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Roads with many cracks are dangerous, hard to inspect manually and required extensive repairs if left
unaddressed. Automating crack detection can save time and money, but it's difficult due to poor image
quality. To address this, we present a powerful and novel Fuzzy C-Means clustering method for
automating fracture identification. This approach utilizes a 3x3 window that encompasses the whole
picture and then categorized the pixels into edge or non-edge pixels using a second order difference
equation prior to segmentation. Moreover, it allows for edge pixel augmentation within every window,
which effectively highlights the details of fractures. This enhancement employs an augmented scaling
factor derived from pixel contribution ratio alongside Michelson contrast to improve the edge and crack
detection accuracy. Furthermore, the intensity difference is incorporated to addressing the ambiguity
that arises in cluster assignments when Euclidean distances are identical during segmentation, leading
to more precise and reliable fracture identification. Additionally, the proposed novel algorithm
demonstrates effective crack detection on unfamiliar photographs across various scenarios, without the
reliance on a training dataset. The empirical findings indicate that the proposed Fuzzy C-Means
Clustering algorithm (called as CLAFCMC) achieves superior performance in term of Partition Entropy,
Davies-Bouldin Index, and Partition Index values compared to the existed methods such as K-Means
Clustering, Fuzzy C-Means Clustering, and Manhattan distance-based Fuzzy C-Means Clustering for
road crack detection. Furthermore, the algorithm optimizes computational efficiency, significantly
reducing execution time. These results validate the algorithm's reliability and effectiveness, positioning
it as a highly promising solution for automated road crack detection systems.

Povzetek: Obravnava izboljsano metodo zaznavanja razpok na cestnih povrSinah, ki temelji na
kategorizaciji slikovnih tock in razsirjanju podatkov z linearnimi relacijami v okviru robustnega fuzzy C-
means grucenja. Predlagani pristop izboljSa zaznavo razpok v zahtevnih pogojih.

1 Introduction

Road cracks reduce functionality and are often caused by
aging infrastructure, rough terrain, and heavy traffic.
Consequently, prompt detection is essential to minimize
maintenance expenses and ensure safe driving conditions.
So, it is crucial to get precise data on road cracks, which
can be done manually or automatically [1]. Manual
detection methods are laborious and error-prone, whereas
automated systems yield faster and more accurate results
[2][3][4], though picture noise may compromise their
accuracy. Significant work is underway to improve
strategies for automated detection algorithms, aiming to
enhance their performance in identifying road cracks from
photos. The method for detecting cracks in the road image
(mention in Figure 1) using a self-collected dataset is
based on taking pictures of the areas of the road where
cracks are anticipated using a camera or a similar device
[2]. The captured photos should be pre-processed to get

rid of extraneous factors that degrade quality. This stage
involves converting the photos to grayscale, making
subsequent processing faster and more efficient. After
pre-processing, the images are segmented to extract
specific features. Various methods can differentiate
regions with similar pixel characteristics. But clustering,
in particular, has proven to be the most effective technique
for isolating similar pixels in raw pictures that highlight
particular characteristics.

In order to aid in the recognition of road fracture patterns
from photographs, the existing clustering approaches such
as K-means clustering (KMC) strategy [5][6], the Fuzzy
C-Means clustering (FCMC) approach [7][4], Manhattan
Distance based Fuzzy C-Means clustering (MHFCM)
algorithm [8] are adopted. Further details regarding these
are supplied in Section Il. Thus, the primary objective of
the proposed strategy is to create an innovative and
exceptionally effective novel FCM clustering (called as
CLAFCMC) approach for fracture autonomous
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identification by utilising the knowledge gained from
above mentioned existing clustering approaches. Hence,
this approach achieves the fracture effectively and also
making it feasible to recognise fissures despite low-
contrast photographs. To evaluate the proposed algorithm,
the variety of road fracture pictures from a personally
compiled dataset were utilized. The following are the
proposed method's key steps:

1) The two-dimensional road images were processed
using 3x3 window (I/T/d(jf)), it covers the complete
photo.

2) The image data were sorted into edge pixels
(E%,) and non-edge pixels (E%,) by employing
Laplacian-based second-order pixel differentials
(524 under image pixel Categorization (IS%).

3) The augmentation of the image’s edge pixels (4%,)
has been performed on each Wd(j;” to enhance each
Be,.

4) Additionally, the intensity difference between
maximum and minimum  pixels  (iay min.(8))
represents the more precise and reliable fracture
identification in an image.

5) The experimental findings reveal that the CLAFCMC
segmentation technique proposed here excels beyond
its counterparts—KMC, FCMC, and MHFCM—in
accurately identifying a range of road surface
anomalies such as alligator, transverse, and
longitudinal fractures, along with potholes, within
road imagery.
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Figure 1: Road cracks detection layout leveraging
processing of images

The remaining of paper is structured accordingly:
Section Il explores a discussion on the KMC and FCMC
algorithms, along with their various adaptations. Section
Il offers comprehensive insights and elucidates the
suggested algorithm.  Section IV  provides the
experimental data and discussion, whereas Section V
summarizes or conclude our findings and suggests
directions for further research.

