel position as follows.

FS,p, = FS + U(0,1)(FS; —
FS)(u1,2,...,m)(h1,2, ..., f) 3)
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where y addresses the ongoing emphasis, the el represents

an irregular number in the scope of [0, 1] and the H, isa
skimming consistent. €, = 0, addresses the likelihood of
the presence of hunters. The dg is the arbitrary sliding
distance steady. At the point when €, = 0, without any

hunters in the woodland, squirrels skim to find food
squirrels have free rummaging exercises. As indicated by
the occasional consistent and occasional recognition

condition (A,r ) are determined to decide if entering

winter.

T — f T 2

A, = JZM(FSS,I —FS,) @)
where A, addresses the element of the issue.

(FS;I - FSg’I ), separately, signify the squirrel on the
walnut tree (best arrangement) and the squirrels on oak

trees.

10e~°
(365)}'/(J’m/2-5)min

)

where y_ represents the maximum number of iterations.

When FS:]?,W =FS, the positions of those flying

squirrels without food sources are updated as follows

FSpsY = ESy +levy(m) X (FS; — FS;)
(6)

Levy Flight allows squirrels to find new locations close to
their current sweet spot by

esxo

1
|ev|ﬁ

levy = 0.01 x

(7

where, ra and rb are two typically circulated arbitrary
numbers in the scope of [0, 1]. The B is an example
boundary of the Duty appropriation, utilized to describe
the circulation's shape. The o is a boundary inside the Duty
flight model, overseeing the extent of step lengths. It
imitates the jump distance of a Duty flight, processed as

follows.

+ ><sinﬂ P
o (m D (@)) )

I‘(HB)XBXZ(T

2
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where F(Z) = (Z —l). By using the BRSS algorithm for

feature fusion, we effectively combine the deep features
extracted from DenseNet-161 with other relevant features,
resulting in an optimized feature set that enhances the

discriminative power of the classification model while
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mitigating the risk of overfitting. Algorithm 1 describes the

working process of optimal feature fusion using BRSS.

Algorithm 1: Optimal feature fusion using BRSS

Input : Optimization problem information
Output : Feature fusion
1 Set control parameters population (m),
2 Generate random locations for n flying squirrels using
FS,» =FS, +U(01)x(FS, - FS, Ju=12,...m(h=12,..., )
3 Evaluate the fitness of each flying squirrel’s location.
4 Sort flying squirrel locations by fitness value.
5 The best value is defined as the squirrel on the pecan tree
6 While do
7 Fort=1ton
8 Update flying squirrel locations which are on oak trees and moving towards pecan trees using
FS' + f xH, x(FS' —FS' )e >0
Equation FSr:fl = mooh V_ ( g m) el_ fo
Randomlocation otherwise
9 Update flying squirrel locations which are on normal trees and moving towards oak trees
o [FSE4foxH, x(FST—FS!)e >0,
using FS ™ = ) ]
Randomlocation otherwise
10 Evaluate the fitness of each flying squirrel’s location.
11 Update flying squirrel locations which are on normal trees and moving towards pecan trees
r r r
e [FSEfxH, x(FSI —FS!)e >0y,
using FS ™ = ) ]
Randomlocation otherwise
12 Evaluate the fitness of each flying squirrel location.
13 End
14 f
r r
Calculate seasonal constant A, = Z:(I:Ss’I - FSgJ)z
I=1
15 10e°°
Update the minimum value of seasonal constant ( A, ) Ay, = W
16 If (Seasonal monitoring condition is satisfied)
17 Randomly relocate flying squirrels on normal trees using
FSp" = FS, +levy(m)x (FS; — FS,)
18 Evaluate the fitness of each flying squirrel’s location
19 End
20 The best value is defined as the squirrel on the pecan tree
21 End
22 The location of the squirrel on the pecan tree is the final optimal solution

23 End
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5.2 Bayesian Tensorized Neural Network
(BTNN) for classification

The Bayesian Tensorized Neural Network (BTNN) serves
as the meta-learner in the second layer of our stacked
ensemble architecture. It is designed to model high-
dimensional fused feature representations generated by the
Boosted Reptile Squirrel Search (BRSS) algorithm, using
a compact tensor-train (TT) structure and Bayesian
inference. This design enables efficient parameterization
while capturing uncertainty in model predictions,
improving generalization performance on unseen
environmental sound samples.

The BTNN models the high-dimensional weight tensor
using tensor-train decomposition. A tensor of order is
represented as a sequence of 3-way tensor cores:
M={W6P,., 6D} ®)
Each core tensor G € R” (1i-1 X m; X 17), where r; are the

TT-ranks, and »; is the size of the i-th dimension of the
input.

Given a matrix Z, the tensor-train factorization is defined
as:

Z=G6GWx, 6@ x, - Xg_1 GD (9

This decomposition allows for a compact representation of
the weight matrix using significantly fewer parameters
[37].

A single-layer BTNN prediction can be expressed as:

$ =f(W - x + b) (10)
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where W is the TT-decomposed weight tensor, x is the
fused feature input, b is the bias, and f{*) is the activation
function (e.g., ReLU or SoftMax).

