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Roads with many cracks are dangerous, hard to inspect manually and required extensive repairs if left 

unaddressed. Automating crack detection can save time and money, but it's difficult due to poor image 

quality. To address this, we present a powerful and novel Fuzzy C-Means clustering method for 

automating fracture identification. This approach utilizes a 3×3 window that encompasses the whole 

picture and then categorized the pixels into edge or non-edge pixels using a second order difference 

equation prior to segmentation. Moreover, it allows for edge pixel augmentation within every window, 

which effectively highlights the details of fractures. This enhancement employs an augmented scaling 

factor derived from pixel contribution ratio alongside Michelson contrast to improve the edge and crack 

detection accuracy.  Furthermore, the intensity difference is incorporated to addressing the ambiguity 

that arises in cluster assignments when Euclidean distances are identical during segmentation, leading 

to more precise and reliable fracture identification.  Additionally, the proposed novel algorithm 

demonstrates effective crack detection on unfamiliar photographs across various scenarios, without the 

reliance on a training dataset. The empirical findings indicate that the proposed Fuzzy C-Means 

Clustering algorithm (called as CLAFCMC) achieves superior performance in term of Partition Entropy, 

Davies-Bouldin Index, and Partition Index values compared to the existed methods such as K-Means 

Clustering, Fuzzy C-Means Clustering, and Manhattan distance-based Fuzzy C-Means Clustering for 

road crack detection. Furthermore, the algorithm optimizes computational efficiency, significantly 

reducing execution time. These results validate the algorithm's reliability and effectiveness, positioning 

it as a highly promising solution for automated road crack detection systems. 

Povzetek: Obravnava izboljšano metodo zaznavanja razpok na cestnih površinah, ki temelji na 

kategorizaciji slikovnih točk in razširjanju podatkov z linearnimi relacijami v okviru robustnega fuzzy C-

means gručenja. Predlagani pristop izboljša zaznavo razpok v zahtevnih pogojih. 

 

 

1 Introduction 

Road cracks reduce functionality and are often caused by 

aging infrastructure, rough terrain, and heavy traffic. 

Consequently, prompt detection is essential to minimize 

maintenance expenses and ensure safe driving conditions. 

So, it is crucial to get precise data on road cracks, which 

can be done manually or automatically [1]. Manual 

detection methods are laborious and error-prone, whereas 

automated systems yield faster and more accurate results 

[2][3][4], though picture noise may compromise their 

accuracy. Significant work is underway to improve 

strategies for automated detection algorithms, aiming to 

enhance their performance in identifying road cracks from 

photos. The method for detecting cracks in the road image 

(mention in Figure 1) using a self-collected dataset is 

based on taking pictures of the areas of the road where 

cracks are anticipated using a camera or a similar device 

[2]. The captured photos should be pre-processed to get 

rid of extraneous factors that degrade quality. This stage 

involves converting the photos to grayscale, making 

subsequent processing faster and more efficient. After 

pre-processing, the images are segmented to extract 

specific features.  Various methods can differentiate 

regions with similar pixel characteristics. But clustering, 

in particular, has proven to be the most effective technique 

for isolating similar pixels in raw pictures that highlight 

particular characteristics. 

In order to aid in the recognition of road fracture patterns 

from photographs, the existing clustering approaches such 

as K-means clustering (KMC) strategy [5][6], the Fuzzy 

C-Means clustering (FCMC) approach [7][4], Manhattan 

Distance based Fuzzy C-Means clustering (MHFCM) 

algorithm [8] are adopted. Further details regarding these 

are supplied in Section II. Thus, the primary objective of 

the proposed strategy is to create an innovative and 

exceptionally effective novel FCM clustering (called as 

CLAFCMC) approach for fracture autonomous 
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identification by utilising the knowledge gained from 

above mentioned existing clustering approaches. Hence, 

this approach achieves the fracture effectively and also 

making it feasible to recognise fissures despite low-

contrast photographs. To evaluate the proposed algorithm, 

the variety of road fracture pictures from a personally 

compiled dataset were utilized. The following are the 

proposed method's key steps: 

1) The two-dimensional road images were processed 

using 3×3 window (𝑊̂𝑑𝑜𝑤
(3×3)

), it covers the complete 

photo. 

2) The image data were sorted into edge pixels 

(Ẽ𝒫𝑥
𝑒 ) and non-edge pixels (Ẽ𝒫𝑥

𝑛 ) by employing 

Laplacian-based second-order pixel differentials 

(𝑆𝑒
𝑜𝑑) under image pixel Categorization (𝐼𝒫𝑖𝑥

𝐶𝑛 ).  

3) The augmentation of the image’s edge pixels (𝐴𝒫𝑥
𝑒 )  

has been performed on each 𝑊̂𝑑𝑜𝑤
(3×3)

 to enhance each 

Ẽ𝒫𝑥
𝑒 .   

4) Additionally, the intensity difference between 

maximum and minimum pixels (imax.,min.
d (g)) 

represents the more precise and reliable fracture 

identification in an image.   

5) The experimental findings reveal that the CLAFCMC 

segmentation technique proposed here excels beyond 

its counterparts—KMC, FCMC, and MHFCM—in 

accurately identifying a range of road surface 

anomalies such as alligator, transverse, and 

longitudinal fractures, along with potholes, within 

road imagery. 

 

 

Figure 1: Road cracks detection layout leveraging 

processing of images 

The remaining of paper is structured accordingly: 

Section II explores a discussion on the KMC and FCMC 

algorithms, along with their various adaptations. Section 

III offers comprehensive insights and elucidates the 

suggested algorithm. Section IV provides the 

experimental data and discussion, whereas Section V 

summarizes or conclude our findings and suggests 

directions for further research.  

2 Depiction of fuzzy C-Means 

clustering algorithms 

A concise overview of both traditional & advanced 

FCMC algorithm, along with the related latest approaches 

for road cracks recognitions, are presented in this Section. 