2 Depiction of fuzzy C-Means
clustering algorithms
A concise overview of both traditional & advanced

FCMC algorithm, along with the related latest approaches
for road cracks recognitions, are presented in this Section.
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2.1 Traditional fuzzy C-Means clustering

The renowned FCMC algorithm, which uses an
iterative unsupervised learning process [9], was extended
by Bezdek et al. [7][4] for photo segmentation. By
distributing each data point with a membership degree
among several clusters, FCMC works incredibly well in
noise-free conditions. The final cluster values are
impacted with respect to the closeness to centroids and
the strength of membership, maintaining a normalized
distribution of memberships [9][10]. The core operations
of the traditional FCMC approach are outlined as follows
[11][212][13]:

1. The FCMC's Obijective function is defined as
follows [8]:

Fo(f' K) = Z=1 Zi:l E;lja”Th - Kallz (1)

Where Ty, is finite datapoints, K, is cluster centers, s
& q is total pixels & clusters, v is fuzzification
parameter & typically, values in the range [1.5-2.5]
yield optimal results for image segmentation.

2. At its onset, the membership matrix (&,,) is
subjected to random initialization through:
d1&na =1, where & =[] gxs With 0 < € < 1.

3. Apply the subsequent equation to determine K,

s v
K. = Yh=1%na*Th .

a — S fv
h=15%ha

a=1,23,..q andv>1 2
4. Upgrade &, compute the updated &y, using:

1

[ 1 ]v—l
Dha

$ha = — ®3)

q 1 |v—-1
slme

Where Dy, (= ||ITy, — K,||) is Euclidean distance

5. The iterative procedure concludes when the
|5+ — gD|| falls below the positive threshold,
designated as §. In this context, L signifies the
iteration index. Or either return to stage number 3
and continue the process till fixed number of
centroids achieved.

FCMC approach work well in segmenting noise-free
images but face challenges with images containing noise
and artifacts. This is mainly due to their inability to
account for neighboring pixel interactions, making
computational time management less efficient [9][14].

2.2 Advanced Fuzzy C-Means clustering

Road crack detection by hand is time-consuming and
prone to errors, which emphasises the requirement of an
approach that can reliably identify fractures from new
photographs under a variety of environmental conditions.
The FCMC is gaining recognition as an effective
unsupervised  clustering  technique for  image
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segmentation and has been successfully used to detect
fractures, but its application to automated road crack
detection is limited. Consequently, the advanced FCMC
algorithms employed in road crack detection are given
below:

Noh et al. [15] showcased an approach for
identifying rifts in concrete images, employing FCMC &
various noise mitigation strategies for segmentation.
Nonetheless, success rate of crack reorganization
significantly declines in clusters with significant noise
that contain fractures. Bhard et al. [3] present an
algorithm for automatic fracture detection, incorporating
optimal enhanced edge pixels and fuzzy factors. By
analyzing the intensities of both edge & non-edge pixels,
the technique accurately detects edges in low-contrast
pictures without necessity of training datasets or
complicated parameter tuning. Consequently, this leads
to enhances fracture detection and outperforms existing
techniques.

To lessen noise from the background and improve
image smoothness, Oumaa et al. [17] use a multi-scale
wavelet transform filtering technique. Later, they apply a
better method of pothole detection and classification by
using morphological refinement and unsupervised FCM
clustering. Their strategy also demonstrates accuracy in
estimating the shapes and sizes of potholes. In order to
integrate Manhattan distance (My;;) and histogram
equalization (h.,,) inside the FCMC framework,
Bhardwaj et al. [8] utilize the MHFCM approach. The
integration of My;; enhances accuracy by measuring
dissimilarity between the dataset and cluster centroids,
thereby improving cluster distinction. Furthermore, total
picture contrast is improved by h,,,. Therefore, the
MHFCM method proves effective in identifying distinct
kind of road cracks in photo. The mathematical illustration
of the My;¢ & h,,, is given below:

(Maisdha = ITp — Kol (4)
Whereasa =1,2, 3,.....,qandh=123,....., s

heqz(0) = P(x,) =% ;0<0>a-1 (5)

