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With the rapid growth of access devices, traditional resource management algorithms fall short in meeting 

practical needs. To address issues like poor coordination of wireless network resources and quality of 

service in conventional wireless resource management, this study starts from the actual Industrial Internet 

of Things (IIoT) network structure. Firstly, a more practical IIoT wireless network framework is proposed. 

Then, combining the Markov decision process, the depth Q - network algorithm is improved, and a novel 

wireless network resource management algorithm (MDQN) is put forward. The results show that after 

training, the performance of the proposed algorithm significantly improves, surpassing the Slotted Aloha 

Algorithm (SAA) and Randomized Algorithm (RA). It achieves high channel utilization and system sum - 

rate, and converges faster than the traditional depth Q - network algorithm. When the arrival rate exceeds 

1.0, the channel utilization and average sum - rate of the proposed algorithm reach over 94% and 25 

bits/s/Hz respectively, which are more than twice those of the SAA and RA. As the system bandwidth 

increases, the latency of all algorithms decreases, and the proposed algorithm has the lowest system 

waiting latency and computational cost among them. These results demonstrate the algorithm's ability to 

achieve dynamic wireless resource management in IIoT and promote efficient utilization of wireless 

network resources. 

Povzetek: Predlagani algoritem MDQN omogoča učinkovitejše in hitrejše dinamično upravljanje 

brezžičnih virov v IIoT kot obstoječe metode. 

 

1 Introduction 
With the swift advancement of commercial 5G networks 

and wireless communication technology, the number of 

devices accessing the network has increased sharply. The 

Internet of Things (IoT) is driving the development of 

traditional industries and accelerating the consumption of 

network resources. As a core resource in wireless 

networks, the static allocation mode of spectrum resources 

is inadequate to fulfill the escalating communication 

requirements [1-3]. Meanwhile, the development of the 

information and communication industry has led to a 

surge in demand for energy and computing resources, and 

researchers around the world have also carried out 

research on this. In wireless communication networks 

such as the IoT, Industrial Internet of Things (IIoT), and 

wireless sensor networks, communication devices are 

widely distributed and numerous, and usually rely on 

battery power. The battery capacity is limited and needs to 

be replaced regularly, resulting in high costs [4-

6].Therefore, many scholars are dedicated to studying the 

related fields of wireless network resource management 

(RSMG), in order to optimize resource allocation (RSAL), 

improve resource utilization efficiency, and thus address 

the challenges of resource consumption. The research 

efforts focused on wireless resource management, such as 

those optimizing resource allocation and improving  

 

resource utilization efficiency, are of paramount  

significance in driving the sustainable development of  

wireless communication technology and ushering in the 

era of comprehensive intelligent interconnection [7]. 

Several studies have advanced wireless network 

resource management: Naderalizadeh et al. utilized multi-

agent DRL for distributed resource allocation, 

outperforming decentralized methods and rivaling 

centralized benchmarks in balancing user rates [8]. Pham 

Q V et al. applied the whale optimization algorithm for 

RSAL, achieving energy-efficient and secure power 

allocation [9]. Shen Y et al. leveraged graph neural 

networks for large-scale wireless RSMG, surpassing 

classical optimization via unsupervised learning [10]. 

Mohajer A et al. proposed a dynamic framework for 5G 

heterogeneous networks, optimizing energy efficiency 

through carrier and power allocation while maintaining 

coverage [11]. Yang H et al. developed an asynchronous 

federated learning system for drone networks, improving 

learning accuracy and execution speed [12]. Chen Y et al. 

introduced a DRL-based RSMG algorithm for IIoT, 

reducing long-term task delays [13]. Lu H et al. proposed 

a user behavior-driven virtual network RSMG method, 

enhancing vehicle communication quality and user 

experience [14]. 

To enhance performance in dynamic network loads 

and low latency scenarios, Chao J et al. introduced a real-
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time adaptive scheduling method based on Transformer. 

The results showed that this method outperformed existing 

methods across multiple key performance indicators, with 

statistically significant performance improvements, 

providing valuable insights for future applications in IoT 

and remote urban networks [15]. To mitigate the mutual 

interference between perception and communication 

caused by spectrum and hardware resource sharing, Qi Q 

et al. developed a deep learning-based solution to improve 

the overall performance of 6G wireless networks. Both 

theoretical analysis and simulation results confirmed the 

effectiveness and robustness of the proposed solution in 

6G wireless networks [16]. 

In the variants of the DQN algorithm, Double DQN 

reduces Q-value overestimation by decoupling action 

selection from evaluation in the target Q-value 

calculation. Dueling DQN, by modeling the state value 

function and the advantage function separately, can more 

efficiently estimate Q-values [17]. Additionally, other 

reinforcement learning methods, such as the policy 

gradient algorithm (e.g., PPO) and the actor-critic 

algorithm (e.g., A3C), have shown potential in wireless 

resource management, enabling them to handle 

continuous action spaces and adapt to more complex 

resource allocation scenarios [18].The relevant work 

summary is shown in Table 1. 

In summary, despite some progress in wireless 

network resource management, current research has 

notable limitations. For instance, multi-agent deep 

reinforcement learning fails to take into account the real-

world IIoT architecture, the whale optimization algorithm 

remains unintegrated with the Markov decision process, 

and graph neural networks are unable to effectively 

address the dynamic characteristics inherent in IIoT 

systems. 

The research has three main goals: first, to develop a 

new wireless resource management algorithm (MDQN) 

for dynamic IIoT management by integrating the Markov 

decision process into the deep Q-network, based on the 

actual IIoT network structure; second, to experimentally 

prove MDQN's superiority over existing algorithms in 

improving channel utilization, system performance, rate, 

and reducing latency; third, to analyze MDQN's 

performance under diverse network conditions, offering 

theoretical and practical support for its IIoT application. 

Table 1: Summary of relevant work. 

