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With the rapid growth of access devices, traditional resource management algorithms fall short in meeting
practical needs. To address issues like poor coordination of wireless network resources and quality of
service in conventional wireless resource management, this study starts from the actual Industrial Internet
of Things (110T) network structure. Firstly, a more practical 10T wireless network framework is proposed.
Then, combining the Markov decision process, the depth Q - network algorithm is improved, and a novel
wireless network resource management algorithm (MDQN) is put forward. The results show that after
training, the performance of the proposed algorithm significantly improves, surpassing the Slotted Aloha
Algorithm (SAA) and Randomized Algorithm (RA). It achieves high channel utilization and system sum -
rate, and converges faster than the traditional depth Q - network algorithm. When the arrival rate exceeds
1.0, the channel utilization and average sum - rate of the proposed algorithm reach over 94% and 25
bits/s/Hz respectively, which are more than twice those of the SAA and RA. As the system bandwidth
increases, the latency of all algorithms decreases, and the proposed algorithm has the lowest system
waiting latency and computational cost among them. These results demonstrate the algorithm's ability to
achieve dynamic wireless resource management in IloT and promote efficient utilization of wireless
network resources.

Povzetek: Predlagani algoritem MDQN omogoca ucinkovitejSe in hitrejSe dinamicno upravijanje

brezzicnih virov v IloT kot obstojece metode.

1 Introduction

With the swift advancement of commercial 5G networks
and wireless communication technology, the number of
devices accessing the network has increased sharply. The
Internet of Things (loT) is driving the development of
traditional industries and accelerating the consumption of
network resources. As a core resource in wireless
networks, the static allocation mode of spectrum resources
is inadequate to fulfill the escalating communication
requirements [1-3]. Meanwhile, the development of the
information and communication industry has led to a
surge in demand for energy and computing resources, and
researchers around the world have also carried out
research on this. In wireless communication networks
such as the 10T, Industrial Internet of Things (l1oT), and
wireless sensor networks, communication devices are
widely distributed and numerous, and usually rely on
battery power. The battery capacity is limited and needs to
be replaced regularly, resulting in high costs [4-
6].Therefore, many scholars are dedicated to studying the
related fields of wireless network resource management
(RSMGQG), in order to optimize resource allocation (RSAL),
improve resource utilization efficiency, and thus address
the challenges of resource consumption. The research
efforts focused on wireless resource management, such as
those optimizing resource allocation and improving

resource utilization efficiency, are of paramount
significance in driving the sustainable development of
wireless communication technology and ushering in the
era of comprehensive intelligent interconnection [7].

Several studies have advanced wireless network
resource management: Naderalizadeh et al. utilized multi-
agent DRL for distributed resource allocation,
outperforming decentralized methods and rivaling
centralized benchmarks in balancing user rates [8]. Pham
Q V et al. applied the whale optimization algorithm for
RSAL, achieving energy-efficient and secure power
allocation [9]. Shen Y et al. leveraged graph neural
networks for large-scale wireless RSMG, surpassing
classical optimization via unsupervised learning [10].
Mohajer A et al. proposed a dynamic framework for 5G
heterogeneous networks, optimizing energy efficiency
through carrier and power allocation while maintaining
coverage [11]. Yang H et al. developed an asynchronous
federated learning system for drone networks, improving
learning accuracy and execution speed [12]. Chen Y et al.
introduced a DRL-based RSMG algorithm for lloT,
reducing long-term task delays [13]. Lu H et al. proposed
a user behavior-driven virtual network RSMG method,
enhancing vehicle communication quality and user
experience [14].

To enhance performance in dynamic network loads
and low latency scenarios, Chao J et al. introduced a real-
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time adaptive scheduling method based on Transformer.
The results showed that this method outperformed existing
methods across multiple key performance indicators, with
statistically significant performance improvements,
providing valuable insights for future applications in loT
and remote urban networks [15]. To mitigate the mutual
interference between perception and communication
caused by spectrum and hardware resource sharing, Qi Q
et al. developed a deep learning-based solution to improve
the overall performance of 6G wireless networks. Both
theoretical analysis and simulation results confirmed the
effectiveness and robustness of the proposed solution in
6G wireless networks [16].

In the variants of the DQN algorithm, Double DQN
reduces Q-value overestimation by decoupling action
selection from evaluation in the target Q-value
calculation. Dueling DQN, by modeling the state value
function and the advantage function separately, can more
efficiently estimate Q-values [17]. Additionally, other
reinforcement learning methods, such as the policy
gradient algorithm (e.g., PPO) and the actor-critic
algorithm (e.g., A3C), have shown potential in wireless

L. Yuetal.

continuous action spaces and adapt to more complex
resource allocation scenarios [18].The relevant work
summary is shown in Table 1.

In summary, despite some progress in wireless
network resource management, current research has
notable limitations. For instance, multi-agent deep
reinforcement learning fails to take into account the real-
world 10T architecture, the whale optimization algorithm
remains unintegrated with the Markov decision process,
and graph neural networks are unable to effectively
address the dynamic characteristics inherent in lloT
systems.