Whereas a & s represent the total number of gray
levels & pixels, respectively, T, denotes the total count of
pixels corresponding to identical intensity level o.
Although the MHFCM s effective in fracture detection
but it has a number of drawbacks. The k., process affects
the entire image by enhancing overall contrast, but it may
sacrifice the local details near boundaries and edges.
Furthermore, for best results, both h,,, and FCMC require
proper parameterization, which introduces processing
difficulties into the MHFCM architecture. Combining
these methods can further increase complexity and lead to
longer processing times, particularly for large-scale

images.
2.3 Literature survey

Innovating approaches for the quick identification of
road cracks are shown by Cubero et al. [16], who also
show how to use these techniques to extract key
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characteristics required for the cracks' identification. In
the end, a decision tree heuristic approach is used to
classify an image. According to Bhard et al. [6], KMC
requires a preset amount of clusters, which can be difficult
to accomplish when working with complex or high-
dimensional data. Shi et al.'s automated system [18]
lowers noise while diagnosing road rifts by understanding
the fundamental structural properties of cracks. Wang et
al. [19] claim that pavement picture virtue is essential for
fracture identification. However, shadows and shadow-
like noises are often present in these images. These can
come from telegraph poles, buildings, trees, lights, lamps,
and other items. To get over this problem and extract
pavement fractures from a shaded photograph, an image
processing technique is proposed.

The author et al. [20] introduce an innovative crack
detection method for road maintenance, overcoming the
limitations of current techniques. The approach, built upon
Faster-RCNN, incorporates an optimized feature
extraction network, leading to better accuracy and
generalization across diverse conditions. Real-world
testing demonstrates its potential to replace time-
consuming traditional methods, offering a practical and
efficient solution for road crack detection.

A novel method for identifying pavement cracks
is presented by Xiaoran et al. [21], which use a deep
convolutional neural network fusion model. It integrates
the benefits of both the U-Net model and the SSD
convolutional neural network. To increase identification
confidence, the model is first applied to categorize and
identify cracks. The pavement cracks are then precisely
defined using a fracture segmentation network. The
precession of classifying and segmenting pavement
fractures has significantly improved due to advancements
in feature extraction structure and model hyper parameter
optimization. Ultimately, the segmentation findings are
used to determine the length, breadth (for linear fractures),
and area (for alligator rifts). Firstly, to enhance the
suppression of noise and edge feature extraction, the
authors Jie et al. [22] integrate the bilateral filter and the
four-way Sobel operator into the Canny method.
Following non-maximum repression,  gradient
information is adaptively used to establish a dynamic
threshold. Following morphological analysis of the
detection map and region-wise grading, the bilateral filter
variables are adjusted according to the results of
recognition. The convolutional feature extraction module
is subsequently utilized to create the Canny Road crack
detection map. It first fuses the lower feature layer of the
DeepLab V3+ detection network together its higher
feature layer. The final map is produced using
convolutional feature extraction.

This paper presents the novel pixel-level
semantic segmentation network, known as Crack W-Net,
as introduced by Chengjia et al. [23]. Convolutional
neural networks with a skip-level round-trip sampling
block structure are employed to develop it. A method for
identifying road fractures based on deep learning
principles is described by Li et al. [24]. It suggests a novel
activation function called MeLU, an innovative
differentiable computing method, and an original
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architecture called DDLCN (Deep Dictionary Learning
and Encoding Network). The standard Mask-RCNN
algorithm,  which was enhanced by specific
enhancements, serves as the foundation for this technique.
Evaluation  juxtapositions demonstrate  significant
benefits in terms of F1-score, recall, and accuracy.

By combining an attention mechanism with
multiscale dilated convolutions to improve extraction of
features, Weidong et al. [25] present an efficient fracture
detecting network. To achieve precise identification, a
module for up sampling integrates layer attributes.
Severity of fractures is determined by assessing the width
and fork division, and they can be categorized as
transversal, longitudinal, block, or alligator forms. The
authors of the work, Jong et al. [26], successfully handle
the challenge of gathering datasets by employing a data
augmentation technique focused on learning about
fracture thickness and detection. This is a money- and
time-efficient process. Moreover, a method of adaptively
processing fracture data is introduced to improve
efficiency. The method entails building a quad tree
depending on the occurrence of cracks. The crack
detection technology is tested in a variety of scenarios in
order to confirm the degree of precision gain. According
to loU (Intersection over Union), the outcomes
demonstrate superior precision in every scenario. The
false detection rate is about 25% when the system operates
in the absence of extra crack data. But with the
augmentation mechanism in place, the rate of false
positives is significantly reduced. The authors et al. [30]
propose a hybrid crack detection method combining noise-
tolerance and edge precision, outperforming CracklT and
deep learning methods (HED, RCF, FPHB) on standard
datasets while reducing discretization errors.

The author et al. [31] proposes leveraging
explainable Al (XAI) to generate segmentation masks
with weak supervision, reducing labeling efforts. While
less precise than supervised methods, the approach
effectively supports crack severity and growth monitoring.
The author et al. [32] use Fast Point Feature Histograms
(FPFH) and a specially designed 3D PatchCore algorithm
to suggest a way to use point clouds and geometric
distortions to find cracks in masonry arch bridges.
Experiments on artificial point clouds created using 3D
FEM demonstrate that the approach is reliable contrary
noise, damage, & surface roughness while detecting both
internal and external cracks. However, it still has
difficulties in identifying small curvature and in-plane
distortions.