Author  Key research content Key findings Compared with MDQN algorithm 

Naderializad

eh N et al. [8] 

Multi-agent deep reinforcement 
learning is used for distributed resource 

management and interference mitigation 

in wireless networks 

Compared to the decentralized baseline, it has 

an advantage in the trade-off between average 
and 5th percentile user rates, and its 

performance is close to or even better than the 

centralized information theory baseline 

This method is based on multi-agent deep 

reinforcement learning for distributed 
management, and there are differences in 

the algorithm design ideas and application 

scenarios of the two methods 

Pham Q V et 

al [9] 

This paper studies the whale 

optimization algorithm and its 

application in wireless network resource 

allocation 

Power allocation that can achieve the tradeoff 

between energy efficiency and spectral 

efficiency as well as power allocation that 

maximizes safe throughput 

 The optimization objectives and algorithm 

principles are different 

Shen Y et al 

[10] 

Application of graph neural network to 

solve large-scale wireless resource 

management problems 

Training with unmarked samples without 

supervision can match or even exceed classical 

optimization algorithms without domain-

specific knowledge 

The two are different in network structure 

and problem-solving methods 

Mohajer A et 
al [11] 

A dynamic optimization model is 

proposed to minimize the overall energy 

consumption of the fifth-generation 
heterogeneous network and provide the 

necessary coverage and capacity 

While ensuring the throughput requirements of 

uniform and hot spot user equipment 
distribution mode, the power saving rate in 

different traffic models is considerable 

This model is aimed at energy consumption 

optimization of fifth-generation 

heterogeneous networks, with different 
optimization objectives and applicable 

scenarios 

Yang H et al 

[12] 

Develop a framework for asynchronous 

federated learning for multi-drone 

networks 

Higher learning accuracy and faster federated 

execution time are achieved 

The application scenarios and algorithm 

advantages are different 

Chen Y et al 

[13] 

In view of the dynamic resource 

management problem of joint power 

control and computing resource 

allocation in ⅱOT, a dynamic resource 

management algorithm based on deep 

reinforcement learning is proposed 

Can effectively reduce the long-term average 

delay of tasks 

MDQN is also aimed at IIoT, but the 

algorithm design combines Markov 

decision process and improved deep Q 

network, which is different in optimization 

objectives and algorithm details 

Lu H et al 

[14] 

A virtual network resource management 

method based on user behavior is 

proposed to optimize vehicle 

communication 

Can significantly improve service quality and 

experience 

MDQN focuses on IIoT wireless resource 

management, which is tailored to different 

vehicle communications, application 

scenarios and optimization directions 

Chao J et al 

[15] 

A real-time adaptive scheduling method 

based on Transformer is proposed 

It is superior to the existing methods in several 

key performance indicators 

The algorithm structure and application 

scenarios are different 

Qi Q et al. 

[16] 

Develop deep learning-based solutions 

to improve the overall performance of 

6G wireless networks 

It is effective and robust in 6G wireless network 
MDQN is a solution for wireless resource 

management in IIOT 
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This study targets designing an efficient wireless 

resource management algorithm for the IIoT's complex 

wireless environment, aiming to improve channel 

utilization, system performance, rate, and reduce latency. 

It proposes integrating the actual IIoT network structure, 

Markov decision processes, and the enhanced MDQN 

algorithm to optimize wireless resource management in 

dynamic networks and achieve performance goals. 

In summary, although significant achievements are 

made in the field of wireless network RSMG, the current 

wireless networks are complex and random, making it 

difficult to predict and effectively manage. In the face of 

this challenge, the research needs to continuously explore 

and innovate more advanced RSMG strategies and 

methods. Based on this, the research innovatively starts 

from the actual IIoT network structure, combines Markov 

decision process, improves the Deep Q Network (DQN) 

algorithm, and proposes a new wireless network RSMG 

algorithm, MDQN, in order to successfully achieve 

dynamic wireless RSMG of IIoT and promote efficient 

utilization of wireless network resources. 

2 Methods and materials 

2.1 IIoT wireless network RSMG 

framework design 

User Equipments (UEs) in IIoT are usually connected to 

each other through wireless communication, but wireless 

spectrum resources are limited, and traditional 

management techniques are difficult to achieve expected 

performance [19-20].To address this issue, research is 

conducted on optimizing wireless RSMG algorithms 

based on deep Q-networks, and an MDQN algorithm is 

proposed. Firstly, a more practical IIoT wireless network 

framework has been proposed, as shown in Figure 1. 

Figure 1 illustrates that the IIoT model accommodates 

diverse UE types (e.g., sensors, industrial devices) with 

varying QoS and storage requirements, necessitating 

tailored system design. Data prioritization is critical, with 

emergency information (e.g., equipment failures, safety 

alerts) receiving higher processing priority for system 

stability. Additionally, many IIoT UEs operate cyclically 

rather than continuously, such as environmental or 

security monitoring devices, which transmit data at 

predefined intervals for analysis [references implied by 

original context] [21-23]. This periodic data transmission 

mode poses new challenges for RSMG and system 

optimization. For the first type of UE, if it has successfully 

accessed the communication channel and has not 

experienced any form of signal collision with other UE 

during transmission, the specific numerical description of 

the Signal to Noise Ratio (SNR) when the UE 

communicates is shown in formula (1). 
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In equation (1), 
2 represents the received noise 

power, U represents the binary identifier of the sub-

channel. fP  represents the fixed transmission power of 

the i  UE. Here, i  is only used to identify different user 

equipment and has nothing to do with the channel. h

represents small-scale fading, and N represents the set of 

channels. For the second type of UE, its probability 
kP ’s 

description formula is shown in formula (2). 
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In equation (2), 
kP (l(i))  represents the probability 

that the data count of the k  second-class UE in set 
2K  is 

l(i) . The parameter 
k  indicates the distribution 

characteristics of the data count for the k = second-class 

user equipment, reflecting its data distribution. The data 

length of the memory at subsequent times is determined 

by equation (3). 

  2( 1) min ( ) ( ) ( ), ,k k kd i d i l i g i F k K+ = + −   (3) 

Base station

The 1 second-class UE
The 2 second-class UE

Type 1 UE

 

Figure 1: IIoT wireless network RSMG framework diagram. 
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In equation (3), ( 1)kd i+  represents the memory data 

length of the k  second-class user equipment in set 
2K  at 

time 1i + . ( )kg i  denotes the data length transmitted by 

the G-th second-class user equipment during the slot at 

time i , ( )kd i  is the memory data length of this device at 

time i , and F  stands for the maximum capacity of the 

memory. Equation (3) primarily addresses the data length 

variations of the second type of user equipment. The study 

can be further expanded to include the first type of user 

equipment, where the memory data length changes can be 

similarly represented as 

 m m m m md (i 1) min d (i) l (i) g (i),F+ = + − , with each 

parameter explained in a similar manner. In future 

research, to simplify the model and highlight key points, 

the analysis will initially focus on the data length 

variations of the second type of user equipment, although 

the overall approach can be extended to resource 

management scenarios involving both types of user 

equipment. The optimization core of this study aims to 

further improve the spectrum utilization efficiency of IIoT 

systems while ensuring that the QoS requirements of two 

types of UEs are met. Specifically, the goal is to maximize 

the number of UEs that successfully establish 

communication connections, in order to achieve efficient 

utilization of spectrum resources. Meanwhile, for 

emergency data, the system needs to have the ability to 

respond quickly to ensure timely transmission and 

processing of data. Therefore, the wireless RSMG 

problem is shown in formula (4). 
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In equation (4), W  is the bandwidth of the sub-

channel and E

kO  is the feedback information of 

emergency data. 
nU (i)  indicates the status of i  user 

devices on the n th sub-channel. When it is 1, it means that 

the Gaussian user device is using the n  sub-channel; 

when it is 0, it means it is not in use. n  represents the sub-

channel number, and K  represents the set of sub-

channels. ( )1O 1, k K=   indicates that when k  belongs 

to the first category of user devices, a certain status 

identifier is 1; ( )1 2d (i) F, k K   indicates that when k  

belongs to the second category of user devices, the data 

length of the i  first category user device is less than the 

threshold F . 

