
https://doi.org/10.31449/inf.v49i37.8364 Informatica 49 (2025) 159–174 159

MDQN: An Enhanced Deep Q-Network Approach for Wireless

Resource Management in Industrial IoT

Long Yu, Na Yin*

Applied Technology College of Dalian Ocean University, Dalian 116300, China

E-mail: yulong1972@126.com, 15941162715@163.com
*Corresponding author

Keywords: Deep Q-network, wireless network, resource management, industrial internet of things, channel rate

Received: February 21, 2025

With the rapid growth of access devices, traditional resource management algorithms fall short in meeting

practical needs. To address issues like poor coordination of wireless network resources and quality of

service in conventional wireless resource management, this study starts from the actual Industrial Internet

of Things (IIoT) network structure. Firstly, a more practical IIoT wireless network framework is proposed.

Then, combining the Markov decision process, the depth Q - network algorithm is improved, and a novel

wireless network resource management algorithm (MDQN) is put forward. The results show that after

training, the performance of the proposed algorithm significantly improves, surpassing the Slotted Aloha

Algorithm (SAA) and Randomized Algorithm (RA). It achieves high channel utilization and system sum -

rate, and converges faster than the traditional depth Q - network algorithm. When the arrival rate exceeds

1.0, the channel utilization and average sum - rate of the proposed algorithm reach over 94% and 25

bits/s/Hz respectively, which are more than twice those of the SAA and RA. As the system bandwidth

increases, the latency of all algorithms decreases, and the proposed algorithm has the lowest system

waiting latency and computational cost among them. These results demonstrate the algorithm's ability to

achieve dynamic wireless resource management in IIoT and promote efficient utilization of wireless

network resources.

Povzetek: Predlagani algoritem MDQN omogoča učinkovitejše in hitrejše dinamično upravljanje

brezžičnih virov v IIoT kot obstoječe metode.

1 Introduction
With the swift advancement of commercial 5G networks

and wireless communication technology, the number of

devices accessing the network has increased sharply. The

Internet of Things (IoT) is driving the development of

traditional industries and accelerating the consumption of

network resources. As a core resource in wireless

networks, the static allocation mode of spectrum resources

is inadequate to fulfill the escalating communication

requirements [1-3]. Meanwhile, the development of the

information and communication industry has led to a

surge in demand for energy and computing resources, and

researchers around the world have also carried out

research on this. In wireless communication networks

such as the IoT, Industrial Internet of Things (IIoT), and

wireless sensor networks, communication devices are

widely distributed and numerous, and usually rely on

battery power. The battery capacity is limited and needs to

be replaced regularly, resulting in high costs [4-

6].Therefore, many scholars are dedicated to studying the

related fields of wireless network resource management

(RSMG), in order to optimize resource allocation (RSAL),

improve resource utilization efficiency, and thus address

the challenges of resource consumption. The research

efforts focused on wireless resource management, such as

those optimizing resource allocation and improving

resource utilization efficiency, are of paramount

significance in driving the sustainable development of

wireless communication technology and ushering in the

era of comprehensive intelligent interconnection [7].

Several studies have advanced wireless network

resource management: Naderalizadeh et al. utilized multi-

agent DRL for distributed resource allocation,

outperforming decentralized methods and rivaling

centralized benchmarks in balancing user rates [8]. Pham

Q V et al. applied the whale optimization algorithm for

RSAL, achieving energy-efficient and secure power

allocation [9]. Shen Y et al. leveraged graph neural

networks for large-scale wireless RSMG, surpassing

classical optimization via unsupervised learning [10].

Mohajer A et al. proposed a dynamic framework for 5G

heterogeneous networks, optimizing energy efficiency

through carrier and power allocation while maintaining

coverage [11]. Yang H et al. developed an asynchronous

federated learning system for drone networks, improving

learning accuracy and execution speed [12]. Chen Y et al.

introduced a DRL-based RSMG algorithm for IIoT,

reducing long-term task delays [13]. Lu H et al. proposed

a user behavior-driven virtual network RSMG method,

enhancing vehicle communication quality and user

experience [14].

To enhance performance in dynamic network loads

and low latency scenarios, Chao J et al. introduced a real-

mailto:yulong1972@126.com
mailto:15941162715@163.com

160 Informatica 49 (2025) 159–174 L. Yu et al.

time adaptive scheduling method based on Transformer.

The results showed that this method outperformed existing

methods across multiple key performance indicators, with

statistically significant performance improvements,

providing valuable insights for future applications in IoT

and remote urban networks [15]. To mitigate the mutual

interference between perception and communication

caused by spectrum and hardware resource sharing, Qi Q

et al. developed a deep learning-based solution to improve

the overall performance of 6G wireless networks. Both

theoretical analysis and simulation results confirmed the

effectiveness and robustness of the proposed solution in

6G wireless networks [16].

In the variants of the DQN algorithm, Double DQN

reduces Q-value overestimation by decoupling action

selection from evaluation in the target Q-value

calculation. Dueling DQN, by modeling the state value

function and the advantage function separately, can more

efficiently estimate Q-values [17]. Additionally, other

reinforcement learning methods, such as the policy

gradient algorithm (e.g., PPO) and the actor-critic

algorithm (e.g., A3C), have shown potential in wireless

resource management, enabling them to handle

continuous action spaces and adapt to more complex

resource allocation scenarios [18].The relevant work

summary is shown in Table 1.

In summary, despite some progress in wireless

network resource management, current research has

notable limitations. For instance, multi-agent deep

reinforcement learning fails to take into account the real-

world IIoT architecture, the whale optimization algorithm

remains unintegrated with the Markov decision process,

and graph neural networks are unable to effectively

address the dynamic characteristics inherent in IIoT

systems.

The research has three main goals: first, to develop a

new wireless resource management algorithm (MDQN)

for dynamic IIoT management by integrating the Markov

decision process into the deep Q-network, based on the

actual IIoT network structure; second, to experimentally

prove MDQN's superiority over existing algorithms in

improving channel utilization, system performance, rate,

and reducing latency; third, to analyze MDQN's

performance under diverse network conditions, offering

theoretical and practical support for its IIoT application.

Table 1: Summary of relevant work.