Therefore, to address the shortcomings of current
methods, an effective technique for pixel classification
and pixel enhancement is essential, utilizing a 3%3
window. The classification approach distinguishes edge
and non-edge pixels. Then after, a scaling factor is applied
to enhance edge pixels before segmentation, improving
pixel detail and contrast. Incorporating all in the
segmentation process strengthens extracting features,
suppresses noise, optimizes clustering, & sharpens
borderline accuracy. These innovative capabilities are
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integrated into the suggested approach, as explained in
Section 3.

3 Proposed method

In this Section, we describe an innovative and beneficial
approach to diagnosing road fractures. We have
introduced a proficient or novel method for recognizing
fractures, leveraging Fuzzy C-Means Clustering, known
as the CLAFCMC methodology, specifically designed for
detecting road cracks. This novel approach incorporates
the image plxel Categorization (IS%) and augmentation of
the image’s edge pixels (4%, ). The aim of this strategy is
to tackle the shortcomings and problems associated with
the techniques discussed in Section Il. Consequently, this

technique utilizes a 3 x 3 window (W) (as depicted
in Fig 2) that spans the entire image K x [ to implement
the IS".. The A%, is essential for highlighting more
intricate details and improving feature discernment while
preparing picture data for assessment. Therefore, prior to
segmentation, pixels undergo the enhancement using
augmented scaling factor with in WS for reliable
fracture detection. Additionally, the intensity difference
between maximum and minimum pixels (i, nin.(9))
utilized in segmentation, ensuring precise and reliable
fracture detection. Consequently, this proposed algorithm
intensifies the contrast between discrete areas or objects in
photo, improving clustering as well as boundary definition
& culminating in better results. The details of IS?. and A%,
for CLAFCMC approach is elaborated upon below:

3.1 Image pixel categorization in 3 x 3
window

The <2, categorises the image pixels inside a /5>
using a S24, shown in Fig. 2. This categorization
efficiently distinguishes into edge pixels (E%,) & non-

edge pixels (E%,) before the segmentation procedure.
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Figure 2: S99 of the central pixel in Wd(ng) purlieus in
four directions
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Thus, the mathematical expression corresponding to

the ,2* tactic can be articulated as follows [27]:

dow

WD = [0g41541] i
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fori=ttot+2 and 1= qtoq+2
fort=-101.2,..,k—2 andg=-1,012,...,1 -2

Input image of size k X [

Selection of 3 x 3 window: W = [lf)aﬁjaﬁ]

~~(3x3)
dow

k4

Apply Pixel Categorization using S2¢

[ 522 = |0s+i541 + Os—i5—: — 2 035] |

If (all the four S2¢ is
tinv or colossal and
extremely
tantamount to each
other)

Check 524
wvalues

else (all the S2%is
distinct &
combination of
petite & enormous
valies)

(FOT' m;x : O'c'),c“:- € One)

Output: Categorize as non-edge pixel

Output: Categorize as edge pixel
(For ES, : 0s5€0,)

Figure 3: The flowchart of image pixel categorization in 3 x 3 window

Whereas Oy,1547 signifies the individual pixels
within ,3®, 1 and T indicate the row and column in the
same window, 0 & 6 determine the outset indices or
offsets (i.e., 0, 6 is equal to one and so on) and k , L is total
count of rows and columns of photograph. Specifically,
the rows down from o represented by 1, while the columns
to the right of 6 are represented by 7. Implemented
together, 6 & 0, 1 & T pinpoint an element's exact location

inside the frame (W,°®). The middle pixel of W, is

dow dow
utilised to compute S2¢ [27] in four aloof directions
(lateral, longitudinal, oblique, and contrary oblique), as
specified in Eq. (7).

584 = |Op1, 547+ Opt, 5t — 2 O 3] @)

Where the values supplied for (e, T, 1) parameter set is [(1,
0,1),(2,1,0),(3,-1,1),and (4, 1, 1)], represents the four

flanks. In order to differentiate between the two-pixel
classes as outlined in flowchart in Figure 3, it is necessary
to analyses the S2¢ in all four directions relative to each
examined pixel. Therefore, this S2¢ is able to evaluate the
entire pixels of photo.