To achieve efficient spectrum RSMG, Base Stations 

(BSs) must comprehensively obtain various 

environmental information in IIoT systems. These 

information include but are not limited to the allocation 

details of sub-channels, priority sorting of data, actual 

length of data in memory, and specific type of UE, which 

together constitute an important basis for BS to make 

RSMG decisions. To facilitate the BS to obtain this 

information, a simple Media Access Control (MAC) 

frame structure was designed to achieve the acquisition of 

environmental state information. The MAC frame 

structure is shown in Figure 2. 

The MAC frame structure design integrates 

information such as UE type, data priority, and data length 

with actual data. Among these, UE type information is 

used by the BS to identify various user devices, such as 

sensors and industrial smart devices. Data priority 

information distinguishes between emergency data (such 

as equipment failure reports, safety alerts, and power 

shortage notifications) and regular data, with emergency 

data receiving a higher processing priority. Data length 

information helps the BS understand the size of the data, 

enabling it to allocate resources efficiently. The data 

priority set identifies different data priorities, and the BS 

uses this information to make decisions on spectrum 

resource management for the next time slot. 

2.2 Action and reward function design 

In IIoT industrial IoT systems, BS plays the role of the 

only intelligent agent, which can capture and analyze real-

time status information of the entire IIoT system based on 

a carefully designed MAC frame structure. However, it 

should be noted that BS can only obtain detailed 

information of UEs that have successfully established 

communication links with it. For UEs that fail to 

communicate successfully, their relevant information is 

replaced with specific characters, such as 'N/A'. This 

method of substitution is similar to data imputation, which 

simplifies the data processing process. It allows the BS to 

focus more on analyzing the information of UEs that 

communicate successfully, while also ensuring the 

simplicity and accuracy of data processing. However, this 

approach may affect the accuracy of determining the 

status of UEs that fail to communicate successfully [19]. 

After the basic framework for the IIoT wireless network 

RSMG has been constructed successfully, in an effort to 

equip the BS with self - learning and decision - making 

abilities so that it can steadily grasp and implement 

effective RSMG strategies, research efforts have been 

directed towards enhancing the reward function. The 

construction of this function aims to guide BS to 

continuously optimize its RSMG decisions through a 

reasonable reward and punishment mechanism, to adapt to 

the dynamically changing IIoT environment. The 

principle of interaction between BS and environment is 

shown in Figure 3. 
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Figure 2: Schematic diagram of MAC frame structure. 
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Figure 3: Schematic diagram of BS and environment interaction principle. 

 

The optimization of wireless RSMG is refined into 

four sub-objectives to enhance system performance: 1) 

maximizing spectrum resource utilization to support more 

UEs and improve network communication capacity; 2) 

prioritizing rapid access and transmission of urgent data 

for timely emergency response; 3) ensuring stable 

communication by meeting rate thresholds for the first 

type of UE; and 4) guaranteeing timely data transmission 

for the second type of UE to prevent data overflow. 

Therefore, feedback information can be used to measure 

the quantum reward function ( )oR i , as shown in equation 

(5). 
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In equation (5),   represents the set of UEs in an 

emergency situation,   represents the total number of 

UEs in this set, and 
1  and 

2  represent weight 

coefficients used to balance the importance of different 

reward factors. To achieve resource optimization, the 

reward mechanism prioritizes emergency data and sets 

differences, while ensuring fair distribution. Research 

designs sub-reward functions to meet specific rate 

requirements, as shown in formula (6). 
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In equation (6), 
1  represents the constant rate of the 

first type of user. The instantaneous rate here refers to the 

data transmission rate of the device at the current moment. 

Although the formula does not directly aim to maximize 

the number of successful communication connections 

established by UE, the design of the reward mechanism 

guides the BS to optimize resource allocation, thereby 

indirectly achieving this goal. i

i

O  represents the sum 

of the indicators indicating whether all first-class user 

equipment meet the rate threshold requirements. 
kV  

represents the instantaneous rate obtained by UE. 

represents the instantaneous rate obtained by UE. The 

design of the sub-incentive function balances wireless 

RSMG optimization objectives with algorithmic learning 

efficiency. Although adopting a strategy that specifically 

targets the third sub-goal has the potential to accelerate its 

attainment, such an approach runs the risk of undermining 

the overall optimization process and the efficiency of the 

learning mechanism. The sub-reward remains zero until 

all first-type users meet bandwidth requirements, then 

jumps to a positive value. However, this approach may 

significantly delay DQN learning due to prolonged zero 

rewards during early training, as insufficient positive 

feedback hinders rapid algorithmic progress. Finally, to 

effectively avoid the problem of data overflow in the 

storage of the second type of UEs during data processing, 

a sub-reward function ( )dR i was designed. The design of 
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this sub-reward function is based on the clearly defined 

required memory length in the optimization problem. The 

specific function expression and design details are shown 

in equation (7). 
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In equation (7), 
1F  represents the predicted length in 

case of excessive memory data, which is obtained from 

historical data and current system load conditions. It is not 

a constant but a dynamic prediction value. 
2  represents 

a value greater than the maximum rate of the second type 

of UE, which is used to measure the risk degree of data 

overflow. When 
1( )kd i F , due to increased system load 

or surge in data traffic, the probability of data overflow in 

the memory will significantly increase, which means that 

the risk of data loss or processing delay will increase 

significantly. On the contrary, the sub-reward function is 

designed based on the sum rate of all second type UEs, 

aiming to optimize overall performance. Taking into 

account these factors, the reward function designed for the 

study is shown in equation (8). 

 ( ) ( ) ( ) ( )o o v v d dR i R i R i R i  = + +  (8) 

In equation (8) 
o , 

v ，  and 
d  respectively 

represent the weight factors for balancing the three sub-

rewards. 

2.3 MDQN algorithm design 

After completing the design of the incentive function, to 

more validly solve the complex problem of wireless 

RSMG, the action space was carefully compressed. This 

step aims to decrease the complexity of computations 

involved in the algorithm while ensuring the rational 

allocation of wireless resources. In addition, the DQN 

algorithm was optimized using a prioritized experience 

replay approach utilizing Temporal Difference (TD) error. 

Through this series of improvements, a spectrum RSMG 

algorithm for MDQN was ultimately proposed. This 

algorithm aims to further improve the management 

efficiency of wireless resources to meet the growing 

communication demands. Traditional Q-learning can 

ultimately converge to the optimal Q-table through 

sufficient exploration, as shown in the learning flowchart 

in Figure 4. 