To incorporate uncertainty and avoid overfitting, BTNN
is trained using a Bayesian objective that combines the
standard cross-entropy loss with a regularization term
based on the Kullback-Leibler (KL) divergence between
the approximate where ¢(6) denotes the posterior
distribution and p(6) represents the prior distribution over
the model parameters 6.

L=—YIL, y;log®) +1-KL(q(®)[p(8)) (11)
where A is the regularization coefficient, and 0
encompasses all TT-cores and biases in the model.

The posterior distribution over parameters is estimated as:

a® «xexp(-12®)  (12)

Where T is a temperature scaling factor that controls the
sharpness of the posterior distribution.

By integrating tensor-train decomposition and Bayesian
inference, the BTNN provides an expressive yet
computationally efficient approach for environmental
sound classification. It serves as a powerful meta-learner
that consolidates predictions from the base learners in the
stacked ensemble architecture.

Algorithm 2 presents the BTNN-based classification
process, where a stacked ensemble integrates traditional
ML and DL models to enhance recognition accuracy by
capturing diverse patterns in environmental sound data.

Algorithm 2: Automatic environmental sound recognition using BTNN classifier

Input : Number of features, training samples and testing samples

Output : Environmental sound classification

1. Initialize the population and fitness value

2. Define the set of matrix products of the C-path tensor M:
M(h,h,,...h.) =3, h,)J,(C 0y, d.Coh)

3. While do

4, c c
Compute magnitudes of each layer A= H AG :HGK

K=1 K=1
5. Compute TT-matrix factoring of matrix Z

Z(14,(2)Vi(9),-..r 14 (2),V,(9)) = ﬁJK (5 41 (), Vi (9)2)
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6 Compute L-layer tensor neural network as q =~ J(p |{Z(L)}'L:1)
7. Update the fitness value
8. B
Define Bayesian model X(C [{J K}Ll): HX(Qh, i(py 1134, 9.1D)
h=1
7. Compute absolute distribution for threshold set function
X(C|8)x(@
x(01c)=XELXO) . yc1o)x0) = x(C.0)
x(C)
8. End if
9. Update the final value
10. End

6 Results and discussion

This section presents and interprets the performance of the
proposed environmental sound classification (ESC)
system. We evaluate the model using three benchmark
datasets—ESC-10, ESC-50, and UrbanSound8K—
reporting standard metrics such as accuracy, precision,
recall, and Fl-score. Performance is analyzed using
confusion matrices, per-class evaluation metrics, and
ensemble configuration comparisons [38][39]. All
experiments were conducted using Python 3.7, with
TensorFlow 2.x and supporting scientific libraries. The
Python version was selected due to compatibility
requirements with pre-trained modules and BRSS
optimization code.

6.1 ESC-10 performance

Figure 3 shows Confusion matrix for ESC-10
classification using the proposed SVM+BTNN ensemble
model with fused spectrum features. As shown in Figure 2,
the model achieves high per-class accuracy, particularly on
classes such as 'rain' and 'clock tick'. Minor confusions
occur between acoustically similar classes like 'dog' and
'rooster’.

E5C-10

chainsaw Sk
rooster
crackling_fire{ *
dog

raing °

True class

sea_waves{ "
helicopter
helicopter
clock_tick{ °

crying_baby { *

sneezing

Predicted class

— * Figure 3:
Confusion Matrix for ESC-10 dataset

6.2 ESC-50 performance

As shown in Figure 4, the proposed model performs
reliably across diverse ESC-50 categories, with most
classes achieving over 85% per-class accuracy.
Misclassifications are concentrated among sound types
with overlapping frequency textures, such as 'wind' and
'rain' or 'airplane' and 'thunderstorm', which suggests
potential areas for future refinement.
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crickets
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& L @ & & &
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& A o7 a8 * PO
\,(9 & <® &

Predicted class

Figure 4: Confusion matrix for ESC-50 Dataset
6.3 UrbanSound8K performance

Figure 5. Confusion matrix of the UrbanSound8K
classification task using the proposed SVM+BTNN model
with fused features. The system achieves high accuracy on
most urban sound classes, while exhibiting
misclassifications primarily between structurally similar
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Figure 5: Confusion matrix for UrbanSound8K Dataset

6.4 Feature type comparison

Figure 6 shows that fused features obtained via BRSS

significantly outperform individual spectral
representations. The fused features achieve 98.98%
accuracy, highlighting the benefit of combining

complementary information from multiple spectrogram
types.

Accuracy Across Spectral Feature Types

Accuracy (%26)

9r

1 1

98.98%

L

LM

13M

Me Fu;ed

Feature Type

Figure 6: Accuracy across spectral feature types
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6.5 Ensemble model comparison

Figure 8 compares the performance of three ensemble
configurations. Among them, RF+BTNN achieves the

D. Lakshami et al.

highest accuracy (97.45%),
generalization and robustness

demonstrating  strong

Ensemble Model Accuracy Comparison

98.
98.
97.
97.
96.
96.