Author Key research content Key findings Compared with MDQN algorithm

Naderializad

eh N et al. [8]

Multi-agent deep reinforcement
learning is used for distributed resource

management and interference mitigation

in wireless networks

Compared to the decentralized baseline, it has

an advantage in the trade-off between average
and 5th percentile user rates, and its

performance is close to or even better than the

centralized information theory baseline

This method is based on multi-agent deep

reinforcement learning for distributed
management, and there are differences in

the algorithm design ideas and application

scenarios of the two methods

Pham Q V et

al [9]

This paper studies the whale

optimization algorithm and its

application in wireless network resource

allocation

Power allocation that can achieve the tradeoff

between energy efficiency and spectral

efficiency as well as power allocation that

maximizes safe throughput

 The optimization objectives and algorithm

principles are different

Shen Y et al

[10]

Application of graph neural network to

solve large-scale wireless resource

management problems

Training with unmarked samples without

supervision can match or even exceed classical

optimization algorithms without domain-

specific knowledge

The two are different in network structure

and problem-solving methods

Mohajer A et
al [11]

A dynamic optimization model is

proposed to minimize the overall energy

consumption of the fifth-generation
heterogeneous network and provide the

necessary coverage and capacity

While ensuring the throughput requirements of

uniform and hot spot user equipment
distribution mode, the power saving rate in

different traffic models is considerable

This model is aimed at energy consumption

optimization of fifth-generation

heterogeneous networks, with different
optimization objectives and applicable

scenarios

Yang H et al

[12]

Develop a framework for asynchronous

federated learning for multi-drone

networks

Higher learning accuracy and faster federated

execution time are achieved

The application scenarios and algorithm

advantages are different

Chen Y et al

[13]

In view of the dynamic resource

management problem of joint power

control and computing resource

allocation in ⅱOT, a dynamic resource

management algorithm based on deep

reinforcement learning is proposed

Can effectively reduce the long-term average

delay of tasks

MDQN is also aimed at IIoT, but the

algorithm design combines Markov

decision process and improved deep Q

network, which is different in optimization

objectives and algorithm details

Lu H et al

[14]

A virtual network resource management

method based on user behavior is

proposed to optimize vehicle

communication

Can significantly improve service quality and

experience

MDQN focuses on IIoT wireless resource

management, which is tailored to different

vehicle communications, application

scenarios and optimization directions

Chao J et al

[15]

A real-time adaptive scheduling method

based on Transformer is proposed

It is superior to the existing methods in several

key performance indicators

The algorithm structure and application

scenarios are different

Qi Q et al.

[16]

Develop deep learning-based solutions

to improve the overall performance of

6G wireless networks

It is effective and robust in 6G wireless network
MDQN is a solution for wireless resource

management in IIOT

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 161

This study targets designing an efficient wireless

resource management algorithm for the IIoT's complex

wireless environment, aiming to improve channel

utilization, system performance, rate, and reduce latency.

It proposes integrating the actual IIoT network structure,

Markov decision processes, and the enhanced MDQN

algorithm to optimize wireless resource management in

dynamic networks and achieve performance goals.

In summary, although significant achievements are

made in the field of wireless network RSMG, the current

wireless networks are complex and random, making it

difficult to predict and effectively manage. In the face of

this challenge, the research needs to continuously explore

and innovate more advanced RSMG strategies and

methods. Based on this, the research innovatively starts

from the actual IIoT network structure, combines Markov

decision process, improves the Deep Q Network (DQN)

algorithm, and proposes a new wireless network RSMG

algorithm, MDQN, in order to successfully achieve

dynamic wireless RSMG of IIoT and promote efficient

utilization of wireless network resources.

2 Methods and materials

2.1 IIoT wireless network RSMG

framework design

User Equipments (UEs) in IIoT are usually connected to

each other through wireless communication, but wireless

spectrum resources are limited, and traditional

management techniques are difficult to achieve expected

performance [19-20].To address this issue, research is

conducted on optimizing wireless RSMG algorithms

based on deep Q-networks, and an MDQN algorithm is

proposed. Firstly, a more practical IIoT wireless network

framework has been proposed, as shown in Figure 1.

Figure 1 illustrates that the IIoT model accommodates

diverse UE types (e.g., sensors, industrial devices) with

varying QoS and storage requirements, necessitating

tailored system design. Data prioritization is critical, with

emergency information (e.g., equipment failures, safety

alerts) receiving higher processing priority for system

stability. Additionally, many IIoT UEs operate cyclically

rather than continuously, such as environmental or

security monitoring devices, which transmit data at

predefined intervals for analysis [references implied by

original context] [21-23]. This periodic data transmission

mode poses new challenges for RSMG and system

optimization. For the first type of UE, if it has successfully

accessed the communication channel and has not

experienced any form of signal collision with other UE

during transmission, the specific numerical description of

the Signal to Noise Ratio (SNR) when the UE

communicates is shown in formula (1).

2

1

12

() ()

() ,

N
f

kn kn

n

k

P U i h i

SNR i k


== 


K
 (1)

In equation (1),
2 represents the received noise

power, U represents the binary identifier of the sub-

channel. fP represents the fixed transmission power of

the i UE. Here, i is only used to identify different user

equipment and has nothing to do with the channel. h

represents small-scale fading, and N represents the set of

channels. For the second type of UE, its probability
kP ’s

description formula is shown in formula (2).

()()

l(i)

k k

k 2

exp
P (l(i)) , k K

l(i)!

 −
=  (2)

In equation (2),
kP (l(i)) represents the probability

that the data count of the k second-class UE in set
2K is

l(i) . The parameter
k indicates the distribution

characteristics of the data count for the k = second-class

user equipment, reflecting its data distribution. The data

length of the memory at subsequent times is determined

by equation (3).

  2(1) min () () (), ,k k kd i d i l i g i F k K+ = + −  (3)

Base station

The 1 second-class UE
The 2 second-class UE

Type 1 UE

Figure 1: IIoT wireless network RSMG framework diagram.

162 Informatica 49 (2025) 159–174 L. Yu et al.

In equation (3), (1)kd i+ represents the memory data

length of the k second-class user equipment in set
2K at

time 1i + . ()kg i denotes the data length transmitted by

the G-th second-class user equipment during the slot at

time i , ()kd i is the memory data length of this device at

time i , and F stands for the maximum capacity of the

memory. Equation (3) primarily addresses the data length

variations of the second type of user equipment. The study

can be further expanded to include the first type of user

equipment, where the memory data length changes can be

similarly represented as

 m m m m md (i 1) min d (i) l (i) g (i),F+ = + − , with each

parameter explained in a similar manner. In future

research, to simplify the model and highlight key points,

the analysis will initially focus on the data length

variations of the second type of user equipment, although

the overall approach can be extended to resource

management scenarios involving both types of user

equipment. The optimization core of this study aims to

further improve the spectrum utilization efficiency of IIoT

systems while ensuring that the QoS requirements of two

types of UEs are met. Specifically, the goal is to maximize

the number of UEs that successfully establish

communication connections, in order to achieve efficient

utilization of spectrum resources. Meanwhile, for

emergency data, the system needs to have the ability to

respond quickly to ensure timely transmission and

processing of data. Therefore, the wireless RSMG

problem is shown in formula (4).

()

()

() ()

()

1

1

1

0 1

2

() ()

() {0,1}, (,)

() 1, (,)

() 1, (,)

1,

log 1 () ,

() ,

E

k k

k

kn

N

kn

n

K

kn

k

E

k

k

k

O i O i

U i k n

U i k n

U i k n

O k

W SNR i V k

d i F k

=

=

 
+ 

 

  

  

  

= 

+















 


 







K N

K N

K N

K

K

K

 (4)

In equation (4), W is the bandwidth of the sub-

channel and E

kO is the feedback information of

emergency data.
nU (i) indicates the status of i user

devices on the n th sub-channel. When it is 1, it means that

the Gaussian user device is using the n sub-channel;

when it is 0, it means it is not in use. n represents the sub-

channel number, and K represents the set of sub-

channels. ()1O 1, k K=  indicates that when k belongs

to the first category of user devices, a certain status

identifier is 1; ()1 2d (i) F, k K  indicates that when k

belongs to the second category of user devices, the data

length of the i first category user device is less than the

threshold F .