This Figure 4 shows the basic principle and process of 

DQN algorithm. MDQN algorithm is an improvement on 

DQN algorithm, which is based on action space 

compression and priority experience replay strategy based 

on TD error. The traditional DQN algorithm converges 

slowly and requires a large amount of storage space when 

the state space and action dimensions are large. In 

response to this, the study first compresses the action 

space to reduce complexity and avoid collisions, while 

fully allocating channels. Action space compression 

technology reduces algorithmic computational complexity 

while ensuring efficient wireless resource allocation in 

IIoT. The original action space, with numerous resource 

allocation combinations, increases computational load and 

slows convergence. This is achieved through: 1) Device 

priority and data feature screening, prioritizing devices 

with urgent information. 2) Channel state pre-assessment, 

retaining only sub-channels with good states. 3) Action 

aggregation, combining similar resource allocation 

actions. These methods reduce the action space's 

dimensionality and complexity. The dimension of the 

newly compressed action space is reduced. To improve 

learning efficiency, a priority experience replay strategy 

based on TD error is proposed, which measures the 

importance of historical experience data and prioritizes 

replay of highly important data to accelerate NN learning. 

The pseudocode of the implementation of the priority 

experience replay strategy based on TD error is shown in 

Figure 5. 

St
Q Network

Q(S,A)

R

Loss

maxQ(St+1,a) St+1

Target Q Network

After n updates, copy 

to the target Q 

network

 

Figure 4: Principle diagram of MDQN algorithm. 
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class PrioritizedReplayBuffer:

    def __init__(self, capacity, alpha, beta):

        self.capacity = capacity

        self.alpha = alpha  # prioritization strength

        self.beta = beta    # importance sampling compensation

        self.priorities = SumTree(capacity)

        self.memory = []

    def store(self, experience):

        max_priority = self.priorities.max() if self.memory else 1.0

        self.memory.append(experience)

        self.priorities.insert(max_priority)

    def sample(self, batch_size):

        indices = []

        priorities = []

        segment = self.priorities.total() / batch_size

        

        for i in range(batch_size):

            s = random.uniform(segment*i, segment*(i+1))

            idx, priority = self.priorities.get(s)

            indices.append(idx)

            priorities.append(priority)

            

        sampling_probs = priorities / self.priorities.total()

        weights = (len(self.memory) * sampling_probs) ** -self.beta

        weights /= weights.max()

        

        return indices, weights

    def update_priorities(self, indices, td_errors):

        for idx, td in zip(indices, td_errors):

            priority = (abs(td) + 1e-6) ** self.alpha

            self.priorities.update(idx, priority)

 

Figure 5:Pseudo-code diagram of the implementation of priority experience replay strategy based on TD error. 

 

Figure 5 illustrates that the TD error-based prioritized 

experience replay strategy begins by calculating TD errors 

(differences between predicted and target values) for each 

training sample. Sample priorities, proportional to 

absolute TD errors, guide selection from the replay buffer, 

favoring higher-priority samples. Importance-sampling 

weights correct sampling bias and are applied during 

neural network updates to emphasize high-priority 

samples' influence. 

The importance indicator of empirical data is 

determined based on TD error.These improvements aim to 

overcome the shortcomings of traditional DQN and 

enhance algorithm performance and resource utilization 

efficiency. The description of TD error is shown in 

equation (9). 

( )
target ( ( ), ( )) ( ( ), ( ))

ˆ( ) max ( 1), , , ( ( ), ( ), , )

i Q i i Q i i

R i Q i W b Q i i W b



 − −

= −

= + + −
a

s a s a

s a s a
(9) 

In equation (9), ( )is represents the system 

environment state, ( )ia represents the sampling action, b

represents the network parameters, ( )ia represents the 

action corresponding to the maximum Q value, that is, the 

wireless RSMG result. The larger the TD error of the 

verification data, the stronger its importance. When 

initially stored in the experience memory, the maximum 

importance value is assigned, and the TD error is reduced 

in the later stage. To prevent duplicate sampling, the TD 

error is redefined in the study, as shown in equation (10). 

( )( )ini end ini *exp( * )m

i iI i  = + − − (10) 

In equation (10), 
ini represents the initial discount 

factor. To guarantee the consistency and efficiency of the 

algorithm, parameter  ’s setting is crucial. It should be 

kept on the same order of magnitude as the learning rate 

and delay rate, so that the TD error can change at a 

reasonable speed and optimize the learning process. In the 

MDQN algorithm, hyperparameter selection is carefully 

considered and experimentally validated. The learning 

rate is set to balance fast convergence and stability, with 

0.0001 chosen after multiple experiments. The initial 

discount factor is selected to balance short-term and long-

term rewards, crucial for IIoT wireless resource 

management. After experimental optimization, it is 

determined to ensure reasonable resource management 

decisions in dynamic networks. These selections result 

from experimental exploration and performance 

evaluation, aiming to balance algorithm performance and 

resource utilization efficiency. Finally, a wireless RSMG 

strategy based on MDQN was developed, as shown in 

Figure 6. 
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Figure 6: Schematic diagram of wireless RSMG strategy based on MDQN. 

class MDQNAgent:

    def __init__(self, state_dim, action_dim):

        self.main_net = QNetwork(state_dim, action_dim)

        self.target_net = QNetwork(state_dim, action_dim)

        self.replay_buffer = PrioritizedReplayBuffer(capacity=100000)

        self.epsilon = 1.0

        self.gamma = 0.99

        self.tau = 0.005

    def remember(self, state, action, reward, next_state, done):

        # Store new experience with initial priority

        experience = (state, action, reward, next_state, done)

        self.replay_buffer.store(experience)

    def _calculate_td_error(self, experience):

        state, action, reward, next_state, done = experience

        current_q = self.main_net(state)[action]

        target_q = reward + (1 - done) * self.gamma * self.target_net(next_state).max()

        return target_q - current_q

    def _sample_batch(self, batch_size):

        # Returns indices, batch, importance sampling weights

        return self.replay_buffer.sample(batch_size)

    def train(self, batch_size):

        if len(self.replay_buffer) < batch_size:

            return

            

        indices, batch, weights = self._sample_batch(batch_size)

        td_errors = []

        

        for experience in batch:

            td_error = self._calculate_td_error(experience)

            td_errors.append(td_error)

            

        # Update main network with prioritized experience

        loss = self._compute_loss(batch, weights)

        self.optimizer.zero_grad()

        loss.backward()

        self.optimizer.step()

        

        # Soft update target network

        self._update_target_network()

        

        # Update experience priorities

        self.replay_buffer.update_priorities(indices, td_errors)

    def act(self, state):

        if random.random() < self.epsilon:

            return random.randint(0, self.action_dim - 1)

        return self.main_net(state).argmax().item()

 

Figure 7: Pseudo code of MDQN algorithm. 