The research has three main goals: first, to develop a
new wireless resource management algorithm (MDQN)
for dynamic IloT management by integrating the Markov
decision process into the deep Q-network, based on the
actual 1loT network structure; second, to experimentally
prove MDQN's superiority over existing algorithms in
improving channel utilization, system performance, rate,
and reducing latency; third, to analyze MDQN's
performance under diverse network conditions, offering
theoretical and practical support for its IloT application.

resource management, enabling them to handle
Table 1: Summary of relevant work.
Author Key research content Key findings Compared with MDQN algorithm
Multi-agent dee reinforcement Compared to the decentralized baseline, it has | This method is based on multi-agent deep
- 1-age P an advantage in the trade-off between average | reinforcement learning for distributed
Naderializad | learning is used for distributed resource : : - -
- A and 5th percentile user rates, and its [ management, and there are differences in
ehNetal. [8] [ management and interference mitigation f is cl han th he algorith Lo licati
in wireless networks performance is close to or even bett_ert an the | the algorithm design ideas and application
centralized information theory baseline scenarios of the two methods
This  paper studies the whale [ Power allocation that can achieve the tradeoff
Pham Q V et | optimization algorithm and its | between energy efficiency and spectral | The optimization objectives and algorithm
al [9] application in wireless network resource | efficiency as well as power allocation that | principles are different
allocation maximizes safe throughput
Apolication of grach neural network to Training with unmarked samples without
Shen Y et al so?\?e lar e-scglep wireless resource supervision can match or even exceed classical | The two are different in network structure
[10] Y optimization algorithms  without domain- | and problem-solving methods

management problems

specific knowledge

Mohajer A et
al [11]

A dynamic optimization model is
proposed to minimize the overall energy
consumption of the fifth-generation
heterogeneous network and provide the
necessary coverage and capacity

While ensuring the throughput requirements of
uniform and hot spot user equipment
distribution mode, the power saving rate in
different traffic models is considerable

This model is aimed at energy consumption
optimization of fifth-generation
heterogeneous networks, with different
optimization objectives and applicable
scenarios

Develop a framework for asynchronous

6G wireless networks

Yang H et al - - Higher learning accuracy and faster federated | The application scenarios and algorithm
[12] federated leaming for multi-drone execution time are achieved advantages are different

networks

In view of the dynamic resource . .

management problem of joint power L\f%ﬁmn:s i:(se(s)i ilmegoritbiygr’ ll\)/llgrktg\s
Chen Y et al | control and computing resource | Can effectively reduce the long-term average degcision rocessg and improved deep Q
[13] allocation in ii OT, a dynamic resource | delay of tasks Process ar P _oeep.

t alqorithm based d network, which is different in optimization
management algorithm based on deep objectives and algorithm details
reinforcement learning is proposed
A virtual network resource management MDQN focuses on 10T wireless resource

Lu H et al [ method based on user behavior is | Can significantly improve service quality and | management, which is tailored to different
[14] proposed to  optimize  vehicle | experience vehicle  communications,  application
communication scenarios and optimization directions
Chao J et al | A real-time adaptive scheduling method | It is superior to the existing methods in several | The algorithm structure and application
[15] based on Transformer is proposed key performance indicators scenarios are different
. Develop deep learning-based solutions . . .

Qi Q et al . - - . - MDQN is a solution for wireless resource
[16] to improve the overall performance of | Itis effective and robust in 6G wireless network management in 110T
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This study targets designing an efficient wireless
resource management algorithm for the 1loT's complex
wireless environment, aiming to improve channel
utilization, system performance, rate, and reduce latency.
It proposes integrating the actual 10T network structure,
Markov decision processes, and the enhanced MDQN
algorithm to optimize wireless resource management in
dynamic networks and achieve performance goals.

In summary, although significant achievements are
made in the field of wireless network RSMG, the current
wireless networks are complex and random, making it
difficult to predict and effectively manage. In the face of
this challenge, the research needs to continuously explore
and innovate more advanced RSMG strategies and
methods. Based on this, the research innovatively starts
from the actual 10T network structure, combines Markov
decision process, improves the Deep Q Network (DQN)
algorithm, and proposes a new wireless network RSMG
algorithm, MDQN, in order to successfully achieve
dynamic wireless RSMG of I1oT and promote efficient
utilization of wireless network resources.

2 Methods and materials

2.1 1loT wireless network RSMG

framework design

User Equipments (UEs) in 10T are usually connected to
each other through wireless communication, but wireless
spectrum resources are limited, and traditional
management techniques are difficult to achieve expected
performance [19-20].To address this issue, research is
conducted on optimizing wireless RSMG algorithms
based on deep Q-networks, and an MDQN algorithm is
proposed. Firstly, a more practical 110T wireless network
framework has been proposed, as shown in Figure 1.
Figure 1 illustrates that the IloT model accommodates
diverse UE types (e.g., sensors, industrial devices) with
varying QoS and storage requirements, necessitating
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tailored system design. Data prioritization is critical, with
emergency information (e.g., equipment failures, safety
alerts) receiving higher processing priority for system
stability. Additionally, many lloT UEs operate cyclically
rather than continuously, such as environmental or
security monitoring devices, which transmit data at
predefined intervals for analysis [references implied by
original context] [21-23]. This periodic data transmission
mode poses new challenges for RSMG and system
optimization. For the first type of UE, if it has successfully
accessed the communication channel and has not
experienced any form of signal collision with other UE
during transmission, the specific numerical description of
the Signal to Noise Ratio (SNR) when the UE
communicates is shown in formula (1).