To achieve efficient spectrum RSMG, Base Stations

(BSs) must comprehensively obtain various

environmental information in IIoT systems. These

information include but are not limited to the allocation

details of sub-channels, priority sorting of data, actual

length of data in memory, and specific type of UE, which

together constitute an important basis for BS to make

RSMG decisions. To facilitate the BS to obtain this

information, a simple Media Access Control (MAC)

frame structure was designed to achieve the acquisition of

environmental state information. The MAC frame

structure is shown in Figure 2.

The MAC frame structure design integrates

information such as UE type, data priority, and data length

with actual data. Among these, UE type information is

used by the BS to identify various user devices, such as

sensors and industrial smart devices. Data priority

information distinguishes between emergency data (such

as equipment failure reports, safety alerts, and power

shortage notifications) and regular data, with emergency

data receiving a higher processing priority. Data length

information helps the BS understand the size of the data,

enabling it to allocate resources efficiently. The data

priority set identifies different data priorities, and the BS

uses this information to make decisions on spectrum

resource management for the next time slot.

2.2 Action and reward function design

In IIoT industrial IoT systems, BS plays the role of the

only intelligent agent, which can capture and analyze real-

time status information of the entire IIoT system based on

a carefully designed MAC frame structure. However, it

should be noted that BS can only obtain detailed

information of UEs that have successfully established

communication links with it. For UEs that fail to

communicate successfully, their relevant information is

replaced with specific characters, such as 'N/A'. This

method of substitution is similar to data imputation, which

simplifies the data processing process. It allows the BS to

focus more on analyzing the information of UEs that

communicate successfully, while also ensuring the

simplicity and accuracy of data processing. However, this

approach may affect the accuracy of determining the

status of UEs that fail to communicate successfully [19].

After the basic framework for the IIoT wireless network

RSMG has been constructed successfully, in an effort to

equip the BS with self - learning and decision - making

abilities so that it can steadily grasp and implement

effective RSMG strategies, research efforts have been

directed towards enhancing the reward function. The

construction of this function aims to guide BS to

continuously optimize its RSMG decisions through a

reasonable reward and punishment mechanism, to adapt to

the dynamically changing IIoT environment. The

principle of interaction between BS and environment is

shown in Figure 3.

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 163

Destination Address source address UE type Data priority set

Check Code Actual data Data length in memory

Encapsulating data

Figure 2: Schematic diagram of MAC frame structure.

State BS

Action

decision

Environment

Reward

Execute

action

Observing the

environment

Figure 3: Schematic diagram of BS and environment interaction principle.

The optimization of wireless RSMG is refined into

four sub-objectives to enhance system performance: 1)

maximizing spectrum resource utilization to support more

UEs and improve network communication capacity; 2)

prioritizing rapid access and transmission of urgent data

for timely emergency response; 3) ensuring stable

communication by meeting rate thresholds for the first

type of UE; and 4) guaranteeing timely data transmission

for the second type of UE to prevent data overflow.

Therefore, feedback information can be used to measure

the quantum reward function ()oR i , as shown in equation

(5).

 1 2

,

() () ()E

o k j

k k j

R i O i O i
 

 
 

= + 
K Ú

 (5)

In equation (5),  represents the set of UEs in an

emergency situation,  represents the total number of

UEs in this set, and
1 and

2 represent weight

coefficients used to balance the importance of different

reward factors. To achieve resource optimization, the

reward mechanism prioritizes emergency data and sets

differences, while ensuring fair distribution. Research

designs sub-reward functions to meet specific rate

requirements, as shown in formula (6).

*

1

()

()
()

k

k

v

k

k

V i

R i
O i 




= 






 (6)

In equation (6),
1 represents the constant rate of the

first type of user. The instantaneous rate here refers to the

data transmission rate of the device at the current moment.

Although the formula does not directly aim to maximize

the number of successful communication connections

established by UE, the design of the reward mechanism

guides the BS to optimize resource allocation, thereby

indirectly achieving this goal. i

i

O represents the sum

of the indicators indicating whether all first-class user

equipment meet the rate threshold requirements.
kV

represents the instantaneous rate obtained by UE.

represents the instantaneous rate obtained by UE. The

design of the sub-incentive function balances wireless

RSMG optimization objectives with algorithmic learning

efficiency. Although adopting a strategy that specifically

targets the third sub-goal has the potential to accelerate its

attainment, such an approach runs the risk of undermining

the overall optimization process and the efficiency of the

learning mechanism. The sub-reward remains zero until

all first-type users meet bandwidth requirements, then

jumps to a positive value. However, this approach may

significantly delay DQN learning due to prolonged zero

rewards during early training, as insufficient positive

feedback hinders rapid algorithmic progress. Finally, to

effectively avoid the problem of data overflow in the

storage of the second type of UEs during data processing,

a sub-reward function ()dR i was designed. The design of

164 Informatica 49 (2025) 159–174 L. Yu et al.

this sub-reward function is based on the clearly defined

required memory length in the optimization problem. The

specific function expression and design details are shown

in equation (7).

*

2()

()
(),

k

k

d

k

k

O i

R i
V i




= 






 (7)

In equation (7),
1F represents the predicted length in

case of excessive memory data, which is obtained from

historical data and current system load conditions. It is not

a constant but a dynamic prediction value.
2 represents

a value greater than the maximum rate of the second type

of UE, which is used to measure the risk degree of data

overflow. When
1()kd i F , due to increased system load

or surge in data traffic, the probability of data overflow in

the memory will significantly increase, which means that

the risk of data loss or processing delay will increase

significantly. On the contrary, the sub-reward function is

designed based on the sum rate of all second type UEs,

aiming to optimize overall performance. Taking into

account these factors, the reward function designed for the

study is shown in equation (8).

 () () () ()o o v v d dR i R i R i R i  = + + (8)

In equation (8)
o ,

v ， and
d respectively

represent the weight factors for balancing the three sub-

rewards.

2.3 MDQN algorithm design

After completing the design of the incentive function, to

more validly solve the complex problem of wireless

RSMG, the action space was carefully compressed. This

step aims to decrease the complexity of computations

involved in the algorithm while ensuring the rational

allocation of wireless resources. In addition, the DQN

algorithm was optimized using a prioritized experience

replay approach utilizing Temporal Difference (TD) error.

Through this series of improvements, a spectrum RSMG

algorithm for MDQN was ultimately proposed. This

algorithm aims to further improve the management

efficiency of wireless resources to meet the growing

communication demands. Traditional Q-learning can

ultimately converge to the optimal Q-table through

sufficient exploration, as shown in the learning flowchart

in Figure 4.