3.2 Augmentation of the image’s edge pixels
utilizing 3 x 3 window

The augmentation of the image’s edge pixels (A%,) is
employed to diligently refine each edge pixel (E$,) in
Wof k x I image after [S7 to obtain higher-quality
edge regions. Therefore, it is imperative to pay great
attention to determining the augmented scaling factor
(A¥my is crucial for effective enhancement of the original
ES, value. This A¥™ can be computed using an equation
that resembled with (or based-on) linear equation called as
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linear relationship based equation. Hence, anomalies may
arise in the image, if A%™ for ES, is set too high, causing
exaggerated edges, resulting in an unnatural appearance.
Conversely, very tiny values may result in a loss of clarity
and sharpness, which may dull or washes out the image.
Consequently, using the best approach is necessary to
preserve edge quality. Thus, the following is the
mathematical expression for augmented edge pixels (0,),
which is obtained by examining both the [0, ] and A%

[0.] = [Ag[ﬂ]e X [0c]; fore =123,..,4 (8)

Whereas 3 is the entire number of edge pixels in W*®

and O, is the unique edge pixel value in W >*® found after

igr.. The A4 in a WX is attained by employing the
edge pixel contribution ratio (CX*') and constant ratio
(Const), @s articulated by the following mathematical
expression:
[Kgg] e 1+ ‘ngr X (Const (9)
Whereas the CY*(= 0./32-,0,) is the ratio of
each individual %, to total ES, with in W*® and the
Const 1S the ratio of the difference among the maximum &
minimum of the E$, value to their sum (based on
Michelson contrast). Hence the CP™,¢onse allows to
acquiring the local information in term of weight of nearby

individual £S, within the W >, The Eq. (9) furnishes
the AY™, which, when applied, enables the augmentation
of the edge pixel. Therefore, this processed image is then
input into the segmentation process (mentioned in sub-
section 3.3) for precise crack detection, ensuring accuracy
despite noise and lighting variations. The algorithm 1
carries out this augmentation process.

Algorithm 1: Augmentation of the edge pixels

1. Input: k x [ size photo, O, after I57,
2. Initialization Parameters:
e Window size: 3 x 3
e The representation of the row and column: T and
L
3. Procedure:
e Iteration begins
a. Apply W33 %% Using the Eq. (6)
b. Outer Loop (e = 1:3): lterate until the last
B, in W23 is reached.
c. Inner Loop (v =1: a): lterate until the
W(SXS),

~o . .
ow S E5, accumulation is achieved.

d. Compute: CP*" & (onst
e. Compute the augmented edge Scaling factor:
[ALSI{?n e 1+ ngr X Const
%% Using Eq. (9)
f. Find Augmented Pixels:
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[0.] = [A&P]_ x [0] %% Using eqn. (8)
e lterations Stop Conditions:

a. Terminate inner loop: when « reaches a within
W(3X3)

dow
b. Terminate outer loop: when e reaches a with in
W(3X3)

dow

4. Proceed to the subsequent iterations: Iterate until all
E¢, of image k x [ are augmented.

5. Output: The outcome depicts the augmented pixels
[0,] for whole picture k x 1. Ahead such
augmented pixels are employed in the segmentation
procedure.

As outlined above, the 3x3 window is essential and
utilized in pixel categorization and edge pixel
augmentation. As this window moves across the image, it
helps in differentiates edge and non-edge pixels while
enhancing edge pixel details and crack visibility.
Additionally, the smaller windows (2x2) lack contextual
depth, making clustering noise-sensitive, while larger
ones (4x4, 5x5) over-smooth the image, blurring critical
boundaries. The 3x3 window provides the optimal
balance, reducing noise while preserving fine details,
ensuring precise segmentation and efficient computation.

3.3 Exhaustive explication of the CLAFCMC

The precise detection of road fractures is the aim of
the sturdy and efficient CLAFCMC technology. Hence the

objective function of CLAFCMC technique is as
described below:
c T
A 2
UG =D #hy x (105~ 1
=1g=1
X ignax.,min.(g) (10)

where ¢ & r describes the number of clusters &
number of pixels in picture, Og is finite input data (under
0,: 0, & 0, exist), the cluster center is denoted by ¥,
the fuzzy membership matrix is represented by ¢, (0 <
$pg <1) with h=123,......,c and g=
1,2,3, e e ,7, pis fuzzification parameter (p > 1),
controlling the degree of fuzziness in clustering. For
optimal image segmentation, p typically falls within the
1.5 to 2.5 range, maintaining a balance among precision
and computational effectiveness and the i%qy min.(9)
indicates the intensity difference among maximum and
minimum  pixels in kx[ picture. Leveraging
i ax.min.(g) aids in addressing the ambiguity that arises
in cluster assignments when Euclidean distances are
identical. Consequently, it leads to a more accurate and
refined membership matrix.

To mitigate the function U(¢p,Y) Lagrange
multiplier method is employed. As indicated below, this
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method establishes the updated membership degrees and
cluster centres in CLAFCMC:

c r
Lmultiplier = z z ¢}zl7g X ”Og - Yh”Z

h=1g=1
-d
X lmax.,min.(g)

+ja<1_zc¢hg>
g=1 h=1

(11)

To ascertain the membership function, first apply the
partial derivative of L, ¢ipiier With regards to qbgh and
setting it to zero. Additionally, adopt the derivative of

. L muttipli
L muitiptier With regards to the & (%:0).