2.1 Traditional fuzzy C-Means clustering  

The renowned FCMC algorithm, which uses an 

iterative unsupervised learning process [9], was extended 

by Bezdek et al. [7][4] for photo segmentation. By 

distributing each data point with a membership degree 

among several clusters, FCMC works incredibly well in 

noise-free conditions. The final cluster values are 

impacted with respect to the closeness to centroids and 

the strength of membership, maintaining a normalized 

distribution of memberships [9][10]. The core operations 

of the traditional FCMC approach are outlined as follows 

[11][12][13]: 

1. The FCMC's Objective function is defined as 

follows [8]: 

      𝐹𝑜(𝜉, 𝐾) = ∑ ∑ 𝜉ℎ𝑎
𝑣 ‖𝑇ℎ − 𝐾𝑎‖2𝑠

ℎ=1
𝑞
𝑎=1                  (1) 

     Where 𝑇ℎ is finite datapoints, 𝐾𝑎 is cluster centers, 𝑠 

& 𝑞 is total pixels & clusters, v is fuzzification 

parameter & typically, values in the range [1.5-2.5] 

yield optimal results for image segmentation. 

2. At its onset, the membership matrix (𝜉ℎ𝑎) is 

subjected to random initialization through: 

∑ 𝜉ℎ𝑎 = 1
𝑞
𝑎=1 ; where 𝛏 = [𝜉ℎ𝑎]𝑞×𝑠 with 0 ≤ 𝜉 ≤ 1.  

 

3. Apply the subsequent equation to determine  𝐾𝑎 

      𝐾𝑎 =
∑ 𝜉ℎ𝑎

𝑣 ∗𝑇ℎ
𝑠
ℎ=1

∑ 𝜉ℎ𝑎
𝑣𝑠

ℎ=1
 ;  

 a=1,23,…q  and 𝑣> 1            (2) 

4. Upgrade 𝜉ℎ𝑎: compute the updated 𝜉ℎ𝑔 using: 

   𝜉ℎ𝑎 =
[

1

𝐷ℎ 𝑎
]

1
𝑣−1

∑ [
1

𝐷ℎ𝑐
]

1
𝑣−1𝑞

𝑐=1

            (3) 

  Where 𝐷ℎ𝑎  (= ‖𝑇ℎ − 𝐾𝑎‖) is Euclidean distance  

5. The iterative procedure concludes when the 

‖𝛏(𝐿+1) − 𝛏(𝐿)‖ falls below the positive threshold, 

designated as 𝛿. In this context, L signifies the 

iteration index. Or either return to stage number 3 

and continue the process till fixed number of 

centroids achieved. 

FCMC approach work well in segmenting noise-free 

images but face challenges with images containing noise 

and artifacts. This is mainly due to their inability to 

account for neighboring pixel interactions, making 

computational time management less efficient [9][14]. 

2.2 Advanced Fuzzy C-Means clustering  

Road crack detection by hand is time-consuming and 

prone to errors, which emphasises the requirement of an 

approach that can reliably identify fractures from new 

photographs under a variety of environmental conditions. 

The FCMC is gaining recognition as an effective 

unsupervised clustering technique for image 
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segmentation and has been successfully used to detect 

fractures, but its application to automated road crack 

detection is limited.  Consequently, the advanced FCMC 

algorithms employed in road crack detection are given 

below: 

 Noh et al. [15] showcased an approach for 

identifying rifts in concrete images, employing FCMC & 

various noise mitigation strategies for segmentation. 

Nonetheless, success rate of crack reorganization 

significantly declines in clusters with significant noise 

that contain fractures. Bhard et al. [3] present an 

algorithm for automatic fracture detection, incorporating 

optimal enhanced edge pixels and fuzzy factors. By 

analyzing the intensities of both edge & non-edge pixels, 

the technique accurately detects edges in low-contrast 

pictures without necessity of training datasets or 

complicated parameter tuning. Consequently, this leads 

to enhances fracture detection and outperforms existing 

techniques.  

To lessen noise from the background and improve 

image smoothness, Oumaa et al. [17] use a multi-scale 

wavelet transform filtering technique. Later, they apply a 

better method of pothole detection and classification by 

using morphological refinement and unsupervised FCM 

clustering. Their strategy also demonstrates accuracy in 

estimating the shapes and sizes of potholes. In order to 

integrate Manhattan distance (𝑀𝑑𝑖𝑠)  and histogram 

equalization (ℎ𝑒𝑎𝑧)  inside the FCMC framework, 

Bhardwaj et al. [8] utilize the MHFCM approach. The 

integration of 𝑀𝑑𝑖𝑠 enhances accuracy by measuring 

dissimilarity between the dataset and cluster centroids, 

thereby improving cluster distinction. Furthermore, total 

picture contrast is improved by ℎ𝑒𝑎𝑧 . Therefore, the 

MHFCM method proves effective in identifying distinct 

kind of road cracks in photo. The mathematical illustration 

of the 𝑀𝑑𝑖𝑠 & ℎ𝑒𝑎𝑧  is given below: 

(𝑀𝑑𝑖𝑠)ℎ𝑎  = |𝑇ℎ − 𝐾𝑎|                                                   (4) 

Whereas a =1,2, 3,….., q and h = 1,2,3,....., s       

ℎ𝑒𝑎𝑧(𝑜) = 𝑃(𝑥𝑜) =
𝑇𝑜

𝑠
  ; 0 ≤ o ≥ a-1                             (5) 

Whereas a & s represent the total number of gray 

levels & pixels, respectively, 𝑇𝑜 denotes the total count of 

pixels corresponding to identical intensity level o. 

Although the MHFCM is effective in fracture detection 

but it has a number of drawbacks. The ℎ𝑒𝑎𝑧 process affects 

the entire image by enhancing overall contrast, but it may 

sacrifice the local details near boundaries and edges. 

Furthermore, for best results, both ℎ𝑒𝑎𝑧  and FCMC require 

proper parameterization, which introduces processing 

difficulties into the MHFCM architecture. Combining 

these methods can further increase complexity and lead to 

longer processing times, particularly for large-scale 

images. 

2.3 Literature survey   

Innovating approaches for the quick identification of 

road cracks are shown by Cubero et al. [16], who also 

show how to use these techniques to extract key 

characteristics required for the cracks' identification. In 

the end, a decision tree heuristic approach is used to 

classify an image. According to Bhard et al. [6], KMC 

requires a preset amount of clusters, which can be difficult 

to accomplish when working with complex or high-

dimensional data. Shi et al.'s automated system [18] 

lowers noise while diagnosing road rifts by understanding 

the fundamental structural properties of cracks. Wang et 

al. [19] claim that pavement picture virtue is essential for 

fracture identification. However, shadows and shadow-

like noises are often present in these images. These can 

come from telegraph poles, buildings, trees, lights, lamps, 

and other items. To get over this problem and extract 

pavement fractures from a shaded photograph, an image 

processing technique is proposed.  