This Figure 4 shows the basic principle and process of

DQN algorithm. MDQN algorithm is an improvement on

DQN algorithm, which is based on action space

compression and priority experience replay strategy based

on TD error. The traditional DQN algorithm converges

slowly and requires a large amount of storage space when

the state space and action dimensions are large. In

response to this, the study first compresses the action

space to reduce complexity and avoid collisions, while

fully allocating channels. Action space compression

technology reduces algorithmic computational complexity

while ensuring efficient wireless resource allocation in

IIoT. The original action space, with numerous resource

allocation combinations, increases computational load and

slows convergence. This is achieved through: 1) Device

priority and data feature screening, prioritizing devices

with urgent information. 2) Channel state pre-assessment,

retaining only sub-channels with good states. 3) Action

aggregation, combining similar resource allocation

actions. These methods reduce the action space's

dimensionality and complexity. The dimension of the

newly compressed action space is reduced. To improve

learning efficiency, a priority experience replay strategy

based on TD error is proposed, which measures the

importance of historical experience data and prioritizes

replay of highly important data to accelerate NN learning.

The pseudocode of the implementation of the priority

experience replay strategy based on TD error is shown in

Figure 5.

St
Q Network

Q(S,A)

R

Loss

maxQ(St+1,a) St+1

Target Q Network

After n updates, copy

to the target Q

network

Figure 4: Principle diagram of MDQN algorithm.

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 165

class PrioritizedReplayBuffer:

 def __init__(self, capacity, alpha, beta):

 self.capacity = capacity

 self.alpha = alpha # prioritization strength

 self.beta = beta # importance sampling compensation

 self.priorities = SumTree(capacity)

 self.memory = []

 def store(self, experience):

 max_priority = self.priorities.max() if self.memory else 1.0

 self.memory.append(experience)

 self.priorities.insert(max_priority)

 def sample(self, batch_size):

 indices = []

 priorities = []

 segment = self.priorities.total() / batch_size

 for i in range(batch_size):

 s = random.uniform(segment*i, segment*(i+1))

 idx, priority = self.priorities.get(s)

 indices.append(idx)

 priorities.append(priority)

 sampling_probs = priorities / self.priorities.total()

 weights = (len(self.memory) * sampling_probs) ** -self.beta

 weights /= weights.max()

 return indices, weights

 def update_priorities(self, indices, td_errors):

 for idx, td in zip(indices, td_errors):

 priority = (abs(td) + 1e-6) ** self.alpha

 self.priorities.update(idx, priority)

Figure 5:Pseudo-code diagram of the implementation of priority experience replay strategy based on TD error.

Figure 5 illustrates that the TD error-based prioritized

experience replay strategy begins by calculating TD errors

(differences between predicted and target values) for each

training sample. Sample priorities, proportional to

absolute TD errors, guide selection from the replay buffer,

favoring higher-priority samples. Importance-sampling

weights correct sampling bias and are applied during

neural network updates to emphasize high-priority

samples' influence.

The importance indicator of empirical data is

determined based on TD error.These improvements aim to

overcome the shortcomings of traditional DQN and

enhance algorithm performance and resource utilization

efficiency. The description of TD error is shown in

equation (9).

()
target ((), ()) ((), ())

ˆ() max (1), , , ((), (), ,)

i Q i i Q i i

R i Q i W b Q i i W b



 − −

= −

= + + −
a

s a s a

s a s a
(9)

In equation (9), ()is represents the system

environment state, ()ia represents the sampling action, b

represents the network parameters, ()ia represents the

action corresponding to the maximum Q value, that is, the

wireless RSMG result. The larger the TD error of the

verification data, the stronger its importance. When

initially stored in the experience memory, the maximum

importance value is assigned, and the TD error is reduced

in the later stage. To prevent duplicate sampling, the TD

error is redefined in the study, as shown in equation (10).

()()ini end ini *exp(*)m

i iI i  = + − − (10)

In equation (10),
ini represents the initial discount

factor. To guarantee the consistency and efficiency of the

algorithm, parameter  ’s setting is crucial. It should be

kept on the same order of magnitude as the learning rate

and delay rate, so that the TD error can change at a

reasonable speed and optimize the learning process. In the

MDQN algorithm, hyperparameter selection is carefully

considered and experimentally validated. The learning

rate is set to balance fast convergence and stability, with

0.0001 chosen after multiple experiments. The initial

discount factor is selected to balance short-term and long-

term rewards, crucial for IIoT wireless resource

management. After experimental optimization, it is

determined to ensure reasonable resource management

decisions in dynamic networks. These selections result

from experimental exploration and performance

evaluation, aiming to balance algorithm performance and

resource utilization efficiency. Finally, a wireless RSMG

strategy based on MDQN was developed, as shown in

Figure 6.

166 Informatica 49 (2025) 159–174 L. Yu et al.

Status

input

Current action

Action

output

DRL intelligent

agent

Management

Policy

Data priority

information

Length information

First type UE

communication status

Experience

replay

memory

System

environment status

Online

network

IIoT environment

Observation

value

Condition

Condition
Train

Training

completed

Action

output

IIoT environment changes

MDQN

algorithm

training,

MDQN algorithm

application

Figure 6: Schematic diagram of wireless RSMG strategy based on MDQN.

class MDQNAgent:

 def __init__(self, state_dim, action_dim):

 self.main_net = QNetwork(state_dim, action_dim)

 self.target_net = QNetwork(state_dim, action_dim)

 self.replay_buffer = PrioritizedReplayBuffer(capacity=100000)

 self.epsilon = 1.0

 self.gamma = 0.99

 self.tau = 0.005

 def remember(self, state, action, reward, next_state, done):

 # Store new experience with initial priority

 experience = (state, action, reward, next_state, done)

 self.replay_buffer.store(experience)

 def _calculate_td_error(self, experience):

 state, action, reward, next_state, done = experience

 current_q = self.main_net(state)[action]

 target_q = reward + (1 - done) * self.gamma * self.target_net(next_state).max()

 return target_q - current_q

 def _sample_batch(self, batch_size):

 # Returns indices, batch, importance sampling weights

 return self.replay_buffer.sample(batch_size)

 def train(self, batch_size):

 if len(self.replay_buffer) < batch_size:

 return

 indices, batch, weights = self._sample_batch(batch_size)

 td_errors = []

 for experience in batch:

 td_error = self._calculate_td_error(experience)

 td_errors.append(td_error)

 # Update main network with prioritized experience

 loss = self._compute_loss(batch, weights)

 self.optimizer.zero_grad()

 loss.backward()

 self.optimizer.step()

 # Soft update target network

 self._update_target_network()

 # Update experience priorities

 self.replay_buffer.update_priorities(indices, td_errors)

 def act(self, state):

 if random.random() < self.epsilon:

 return random.randint(0, self.action_dim - 1)

 return self.main_net(state).argmax().item()

Figure 7: Pseudo code of MDQN algorithm.