Therefore, the resulting membership function is given by:

5]
_1%hgl
1
1 [p-1
el

Whereas § is Lagrange multipliers. In a similar vein,
acquiring cluster centroid involves calculating the partial
derivative of L,uieipiier relative to Yy, represented as

Ol multini . . .
%z 0. Once this is derived, the centroid is
h

eventually obtained as follows:

brg = (12)

T p A -d
_ 2g=1%hy*OgXimax,min.(9)
- T p
Zg:l ¢hg

Y (13)

The subsequent details elucidate the process of the
CLAFCMC algorithm as delineated in algorithm 2:

Algorithm 2: CLAFCMC algorithm

1. Input: k x [ size road photo

2. Initialization Parameters:
¢ is count of clusters, Og indicates augmented pixels
of photo, r is total count of pixels of photo, V;, is
cluster center, p is fuzzification parameter, ¢, the
fuzzy membership matrix

3. Procedure:

a. Outer Loop (h): Encore for every value in ¢
b. Inner Loop (g): Encore for every value in r
¢. Randomly initialization: bng =1
%% ¢ = [¢hg]m with 0 < ¢y <1
Terminate inner loop: when g reaches r
Terminate outer loop: when h reaches ¢
Initialize: 1]=0 %% Iteration index (1))
Outer Loop (h): Encore for every value in ¢
Inner Loop (g): Encore for every value in r
ZZ:l d’ﬁg Xog x i‘;drlaxqmin. (g)
Zg=1 ¢2g

j- Compute & update new ¢y, :

se@ oo

Compute ¥,: Y}, =
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k.  Terminate inner loop: when g reaches r
. Terminate outer loop: when h reaches ¢
m. Until tantamount Y;, emerges, increment 7] = I}
+1 or go back to step f.
4. Output: Road cracks identification in k x [ size
photo

In contrast to traditional FCMC, which relies on
Euclidean distance and often misclassifies pixels. The
proposed method enhances road crack detection by
efficiently detecting cracks and minimizing noise and
outliers. This leads to an improved distinction between
crack and non-crack regions, resulting in more precise
segmentation. The novel CLAFCMC enhances crack
visibility through pixel classification and edge pixels
augmentation while integrating intensity difference to
refine the visibility of cracks. This ensures precise crack
detection, even under challenging conditions like uneven
lighting and surface irregularities.

4  Analysis and outcomes of the
experimental

This part examines & juxtaposition the findings of the
CLAFCMC algorithm with several other strategies,
including KMC, FCMC, and MHFCM, all implemented
in MATLAB. The evaluation occurred on PC with an Intel
Core i7 processor at 1.80 GHz, Eight GB of RAM, &
running on 11 Microsoft Windows. The parameters ¢ and
p seemed both specified as two enabling the algorithms to
execute. It ensuring clear distinction between cracks and
surrounding regions. This allows segmentation into two
clusters—crack and non-crack areas—maintaining
uniform conditions across all fuzzy algorithm variations in
our simulations. Several types of rifts & flaws, such as
transverse (Tv), longitudinal (Ln.,;), alligator cracks
(Ar.) & pathole (Pgp), are depicted in this simulation
from variousroad pictures. The Ln,., emerges
longitudinally across the road due to poor joints & fatigue
from traffic [16]. A Tv,,, emerges perpendicular to the
road’s center line and caused by thermal contraction due
to temperature changes. Lackluster strength in the asphalt
substrate is the main ingredient of Ar,, appearance. P,
is a significant structural deterioration that occurs
whenever precipitation seeps through the earth beneath the
surface of the road and expands and shrinks [17].

For road crack detection, input images are selected
from a self-acquired dataset to ensure robustness across
various crack types, lighting conditions, and noise levels.
The dataset was captured using a Samsung camera with
64-megapixel on National Highway (NH)-154 in
Himachal Pradesh, India. The images taken during
daylight hours under diverse environmental conditions,
including sunny, dry, and wet surfaces. This dataset is



702  Informatica 49 (2025) 695706

employed to assess the effectiveness of the suggested
technique during testing.

Despite the availability of the high-resolution
imaging, cracks detection remains challenging due to
several image quality limitations. The variations in camera
perspective (angle and distance) along with motion blur
can reduce image clarity and hinder accurate cracks
recognition. Additionally, lighting inconsistencies such as
glare, shadows, and low light may distort or obscure
cracks visibility. The surface noise and environmental
factors like contamination, dirt, dust, rain, fog introduce
artifacts that effectively hide cracks, making them difficult
to detect. These factors highlight that the effective crack
detection depends not only on high image resolution but
also on the effectiveness and ability of the detection
algorithm.

Therefore, the juxtaposition has been performed
among the suggested method and previous approaches,
namely KMC [5][6], FCMC [7][4], and MHFCM [8].
With self-collected datasets comprising both defiled and
non-defiled road images, it outperforms in terms of
Partition Entropy (P.,.) [28][29], the Davies-Bouldin
Index (Dg;) [28][29], the Partition Index (P.,4) [28][29],
and overall execution time (Ey ¢ime)-

However, like any other method, the CLAFCMC may
have challenges in the situation of detecting extremely
high faint cracks or when extremely low-quality images
affected by noise, or low resolution. The empirical
findings for the already mentioned picture disciplines are
described in Sections 4.1 and 4.2.