The author et al. [20] introduce an innovative crack 

detection method for road maintenance, overcoming the 

limitations of current techniques. The approach, built upon 

Faster-RCNN, incorporates an optimized feature 

extraction network, leading to better accuracy and 

generalization across diverse conditions. Real-world 

testing demonstrates its potential to replace time-

consuming traditional methods, offering a practical and 

efficient solution for road crack detection. 

A novel method for identifying pavement cracks 

is presented by Xiaoran et al. [21], which use a deep 

convolutional neural network fusion model. It integrates 

the benefits of both the U-Net model and the SSD 

convolutional neural network. To increase identification 

confidence, the model is first applied to categorize and 

identify cracks. The pavement cracks are then precisely 

defined using a fracture segmentation network. The 

precession of classifying and segmenting pavement 

fractures has significantly improved due to advancements 

in feature extraction structure and model hyper parameter 

optimization. Ultimately, the segmentation findings are 

used to determine the length, breadth (for linear fractures), 

and area (for alligator rifts). Firstly, to enhance the 

suppression of noise and edge feature extraction, the 

authors Jie et al. [22] integrate the bilateral filter and the 

four-way Sobel operator into the Canny method. 

Following non-maximum repression, gradient 

information is adaptively used to establish a dynamic 

threshold. Following morphological analysis of the 

detection map and region-wise grading, the bilateral filter 

variables are adjusted according to the results of 

recognition. The convolutional feature extraction module 

is subsequently utilized to create the Canny Road crack 

detection map. It first fuses the lower feature layer of the 

DeepLab V3+ detection network together its higher 

feature layer. The final map is produced using 

convolutional feature extraction.  

This paper presents the novel pixel-level 

semantic segmentation network, known as Crack W-Net, 

as introduced by Chengjia et al. [23]. Convolutional 

neural networks with a skip-level round-trip sampling 

block structure are employed to develop it. A method for 

identifying road fractures based on deep learning 

principles is described by Li et al. [24]. It suggests a novel 

activation function called MeLU, an innovative 

differentiable computing method, and an original 
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architecture called DDLCN (Deep Dictionary Learning 

and Encoding Network). The standard Mask-RCNN 

algorithm, which was enhanced by specific 

enhancements, serves as the foundation for this technique. 

Evaluation juxtapositions demonstrate significant 

benefits in terms of F1-score, recall, and accuracy. 

By combining an attention mechanism with 

multiscale dilated convolutions to improve extraction of 

features, Weidong et al. [25] present an efficient fracture 

detecting network. To achieve precise identification, a 

module for up sampling integrates layer attributes. 

Severity of fractures is determined by assessing the width 

and fork division, and they can be categorized as 

transversal, longitudinal, block, or alligator forms. The 

authors of the work, Jong et al. [26], successfully handle 

the challenge of gathering datasets by employing a data 

augmentation technique focused on learning about 

fracture thickness and detection. This is a money- and 

time-efficient process. Moreover, a method of adaptively 

processing fracture data is introduced to improve 

efficiency. The method entails building a quad tree 

depending on the occurrence of cracks. The crack 

detection technology is tested in a variety of scenarios in 

order to confirm the degree of precision gain. According 

to IoU (Intersection over Union), the outcomes 

demonstrate superior precision in every scenario. The 

false detection rate is about 25% when the system operates 

in the absence of extra crack data. But with the 

augmentation mechanism in place, the rate of false 

positives is significantly reduced. The authors et al. [30] 

propose a hybrid crack detection method combining noise-

tolerance and edge precision, outperforming CrackIT and 

deep learning methods (HED, RCF, FPHB) on standard 

datasets while reducing discretization errors.  

The author et al. [31] proposes leveraging 

explainable AI (XAI) to generate segmentation masks 

with weak supervision, reducing labeling efforts. While 

less precise than supervised methods, the approach 

effectively supports crack severity and growth monitoring. 

The author et al. [32] use Fast Point Feature Histograms 

(FPFH) and a specially designed 3D PatchCore algorithm 

to suggest a way to use point clouds and geometric 

distortions to find cracks in masonry arch bridges. 

Experiments on artificial point clouds created using 3D 

FEM demonstrate that the approach is reliable contrary 

noise, damage, & surface roughness while detecting both 

internal and external cracks. However, it still has 

difficulties in identifying small curvature and in-plane 

distortions.  

Therefore, to address the shortcomings of current 

methods, an effective technique for pixel classification 

and pixel enhancement is essential, utilizing a 3×3 

window. The classification approach distinguishes edge 

and non-edge pixels. Then after, a scaling factor is applied 

to enhance edge pixels before segmentation, improving 

pixel detail and contrast. Incorporating all in the 

segmentation process strengthens extracting features, 

suppresses noise, optimizes clustering, & sharpens 

borderline accuracy. These innovative capabilities are 

integrated into the suggested approach, as explained in 

Section 3. 

3 Proposed method  

In this Section, we describe an innovative and beneficial 

approach to diagnosing road fractures. We have 

introduced a proficient or novel method for recognizing 

fractures, leveraging Fuzzy C-Means Clustering, known 

as the CLAFCMC methodology, specifically designed for 

detecting road cracks. This novel approach incorporates 

the image pixel Categorization (𝐼𝒫𝑖𝑥
𝐶𝑛 ) and augmentation of 

the image’s edge pixels (𝐴𝒫𝑥
𝑒 ). The aim of this strategy is 

to tackle the shortcomings and problems associated with 

the techniques discussed in Section II. Consequently, this 

technique utilizes a 3 × 3 window (𝑊̂𝑑𝑜𝑤
(3×3)

) (as depicted 

in Fig. 2) that spans the entire image 𝐾 × 𝑙  to implement 

the 𝐼𝒫𝑖𝑥
𝐶𝑛 . The 𝐴𝒫𝑥

𝑒  is essential for highlighting more 

intricate details and improving feature discernment while 

preparing picture data for assessment. Therefore, prior to 

segmentation, pixels undergo the enhancement using 

augmented scaling factor with in 𝑊̂𝑑𝑜𝑤
(3×3)

 for reliable 

fracture detection. Additionally, the intensity difference 

between maximum and minimum pixels (𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.
𝑑 (𝑔)) 

utilized in segmentation, ensuring precise and reliable 

fracture detection. Consequently, this proposed algorithm 

intensifies the contrast between discrete areas or objects in 

photo, improving clustering as well as boundary definition 

& culminating in better results. The details of 𝐼𝒫𝑖𝑥
𝐶𝑛  and 𝐴𝒫𝑥

𝑒  

for CLAFCMC approach is elaborated upon below:   

3.1 Image pixel categorization in 𝟑 × 𝟑 

window  

The 𝐼𝒫𝑖𝑥
𝐶𝑛 , categorises the image pixels inside a 𝑊̂𝑑𝑜𝑤

(3×3)
 

using a 𝑆𝑒
𝑜𝑑, shown in Fig. 2. This categorization 

efficiently distinguishes into edge pixels (Ẽ𝒫𝑥
𝑒 ) & non-

edge pixels (Ẽ𝒫𝑥
𝑛 ) before the segmentation procedure.  