> P, (0)|h, )

SNR, (i) = = @)

2 1

keK
o

In equation (1), o represents the received noise
power, U represents the binary identifier of the sub-
channel. P represents the fixed transmission power of
the i UE. Here, i is only used to identify different user
equipment and has nothing to do with the channel. h
represents small-scale fading, and N represents the set of
channels. For the second type of UE, its probability P, ’s

description formula is shown in formula (2).
P,y = 7))

I(i)!
In equation (2), P (I(i)) represents the probability
that the data count of the k second-class UE in set K, is
I(i) . The parameter p, indicates the distribution

characteristics of the data count for the k = second-class
user equipment, reflecting its data distribution. The data
length of the memory at subsequent times is determined
by equation (3).

d (i+1) = min{d, (i) +1() - g, (i), F },

. keK, ()

keK, (3)
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Figure 1: l1oT wireless network RSMG framework diagram.
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In equation (3), d, (i+1) represents the memory data
length of the k second-class user equipment in set K, at
time i+1. g, (i) denotes the data length transmitted by

the G-th second-class user equipment during the slot at
time i, d, (i) is the memory data length of this device at

time i, and F stands for the maximum capacity of the
memory. Equation (3) primarily addresses the data length
variations of the second type of user equipment. The study
can be further expanded to include the first type of user
equipment, where the memory data length changes can be
similarly represented as
d,(i+1)=min{d @)+, @()-g,0).F,} ., with each
parameter explained in a similar manner. In future
research, to simplify the model and highlight key points,
the analysis will initially focus on the data length
variations of the second type of user equipment, although
the overall approach can be extended to resource
management scenarios involving both types of user
equipment. The optimization core of this study aims to
further improve the spectrum utilization efficiency of lloT
systems while ensuring that the QoS requirements of two
types of UEs are met. Specifically, the goal is to maximize
the number of UEs that successfully establish
communication connections, in order to achieve efficient
utilization of spectrum resources. Meanwhile, for
emergency data, the system needs to have the ability to
respond quickly to ensure timely transmission and
processing of data. Therefore, the wireless RSMG
problem is shown in formula (4).

{Z(ok (i) +OF (i))}
U,@()e{0.3},(keK,neN)

ZN:Ukn(i)gl,(keK,ne N)

K (4)
DU, <l(keK,neN)

Of =1(keK,)
W log (1+ SNR,(i)) > V,,(k e K))
d (i) <F,(keK,)
In equation (4), W is the bandwidth of the sub-
channel and O; is the feedback information of
emergency data. U, (i) indicates the status of i user

devices on the n th sub-channel. When itis 1, it means that
the Gaussian user device is using the n sub-channel;
when itis 0, it means itis notin use. n represents the sub-
channel number, and K represents the set of sub-

channels. O =1,(k eK,) indicates that when k belongs

to the first category of user devices, a certain status
identifier is 1; d, (i) <F,(k €K, ) indicates that when k
belongs to the second category of user devices, the data

length of the i first category user device is less than the
threshold F.
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To achieve efficient spectrum RSMG, Base Stations
(BSs) must  comprehensively  obtain  various
environmental information in IloT systems. These
information include but are not limited to the allocation
details of sub-channels, priority sorting of data, actual
length of data in memory, and specific type of UE, which
together constitute an important basis for BS to make
RSMG decisions. To facilitate the BS to obtain this
information, a simple Media Access Control (MAC)
frame structure was designed to achieve the acquisition of
environmental state information. The MAC frame
structure is shown in Figure 2.

The MAC frame structure design integrates
information such as UE type, data priority, and data length
with actual data. Among these, UE type information is
used by the BS to identify various user devices, such as
sensors and industrial smart devices. Data priority
information distinguishes between emergency data (such
as equipment failure reports, safety alerts, and power
shortage notifications) and regular data, with emergency
data receiving a higher processing priority. Data length
information helps the BS understand the size of the data,
enabling it to allocate resources efficiently. The data
priority set identifies different data priorities, and the BS
uses this information to make decisions on spectrum
resource management for the next time slot.

2.2 Action and reward function design

In 10T industrial 10T systems, BS plays the role of the
only intelligent agent, which can capture and analyze real-
time status information of the entire 110T system based on
a carefully designed MAC frame structure. However, it
should be noted that BS can only obtain detailed
information of UEs that have successfully established
communication links with it. For UEs that fail to
communicate successfully, their relevant information is
replaced with specific characters, such as 'N/A'. This
method of substitution is similar to data imputation, which
simplifies the data processing process. It allows the BS to
focus more on analyzing the information of UEs that
communicate successfully, while also ensuring the
simplicity and accuracy of data processing. However, this
approach may affect the accuracy of determining the
status of UEs that fail to communicate successfully [19].
After the basic framework for the 1loT wireless network
RSMG has been constructed successfully, in an effort to
equip the BS with self - learning and decision - making
abilities so that it can steadily grasp and implement
effective RSMG strategies, research efforts have been
directed towards enhancing the reward function. The
construction of this function aims to guide BS to
continuously optimize its RSMG decisions through a
reasonable reward and punishment mechanism, to adapt to
the dynamically changing 1loT environment. The
principle of interaction between BS and environment is
shown in Figure 3.
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Figure 2: Schematic diagram of MAC frame structure.
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Figure 3: Schematic diagram of BS and environment interaction principle.