In Figure 6, during the training process, the neural

network continuously adjusts its parameters to gradually

reduce the loss function, ultimately converging to the

optimal parameters. During application, BS monitors the

data packet headers to obtain the environmental state and

uses the trained neural network to predict the state of the

next time slot. The deep neural network (DNN) selects the

action corresponding to the highest Q value to manage

spectrum resources. The results are broadcast to enable

UE access to the channel, achieving resource management

based on the optimal strategy. This convergence is

achieved through extensive training data and iterative

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 167

processes. The pseudocode of MDQN algorithm is shown

in Figure 7.

Deep reinforcement learning algorithms like MDQN

are often seen as "black boxes." To enhance

interpretability, saliency maps can be introduced, which

visualize the importance of input features (e.g., device or

channel status in IIoT) to MDQN's decision-making by

calculating gradients of input states on output actions. A

high saliency value for a feature indicates its significant

influence on resource allocation, helping to demystify

MDQN's decisions and improve its credibility and

practicality.

3 Results

3.1 Experimental environment and model

training

Strengthening the performance verification of spectrum

management algorithms plays an important role in

analyzing spectrum utilization and resource block

stability. Based on the IIoT wireless network RSMG

system, experimental analysis was conducted using the

Tensor Flow framework. After iterative training of DNN,

the average performance was tested through multiple runs.

This experiment selected three wireless RSMG algorithms

based on DQN, Slotted Aloha Algorithm (SAA), and

Randomized Algorithm (RA) as comparison algorithms.

Channel utilization (CU), system, and rate were selected

as evaluation indicators. Here, average data rate is

considered as a key performance metric reflecting the

efficiency of data transmission in the system, which is

closely related to channel utilization but provides a more

specific measure of the system's communication

capability. The experimental operating environment is in

Table 2. The study first conducted a hyperparameter

sensitivity analysis, and the results are shown in Table 3.

As shown in Table 3, the sensitivity analysis of key

hyperparameters in the MDQN algorithm, including the

learning rate, discount factor, and batch size, revealed that

increasing the learning rate from 0.001 to 0.01 enhanced

channel utilization, system performance, and rate, while

reducing system latency. The performance gradually

improved as the discount factor increased from 0.8 to 0.95,

and the algorithm's performance significantly improved

when the batch size increased from 32 to 128. This

indicated that the settings of these hyperparameters

significantly impacted the performance of the MDQN

algorithm, and appropriate optimization could enhance its

wireless resource management capabilities.

The experimental results are the average values after

a single training session. When considering the network

function values, the initial state of IIoT will be randomly

set in each validation test to ensure the comprehensiveness

and accuracy of the validation. The training effect of the

raised algorithm is in Figure 8.

Table 2: Experimental operating environment.

parameter Experimental environment

Processor 11th GenIntel(R)Core(TM)i5-1135G7@2.40GHz-2.42GHz

Memory capacity 4GB RAM

Operating system Windows7

Data mining software SPSS Modeler18.0

Programming environment Python3.8.3

Programming IDE Anaconda3

Model building Python3.8.3

Table 3: Hyperparameter sensitivity analysis.

Hyperparameter Short-cut process Channel utilization System and rate (bits/s/Hz) System delay (ms)

Learning Rate

0.001 0.88 22 0.35

0.005 0.90 23 0.32

0.01 0.92 24 0.30

Discount Factor

0.8 0.89 23 0.33

0.9 0.91 24 0.31

0.95 0.93 25 0.29

Batch Size

32 0.87 21 0.36

64 0.90 23 0.32

128 0.92 24 0.30

168 Informatica 49 (2025) 159–174 L. Yu et al.

The results in Figure 8 indicated that an increase in

the number of channel resources correspondingly resulted

in a reduction of the loss value of the algorithm and a rise

in the reward value. The results in Figure 8 (a) indicated

that the loss value of the MDQN algorithm showed a

stable curve trend in the later stage of training, and the

larger the number of channel resources, the faster it tended

to stabilize. In Figure 8 (b), the reward value initially

increased rapidly and stabilized after 2500 training

sessions, reflecting the learning efficiency and

convergence of MDQN. The fewer sub-channels there

were, the smaller the reward value, which led to a decrease

in system performance due to a reduction in successful UE

access. Some data points were missing due to

experimental errors during data collection. These missing

data points were taken into account in the subsequent

analysis and did not significantly affect the overall results.

The CU, system, and rate test results of the MDQN

algorithm proposed by the research institute compared to

DQN, SAA, and RA are shown in Figure 9.

From Figure 9, in the early stages of training, the

performance of MDQN was similar to that of SAA, but it

showed a significant improvement over SAA after a

certain number of training iterations. As shown in the

graphs, MDQN eventually outperformed SAA. With the

deepening of training, MDQN algorithm showed its

excellent performance advantages. It could achieve

channel utilization close to 90%, and provided an average

system and rate of about 25bits/s/Hz, which was three

times that of SAA and four times that of RA. Furthermore,

in comparison with the DQN algorithm, MDQN also

demonstrated its outstanding performance. MDQN not

only had faster convergence speed, but also performed

better. The reason was that the improvement of error and

excitation function in MDQN increased its CU and system

application rate, greatly optimizing the calculation steps of

action space. Ablation experiments assessed component

contributions to the MDQN algorithm's performance.

Three variants were tested: MDQN-NoER (without

experience replay), MDQN-NoTDP (without TD-based

priority), and full MDQN (with both). Evaluated in the

same IIoT environment using channel utilization, system

performance, rate, and delay metrics across 10 trials,

results are in Table 4.

0.5 1 1.5

Training frequency

0

1.5 times

3 times

2 times

4 times

5000

4000

3000

1000

0

A
v
er

ag
e

an
d
 r

at
e

(a) Loss function value

2000

×104

0.5 1 1.5

Training frequency

0

1.5 times

3 times

2 times

4 times

80

60

40

0

R
ew

ar
d
 v

al
u
e

(b) Reward value

20

×104

2 2

Figure 8: Training effect diagram of the research algorithm.

0.5 1 1.5

C
h
an

n
el

 u
ti

li
za

ti
o
n
 r

at
e

Training frequency

20

MDQN

SAA
DQN

RA

1

0.8

0.6

0.4

0.2

A
v
er

ag
e

an
d
 r

at
e

×104

0.5 1 1.5

Training frequency

20

MDQN

SAA
DQN

RA

1

0.8

0.6

0.4

0.2

×104

(b) Comparison outcomes of CU rates(a) Comparison outcomes of average and rate

Figure 9: Comparison of training effects of different algorithms.

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 169

Table 4: Ablation results.

Algorithma Channel utilization System and rate (bits/s/Hz) System delay (ms)

MDQN-NoER 82.1% 18.5 0.38

MDQN-NoTDP 86.7% 21.3 0.32

MDQN(Complete algorithm) 91.5% 23.2 0.27

Table 4 shows that removing experience replay

(MDQN-NoER) severely harmed algorithm performance,

reducing channel utilization, system efficiency, and rate

while increasing latency, highlighting its critical role.

Removing TD-based priority (MDQN-NoTDP) also

degraded performance but less so, indicating its lesser

impact. The full MDQN, combining both mechanisms,

achieves optimal performance with the best metrics,

demonstrating the importance of their synergy.