 

Figure 2:  𝑆𝑒
𝑜𝑑 of the central pixel in 𝑊̂𝑑𝑜𝑤

(3×3)
 purlieus in 

four directions 
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Thus, the mathematical expression corresponding to 

the 𝑊̂𝑑𝑜𝑤
(3×3)

 tactic can be articulated as follows [27]:   

𝑊̂𝑑𝑜𝑤
(3×3)

= [Ôὃ+ἳ,ŏ+ῖ]                                                             (6) 

𝑓𝑜𝑟 ἳ = 𝑡 𝑡𝑜 𝑡 + 2  𝑎𝑛𝑑  ῖ =  𝑞 𝑡𝑜 𝑞 + 2   

𝑓𝑜𝑟 𝑡 = −1,0,1,2, . . , 𝑘 − 2   and 𝑞 = −1,0,1,2, . . . , 𝑙 − 2  

  
Figure 3:  The flowchart of image pixel categorization in 3 × 3 window 

 

 

Whereas Ôὃ+ἳ,ŏ+ῖ signifies the individual pixels 

within 𝑊̂𝑑𝑜𝑤
(3×3)

,  ἳ and ῖ indicate the row and column in the 

same window, ὃ & ŏ determine the outset indices or 

offsets (i.e., ὃ, ŏ is equal to one and so on) and 𝑘 , 𝑙 is total 

count of rows and columns of photograph. Specifically, 

the rows down from ὃ represented by ἳ, while the columns 

to the right of ŏ are represented by ῖ. Implemented 

together, ὃ & ŏ, ἳ & ῖ pinpoint an element's exact location 

inside the frame (𝑊̂𝑑𝑜𝑤
(3×3)

). The middle pixel of 𝑊̂𝑑𝑜𝑤
(3×3)

 is 

utilised to compute 𝑆𝑒
𝑜𝑑 [27] in four aloof directions 

(lateral, longitudinal, oblique, and contrary oblique), as 

specified in Eq. (7). 

𝑆𝑒
𝑜𝑑 = |Ôὃ+ἳ,   ŏ+ῖ + Ôὃ−ἳ,   ŏ−ῖ − 2 Ôὃ,ŏ|                         (7) 

Where the values supplied for (e, ἳ, ῖ ) parameter set is [(1, 

0, 1), (2, 1, 0), (3, -1, 1), and (4, 1, 1)], represents the four 

flanks. In order to differentiate between the two-pixel 

classes as outlined in flowchart in Figure 3, it is necessary 

to analyses the 𝑆𝑒
𝑜𝑑  in all four directions relative to each 

examined pixel. Therefore, this 𝑆𝑒
𝑜𝑑 is able to evaluate the 

entire pixels of photo. 

3.2 Augmentation of the image’s edge pixels 

utilizing  𝟑 × 𝟑 window  

The augmentation of the image’s edge pixels (A𝒫x
e ) is 

employed to diligently refine each edge pixel (Ẽ𝒫x
e ) in 

Ŵdow
(3×3)

of 𝑘 × 𝑙 image after 𝐼𝒫𝑖𝑥
𝐶𝑛  to obtain higher-quality 

edge regions. Therefore, it is imperative to pay great 

attention to determining the augmented scaling factor 

(𝐴̃𝑆𝐹
𝑢𝑚) is crucial for effective enhancement of the original 

Ẽ𝒫x
e  value. This 𝐴̃𝑆𝐹

𝑢𝑚 can be computed using an equation 

that resembled with (or based-on) linear equation called as 
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linear relationship based equation. Hence, anomalies may 

arise in the image, if ÃSF
um for Ẽ𝒫x

e  is set too high, causing 

exaggerated edges, resulting in an unnatural appearance. 

Conversely, very tiny values may result in a loss of clarity 

and sharpness, which may dull or washes out the image. 

Consequently, using the best approach is necessary to 

preserve edge quality. Thus, the following is the 

mathematical expression for augmented edge pixels (Õe), 

which is obtained by examining both the [Ôe] and 𝐴̃𝑆𝐹
𝑢𝑚: 

[Õe] = [ 𝐴̃𝑆𝐹
𝑢𝑚]

e
× [Ôe];      for e = 1,2,3, … , ǎ               (8)          

    Whereas ǎ is the entire number of edge pixels in Ŵdow
(3×3)

 

and Ôe is the unique edge pixel value in Ŵdow
(3×3)

 found after 

𝐼𝒫𝑖𝑥
𝐶𝑛 . The 𝐴̃𝑆𝐹

𝑢𝑚 in a Ŵdow
(3×3)

 is attained by employing the 

edge pixel contribution ratio (C̆e
pxr

) and constant ratio 

(ʗ̇onst), as articulated by the following mathematical 

expression: 

[ ÃSF
um]

e
 = 1 + C̆e

pxr
× ʗ̇onst                                                        (9) 

Whereas the  C̆e
pxr

(= Ôe ∑ Ô𝓋
a
𝓋=1⁄ ) is the ratio of 

each individual Ẽ𝒫x
e  to total Ẽ𝒫x

e  with in  Ŵdow
(3×3)

 and the 

ʗ̇onst is the ratio of the difference among the maximum & 

minimum of the Ẽ𝒫x
e  value to their sum (based on 

Michelson contrast). Hence the C̆e
pxr

, ʗ̇onst allows to 

acquiring the local information in term of weight of nearby 

individual Ẽ𝒫x
e  within the Ŵdow

(3×3)
. The Eq. (9) furnishes 

the ÃSF
um, which, when applied, enables the augmentation 

of the edge pixel. Therefore, this processed image is then 

input into the segmentation process (mentioned in sub-

section 3.3) for precise crack detection, ensuring accuracy 

despite noise and lighting variations. The algorithm 1 

carries out this augmentation process. 