The optimization of wireless RSMG is refined into
four sub-objectives to enhance system performance: 1)
maximizing spectrum resource utilization to support more
UEs and improve network communication capacity; 2)
prioritizing rapid access and transmission of urgent data
for timely emergency response; 3) ensuring stable
communication by meeting rate thresholds for the first
type of UE; and 4) guaranteeing timely data transmission
for the second type of UE to prevent data overflow.
Therefore, feedback information can be used to measure
the quantum reward function R (i), as shown in equation
®).

RM=7 Y OM+nX0f()
keK kUg jec

In equation (5), ¢ represents the set of UEs in an
emergency situation, |g| represents the total number of

UEs in this set, and y and p, represent weight

coefficients used to balance the importance of different
reward factors. To achieve resource optimization, the
reward mechanism prioritizes emergency data and sets
differences, while ensuring fair distribution. Research
designs sub-reward functions to meet specific rate
requirements, as shown in formula (6).

2 Vi)
R,(i)=1¢

3°0,() 14 ©

In equation (6), g4 represents the constant rate of the

first type of user. The instantaneous rate here refers to the
data transmission rate of the device at the current moment.
Although the formula does not directly aim to maximize
the number of successful communication connections
established by UE, the design of the reward mechanism
guides the BS to optimize resource allocation, thereby

indirectly achieving this goal. Zoi represents the sum

of the indicators indicating whether all first-class user
equipment meet the rate threshold requirements. V,

represents the instantaneous rate obtained by UE.
represents the instantaneous rate obtained by UE. The
design of the sub-incentive function balances wireless
RSMG optimization objectives with algorithmic learning
efficiency. Although adopting a strategy that specifically
targets the third sub-goal has the potential to accelerate its
attainment, such an approach runs the risk of undermining
the overall optimization process and the efficiency of the
learning mechanism. The sub-reward remains zero until
all first-type users meet bandwidth requirements, then
jumps to a positive value. However, this approach may
significantly delay DQN learning due to prolonged zero
rewards during early training, as insufficient positive
feedback hinders rapid algorithmic progress. Finally, to
effectively avoid the problem of data overflow in the
storage of the second type of UEs during data processing,
a sub-reward function R, (i) was designed. The design of
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this sub-reward function is based on the clearly defined
required memory length in the optimization problem. The
specific function expression and design details are shown
in equation (7).

2.0i) 4,

Ry (i) = SV, (i), U]

In equation (7), F, represents the predicted length in

case of excessive memory data, which is obtained from
historical data and current system load conditions. It is not
a constant but a dynamic prediction value. g, represents

a value greater than the maximum rate of the second type
of UE, which is used to measure the risk degree of data
overflow. When d, (i) > F, due to increased system load

or surge in data traffic, the probability of data overflow in
the memory will significantly increase, which means that
the risk of data loss or processing delay will increase
significantly. On the contrary, the sub-reward function is
designed based on the sum rate of all second type UEs,
aiming to optimize overall performance. Taking into
account these factors, the reward function designed for the
study is shown in equation (8).

RO =7R,O+7R O +7R0)  (8)
In equation (8) »,, », . and y, respectively

represent the weight factors for balancing the three sub-
rewards.

2.3 MDOQN algorithm design

After completing the design of the incentive function, to
more validly solve the complex problem of wireless
RSMG, the action space was carefully compressed. This
step aims to decrease the complexity of computations
involved in the algorithm while ensuring the rational
allocation of wireless resources. In addition, the DQN
algorithm was optimized using a prioritized experience
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replay approach utilizing Temporal Difference (TD) error.
Through this series of improvements, a spectrum RSMG
algorithm for MDQN was ultimately proposed. This
algorithm aims to further improve the management
efficiency of wireless resources to meet the growing
communication demands. Traditional Q-learning can
ultimately converge to the optimal Q-table through
sufficient exploration, as shown in the learning flowchart
in Figure 4.

This Figure 4 shows the basic principle and process of
DQN algorithm. MDQN algorithm is an improvement on
DQN algorithm, which is based on action space
compression and priority experience replay strategy based
on TD error. The traditional DQN algorithm converges
slowly and requires a large amount of storage space when
the state space and action dimensions are large. In
response to this, the study first compresses the action
space to reduce complexity and avoid collisions, while
fully allocating channels. Action space compression
technology reduces algorithmic computational complexity
while ensuring efficient wireless resource allocation in
I10T. The original action space, with numerous resource
allocation combinations, increases computational load and
slows convergence. This is achieved through: 1) Device
priority and data feature screening, prioritizing devices
with urgent information. 2) Channel state pre-assessment,
retaining only sub-channels with good states. 3) Action
aggregation, combining similar resource allocation
actions. These methods reduce the action space's
dimensionality and complexity. The dimension of the
newly compressed action space is reduced. To improve
learning efficiency, a priority experience replay strategy
based on TD error is proposed, which measures the
importance of historical experience data and prioritizes
replay of highly important data to accelerate NN learning.
The pseudocode of the implementation of the priority
experience replay strategy based on TD error is shown in
Figure 5.