95.63%

Accuracy (%)

95.
o4,
94.

owowowwowow
T

LR+BTNN

DT+BTNN

97.45%

RF+BTNN

Figure 8: Ensemble model accuracy comparison

6.6 Comparative evaluation with existing models

Method Accuracy (%)  Precision (%) Recall (%) F1-Score (%)
CNN 46.05 45.76 45.11 45.43
Dilated CNN 52.02 51.73 51.08 51.40
EnvNet 57.99 57.70 57.04 57.37
CRNN 63.95 63.66 63.01 63.33
Dual ResNet 69.92 69.63 68.98 69.30
LR 75.24 74.95 74.30 74.63
DT 80.57 80.28 79.63 79.95
RF 85.89 85.61 84.95 85.28
SVM 91.22 90.93 90.28 90.60
LR + BTNN 96.55 96.26 95.61 95.93
DT + BTNN 96.87 96.58 95.93 96.26
RF + BTNN 97.20 96.91 96.26 96.58
SVM + BTNN  97.53 97.24 96.58 96.91

Table 2: Comparative analysis of existing and proposed methods using LM spectrum features

To further evaluate the superiority of our proposed
ensemble framework, we conducted a detailed comparison
using LM (Log-Mel) spectrum features, as shown in Table
2. The results highlight the performance of baseline deep
learning models (CNN, CRNN, Dual ResNet),
conventional machine learning classifiers (LR, DT, RF,
SVM), and our proposed two-level stacked ensembles (ML
+ BTNN) [40][41]. Notably, the SVM+BTNN
configuration outperforms all other models, achieving the
highest accuracy of 97.53%, precision of 97.24%, recall of
96.58%, and F1-score of 96.91%. These results confirm
that the integration of BTNN as a meta-classifier

significantly boosts classification performance, especially
when paired with robust feature fusion.

6.7. Per-class performance analysis

Figure 9 presents the per-class F1-scores for RF+BTNN.
Most values exceed 0.98, with minimal variance between
classes, indicating consistency
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Figure 9: Per-Class F1-Score — RF+BTNN

Figure 8 provide additional insights into class-wise
precision and recall, confirming that RF+BTNN maintains
high performance across diverse acoustic environments.

Per-Class Precision and Recall - RF+BTNN
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Figure 10: Per-Class Precision and Recall Bar chart for
RF+BTNN

6.8. Summary Metrics

Table 3 summarizes the overall classification performance
of the best-performing model (RF+BTNN) across the
combined dataset.
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Table 3: Overall evaluation metrics (combined datasets)

Metric Score
Accuracy 93.30%
Precision 93.66%

Recall 94.55%
F1-Score 93.69%

6.9. Discussion

The proposed model demonstrates high accuracy and
generalization across curated and real-world datasets. The
BRSS-based fusion method enhances feature richness,
while the RF+BTNN ensemble captures both linear and
non-linear decision boundaries. The confusion matrices
reveal most misclassifications occur in acoustically similar
classes, suggesting room for improvement using temporal
or attention-based modeling in future work. The per-class
performance highlights the robustness of the system across
minority and majority classes. The model maintains stable
precision and recall even under class imbalance, validating
its suitability for real-world deployment.

In terms of computational performance, the model
processes samples with an average inference time of 8.3
ms, enabled by a compact BTNN with approximately 2.1
million parameters. This supports real-time ESC
applications on resource-constrained devices. In
conclusion, the proposed framework delivers robust and
efficient environmental sound classification using stacked
ensemble learning and optimal feature fusion. It
outperforms baseline and traditional approaches,
demonstrating clear applicability in domains like smart
surveillance, wildlife monitoring, and ambient scene
understanding.
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7 Conclusion

This work presents a novel and efficient framework for
automatic environmental sound classification that
integrates BRSS-based optimal feature fusion with a
stacked ensemble learning strategy. The system leverages
DenseNet-161 to extract deep audio representations,
which are then optimally combined using the Boosted
Reptile Squirrel Search algorithm to reduce overfitting and
improve generalization. Final classification is achieved
through a two-level ensemble model comprising
traditional classifiers (LR, DT, RF, SVM) and a Bayesian
Tensorized Neural Network (BTNN) as a meta-learner.
Experimental evaluations were conducted using ESC-10,
ESC-50, and UrbanSound8K datasets. Our approach
consistently outperformed baseline models across all
datasets and feature types. Notably, the fused spectral
features achieved the highest accuracy of 98.98%,
confirming the advantage of multimodal fusion. Among
ensemble configurations, RF+BTNN delivered the best
results, demonstrating its ability to generalize across
diverse sound classes. Compared to existing models such
as Dual ResNet, the proposed system showed marked
improvements in accuracy ranging from approximately
26% to 47% across different features. These gains
emphasize the strength of combining lightweight deep
feature extraction with optimization-driven fusion and a
robust stacked ensemble. Overall, this work provides a
scalable, accurate, and computationally efficient solution
for environmental sound recognition and offers promising
potential for deployment in edge devices, smart city
infrastructure, and acoustic monitoring applications.
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