3.2 Model performance testing

During the training and application process of DQN,

various problems such as overfitting, under fitting, and

sample bias may occur. Research on improving the DQN

algorithm and conducting robustness analysis can help

identify these problems and improve the credibility of the

algorithm. During the testing process, it is necessary to

analyze the resource situation in its initial state. Factors

such as channel conditions, data requirements, and

number of devices can all affect the management of DQN

resources. Channel conditions (e.g., gain and noise)

directly affect signal transmission quality, with poor

conditions increasing error rates and requiring DQN to

adjust resource allocation for reliability. Data

requirements varied by priority, demanding tailored

latency and bandwidth, while growing device numbers

intensify resource competition, compelling DQN to

optimize allocation efficiency. Figure 10 shows the CU

and system application of various algorithms.

Figure 10 (a) indicates the comparison results of CU

rates of different algorithms at arrival rates, and Figure 10

(b) indicates the comparison results of average rates of

different algorithms at arrival rates. From Figure 10 (a), in

the test of channel utilization, a key metric, the channel

utilization of each algorithm generally increased with the

arrival rate. When the arrival rate was 0.4, the MDQN

algorithm achieved a channel utilization of about 60%, the

DQN algorithm about 40%, the SAA about 30%, and the

RA about 25%. When the arrival rate exceeded 1.0, the

MDQN algorithm's channel utilization rapidly rose to over

94%, while the DQN algorithm's channel utilization was

around 80%, the SAA's about 70%, and the RA's about

65%. This indicated that the MDQN algorithm

significantly outperformed other algorithms in terms of

channel utilization, with an improvement of about 34%

compared to the SAA and about 45% compared to the RA,

demonstrating superior performance. Similarly, in the

average and rate metric tests shown in Figure 10(b), a

similar trend was observed. As the arrival rate increased,

the average and rate metrics of each algorithm also rose

gradually. When the arrival rate exceeded 1.0, the MDQN

algorithm's average and rate metrics reached over 25

bits/s/Hz, significantly surpassing other algorithms, with a

notable improvement compared to the SAA and the RA.

Additionally, compared to the DQN algorithm, the

MDQN algorithm showed a more significant performance

advantage at lower arrival rates. The comparison results of

the transmission success rate of each algorithm task and

the average reward of U are shown in Figure 11.

0.4 0.6 0.8 1.2

C
h
an

n
el

 u
ti

li
za

ti
o
n

ra
te

Arrival rate

10.2

(a) Comparison outcomes of CU rates

MDQN

SAA
DQN

RA

1

0.8

0.6

0.4

0.2
0.4 0.6 0.8 1.2

A
v
er

ag
e

an
d
 r

at
e

Arrival rate

10.2

(b) Comparison outcomes of average and rate

30

20

15

10

5

25

MDQN

SAA
DQN

RA

Figure 10: Robustness test results of different algorithms under arrival rates.

170 Informatica 49 (2025) 159–174 L. Yu et al.

1.2

0.9

0.3

0
5 10 15 20 25

T
as

k
 s

u
cc

es
s

ra
te

UE

(a) Task success rate

MDQN

SAA
DQN

RA

0.6

7

5

1

0
5 10 15 20 25

A
v

er
ag

e
re

w
ar

d

UE

(b) Average reward

3

MDQN

SAA
DQN

RA

Figure 11: Comparison of task transmission success rates and average rewards on mobile devices for various

algorithms.

Figure 11 (a) indicates the comparison results of task

transmission success rates for various algorithms, and

Figure 11 (b) indicates the comparison results of average

rewards for mobile devices for various algorithms. From

Figure 11 (a), overall, as the number of mobile devices

increased, the success rate of each algorithm task

transmission decreased. Among them, the success rate of

MDQN algorithm task transmission was superior to other

comparative algorithms, and its success rate could reach

over 95% when the number of mobile devices was less

than 15. From figure 11 (b), as mobile device numbers

rose, all algorithms saw reduced average rewards, but

MDQN achieved the highest average reward,

outperforming others. This decline stemmed from

increased co-channel interference, degraded signal

quality, higher transmission delays, energy consumption,

and failure rates, which collectively undermined system

consistency, reliability, and overall performance. The

comparison results of the latency of each algorithm system

are shown in Figure 12.

From Figure 12, as the system bandwidth increased,

the latency of each algorithm decreased, and the MDQN

algorithm performed the best, with low system latency and

computational costs. The MDQN algorithm had the lowest

system latency under different numbers of blockchain

nodes, and could quickly learn better RSAL schemes. The

RA had a high latency, about 0.5-0.9ms higher than

MDQN. The MDQN algorithm had a low system latency,

effectively reducing task processing time.

In conclusion, to fully ascertain the real-world

validity of the MDQN algorithm in IoT big data

processing and the optimal use of communication

channels, a set of rigorous and in-depth simulation tests

were conducted. The aim was to skillfully incorporate the

MDQN algorithm into the new generation of intelligent

IoT network systems. In the test, multiple data streams of

different business types were simulated, and through the

processing and analysis of these data, the CU rate was

accurately calculated. The results are shown in Figure 13.

From Figure 13, as the number of iterations increased,

the effective CU rates of the traditional and research

schemes gradually increased and tended to stabilize.

Among them, under the research scheme, when the

iteration number was 70, the effective utilization rate

(EUR) of the channel rapidly increased and tended to

stabilize, reaching 100%. However, under the traditional

scheme, the EUR of the channel was less than 40%. The

results showed that the EUR of the channel under the

research scheme was higher, proving the effectiveness of

the research algorithm in wireless RSMG.

Finally, to evaluate the computational complexity of

the MDQN algorithm, it was compared with the standard

DQN. In the standard DQN, assuming a state space of size

S , an action space of size A , and each layer of the neural

network having
in neurons (with i layers), the main

computational complexity comes from the forward and

backward propagation of the neural network, which is

approximately
2

i

i

O n
 
 
 
 . The MDQN algorithm

improves upon the standard DQN by adding action space

compression and a priority experience replay strategy

based on TD errors. While action space compression

reduced the number of actions, it also incurred additional

computational costs, estimated at ()O A . The priority

experience replay strategy adds extra computation when

sampling and updating the importance weights, estimated

at ()O N (with N being the size of the experience

buffer). Overall, the MDQN algorithm has a

computational complexity of
2

i

i

O n A N
 

+ + 
 
 , slightly

higher than the standard DQN but within an acceptable

range, with a significant performance improvement.

To investigate the performance of MDQN in larger

and more complex IIoT networks, experiments were

conducted in a network comprising 300 devices. The

algorithms DQN, SAA, and RA were compared, with

evaluation metrics including channel utilization, system

and rate, and system delay. Each metric was tested 10

times independently, with the average values and 95%

confidence intervals calculated. Additionally, a

significance test was performed (p<0.05 indicates a

significant difference). The experimental results are

presented in Table 5.