 

In Figure 6, during the training process, the neural 

network continuously adjusts its parameters to gradually 

reduce the loss function, ultimately converging to the 

optimal parameters. During application, BS monitors the 

data packet headers to obtain the environmental state and 

uses the trained neural network to predict the state of the 

next time slot. The deep neural network (DNN) selects the 

action corresponding to the highest Q value to manage 

spectrum resources. The results are broadcast to enable 

UE access to the channel, achieving resource management 

based on the optimal strategy. This convergence is 

achieved through extensive training data and iterative 
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processes. The pseudocode of MDQN algorithm is shown 

in Figure 7. 

Deep reinforcement learning algorithms like MDQN 

are often seen as "black boxes." To enhance 

interpretability, saliency maps can be introduced, which 

visualize the importance of input features (e.g., device or 

channel status in IIoT) to MDQN's decision-making by 

calculating gradients of input states on output actions. A 

high saliency value for a feature indicates its significant 

influence on resource allocation, helping to demystify 

MDQN's decisions and improve its credibility and 

practicality. 

3 Results 

3.1 Experimental environment and model 

training 

Strengthening the performance verification of spectrum 

management algorithms plays an important role in 

analyzing spectrum utilization and resource block 

stability. Based on the IIoT wireless network RSMG 

system, experimental analysis was conducted using the 

Tensor Flow framework. After iterative training of DNN, 

the average performance was tested through multiple runs. 

This experiment selected three wireless RSMG algorithms 

based on DQN, Slotted Aloha Algorithm (SAA), and 

Randomized Algorithm (RA) as comparison algorithms. 

Channel utilization (CU), system, and rate were selected 

as evaluation indicators. Here, average data rate is 

considered as a key performance metric reflecting the 

efficiency of data transmission in the system, which is 

closely related to channel utilization but provides a more 

specific measure of the system's communication 

capability. The experimental operating environment is in 

Table 2. The study first conducted a hyperparameter 

sensitivity analysis, and the results are shown in Table 3. 

As shown in Table 3, the sensitivity analysis of key 

hyperparameters in the MDQN algorithm, including the 

learning rate, discount factor, and batch size, revealed that 

increasing the learning rate from 0.001 to 0.01 enhanced 

channel utilization, system performance, and rate, while 

reducing system latency. The performance gradually 

improved as the discount factor increased from 0.8 to 0.95, 

and the algorithm's performance significantly improved 

when the batch size increased from 32 to 128. This 

indicated that the settings of these hyperparameters 

significantly impacted the performance of the MDQN 

algorithm, and appropriate optimization could enhance its 

wireless resource management capabilities. 

The experimental results are the average values after 

a single training session. When considering the network 

function values, the initial state of IIoT will be randomly 

set in each validation test to ensure the comprehensiveness 

and accuracy of the validation. The training effect of the 

raised algorithm is in Figure 8. 

 

Table 2: Experimental operating environment. 

parameter Experimental environment 

Processor 11th GenIntel(R)Core(TM)i5-1135G7@2.40GHz-2.42GHz 

Memory capacity 4GB RAM 

Operating system Windows7 

Data mining software SPSS Modeler18.0 

Programming environment Python3.8.3 

Programming IDE Anaconda3 

Model building Python3.8.3 

 

Table 3: Hyperparameter sensitivity analysis. 

Hyperparameter  Short-cut process  Channel utilization System and rate (bits/s/Hz) System delay (ms) 

Learning Rate 

0.001 0.88 22 0.35 

0.005 0.90 23 0.32 

0.01 0.92 24 0.30 

Discount Factor 

0.8 0.89 23 0.33 

0.9 0.91 24 0.31 

0.95 0.93 25 0.29 

Batch Size 

32 0.87 21 0.36 

64 0.90 23 0.32 

128 0.92 24 0.30 
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The results in Figure 8 indicated that an increase in 

the number of channel resources correspondingly resulted 

in a reduction of the loss value of the algorithm and a rise 

in the reward value. The results in Figure 8 (a) indicated 

that the loss value of the MDQN algorithm showed a 

stable curve trend in the later stage of training, and the 

larger the number of channel resources, the faster it tended 

to stabilize. In Figure 8 (b), the reward value initially 

increased rapidly and stabilized after 2500 training 

sessions, reflecting the learning efficiency and 

convergence of MDQN. The fewer sub-channels there 

were, the smaller the reward value, which led to a decrease 

in system performance due to a reduction in successful UE 

access. Some data points were missing due to 

experimental errors during data collection. These missing 

data points were taken into account in the subsequent 

analysis and did not significantly affect the overall results. 

The CU, system, and rate test results of the MDQN 

algorithm proposed by the research institute compared to 

DQN, SAA, and RA are shown in Figure 9. 

From Figure 9, in the early stages of training, the 

performance of MDQN was similar to that of SAA, but it 

showed a significant improvement over SAA after a 

certain number of training iterations. As shown in the 

graphs, MDQN eventually outperformed SAA. With the 

deepening of training, MDQN algorithm showed its 

excellent performance advantages. It could achieve 

channel utilization close to 90%, and provided an average 

system and rate of about 25bits/s/Hz, which was three 

times that of SAA and four times that of RA. Furthermore, 

in comparison with the DQN algorithm, MDQN also 

demonstrated its outstanding performance. MDQN not 

only had faster convergence speed, but also performed 

better. The reason was that the improvement of error and 

excitation function in MDQN increased its CU and system 

application rate, greatly optimizing the calculation steps of 

action space. Ablation experiments assessed component 

contributions to the MDQN algorithm's performance. 

Three variants were tested: MDQN-NoER (without 

experience replay), MDQN-NoTDP (without TD-based 

priority), and full MDQN (with both). Evaluated in the 

same IIoT environment using channel utilization, system 

performance, rate, and delay metrics across 10 trials, 

results are in Table 4. 
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Figure 8: Training effect diagram of the research algorithm. 
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Table 4: Ablation results. 

Algorithma Channel utilization System and rate (bits/s/Hz) System delay (ms) 

MDQN-NoER 82.1% 18.5 0.38 

MDQN-NoTDP 86.7% 21.3 0.32 

MDQN(Complete algorithm) 91.5% 23.2 0.27 

 

Table 4 shows that removing experience replay 

(MDQN-NoER) severely harmed algorithm performance, 

reducing channel utilization, system efficiency, and rate 

while increasing latency, highlighting its critical role. 

Removing TD-based priority (MDQN-NoTDP) also 

degraded performance but less so, indicating its lesser 

impact. The full MDQN, combining both mechanisms, 

achieves optimal performance with the best metrics, 

demonstrating the importance of their synergy. 