LOSS ..................
(] (]
n H Target Q Network H
' '
(] (]
il ; ;
(] (]
After n updates, copy maxQ(St+1,a) <:: Cj:I
to the target Q ' '
network ' '

Figure 4: Principle diagram of MDQN algorithm.
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class PrioritizedReplayBuffer:

self.capacity = capacity

self.memory =[]

def store(self, experience):

def sample(self, batch_size):
indices =[]
priorities =[]

for i in range(batch_size):

indices.append(idx)
priorities.append(priority)

weights /= weights.max()

return indices, weights

def __init__(self, capacity, alpha, beta):

self.alpha = alpha # prioritization strength
self.beta = beta # importance sampling compensation
self.priorities = SumTree(capacity)

max_priority = self.priorities.max() if self.memory else 1.0
self.memory.append(experience)
self.priorities.insert(max_priority)

segment = self.priorities.total() / batch_size

s = random.uniform(segment*i, segment*(i+1))
idx, priority = self.priorities.get(s)

sampling_probs = priorities / self.priorities.total ()
weights = (len(self.memory) * sampling_probs) ** -self.beta

def update_priorities(self, indices, td_errors):
for idx, td in zip(indices, td_errors):
priority = (abs(td) + 1e-6) ** self.alpha
self.priorities.update(idx, priority)

Figure 5:Pseudo-code diagram of the implementation of priority experience replay strategy based on TD error.

Figure 5 illustrates that the TD error-based prioritized
experience replay strategy begins by calculating TD errors
(differences between predicted and target values) for each
training sample. Sample priorities, proportional to
absolute TD errors, guide selection from the replay buffer,
favoring higher-priority samples. Importance-sampling
weights correct sampling bias and are applied during
neural network updates to emphasize high-priority
samples' influence.

The importance indicator of empirical data is
determined based on TD error.These improvements aim to
overcome the shortcomings of traditional DQN and
enhance algorithm performance and resource utilization
efficiency. The description of TD error is shown in
equation (9).

6 = Quuger (8(1),2(1)) —Q(s(i), a(i))

= R(i) + pmax, Q(s(i+1),aW~,b")-Q(s(i),a(i),W,b) ©)

In equation (9), s(i) represents the system
environment state, a(i) represents the sampling action, b
represents the network parameters, a(i) represents the

action corresponding to the maximum Q value, that is, the
wireless RSMG result. The larger the TD error of the
verification data, the stronger its importance. When
initially stored in the experience memory, the maximum

importance value is assigned, and the TD error is reduced
in the later stage. To prevent duplicate sampling, the TD
error is redefined in the study, as shown in equation (10).

Iim = |5i|(7ini +(Tend ~ Tini )*exp(—S*i))(lO)
In equation (10), 7, represents the initial discount

factor. To guarantee the consistency and efficiency of the
algorithm, parameter s setting is crucial. It should be
kept on the same order of magnitude as the learning rate
and delay rate, so that the TD error can change at a
reasonable speed and optimize the learning process. In the
MDQN algorithm, hyperparameter selection is carefully
considered and experimentally validated. The learning
rate is set to balance fast convergence and stability, with
0.0001 chosen after multiple experiments. The initial
discount factor is selected to balance short-term and long-
term rewards, crucial for IloT wireless resource
management. After experimental optimization, it is
determined to ensure reasonable resource management
decisions in dynamic networks. These selections result
from experimental exploration and performance
evaluation, aiming to balance algorithm performance and
resource utilization efficiency. Finally, a wireless RSMG
strategy based on MDQN was developed, as shown in
Figure 6.
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Figure 6: Schematic diagram of wireless RSMG strategy based on MDQN.

class MDQNAGgent:
def __init__(self, state_dim, action_dim):

self.epsilon = 1.0
self.gamma = 0.99
self.tau = 0.005

self.replay_buffer.store(experience)
def _calculate_td_error(self, experience):

state, action, reward, next_state, done =

current_q = self.main_net(state)[action]

return target_q - current_g

def _sample_batch(self, batch_size):

def train(self, batch_size):
if len(self.replay_buffer) < batch_size:
return
td_errors =[]

for experience in batch:

td_errors.append(td_error)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

# Soft update target network
self._update_target_network()

# Update experience priorities

def act(self, state):
if random.random() < self.epsilon:

self.main_net = QNetwork(state_dim, action_dim)
self.target_net = QNetwork(state_dim, action_dim)
self.replay_buffer = PrioritizedReplayBuffer (capacity=100000)

def remember(self, state, action, reward, next_state, done):
# Store new experience with initial priority
experience = (state, action, reward, next_state, done)

target_q = reward + (1 - done) * self.gamma * self.target_net(next_state).max()

# Returns indices, batch, importance sampling weights
return self.replay_buffer.sample(batch_size)

indices, batch, weights = self._sample_batch(batch_size)

td_error = self._calculate_td_error(experience)

# Update main network with prioritized experience
loss = self._compute_loss(batch, weights)

self.replay_buffer.update_priorities(indices, td_errors)

return random.randint(0, self.action_dim - 1)
return self.main_net(state).argmax().item()

experience

Figure 7: Pseudo code of MDQN algorithm.