4.1 Non-Paint-Water strap on the images of
road

The investigation compares the metrics for KMC,
FCMC, MHFCM, and CLAFCMC for the several visual
representations displayed in Fig. 4. Compared to
MHFCM, both KMC and FCMC produce poorer
outcomes in road fracture identification (Fig. 4: (b-d)).
Despite this, MHFCM tends to exhibit fewer disturbances
but faces challenges in accurately detecting fractures (Fig.
4: (d)). On the aspects of noise and reliability, the
CLAFCMC method (Fig. 4: (e)) significantly outperforms
the other techniques, delivering superior and more
valuable results. Moreover, CLAFCMC excels in
differentiating between cracked and non-cracked pixels
with greater ease than the other methods.

In order to quantitatively access the performance of
various techniques for various fracture pictures, we
employed P.,. , Dg;, Ping, and E,;me. Accurate
identification and evaluation depend on more effective
clustering, which is represented by the lower values of
P,n:, Dg; and P;,4. The values of P,,;, Dg;, Ppq and
E, time represent in Table 1.
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Figure 4: Crack detection: (a) Original image, (b) KMC,
(c) FCMC, (d) MHFCM, (e) CLAFCMC

Table 1: Comparative analysis of Crack Detection
Performance among KMC, FCMC, MHFCM &
CLAFCMC for Non-Paint-Water- Strap Images

Type
Para-
of meters KMC FCMC MHFCM | cLAFCMC
cracks
Pot 0.15 0.22 0.13
Ar o Dy, 0.62 1.08 0.97 0.61
i Pog | oo 0.23 0.20 0.09
Eypme | 483 | 1274 17.62 10.16
Pove | o 0.13 0.20 0.11
. Dy 0.54 0.90 0.94 0.50
ok TPy 0.17 0.19 0.07
Eprime | 651 | 16.65 20.83 14.34
Po | oo 0.16 0.24 0.15
v Dy, 0.69 1.16 1.02 0.67
crk Ping 0.31 0.26 0.14
Erime | 442 | 1359 18.43 9.71
Pt | ..o 0.14 0.21 0.12
p Dy 0.61 1.02 0.96 0.59
ah Ping 0.22 0.21 0.11
Eypme | 471 | 13.48 18.21 10.20

Therefore, the CLAFCMC provides valuable insight on
fracture recognition since it performs better than others
approach in terms of P,,;, Dg;, Pinq and E, ;ime for all
types of fractures.

The KMC technique has an effective Dg; and a shorter
E, time When compared to other approaches. Nonetheless,
the simulation findings indicate that it performs less well
than CLAFCMC in terms of Dg,. Therefore, it is evident
from the thorough data shown in Table | and Figure 4 that
CLAFCMC performs better than others.

4.2 Paint-Water strap on the images of road

This Section discusses the several types of flaws that
can be seen in road pictures, like paint and water. The
results involve a comparative analysis of different
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algorithms across various images, as shown in Fig. 5 (a).
The data reveal that MHFCM surpasses KMC & FCMC
approaches in certain aspects of effectiveness, as
illustrated in Fig. 5 (b—d). When compared to CLAFCMC,
MHFCM has a number of serious flaws, such as noise,
paint and water traces, and blurring, as seen in Fig. 5 (d-
e). The CLAFCMC method outperforms similar
algorithms in terms of noise reduction, execution time,
and effectively identifying boundaries in the surrounding
area.

Table 2: Comparative analysis of crack detection
performance among KMC, FCMC, MHFCM &
CLAFCMC for paint-water strap images

T)g;es Para- | ymc | FcMc | MHFcM | CLAFCMC
Cracks meters
P | e 017 0.25 0.14
Dy | 065 | 134 097 0.62
e [ 0.27 025 0.12
Evume | 502 | 1327 | 1823 10.12
Poe | o, 0.13 021 011
Dy | 058 | 098 0.94 0.57
e S . 0.19 0.20 0.10
Evume | 697 | 1845 | 2091 16.07
P | o 0.12 0.18 0.09
Dy | 055 | 096 0.92 0.52
e I 0.18 017 0.06
Ecume | 571 | 2574 | 2015 18.17
Poe | oo 0.15 0.22 013
Dy | 061 | 101 0.95 0.60
Fon I 0.23 021 0.08
Eime | 958 | 4625 | 35.06 32.08