--------------------------------------------------------------------- 

 Algorithm 1: Augmentation of the edge pixels  

--------------------------------------------------------------------- 

1. Input: 𝑘 × 𝑙 size photo, Ô𝑒 after 𝐼𝒫𝑖𝑥
𝐶𝑛  

2. Initialization Parameters: 

• Window size: 3 × 3    

• The representation of the row and column: ἳ and 

 ῖ. 

3.   Procedure:             

• Iteration begins                                                                          

a. Apply 𝑊̂𝑑𝑜𝑤
(3×3)

         %% Using the Eq. (6)       

b. Outer Loop (𝑒 = 1: ǎ): Iterate until the last 

Ẽ𝒫𝑥
𝑒  in 𝑊̂𝑑𝑜𝑤

(3×3)
 is reached.      

c. Inner Loop (𝓋 = 1: 𝑎): Iterate until the  

𝑊̂𝑑𝑜𝑤
(3×3)

′s Ẽ𝒫𝑥
𝑒  accumulation is achieved. 

d. Compute: 𝐶̆𝑒
𝑝𝑥𝑟

 & ʗ̇𝑜𝑛𝑠𝑡  

e. Compute the augmented edge Scaling factor: 

                  [ ÃSF
um]

e
 = 1 + C̆e

pxr
× ʗ̇onst                                                                                                       

%% Using Eq. (9)  

f. Find Augmented Pixels:  

[Õe] = [ ÃSF
um]

e
× [Ôe]   %% Using eqn. (8)          

• Iterations Stop Conditions: 

a.  Terminate inner loop: when 𝓋 reaches 𝑎 within 

𝑊̂𝑑𝑜𝑤
(3×3)

. 

b.  Terminate outer loop: when e reaches ǎ with in 

𝑊̂𝑑𝑜𝑤
(3×3)

.  

4. Proceed to the subsequent iterations: Iterate until all 

Ẽ𝒫𝑥
𝑒  of image 𝑘 × 𝑙 are augmented. 

5. Output: The outcome depicts the augmented pixels 

[Õ𝑒] for whole picture 𝑘 × 𝑙. Ahead such 

augmented pixels are employed in the segmentation 

procedure. 

-------------------------------------------------------------------- 

As outlined above, the 3×3 window is essential and 

utilized in pixel categorization and edge pixel 

augmentation. As this window moves across the image, it 

helps in differentiates edge and non-edge pixels while 

enhancing edge pixel details and crack visibility. 

Additionally, the smaller windows (2×2) lack contextual 

depth, making clustering noise-sensitive, while larger 

ones (4×4, 5×5) over-smooth the image, blurring critical 

boundaries. The 3×3 window provides the optimal 

balance, reducing noise while preserving fine details, 

ensuring precise segmentation and efficient computation. 

3.3 Exhaustive explication of the CLAFCMC 

The precise detection of road fractures is the aim of 

the sturdy and efficient CLAFCMC technology. Hence the 

objective function of CLAFCMC technique is as 

described below: 

𝒰(𝜙, 𝛶) = ∑ ∑ 𝜙ℎ𝑔
𝑝

× ‖Ô𝑔 − 𝛶ℎ‖
2

𝑟

𝑔=1

𝑐

ℎ=1

× 𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.
𝑑 (𝑔)                                 (10) 

                                                                                

where 𝑐 & r describes the number of clusters & 

number of pixels in picture,  Ô𝑔 is finite input data (under 

Ô𝑔: Õ𝑒 & Ô𝑛𝑒 exist), the cluster center is denoted by 𝛶ℎ, 

the fuzzy membership matrix is represented by 𝜙ℎ𝑔 (0 ≤

𝜙ℎ𝑔 ≤ 1) with ℎ = 1,2,3, … … … , 𝑐 and 𝑔 =

1,2,3, … … … , 𝑟, 𝑝 is fuzzification parameter (𝑝 > 1), 

controlling the degree of fuzziness in clustering. For 

optimal image segmentation, 𝑝 typically falls within the 

1.5 to 2.5 range, maintaining a balance among precision 

and computational effectiveness and the 𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.
𝑑 (𝑔) 

indicates the intensity difference among maximum and 

minimum pixels in 𝑘 × 𝑙 picture. Leveraging 

𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.
𝑑 (𝑔) aids in addressing the ambiguity that arises 

in cluster assignments when Euclidean distances are 

identical. Consequently, it leads to a more accurate and 

refined membership matrix. 

To mitigate the function 𝒰(𝜙, 𝛶) Lagrange 

multiplier method is employed. As indicated below, this 
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method establishes the updated membership degrees and 

cluster centres in CLAFCMC:   

Լ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  ∑ ∑ 𝜙ℎ𝑔
𝑝

× ‖Ô𝑔 − 𝛶ℎ‖
2

𝑟

𝑔=1

𝑐

ℎ=1

× 𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.
𝑑 (𝑔)  

+ ∑ δ (1 − ∑ 𝜙ℎ𝑔 

 𝑐

ℎ=1

)

𝑟

𝑔=1

                  (11) 

                                                                                                  

To ascertain the membership function, first apply the 

partial derivative of Լ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  with regards to 𝜙𝑔ℎ
𝑝

 and 

setting it to zero. Additionally, adopt the derivative of 

Լ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  with regards to the 𝛿 (
𝜕Լ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝜕δ
= 0). 

Therefore, the resulting membership function is given by: 

𝜙ℎ𝑔 =
[

1

𝑑ℎ𝑔
]

1
𝑝−1

∑ [
1

𝑑𝒻𝑔
]

1
𝑝−1

𝑐
𝒻=1

                                                       (12) 

Whereas 𝛿 is Lagrange multipliers. In a similar vein, 

acquiring cluster centroid involves calculating the partial 

derivative of Լ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  relative to 𝛶ℎ, represented as 
𝜕Լ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝜕𝛶ℎ
= 0. Once this is derived, the centroid is 

eventually obtained as follows: 

         

𝛶ℎ =
∑ 𝜙ℎ𝑔

𝑝
×Ô𝑔×𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.