In Figure 6, during the training process, the neural
network continuously adjusts its parameters to gradually
reduce the loss function, ultimately converging to the
optimal parameters. During application, BS monitors the
data packet headers to obtain the environmental state and
uses the trained neural network to predict the state of the

next time slot. The deep neural network (DNN) selects the
action corresponding to the highest Q value to manage
spectrum resources. The results are broadcast to enable
UE access to the channel, achieving resource management
based on the optimal strategy. This convergence is
achieved through extensive training data and iterative
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processes. The pseudocode of MDQN algorithm is shown
in Figure 7.

Deep reinforcement learning algorithms like MDQN
are often seen as "black boxes." To enhance
interpretability, saliency maps can be introduced, which
visualize the importance of input features (e.g., device or
channel status in 11oT) to MDQN's decision-making by
calculating gradients of input states on output actions. A
high saliency value for a feature indicates its significant
influence on resource allocation, helping to demystify
MDQN's decisions and improve its credibility and
practicality.

3 Results

3.1 Experimental environment and model
training

Strengthening the performance verification of spectrum
management algorithms plays an important role in
analyzing spectrum utilization and resource block
stability. Based on the IloT wireless network RSMG
system, experimental analysis was conducted using the
Tensor Flow framework. After iterative training of DNN,
the average performance was tested through multiple runs.
This experiment selected three wireless RSMG algorithms
based on DQN, Slotted Aloha Algorithm (SAA), and
Randomized Algorithm (RA) as comparison algorithms.
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Channel utilization (CU), system, and rate were selected
as evaluation indicators. Here, average data rate is
considered as a key performance metric reflecting the
efficiency of data transmission in the system, which is
closely related to channel utilization but provides a more
specific measure of the system's communication
capability. The experimental operating environment is in
Table 2. The study first conducted a hyperparameter
sensitivity analysis, and the results are shown in Table 3.

As shown in Table 3, the sensitivity analysis of key
hyperparameters in the MDQN algorithm, including the
learning rate, discount factor, and batch size, revealed that
increasing the learning rate from 0.001 to 0.01 enhanced
channel utilization, system performance, and rate, while
reducing system latency. The performance gradually
improved as the discount factor increased from 0.8 to 0.95,
and the algorithm's performance significantly improved
when the batch size increased from 32 to 128. This
indicated that the settings of these hyperparameters
significantly impacted the performance of the MDQN
algorithm, and appropriate optimization could enhance its
wireless resource management capabilities.

The experimental results are the average values after
a single training session. When considering the network
function values, the initial state of 11oT will be randomly
set in each validation test to ensure the comprehensiveness
and accuracy of the validation. The training effect of the
raised algorithm is in Figure 8.

Table 2: Experimental operating environment.

parameter Experimental environment
Processor 11th Genlntel(R)Core(TM)i5-1135G7@2.40GHz-2.42GHz
Memory capacity 4GB RAM
Operating system Windows7
Data mining software SPSS Modeler18.0
Programming environment Python3.8.3
Programming IDE Anaconda3
Model building Python3.8.3
Table 3: Hyperparameter sensitivity analysis.
Hyperparameter Short-cut process | Channel utilization | System and rate (bits/s/Hz) System delay (ms)
0.001 0.88 22 0.35
Learning Rate 0.005 0.90 23 0.32
0.01 0.92 24 0.30
0.8 0.89 23 0.33
Discount Factor 0.9 091 24 031
0.95 0.93 25 0.29
32 0.87 21 0.36
Batch Size 64 0.90 23 0.32
128 0.92 24 0.30
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The results in Figure 8 indicated that an increase in
the number of channel resources correspondingly resulted
in a reduction of the loss value of the algorithm and a rise
in the reward value. The results in Figure 8 (a) indicated
that the loss value of the MDQN algorithm showed a
stable curve trend in the later stage of training, and the
larger the number of channel resources, the faster it tended
to stabilize. In Figure 8 (b), the reward value initially
increased rapidly and stabilized after 2500 training
sessions, reflecting the learning efficiency and
convergence of MDQN. The fewer sub-channels there
were, the smaller the reward value, which led to a decrease
in system performance due to a reduction in successful UE
access. Some data points were missing due to
experimental errors during data collection. These missing
data points were taken into account in the subsequent
analysis and did not significantly affect the overall results.
The CU, system, and rate test results of the MDQN
algorithm proposed by the research institute compared to
DQN, SAA, and RA are shown in Figure 9.