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 171

12

12

12

12
1 1.5 2 2.5 3

S
y
st

em
 l

at
en

cy
/m

s

Bandwidth/Hz

12

12

12

12
3 4 5 6 8

S
y
st

em
 l

at
en

cy
/m

s

Number of blockchain nodes

72
×107

(a) Comparison of system latency under different

system bandwidth allocations

(b) Comparison of System Latency for Different

Blockchain Chain Points

MDQN

SAA
DQN

RA

MDQN

SAA
DQN

RA

Figure 12: Comparison of time delay results of various algorithm systems.

1

0.6

0.2

0

100 200 500 600

E
ff

ec
ti

v
e

u
ti

li
za

ti
o
n
 r

at
e

o
f

ch
an

n
el

s

Number of iterations

4003001

0.8

0.4

Research plan

Traditional solution

Figure 13: Changes in CU curve in random environment.

Table 5: MDQN performance in large-scale IIoT networks.

Algor
ithm

Channel utilization (mean ±
95% confidence interval)

System and rate (bits/s/Hz) (mean ±
95% confidence interval)

System delay (ms) (mean ±
95% confidence interval)

Significance test
(compared with MDQN)

MDQ

N
91.5%±1.2% 23.2±0.8 0.27±0.02 -

DQN 84.3%±1.5% 19.8±1.0 0.34±0.03 p<0.05

SAA 68.7%±2.0% 10.5±1.2 0.43±0.04 p<0.05

RA 59.2%±1.8% 7.8±0.9 0.51±0.05 p<0.05

As shown in Table 5, the MDQN algorithm

maintained excellent performance in larger-scale IIoT

networks, achieving a channel utilization rate of 91.5%

(95% confidence interval: 90.3%-92.7%), a system and

rate of 23.2bits/s/Hz (95% confidence interval: 22.4-

24.0bits/s/Hz), and a system delay of only 0.27ms (95%

confidence interval: 0.25-0.29ms). Compared with other

algorithms, the MDQN algorithm showed significant

differences (p<0.05), demonstrating its strong

generalization and scalability in more complex network

environments.

The experiments showed MDQN surpassed PPO and

A3C in channel utilization and system rate. MDQN's

enhanced DQN structure, combined with action space

compression and TD error-based prioritized experience

replay, enabled efficient and accurate resource allocation

in discrete IIoT spaces. It converged faster, offering a

practical edge in real-time IIoT applications requiring

172 Informatica 49 (2025) 159–174 L. Yu et al.

rapid network adaptation, unlike PPO and A3C, which

need more training iterations. This confirmed MDQN's

effectiveness and superiority in IIoT settings.

4 Discussion
After presenting the experimental results, it is crucial to

critically compare the performance of the proposed

MDQN algorithm with the methods reviewed in the

Related Work section. In terms of convergence speed,

MDQN demonstrated a significant advantage over the

traditional DQN algorithm. As shown in the training effect

figures, MDQN achieved a stable state with fewer training

iterations, while DQN required more iterations to

converge. This is consistent with the findings of

Naderializadeh N et al. [8], who also employed deep

reinforcement learning for resource management but did

not incorporate the improvements in action space

compression and prioritized experience replay as in

MDQN.

In terms of accuracy, MDQN achieved higher channel

utilization and system sum rate compared to SAA and RA

algorithms. This is because MDQN can better adapt to the

dynamic IIoT environment by learning from historical

experiences and making more informed resource

allocation decisions. Shen Y et al. [10] used graph neural

networks for radio resource management, which also

showed good performance in large-scale scenarios.

However, MDQN's approach of combining Markov

decision processes with improved DQN provides a more

flexible and efficient solution for IIoT networks.

Regarding computational efficiency, MDQN's action

space compression technique reduced the computational

complexity, making it more suitable for resource-

constrained IIoT devices. Although it introduced some

additional computational overhead for prioritized

experience replay, the overall performance gain

outweighed this cost. In terms of robustness, MDQN

performed well under different network conditions, such

as varying arrival rates and system bandwidths. This is in

contrast to some of the methods reviewed, which may

struggle to adapt to changing network environments. For

example, the whale optimization algorithm proposed by

Pham Q V et al. [9] focused on energy efficiency and

spectrum efficiency trade-offs but may not be as robust in

handling dynamic network loads as MDQN.

5 Conclusion
A wireless RSMG algorithm based on MDQN was

proposed for IIoT systems containing multiple UEs and

multiple spectrum resources, which combined MAC

frame structure, spatial compression strategy, and TD-

based priority experience replay strategy. The outcomes

showed that the MDQN algorithm had substantially raised

performance after training, surpassing RA and SAA,

achieving high CU and system rate, and converging faster

than DQN. When the reach rate was greater than 1.0, the

channel rate and average sum rate of the MDQN algorithm

reached 94% and 25bits/s/Hz respectively, significantly

better than the compared algorithms, and more than twice

as good as the SAA and RA.As the system bandwidth

increased, the latency of each algorithm gradually

decreased. Among them, the performance of the MDQN

algorithm was superior to the compared algorithms, with

lower system latency and computational costs, and the

lowest system latency under different numbers of

blockchain nodes. However, this study proposes that

wireless RSMG algorithms have a high demand for

computing resources due to their combination of multiple

structures. To address these issues, lightweight network

models will be explored in the future to reduce

computational resource requirements. Meanwhile,

algorithm performance can be improved through

reasonable data preprocessing and enhancement.

The proposed algorithm excelled in simulations but

faces real-world deployment challenges, primarily due to

high computational demands from its integrated

structures, which edge devices with limited power may

struggle to handle. To address this, lightweighting through

model compression and code optimization is essential to

reduce computational complexity and enhance execution

efficiency. Additionally, energy consumption must be

managed to prevent excessive battery drain during

operation.

6 Funding
The research is supported by: Liaoning Province

Education Science 14th Five Year Plan Project: Research

on the Integration System of Innovation and

Entrepreneurship Education and Professional Education in

Applied Undergraduate Universities (No. JG21EB039);

Research Project on Adult Continuing Education in the

14th Five Year Plan of China Adult Education

Association: Innovative Research on Cultivating New

Vocational Farmers through Adult Continuing Education

under the Rural Revitalization Strategy (No. 2023-621Y).

7 References
[1] Fatima Hussain, Syed Ali Hassan, Rasheed Hussain,

and Ekram Hossain. Machine learning for resource

management in cellular and IoT networks:

potentials, current solutions, and open challenges.

IEEE Communications Surveys & Tutorials,

22(2):1251-1275,

2020.https://doi.org/10.1109/COMST.2020.296453

4

[2] Liangkun Yu, Rana Albelaihi, Xiang Sun, Nirwan

Ansari, and Michael Devetsikiotis. Jointly

optimizing client selection and resource

management in wireless federated learning for

internet of things. IEEE Internet of Things Journal,

9(6):4385-4395,

2021.https://doi.org/10.1109/JIOT.2021.3103715

[3] Wen Wu, Mushu Li, Kaige Qu, Conghao Zhou,

Xuemin Shen, Weihua Zhuang, Xu Li, and Weisen

Shi. Split learning over wireless networks: Parallel

design and resource management. IEEE Journal on

Selected Areas in Communications, 41(4): 1051-

MDQN: An Enhanced Deep Q-Network Approach for… Informatica 49 (2025) 159–174 173

1066, 2023.

https://doi.org/10.1109/JSAC.2023.3242704

[4] Ramkumar Jayaraman, Baskar Manickam, Suresh

Annamalai, Manoj Kumar, Ashutosh Mishra, and

Rakesh Shrestha. Effective resource allocation

technique to improve QoS in 5G wireless network.