𝑑 (𝑔) 𝑟
𝑔=1

∑ 𝜙ℎ𝑔
𝑝𝑟

𝑔=1
                                      (13) 

The subsequent details elucidate the process of the 

CLAFCMC algorithm as delineated in algorithm 2: 

--------------------------------------------------------------------- 

Algorithm 2:  CLAFCMC algorithm 

--------------------------------------------------------------------- 

1. Input: 𝑘 × 𝑙 size road photo 

2. Initialization Parameters: 

𝑐 is count of clusters, Ô𝑔 indicates augmented pixels 

of photo, r is total count of pixels of photo, 𝛶ℎ is 

cluster center, 𝑝 is fuzzification parameter, 𝜙ℎ𝑔 the 

fuzzy membership matrix 

3. Procedure: 

a. Outer Loop (h): Encore for every value in 𝑐   

b. Inner Loop (𝑔): Encore for every value in r 

c. Randomly initialization: 𝜙ℎ𝑔 = 1                                            

%%  𝝓 = [𝜙ℎ𝑔 ]𝑐×𝑟
 with 0 ≤ 𝜙ℎ𝑔 ≤ 1   

d. Terminate inner loop: when 𝑔 reaches 𝑟  

e. Terminate outer loop: when ℎ reaches 𝑐  

f. Initialize: Ƞ=0        %% Iteration index (Ƞ)  

g. Outer Loop (h): Encore for every value in 𝑐  

h. Inner Loop (𝑔): Encore for every value in 𝑟  

i. Compute 𝛶ℎ: 𝛶ℎ =
∑ 𝜙ℎ𝑔

𝑝
×Ô𝑔×𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.

𝑑 (𝑔)𝑟
𝑔=1

∑ 𝜙ℎ𝑔
𝑝𝑟

𝑔=1
  

j. Compute & update new 𝜙ℎ𝑔 : 

 𝜙ℎ𝑔 =
[

1

𝑑ℎ𝑔
]

1
𝑝−1

∑ [
1

𝑑𝒻𝑔
]

1
𝑝−1

ὓ
𝒻=1

  % 𝑑ℎ𝑔 = ‖Ô𝑔 − 𝛶ℎ‖       

k.  Terminate inner loop: when 𝑔 reaches 𝑟  

l.  Terminate outer loop: when ℎ reaches 𝑐  

m.  Until tantamount 𝛶ℎ emerges, increment Ƞ = Ƞ 

+1 or go back to step f. 

4. Output: Road cracks identification in 𝑘 × 𝑙 size 

photo      

--------------------------------------------------------------------- 

In contrast to traditional FCMC, which relies on 

Euclidean distance and often misclassifies pixels. The 

proposed method enhances road crack detection by 

efficiently detecting cracks and minimizing noise and 

outliers. This leads to an improved distinction between 

crack and non-crack regions, resulting in more precise 

segmentation. The novel CLAFCMC enhances crack 

visibility through pixel classification and edge pixels 

augmentation while integrating intensity difference to 

refine the visibility of cracks. This ensures precise crack 

detection, even under challenging conditions like uneven 

lighting and surface irregularities. 

4  Analysis and outcomes of the 

experimental  

This part examines & juxtaposition the findings of the 

CLAFCMC algorithm with several other strategies, 

including KMC, FCMC, and MHFCM, all implemented 

in MATLAB. The evaluation occurred on PC with an Intel 

Core i7 processor at 1.80 GHz, Eight GB of RAM, & 

running on 11 Microsoft Windows. The parameters 𝒄 and 

𝒑 seemed both specified as two enabling the algorithms to 

execute. It ensuring clear distinction between cracks and 

surrounding regions. This allows segmentation into two 

clusters—crack and non-crack areas—maintaining 

uniform conditions across all fuzzy algorithm variations in 

our simulations. Several types of rifts & flaws, such as 

transverse (𝑻𝒗𝒄𝒓𝒌), longitudinal (𝑳𝒏𝒄𝒓𝒌), alligator cracks 

(𝑨𝒓𝒄𝒓𝒌) & pathole (𝑷𝒂𝒉), are depicted in this simulation 

from various road pictures. The 𝑳𝒏𝒄𝒓𝒌 emerges 

longitudinally across the road due to poor joints & fatigue 

from traffic [16]. A 𝑻𝒗𝒄𝒓𝒌 emerges perpendicular to the 

road’s center line and caused by thermal contraction due 

to temperature changes.  Lackluster strength in the asphalt 

substrate is the main ingredient of 𝑨𝒓𝒄𝒓𝒌 appearance. 𝑷𝒂𝒉 

is a significant structural deterioration that occurs 

whenever precipitation seeps through the earth beneath the 

surface of the road and expands and shrinks [17].  

For road crack detection, input images are selected 

from a self-acquired dataset to ensure robustness across 

various crack types, lighting conditions, and noise levels.  

The dataset was captured using a Samsung camera with 

64-megapixel on National Highway (NH)-154 in 

Himachal Pradesh, India. The images taken during 

daylight hours under diverse environmental conditions, 

including sunny, dry, and wet surfaces. This dataset is 
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employed to assess the effectiveness of the suggested 

technique during testing.  

Despite the availability of the high-resolution 

imaging, cracks detection remains challenging due to 

several image quality limitations. The variations in camera 

perspective (angle and distance) along with motion blur 

can reduce image clarity and hinder accurate cracks 

recognition. Additionally, lighting inconsistencies such as 

glare, shadows, and low light may distort or obscure 

cracks visibility. The surface noise and environmental 

factors like contamination, dirt, dust, rain, fog introduce 

artifacts that effectively hide cracks, making them difficult 

to detect. These factors highlight that the effective crack 

detection depends not only on high image resolution but 

also on the effectiveness and ability of the detection 

algorithm. 

Therefore, the juxtaposition has been performed 

among the suggested method and previous approaches, 

namely KMC [5][6], FCMC [7][4], and MHFCM [8]. 

With self-collected datasets comprising both defiled and 

non-defiled road images, it outperforms in terms of 

Partition Entropy (𝑃𝑒𝑛𝑡)  [28][29], the Davies-Bouldin 

Index (𝐷𝐵𝐼) [28][29], the Partition Index (𝑃𝑖𝑛𝑑) [28][29], 

and overall execution time (𝐸𝑥 𝑡𝑖𝑚𝑒).  

However, like any other method, the CLAFCMC may 

have challenges in the situation of detecting extremely 

high faint cracks or when extremely low-quality images 

affected by noise, or low resolution. The empirical 

findings for the already mentioned picture disciplines are 

described in Sections 4.1 and 4.2. 

4.1 Non-Paint-Water strap on the images of 

road  

The investigation compares the metrics for KMC, 

FCMC, MHFCM, and CLAFCMC for the several visual 

representations displayed in Fig. 4. Compared to 

MHFCM, both KMC and FCMC produce poorer 

outcomes in road fracture identification (Fig. 4: (b-d)). 