From Figure 9, in the early stages of training, the
performance of MDQN was similar to that of SAA, but it
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showed a significant improvement over SAA after a
certain number of training iterations. As shown in the
graphs, MDQN eventually outperformed SAA. With the
deepening of training, MDQN algorithm showed its
excellent performance advantages. It could achieve
channel utilization close to 90%, and provided an average
system and rate of about 25bits/s/Hz, which was three
times that of SAA and four times that of RA. Furthermore,
in comparison with the DQN algorithm, MDQN also
demonstrated its outstanding performance. MDQN not
only had faster convergence speed, but also performed
better. The reason was that the improvement of error and
excitation function in MDQN increased its CU and system
application rate, greatly optimizing the calculation steps of
action space. Ablation experiments assessed component
contributions to the MDQN algorithm's performance.
Three variants were tested: MDQN-NoER (without
experience replay), MDQN-NoTDP (without TD-based
priority), and full MDQN (with both). Evaluated in the
same 10T environment using channel utilization, system
performance, rate, and delay metrics across 10 trials,
results are in Table 4.

4070
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Figure 8: Training effect diagram of the research algorithm.
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Figure 9: Comparison of training effects of different algorithms.
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Table 4: Ablation results.

Algorithma Channel utilization System and rate (bits/s/Hz) System delay (ms)
MDQN-NoER 82.1% 18.5 0.38
MDQN-NoTDP 86.7% 21.3 0.32
MDQN(Complete algorithm) | 91.5% 23.2 0.27

Table 4 shows that removing experience replay
(MDQN-NOER) severely harmed algorithm performance,
reducing channel utilization, system efficiency, and rate
while increasing latency, highlighting its critical role.
Removing TD-based priority (MDQN-NoTDP) also
degraded performance but less so, indicating its lesser
impact. The full MDQN, combining both mechanisms,
achieves optimal performance with the best metrics,
demonstrating the importance of their synergy.

3.2 Model performance testing

During the training and application process of DQN,
various problems such as overfitting, under fitting, and
sample bias may occur. Research on improving the DQN
algorithm and conducting robustness analysis can help
identify these problems and improve the credibility of the
algorithm. During the testing process, it is necessary to
analyze the resource situation in its initial state. Factors
such as channel conditions, data requirements, and
number of devices can all affect the management of DQN
resources. Channel conditions (e.g., gain and noise)
directly affect signal transmission quality, with poor
conditions increasing error rates and requiring DQN to
adjust resource allocation for reliability. Data
requirements varied by priority, demanding tailored
latency and bandwidth, while growing device numbers
intensify resource competition, compelling DQN to
optimize allocation efficiency. Figure 10 shows the CU
and system application of various algorithms.

1

Channel utilization

Arrival rate

(a) Comparison outcomes of CU rates

Figure 10 (a) indicates the comparison results of CU
rates of different algorithms at arrival rates, and Figure 10
(b) indicates the comparison results of average rates of
different algorithms at arrival rates. From Figure 10 (a), in
the test of channel utilization, a key metric, the channel
utilization of each algorithm generally increased with the
arrival rate. When the arrival rate was 0.4, the MDQN
algorithm achieved a channel utilization of about 60%, the
DQN algorithm about 40%, the SAA about 30%, and the
RA about 25%. When the arrival rate exceeded 1.0, the
MDQN algorithm's channel utilization rapidly rose to over
94%, while the DQN algorithm's channel utilization was
around 80%, the SAA's about 70%, and the RA's about
65%. This indicated that the MDQN algorithm
significantly outperformed other algorithms in terms of
channel utilization, with an improvement of about 34%
compared to the SAA and about 45% compared to the RA,
demonstrating superior performance. Similarly, in the
average and rate metric tests shown in Figure 10(b), a
similar trend was observed. As the arrival rate increased,
the average and rate metrics of each algorithm also rose
gradually. When the arrival rate exceeded 1.0, the MDQN
algorithm's average and rate metrics reached over 25
bits/s/Hz, significantly surpassing other algorithms, with a
notable improvement compared to the SAA and the RA.
Additionally, compared to the DQN algorithm, the
MDOQN algorithm showed a more significant performance
advantage at lower arrival rates. The comparison results of
the transmission success rate of each algorithm task and
the average reward of U are shown in Figure 11.

30

Average and rate

Arrival rate

(b) Comparison outcomes of average and rate

Figure 10: Robustness test results of different algorithms under arrival rates.
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Figure 11: Comparison of task transmission success rates and average rewards on mobile devices for various
algorithms.

Figure 11 (a) indicates the comparison results of task
transmission success rates for various algorithms, and
Figure 11 (b) indicates the comparison results of average
rewards for mobile devices for various algorithms. From
Figure 11 (a), overall, as the number of mobile devices
increased, the success rate of each algorithm task
transmission decreased. Among them, the success rate of
MDQN algorithm task transmission was superior to other
comparative algorithms, and its success rate could reach
over 95% when the number of mobile devices was less
than 15. From figure 11 (b), as mobile device numbers
rose, all algorithms saw reduced average rewards, but

MDQN achieved the highest average reward,
outperforming others. This decline stemmed from
increased co-channel interference, degraded signal

quality, higher transmission delays, energy consumption,
and failure rates, which collectively undermined system
consistency, reliability, and overall performance. The
comparison results of the latency of each algorithm system
are shown in Figure 12.