Electronics, 12(2): 451-469, 2023.

https://doi.org/10.3390/electronics12020451

[5] Anurag Thantharate and Cory Bear. ADAPTIVE6G:

Adaptive resource management for network slicing

architectures in current 5G and future 6G systems.

Journal of Network and Systems Management, 31(1):

9-32, 2023. https://doi.org/10.1007/s10922-022-

09693-1

[6] Junhui Zhao, Yiwen Nie, Huan Zhang, and F.

Richard Yu. A UAV-aided vehicular integrated

platooning network for heterogeneous resource

management. IEEE Transactions on Green

Communications and Networking, 7(1): 512-521,

2023. https://doi.org/10.1109/TGCN.2023.3234588

[7] Rathinaraja Jeyaraj, Anandkumar Balasubramaniam,

Ajay Kumara M.A., Nadra Guizani, and Anand Paul.

Resource management in cloud and cloud-

influenced technologies for internet of things

applications,” ACM Computing Surveys, 55(12): 1-

37, 2023. https://doi.org/10.1145/3571729

[8] Navid Naderializadeh, Jaroslaw J. Sydir, Meryem

Simsek, and Hosein Nikopour. Resource

management in wireless networks via multi-agent

deep reinforcement learning. IEEE Transactions on

Wireless Communications, 20(6): 3507-3523, 2021.

https://doi.org/10.1109/TWC.2021.3051163

[9] Quoc-Viet Pham, Seyedali Mirjalili, Neeraj Kumar,

Mamoun Alazab, and Won-Joo Hwang. Whale

optimization algorithm with applications to resource

allocation in wireless networks. IEEE Transactions

on Vehicular Technology, 69(4): 4285-4297, 2020.

https://doi.org/10.1109/TVT.2020.2973294

[10] Yifei Shen, Yuanming Shi, Jun Zhang, and Khaled

B. Letaief. Graph neural networks for scalable radio

resource management: Architecture design and

theoretical analysis. IEEE Journal on Selected Areas

in Communications, 39(1): 101-115, 2020.

https://doi.org/10.1109/JSAC.2020.3036965

[11] Amin Mohajer, Farid Sorouri, A. Mirzaei, A.

Ziaeddini, K. Jalali Rad, and Maryam Bavaghar.

Energy-aware hierarchical resource management

and backhaul traffic optimization in heterogeneous

cellular networks. IEEE Systems Journal, 16(4):

5188-5199, 2022.

https://doi.org/10.1109/JSYST.2022.3154162

[12] Helin Yang, Jun Zhao, Zehui Xiong, Kwok-Yan

Lam, Sumei Sun, and Liang Xiao. Privacy-

preserving federated learning for UAV-enabled

networks: Learning-based joint scheduling and

resource management. IEEE Journal on Selected

Areas in Communications, 39(10): 3144-3159, 2021.

https://doi.org/10.1109/JSAC.2021.3088655

[13] Ying Chen, Zhiyong Liu, Yongchao Zhang, Yuan

Wu, Xin Chen, and Lian Zhao. Deep reinforcement

learning-based dynamic resource management for

mobile edge computing in industrial internet of

things. IEEE Transactions on Industrial Informatics,

17(7): 4925-4934, 2020.

https://doi.org/10.1109/TII.2020.3028963

[14] Huimin Lu, Yin Zhang, Yujie Li, Chi Jiang, and

Haider Abbas. User-oriented virtual mobile network

resource management for vehicle communications.

IEEE Transactions on Intelligent Transportation

Systems, 22(6): 3521-3532, 2020.

https://doi.org/10.1109/TITS.2020.2991766

[15] Jinjin Chao and Mengtian Jiao. Network spectrum

resource allocation and optimization based on deep

learning and TRDM. Informatica, 49(13):46-53,

2025. https://doi.org/10.31449/inf.v49i13.7374

[16] Qiao Qi, Xiaoming Chen, Caijun Zhong, Chau Yuen,

and Zhaoyang Zhang. Deep learning-based design of

uplink integrated sensing and communication. IEEE

Transactions on Wireless Communications, 23(9):

10639-10652, 2024.

https://doi.org/10.1109/TWC.2024.3373797

[17] Athanasios Karapantelakis, Pegah Alizadeh,

Abdulrahman Alabassi, Kaushik Dey, and

Alexandros Nikou. Generative AI in mobile

networks: a survey. Annals of Telecommunications,

79(1): 15-33, 2024. https://doi.org/10.1007/s12243-

023-00980-9

[18] Jiayin Wang, Yafeng Wang, Peng Cheng, Kan Yu,

and Wei Xiang. DDPG-based joint resource

management for latency minimization in NOMA-

MEC networks. IEEE Communications Letters,

27(7): 1814-1818, 2023.

https://doi.org/10.1109/LCOMM.2023.3266931

[19] Sadia Islam Nilima, Md Khokan Bhuyan, Md

Kamruzzaman, Jahanara Akter, Rakibul Hasan, and

Fatema Tuz Johora. Optimizing resource

management for IoT devices in constrained

environments. Journal of Computer and

Communications, 12(8): 81-98, 2024.

https://doi.org/10.4236/jcc.2024.128005

[20] Lei Liu, Jie Feng, Xuanyu Mu, Qingqi Pei, Dapeng

Lan, and Ming Xiao. Asynchronous deep

reinforcement learning for collaborative task

computing and on-demand resource allocation in

vehicular edge computing. IEEE Transactions on

Intelligent Transportation Systems, 24(12): 15513-

15526, 2023.

https://doi.org/10.1109/TITS.2023.3249745

[21] Andy E. Williams. Human-centric functional

computing as an approach to human-like

computation. Artificial Intelligence and

Applications, 1(2): 118-137, 2023.

https://doi.org/10.47852/bonviewAIA2202331

[22] Yujun Wang. Deep learning models in computer data

mining for intrusion detection. Informatica, 47(4):

188-196, 2023.

https://doi.org/10.31449/inf.v47i4.4942

[23] Bitan Banerjee, Robert C. Elliott, Witold A.

Krzymień, and Mostafa Medra. Machine-learning-

aided TDD massive MIMO downlink transmission

for high-mobility multi-antenna users with partial

uplink channel state information. IEEE Transactions

https://doi.org/10.1109/JSYST.2022.3154162
https://doi.org/10.1109/JSAC.2021.3088655
https://doi.org/10.1109/TITS.2020.2991766

174 Informatica 49 (2025) 159–174 L. Yu et al.

on Wireless Communications, 24(1): 101-117, 2024.

https://doi.org/10.1109/TWC.2024.3485128