Despite this, MHFCM tends to exhibit fewer disturbances 

but faces challenges in accurately detecting fractures (Fig. 

4: (d)). On the aspects of noise and reliability, the 

CLAFCMC method (Fig. 4: (e)) significantly outperforms 

the other techniques, delivering superior and more 

valuable results. Moreover, CLAFCMC excels in 

differentiating between cracked and non-cracked pixels 

with greater ease than the other methods. 

In order to quantitatively access the performance of 

various techniques for various fracture pictures, we 

employed 𝑃𝑒𝑛𝑡 , 𝐷𝐵𝐼 , 𝑃𝑖𝑛𝑑 , and 𝐸𝑥 𝑡𝑖𝑚𝑒 . Accurate 

identification and evaluation depend on more effective 

clustering, which is represented by the lower values of  

𝑃𝑒𝑛𝑡 , 𝐷𝐵𝐼  and 𝑃𝑖𝑛𝑑 . The values of 𝑃𝑒𝑛𝑡 , 𝐷𝐵𝐼, 𝑃𝑖𝑛𝑑  and  

𝐸𝑥 𝑡𝑖𝑚𝑒 represent in Table 1.  

 

 
              (a)               (b)              (c)             (d)              (e) 

 

Figure 4: Crack detection: (a) Original image, (b) KMC, 

(c) FCMC, (d) MHFCM, (e) CLAFCMC 

 

Table 1: Comparative analysis of Crack Detection 

Performance among KMC, FCMC, MHFCM & 

CLAFCMC for Non-Paint-Water- Strap Images 

 

Type 

of 
cracks 

Para-

meters 
KMC FCMC MHFCM 

 

CLAFCMC 

𝑨𝒓𝒄𝒓𝒌 

𝑃𝑒𝑛𝑡 …... 0.15 0.22 0.13 

𝐷𝐵𝐼 0.62 1.08 0.97 0.61 

𝑃𝑖𝑛𝑑 ….. 0.23 0.20 0.09 

𝐸𝑥 𝑡𝑖𝑚𝑒 4.83 12.74 17.62 10.16 

𝑳𝒏𝒄𝒓𝒌 

𝑃𝑒𝑛𝑡 ….. 0.13 0.20 0.11 

𝐷𝐵𝐼 0.54 0.90 0.94 0.50 

𝑃𝑖𝑛𝑑 ….. 0.17 0.19 0.07 

𝐸𝑥 𝑡𝑖𝑚𝑒 6.51 16.65 20.83 14.34 

𝑻𝒗𝒄𝒓𝒌 

𝑃𝑒𝑛𝑡 ….. 0.16 0.24 0.15 

𝐷𝐵𝐼 0.69 1.16 1.02 0.67 

𝑃𝑖𝑛𝑑 ….. 0.31 0.26 0.14 

𝐸𝑥 𝑡𝑖𝑚𝑒 4.42 13.59 18.43 9.71 

𝑷𝒂𝒉 

𝑃𝑒𝑛𝑡 ….. 0.14 0.21 0.12 

𝐷𝐵𝐼 0.61 1.02 0.96 0.59 

𝑃𝑖𝑛𝑑 ….. 0.22 0.21 0.11 

𝐸𝑥 𝑡𝑖𝑚𝑒 4.71 13.48 18.21 10.20 

 

Therefore, the CLAFCMC provides valuable insight on 

fracture recognition since it performs better than others 

approach in terms of 𝑃𝑒𝑛𝑡 , 𝐷𝐵𝐼 , 𝑃𝑖𝑛𝑑  and 𝐸𝑥 𝑡𝑖𝑚𝑒  for all 

types of fractures.  

 

The KMC technique has an effective 𝐷𝐵𝐼  and a shorter 

𝐸𝑥 𝑡𝑖𝑚𝑒 when compared to other approaches. Nonetheless, 

the simulation findings indicate that it performs less well 

than CLAFCMC in terms of 𝐷𝐵𝐼. Therefore, it is evident 

from the thorough data shown in Table I and Figure 4 that 

CLAFCMC performs better than others. 

 

4.2 Paint-Water strap on the images of road 

This Section discusses the several types of flaws that 

can be seen in road pictures, like paint and water. The 

results involve a comparative analysis of different 
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algorithms across various images, as shown in Fig. 5 (a). 

The data reveal that MHFCM surpasses KMC & FCMC 

approaches in certain aspects of effectiveness, as 

illustrated in Fig. 5 (b–d). When compared to CLAFCMC, 

MHFCM has a number of serious flaws, such as noise, 

paint and water traces, and blurring, as seen in Fig. 5 (d-

e). The CLAFCMC method outperforms similar 

algorithms in terms of noise reduction, execution time, 

and effectively identifying boundaries in the surrounding 

area. 

 

Table 2: Comparative analysis of crack detection 

performance among KMC, FCMC, MHFCM & 

CLAFCMC for paint-water strap images 

The current model determining the 𝑃𝑒𝑛𝑡, 𝐷𝐵𝐼 , 𝑃𝑖𝑛𝑑  and 

𝐸𝑥 𝑡𝑖𝑚𝑒 for crack analysis, has outcomes depicted in Table 

II. This Table shows that CLAFCMC outperforms all other 

variants, enabling effective identification of cracks in 

contaminated images. Although the KMC method 

executes more faster than the others, including 

CLAFCMC, but it underperforms for 𝐷𝐵𝐼  (as compare with 

CLAFCMC). Therefore, based on the comprehensive 

findings in Table II and Fig. 5, CLAFCMC clearly delivers 

superior results compared to the alternatives. 

 

 
                  (a)               (b)              (c)              (d)             (e) 
        

Figure 5: Crack detection (a) Original image, (b) KMC, 

(c) FCMC, (d) MHFCM, (e) CLAFCMC 

 

4.3 Comparative analysis: proposed 

CLAFCMC vs. deep learning 

approaches 

The proposed algorithm presents notable advantages when 

compared to deep learning methods like Convolutional 

Neural Networks (CNNs). The Proposed approach may 

operate effectively with smaller datasets and standard 

equipment’s like CPU, in contrast to CNNs which require 

large datasets and powerful hardware [33]. Unlike CNNs, 

which demand a complex and lengthy training process, the 

CLAFCMC operates without any training, leading to much 

lower computational expenses. Furthermore, CNN 

interpretability is often limited [33]. Nonetheless, it is 

noteworthy that CNNs often do exceptionally well in 

handling intricate patterns, especially when trained on a 

variety of datasets, in terms of accuracy and adaptability. 