3.2 Model performance testing 

During the training and application process of DQN, 

various problems such as overfitting, under fitting, and 

sample bias may occur. Research on improving the DQN 

algorithm and conducting robustness analysis can help 

identify these problems and improve the credibility of the 

algorithm. During the testing process, it is necessary to 

analyze the resource situation in its initial state. Factors 

such as channel conditions, data requirements, and 

number of devices can all affect the management of DQN 

resources. Channel conditions (e.g., gain and noise) 

directly affect signal transmission quality, with poor 

conditions increasing error rates and requiring DQN to 

adjust resource allocation for reliability. Data 

requirements varied by priority, demanding tailored 

latency and bandwidth, while growing device numbers 

intensify resource competition, compelling DQN to 

optimize allocation efficiency. Figure 10 shows the CU 

and system application of various algorithms. 

Figure 10 (a) indicates the comparison results of CU 

rates of different algorithms at arrival rates, and Figure 10 

(b) indicates the comparison results of average rates of 

different algorithms at arrival rates. From Figure 10 (a), in 

the test of channel utilization, a key metric, the channel 

utilization of each algorithm generally increased with the 

arrival rate. When the arrival rate was 0.4, the MDQN 

algorithm achieved a channel utilization of about 60%, the 

DQN algorithm about 40%, the SAA about 30%, and the 

RA about 25%. When the arrival rate exceeded 1.0, the 

MDQN algorithm's channel utilization rapidly rose to over 

94%, while the DQN algorithm's channel utilization was 

around 80%, the SAA's about 70%, and the RA's about 

65%. This indicated that the MDQN algorithm 

significantly outperformed other algorithms in terms of 

channel utilization, with an improvement of about 34% 

compared to the SAA and about 45% compared to the RA, 

demonstrating superior performance. Similarly, in the 

average and rate metric tests shown in Figure 10(b), a 

similar trend was observed. As the arrival rate increased, 

the average and rate metrics of each algorithm also rose 

gradually. When the arrival rate exceeded 1.0, the MDQN 

algorithm's average and rate metrics reached over 25 

bits/s/Hz, significantly surpassing other algorithms, with a 

notable improvement compared to the SAA and the RA. 

Additionally, compared to the DQN algorithm, the 

MDQN algorithm showed a more significant performance 

advantage at lower arrival rates. The comparison results of 

the transmission success rate of each algorithm task and 

the average reward of U are shown in Figure 11. 
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Figure 10: Robustness test results of different algorithms under arrival rates. 
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Figure 11: Comparison of task transmission success rates and average rewards on mobile devices for various 

algorithms. 

 

Figure 11 (a) indicates the comparison results of task 

transmission success rates for various algorithms, and 

Figure 11 (b) indicates the comparison results of average 

rewards for mobile devices for various algorithms. From 

Figure 11 (a), overall, as the number of mobile devices 

increased, the success rate of each algorithm task 

transmission decreased. Among them, the success rate of 

MDQN algorithm task transmission was superior to other 

comparative algorithms, and its success rate could reach 

over 95% when the number of mobile devices was less 

than 15. From figure 11 (b), as mobile device numbers 

rose, all algorithms saw reduced average rewards, but 

MDQN achieved the highest average reward, 

outperforming others. This decline stemmed from 

increased co-channel interference, degraded signal 

quality, higher transmission delays, energy consumption, 

and failure rates, which collectively undermined system 

consistency, reliability, and overall performance. The 

comparison results of the latency of each algorithm system 

are shown in Figure 12. 

From Figure 12, as the system bandwidth increased, 

the latency of each algorithm decreased, and the MDQN 

algorithm performed the best, with low system latency and 

computational costs. The MDQN algorithm had the lowest 

system latency under different numbers of blockchain 

nodes, and could quickly learn better RSAL schemes. The 

RA had a high latency, about 0.5-0.9ms higher than 

MDQN. The MDQN algorithm had a low system latency, 

effectively reducing task processing time. 

In conclusion, to fully ascertain the real-world 

validity of the MDQN algorithm in IoT big data 

processing and the optimal use of communication 

channels, a set of rigorous and in-depth simulation tests 

were conducted. The aim was to skillfully incorporate the 

MDQN algorithm into the new generation of intelligent 

IoT network systems. In the test, multiple data streams of 

different business types were simulated, and through the 

processing and analysis of these data, the CU rate was 

accurately calculated. The results are shown in Figure 13. 

From Figure 13, as the number of iterations increased, 

the effective CU rates of the traditional and research 

schemes gradually increased and tended to stabilize. 

Among them, under the research scheme, when the 

iteration number was 70, the effective utilization rate 

(EUR) of the channel rapidly increased and tended to 

stabilize, reaching 100%. However, under the traditional 

scheme, the EUR of the channel was less than 40%. The 

results showed that the EUR of the channel under the 

research scheme was higher, proving the effectiveness of 

the research algorithm in wireless RSMG. 

Finally, to evaluate the computational complexity of 

the MDQN algorithm, it was compared with the standard 

DQN. In the standard DQN, assuming a state space of size 

S , an action space of size A , and each layer of the neural 

network having 
in  neurons (with i  layers), the main 

computational complexity comes from the forward and 

backward propagation of the neural network, which is 

approximately 
2

i

i

O n
 
 
 
 . The MDQN algorithm 

improves upon the standard DQN by adding action space 

compression and a priority experience replay strategy 

based on TD errors. While action space compression 

reduced the number of actions, it also incurred additional 

computational costs, estimated at ( )O A . The priority 

experience replay strategy adds extra computation when 

sampling and updating the importance weights, estimated 

at ( )O N  (with N  being the size of the experience 

buffer). Overall, the MDQN algorithm has a 

computational complexity of 
2

i

i

O n A N
 

+ + 
 
 , slightly 

higher than the standard DQN but within an acceptable 

range, with a significant performance improvement. 

To investigate the performance of MDQN in larger 

and more complex IIoT networks, experiments were 

conducted in a network comprising 300 devices. The 

algorithms DQN, SAA, and RA were compared, with 

evaluation metrics including channel utilization, system 

and rate, and system delay. Each metric was tested 10 

times independently, with the average values and 95% 

confidence intervals calculated. Additionally, a 

significance test was performed (p<0.05 indicates a 

significant difference). The experimental results are 

presented in Table 5. 
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Figure 12: Comparison of time delay results of various algorithm systems. 
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Figure 13: Changes in CU curve in random environment. 

Table 5: MDQN performance in large-scale IIoT networks. 