The current model determining the P,,;, Dg;, P;q and
E, time TOr crack analysis, has outcomes depicted in Table
I1. This Table shows that CLAFCMC outperforms all other
variants, enabling effective identification of cracks in
contaminated images. Although the KMC method
executes more faster than the others, including
CLAFCMC, but it underperforms for Dg, (as compare with
CLAFCMC). Therefore, based on the comprehensive
findings in Table Il and Fig. 5, CLAFCMC clearly delivers
superior results compared to the alternatives.
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Figure 5: Crack detection (a) Original image, (b) KMC,
(c) FCMC, (d) MHFCM, (e) CLAFCMC

4.3 Comparative analysis: proposed
CLAFCMC VS, deep learning
approaches

The proposed algorithm presents notable advantages when
compared to deep learning methods like Convolutional
Neural Networks (CNNs). The Proposed approach may
operate effectively with smaller datasets and standard
equipment’s like CPU, in contrast to CNNs which require
large datasets and powerful hardware [33]. Unlike CNNs,
which demand a complex and lengthy training process, the
CLAFCMC operates without any training, leading to much
lower computational expenses. Furthermore, CNN
interpretability is often limited [33]. Nonetheless, it is
noteworthy that CNNs often do exceptionally well in
handling intricate patterns, especially when trained on a
variety of datasets, in terms of accuracy and adaptability.
This makes them well-suited for tasks demanding high
precision  [33][34][35]. Consequently, CLAFCMC
becomes a viable and economical option, especially
valuable in situations where data or resources are limited.

5 Discussion

The experimental results clearly represent the
effectiveness of the proposed method in precisely
extracting road cracks from various types of images.
Notably, the deficiencies found in KMC, FCMC, and
MHFCM highlight the superiority of the proposed
approach. KMC's reliance on preset clusters diminishes its
accuracy when handling intricate data. FCMC's major
limitation is its sensitivity to image noise, stemming from
its disregard for pixel interconnections. MHFCM
encounters processing difficulties, particularly with larger
images, due to the complexities involved with FCMC and
histogram equalization.

To overcome these limitations, the proposed method
integrating IS®. and A%, to enhance the crack
segmentation accuracy. Unlike standard FCM’s, it
employs a W ®across the whole image (k x 1) for [S%.,
ensuring superior pixel classification and noise resilience.

dow
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The A%, refines crack detection by emphasizing intricate
details and improving feature discernment. Additionally,
the %, min.(9) examine to refine the ambiguity that
arises in cluster assignments, resulting in more precise and
reliable  fracture identification. The CLAFCMC
demonstrated exceptional performance in P,,;, Dg;, Pina
and E, 1ime , Yielding values of 0.11, 0.50, 0.07, and 9.71
for non-paint-water strap images; 0.09, 0.52, 0.06, 10.12
for paint-water strap images. These results surpass all
other methods tested.

A key highlight of CLAFCMC is its significantly
reduced E, ;;me, Which is a critical aspect of this study.
Although CLAFCMC may be slightly slower than KMC
in terms of E, ;ime, it surpasses all other algorithms in
metrics like P,,;, Dg;, Pmq. The experimental results
across various image types underscore the overall
effectiveness and utility of the CLAFCMC algorithm.

6 Conclusion and future research

In this work, we introduce an innovative and novel
approach based on FCMC clustering for road fracture
identification. Despite the limited research on FCMC
algorithm based on road crack detection, our method
excels at identifying road cracks in images and effectively
mitigates noise. The proposed method outperforming both
the standard FCMC and its modifications. This is
accomplished by applying a 3 x 3 window that spans the
whole picture and classifying the pixels into edge or non-
edge pixels prior to segmentation utilising a second order
difference equation. This technique additionally permits
edge pixel augmentation in every window, thereby
enhancing the details of fissures to improve identification
accuracy. Additionally, the intensity difference addressing
the ambiguity that arises in cluster assignments when
Euclidean distances are identical during segmentation,
leading to more accurate and reliable fracture
identification.

This leads to better performance since it improves
clustering, precisely defines boundaries, and gets rid of
crack blurring. In spite of images with low contrast, it
effectively detects edges and fissures. Unlike many
Fuzzy-C Means clustering variants, this method removes
the need for determining crucial tuning parameters while
consistently delivering better results, as confirmed by
experimental findings. This algorithm reliably recognises
fractures in novel and varied kinds of new images without
the need of training. Extensive experimental outcomes
illustrate efficacy of the CLAFCMC approach in terms of
Pones Dpr, Ping and E, ime- AS an outcome, CLAFCMC
is highly effective at identifying various types of road
cracks. This timely detection helps the concerned person
to apply the prompt maintenance process, preventing
cracks from becoming more severe and thus indirectly
leading to significant cost savings by avoiding extensive
and critical repairs.

The upcoming project aims to outfit vehicles
with an advanced online embedded system equipped with

M. Bhardwaj et al.

high-quality cameras. This upgrade will facilitate the
seamless capture and aggregation of real-time video feeds.
Furthermore, a specialized technique will be designed to
estimate the width & depth of road cracks using real-time
data streams.
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