This makes them well-suited for tasks demanding high 

precision [33][34][35]. Consequently, CLAFCMC 

becomes a viable and economical option, especially 

valuable in situations where data or resources are limited. 

 

5 Discussion 

The experimental results clearly represent the 

effectiveness of the proposed method in precisely 

extracting road cracks from various types of images. 

Notably, the deficiencies found in KMC, FCMC, and 

MHFCM highlight the superiority of the proposed 

approach. KMC's reliance on preset clusters diminishes its 

accuracy when handling intricate data. FCMC's major 

limitation is its sensitivity to image noise, stemming from 

its disregard for pixel interconnections. MHFCM 

encounters processing difficulties, particularly with larger 

images, due to the complexities involved with FCMC and 

histogram equalization.  

   To overcome these limitations, the proposed method 

integrating 𝐼𝒫𝑖𝑥
𝐶𝑛  and 𝐴𝒫𝑥

𝑒  to enhance the crack 

segmentation accuracy. Unlike standard FCM’s, it 

employs a Ŵdow
(3×3)

across the whole image (𝑘 × 𝑙) for 𝐼𝒫𝑖𝑥
𝐶𝑛 , 

ensuring superior pixel classification and noise resilience. 

Types 

of 
Cracks 

Para-
meters 

KMC FCMC MHFCM 

 

CLAFCMC 

𝑨𝒓𝒄𝒓𝒌 

𝑃𝑒𝑛𝑡 …… 0.17 0.25 0.14 

𝐷𝐵𝐼 0.65 1.34 0.97 0.62 

𝑃𝑖𝑛𝑑 …… 0.27 0.25 0.12 

𝐸𝑥 𝑡𝑖𝑚𝑒  5.02 13.27 18.23 10.12 

𝑳𝒏𝒄𝒓𝒌 

𝑃𝑒𝑛𝑡 …… 0.13 0.21 0.11 

𝐷𝐵𝐼 0.58 0.98 0.94 0.57 

𝑃𝑖𝑛𝑑 …… 0.19 0.20 0.10 

𝐸𝑥 𝑡𝑖𝑚𝑒  6.97 18.45 20.91 16.07 

𝑻𝒗𝒄𝒓𝒌 

𝑃𝑒𝑛𝑡 …… 0.12 0.18 0.09 

𝐷𝐵𝐼 0.55 0.96 0.92 0.52 

𝑃𝑖𝑛𝑑 …… 0.18 0.17 0.06 

𝐸𝑥 𝑡𝑖𝑚𝑒  5.71 25.74 20.15 18.17 

𝑷𝒂𝒉 

𝑃𝑒𝑛𝑡 …… 0.15 0.22 0.13 

𝐷𝐵𝐼 0.61 1.01 0.95 0.60 

𝑃𝑖𝑛𝑑 …… 0.23 0.21 0.08 

𝐸𝑥 𝑡𝑖𝑚𝑒  9.58 46.25 35.06 32.08 
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The 𝐴𝒫𝑥
𝑒  refines crack detection by emphasizing intricate 

details and improving feature discernment. Additionally, 

the 𝑖𝑚𝑎𝑥.,𝑚𝑖𝑛.
𝑑 (𝑔) examine to refine the ambiguity that 

arises in cluster assignments, resulting in more precise and 

reliable fracture identification. The CLAFCMC 

demonstrated exceptional performance in 𝑃𝑒𝑛𝑡, 𝐷𝐵𝐼 , 𝑃𝑖𝑛𝑑  

and 𝐸𝑥 𝑡𝑖𝑚𝑒  , yielding values of 0.11, 0.50, 0.07, and 9.71 

for non-paint-water strap images; 0.09, 0.52, 0.06, 10.12 

for paint-water strap images. These results surpass all 

other methods tested. 

A key highlight of CLAFCMC is its significantly 

reduced 𝐸𝑥 𝑡𝑖𝑚𝑒 , which is a critical aspect of this study. 

Although CLAFCMC may be slightly slower than KMC 

in terms of 𝐸𝑥 𝑡𝑖𝑚𝑒 , it surpasses all other algorithms in 

metrics like 𝑃𝑒𝑛𝑡 , 𝐷𝐵𝐼 , 𝑃𝑖𝑛𝑑 . The experimental results 

across various image types underscore the overall 

effectiveness and utility of the CLAFCMC algorithm. 

6 Conclusion and future research 

In this work, we introduce an innovative and novel 

approach based on FCMC clustering for road fracture 

identification. Despite the limited research on FCMC 

algorithm based on road crack detection, our method 

excels at identifying road cracks in images and effectively 

mitigates noise. The proposed method outperforming both 

the standard FCMC and its modifications. This is 

accomplished by applying a  𝟑 × 𝟑 window that spans the 

whole picture and classifying the pixels into edge or non-

edge pixels prior to segmentation utilising a second order 

difference equation. This technique additionally permits 

edge pixel augmentation in every window, thereby 

enhancing the details of fissures to improve identification 

accuracy. Additionally, the intensity difference addressing 

the ambiguity that arises in cluster assignments when 

Euclidean distances are identical during segmentation, 

leading to more accurate and reliable fracture 

identification. 

This leads to better performance since it improves 

clustering, precisely defines boundaries, and gets rid of 

crack blurring. In spite of images with low contrast, it 

effectively detects edges and fissures. Unlike many 

Fuzzy-C Means clustering variants, this method removes 

the need for determining crucial tuning parameters while 

consistently delivering better results, as confirmed by 

experimental findings. This algorithm reliably recognises 

fractures in novel and varied kinds of new images without 

the need of training. Extensive experimental outcomes 

illustrate efficacy of the CLAFCMC approach in terms of 

𝑷𝒆𝒏𝒕, 𝑫𝑩𝑰, 𝑷𝒊𝒏𝒅 and 𝑬𝒙 𝒕𝒊𝒎𝒆. As an outcome, CLAFCMC 

is highly effective at identifying various types of road 

cracks. This timely detection helps the concerned person 

to apply the prompt maintenance process, preventing 

cracks from becoming more severe and thus indirectly 

leading to significant cost savings by avoiding extensive 

and critical repairs. 

The upcoming project aims to outfit vehicles 

with an advanced online embedded system equipped with 

high-quality cameras. This upgrade will facilitate the 

seamless capture and aggregation of real-time video feeds. 

Furthermore, a specialized technique will be designed to 

estimate the width & depth of road cracks using real-time 

data streams. 
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