Algor
ithm 

Channel utilization (mean ± 
95% confidence interval) 

System and rate (bits/s/Hz) (mean ± 
95% confidence interval) 

System delay (ms) (mean ± 
95% confidence interval) 

Significance test 
(compared with MDQN) 

MDQ

N 
91.5%±1.2% 23.2±0.8 0.27±0.02 - 

DQN 84.3%±1.5% 19.8±1.0 0.34±0.03 p<0.05 

SAA 68.7%±2.0% 10.5±1.2 0.43±0.04 p<0.05 

RA 59.2%±1.8% 7.8±0.9 0.51±0.05 p<0.05 

As shown in Table 5, the MDQN algorithm 

maintained excellent performance in larger-scale IIoT 

networks, achieving a channel utilization rate of 91.5% 

(95% confidence interval: 90.3%-92.7%), a system and 

rate of 23.2bits/s/Hz (95% confidence interval: 22.4-

24.0bits/s/Hz), and a system delay of only 0.27ms (95% 

confidence interval: 0.25-0.29ms). Compared with other 

algorithms, the MDQN algorithm showed significant 

differences (p<0.05), demonstrating its strong 

generalization and scalability in more complex network 

environments. 

The experiments showed MDQN surpassed PPO and 

A3C in channel utilization and system rate. MDQN's 

enhanced DQN structure, combined with action space 

compression and TD error-based prioritized experience 

replay, enabled efficient and accurate resource allocation 

in discrete IIoT spaces. It converged faster, offering a 

practical edge in real-time IIoT applications requiring 
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rapid network adaptation, unlike PPO and A3C, which 

need more training iterations. This confirmed MDQN's 

effectiveness and superiority in IIoT settings. 

4 Discussion 
After presenting the experimental results, it is crucial to 

critically compare the performance of the proposed 

MDQN algorithm with the methods reviewed in the 

Related Work section. In terms of convergence speed, 

MDQN demonstrated a significant advantage over the 

traditional DQN algorithm. As shown in the training effect 

figures, MDQN achieved a stable state with fewer training 

iterations, while DQN required more iterations to 

converge. This is consistent with the findings of 

Naderializadeh N et al. [8], who also employed deep 

reinforcement learning for resource management but did 

not incorporate the improvements in action space 

compression and prioritized experience replay as in 

MDQN. 

In terms of accuracy, MDQN achieved higher channel 

utilization and system sum rate compared to SAA and RA 

algorithms. This is because MDQN can better adapt to the 

dynamic IIoT environment by learning from historical 

experiences and making more informed resource 

allocation decisions. Shen Y et al. [10] used graph neural 

networks for radio resource management, which also 

showed good performance in large-scale scenarios. 

However, MDQN's approach of combining Markov 

decision processes with improved DQN provides a more 

flexible and efficient solution for IIoT networks. 

Regarding computational efficiency, MDQN's action 

space compression technique reduced the computational 

complexity, making it more suitable for resource-

constrained IIoT devices. Although it introduced some 

additional computational overhead for prioritized 

experience replay, the overall performance gain 

outweighed this cost. In terms of robustness, MDQN 

performed well under different network conditions, such 

as varying arrival rates and system bandwidths. This is in 

contrast to some of the methods reviewed, which may 

struggle to adapt to changing network environments. For 

example, the whale optimization algorithm proposed by 

Pham Q V et al. [9] focused on energy efficiency and 

spectrum efficiency trade-offs but may not be as robust in 

handling dynamic network loads as MDQN. 

5 Conclusion 
A wireless RSMG algorithm based on MDQN was 

proposed for IIoT systems containing multiple UEs and 

multiple spectrum resources, which combined MAC 

frame structure, spatial compression strategy, and TD-

based priority experience replay strategy. The outcomes 

showed that the MDQN algorithm had substantially raised 

performance after training, surpassing RA and SAA, 

achieving high CU and system rate, and converging faster 

than DQN. When the reach rate was greater than 1.0, the 

channel rate and average sum rate of the MDQN algorithm 

reached 94% and 25bits/s/Hz respectively, significantly 

better than the compared algorithms, and more than twice 

as good as the SAA and RA.As the system bandwidth 

increased, the latency of each algorithm gradually 

decreased. Among them, the performance of the MDQN 

algorithm was superior to the compared algorithms, with 

lower system latency and computational costs, and the 

lowest system latency under different numbers of 

blockchain nodes. However, this study proposes that 

wireless RSMG algorithms have a high demand for 

computing resources due to their combination of multiple 

structures. To address these issues, lightweight network 

models will be explored in the future to reduce 

computational resource requirements. Meanwhile, 

algorithm performance can be improved through 

reasonable data preprocessing and enhancement. 

The proposed algorithm excelled in simulations but 

faces real-world deployment challenges, primarily due to 

high computational demands from its integrated 

structures, which edge devices with limited power may 

struggle to handle. To address this, lightweighting through 

model compression and code optimization is essential to 

reduce computational complexity and enhance execution 

efficiency. Additionally, energy consumption must be 

managed to prevent excessive battery drain during 

operation. 

6 Funding 
The research is supported by: Liaoning Province 

Education Science 14th Five Year Plan Project: Research 

on the Integration System of Innovation and 

Entrepreneurship Education and Professional Education in 

Applied Undergraduate Universities (No. JG21EB039); 

Research Project on Adult Continuing Education in the 

14th Five Year Plan of China Adult Education 

Association: Innovative Research on Cultivating New 

Vocational Farmers through Adult Continuing Education 

under the Rural Revitalization Strategy (No. 2023-621Y). 

 

7 References 
[1] Fatima Hussain, Syed Ali Hassan, Rasheed Hussain, 

and Ekram Hossain. Machine learning for resource 

management in cellular and IoT networks: 

potentials, current solutions, and open challenges. 

IEEE Communications Surveys & Tutorials, 

22(2):1251-1275, 

2020.https://doi.org/10.1109/COMST.2020.296453

4 

[2] Liangkun Yu, Rana Albelaihi, Xiang Sun, Nirwan 

Ansari, and Michael Devetsikiotis. Jointly 

optimizing client selection and resource 

management in wireless federated learning for 

internet of things. IEEE Internet of Things Journal, 

9(6):4385-4395, 

2021.https://doi.org/10.1109/JIOT.2021.3103715 

[3] Wen Wu, Mushu Li, Kaige Qu, Conghao Zhou, 

Xuemin Shen, Weihua Zhuang, Xu Li, and Weisen 

Shi. Split learning over wireless networks: Parallel 

design and resource management. IEEE Journal on 

Selected Areas in Communications, 41(4): 1051-



MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 173 

 

1066, 2023. 

https://doi.org/10.1109/JSAC.2023.3242704 

[4] Ramkumar Jayaraman, Baskar Manickam, Suresh 

Annamalai, Manoj Kumar, Ashutosh Mishra, and 

Rakesh Shrestha. Effective resource allocation 

technique to improve QoS in 5G wireless network. 

Electronics, 12(2): 451-469, 2023. 

https://doi.org/10.3390/electronics12020451 

[5] Anurag Thantharate and Cory Bear. ADAPTIVE6G: 

Adaptive resource management for network slicing 

architectures in current 5G and future 6G systems. 

Journal of Network and Systems Management, 31(1): 

9-32, 2023. https://doi.org/10.1007/s10922-022-

09693-1 

[6] Junhui Zhao, Yiwen Nie, Huan Zhang, and F. 

Richard Yu. A UAV-aided vehicular integrated 

platooning network for heterogeneous resource 

management. IEEE Transactions on Green 

Communications and Networking, 7(1): 512-521, 

2023. https://doi.org/10.1109/TGCN.2023.3234588 

[7] Rathinaraja Jeyaraj, Anandkumar Balasubramaniam, 

Ajay Kumara M.A., Nadra Guizani, and Anand Paul. 

Resource management in cloud and cloud-

influenced technologies for internet of things 

applications,” ACM Computing Surveys, 55(12): 1-

37, 2023. https://doi.org/10.1145/3571729 

[8] Navid Naderializadeh, Jaroslaw J. Sydir, Meryem 

Simsek, and Hosein Nikopour. Resource 

management in wireless networks via multi-agent 

deep reinforcement learning. IEEE Transactions on 

Wireless Communications, 20(6): 3507-3523, 2021. 

https://doi.org/10.1109/TWC.2021.3051163 

[9] Quoc-Viet Pham, Seyedali Mirjalili, Neeraj Kumar, 

Mamoun Alazab, and Won-Joo Hwang. Whale 

optimization algorithm with applications to resource 

allocation in wireless networks. IEEE Transactions 

on Vehicular Technology, 69(4): 4285-4297, 2020. 

https://doi.org/10.1109/TVT.2020.2973294 

[10] Yifei Shen, Yuanming Shi, Jun Zhang, and Khaled 

B. Letaief. Graph neural networks for scalable radio 

resource management: Architecture design and 

theoretical analysis. IEEE Journal on Selected Areas 

in Communications, 39(1): 101-115, 2020. 

https://doi.org/10.1109/JSAC.2020.3036965 

[11] Amin Mohajer, Farid Sorouri, A. Mirzaei, A. 

Ziaeddini, K. Jalali Rad, and Maryam Bavaghar. 

Energy-aware hierarchical resource management 

and backhaul traffic optimization in heterogeneous 

cellular networks. IEEE Systems Journal, 16(4): 

5188-5199, 2022. 

https://doi.org/10.1109/JSYST.2022.3154162 

[12] Helin Yang, Jun Zhao, Zehui Xiong, Kwok-Yan 

Lam, Sumei Sun, and Liang Xiao. Privacy-

preserving federated learning for UAV-enabled 

networks: Learning-based joint scheduling and 

resource management. IEEE Journal on Selected 

Areas in Communications, 39(10): 3144-3159, 2021. 

https://doi.org/10.1109/JSAC.2021.3088655 

[13] Ying Chen, Zhiyong Liu, Yongchao Zhang, Yuan 

Wu, Xin Chen, and Lian Zhao. Deep reinforcement 

learning-based dynamic resource management for 

mobile edge computing in industrial internet of 

things. IEEE Transactions on Industrial Informatics, 

17(7): 4925-4934, 2020. 

https://doi.org/10.1109/TII.2020.3028963 

[14] Huimin Lu, Yin Zhang, Yujie Li, Chi Jiang, and 

Haider Abbas. User-oriented virtual mobile network 

resource management for vehicle communications. 

IEEE Transactions on Intelligent Transportation 

Systems, 22(6): 3521-3532, 2020. 

https://doi.org/10.1109/TITS.2020.2991766 

[15] Jinjin Chao and Mengtian Jiao. Network spectrum 

resource allocation and optimization based on deep 

learning and TRDM. Informatica, 49(13):46-53, 

2025. https://doi.org/10.31449/inf.v49i13.7374 

[16] Qiao Qi, Xiaoming Chen, Caijun Zhong, Chau Yuen, 

and Zhaoyang Zhang. Deep learning-based design of 

uplink integrated sensing and communication. IEEE 

Transactions on Wireless Communications, 23(9): 

10639-10652, 2024. 

https://doi.org/10.1109/TWC.2024.3373797 

[17] Athanasios Karapantelakis, Pegah Alizadeh, 

Abdulrahman Alabassi, Kaushik Dey, and 

Alexandros Nikou. Generative AI in mobile 

networks: a survey. Annals of Telecommunications, 

79(1): 15-33, 2024. https://doi.org/10.1007/s12243-

023-00980-9 

[18] Jiayin Wang, Yafeng Wang, Peng Cheng, Kan Yu, 

and Wei Xiang. DDPG-based joint resource 

management for latency minimization in NOMA-

MEC networks. IEEE Communications Letters, 

27(7): 1814-1818, 2023. 

https://doi.org/10.1109/LCOMM.2023.3266931 

[19] Sadia Islam Nilima, Md Khokan Bhuyan, Md 

Kamruzzaman, Jahanara Akter, Rakibul Hasan, and 

Fatema Tuz Johora. Optimizing resource 

management for IoT devices in constrained 

environments. Journal of Computer and 

Communications, 12(8): 81-98, 2024. 

https://doi.org/10.4236/jcc.2024.128005 

[20] Lei Liu, Jie Feng, Xuanyu Mu, Qingqi Pei, Dapeng 

Lan, and Ming Xiao. Asynchronous deep 

reinforcement learning for collaborative task 

computing and on-demand resource allocation in 

vehicular edge computing. IEEE Transactions on 

Intelligent Transportation Systems, 24(12): 15513-

15526, 2023. 

https://doi.org/10.1109/TITS.2023.3249745 

[21] Andy E. Williams. Human-centric functional 

computing as an approach to human-like 

computation. Artificial Intelligence and 

Applications, 1(2): 118-137, 2023. 

https://doi.org/10.47852/bonviewAIA2202331 

[22] Yujun Wang. Deep learning models in computer data 

mining for intrusion detection. Informatica, 47(4): 

188-196, 2023. 

https://doi.org/10.31449/inf.v47i4.4942 

[23] Bitan Banerjee, Robert C. Elliott, Witold A. 

Krzymień, and Mostafa Medra. Machine-learning-

aided TDD massive MIMO downlink transmission 

for high-mobility multi-antenna users with partial 

uplink channel state information. IEEE Transactions 

https://doi.org/10.1109/JSYST.2022.3154162
https://doi.org/10.1109/JSAC.2021.3088655
https://doi.org/10.1109/TITS.2020.2991766


174 Informatica 49 (2025) 159–174 L. Yu et al. 

 

on Wireless Communications, 24(1): 101-117, 2024. 

https://doi.org/10.1109/TWC.2024.3485128 

 