From Figure 12, as the system bandwidth increased,
the latency of each algorithm decreased, and the MDQN
algorithm performed the best, with low system latency and
computational costs. The MDQN algorithm had the lowest
system latency under different numbers of blockchain
nodes, and could quickly learn better RSAL schemes. The
RA had a high latency, about 0.5-0.9ms higher than
MDQN. The MDQN algorithm had a low system latency,
effectively reducing task processing time.

In conclusion, to fully ascertain the real-world
validity of the MDQN algorithm in loT big data
processing and the optimal use of communication
channels, a set of rigorous and in-depth simulation tests
were conducted. The aim was to skillfully incorporate the
MDQN algorithm into the new generation of intelligent
10T network systems. In the test, multiple data streams of
different business types were simulated, and through the
processing and analysis of these data, the CU rate was
accurately calculated. The results are shown in Figure 13.

From Figure 13, as the number of iterations increased,
the effective CU rates of the traditional and research
schemes gradually increased and tended to stabilize.
Among them, under the research scheme, when the

iteration number was 70, the effective utilization rate
(EUR) of the channel rapidly increased and tended to
stabilize, reaching 100%. However, under the traditional
scheme, the EUR of the channel was less than 40%. The
results showed that the EUR of the channel under the
research scheme was higher, proving the effectiveness of
the research algorithm in wireless RSMG.

Finally, to evaluate the computational complexity of
the MDQN algorithm, it was compared with the standard
DQON. In the standard DQN, assuming a state space of size
S, an action space of size A, and each layer of the neural
network having n, neurons (with i layers), the main

computational complexity comes from the forward and
backward propagation of the neural network, which is

approximately O(anj . The MDQN algorithm

improves upon the standard DQN by adding action space
compression and a priority experience replay strategy
based on TD errors. While action space compression
reduced the number of actions, it also incurred additional

computational costs, estimated at O(A). The priority

experience replay strategy adds extra computation when
sampling and updating the importance weights, estimated

at O(N) (with N being the size of the experience
buffer). Overall, the MDQN algorithm has a

computational complexity of O(Z n’+A+ Nj, slightly

higher than the standard DQN but within an acceptable
range, with a significant performance improvement.

To investigate the performance of MDQN in larger
and more complex IloT networks, experiments were
conducted in a network comprising 300 devices. The
algorithms DQN, SAA, and RA were compared, with
evaluation metrics including channel utilization, system
and rate, and system delay. Each metric was tested 10
times independently, with the average values and 95%
confidence intervals calculated. Additionally, a
significance test was performed (p<0.05 indicates a
significant difference). The experimental results are
presented in Table 5.
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Table 5: MDQN performance in large-scale 10T networks.

Algor | Channel utilization (mean % | System and rate (bits/s/Hz) (mean = | System delay (ms) (mean % | Significance test
ithm 95% confidence interval) 95% confidence interval) 95% confidence interval) (compared with MDQN)
MPQ | 91 506+1.206 2324038 0.27+0.02 .
DON | 84.3%+1.5% 19.8£1.0 0.34+0.03 p<0.05
SAA 68.7%+2.0% 10.5+1.2 0.43+0.04 p<0.05
RA 59.2%+1.8% 7.840.9 0.51+0.05 p<0.05

As shown in Table 5, the MDQN algorithm generalization and scalability in more complex network

maintained excellent performance in larger-scale 10T
networks, achieving a channel utilization rate of 91.5%
(95% confidence interval: 90.3%-92.7%), a system and
rate of 23.2bits/s/Hz (95% confidence interval: 22.4-
24.0bits/s/Hz), and a system delay of only 0.27ms (95%
confidence interval: 0.25-0.29ms). Compared with other
algorithms, the MDQN algorithm showed significant
differences  (p<0.05), demonstrating its strong

environments.

The experiments showed MDQN surpassed PPO and
A3C in channel utilization and system rate. MDQN's
enhanced DQN structure, combined with action space
compression and TD error-based prioritized experience
replay, enabled efficient and accurate resource allocation
in discrete 1loT spaces. It converged faster, offering a
practical edge in real-time lloT applications requiring
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rapid network adaptation, unlike PPO and A3C, which
need more training iterations. This confirmed MDQN's
effectiveness and superiority in 10T settings.

4 Discussion

After presenting the experimental results, it is crucial to
critically compare the performance of the proposed
MDQON algorithm with the methods reviewed in the
Related Work section. In terms of convergence speed,
MDOQN demonstrated a significant advantage over the
traditional DQN algorithm. As shown in the training effect
figures, MDQN achieved a stable state with fewer training
iterations, while DQN required more iterations to
converge. This is consistent with the findings of
Naderializadeh N et al. [8], who also employed deep
reinforcement learning for resource management but did
not incorporate the improvements in action space
compression and prioritized experience replay as in
MDQN.

In terms of accuracy, MDQN achieved higher channel
utilization and system sum rate compared to SAA and RA
algorithms. This is because MDQN can better adapt to the
dynamic I1oT environment by learning from historical
experiences and making more informed resource
allocation decisions. Shen Y et al. [10] used graph neural
networks for radio resource management, which also
showed good performance in large-scale scenarios.
However, MDQN's approach of combining Markov
decision processes with improved DQN provides a more
flexible and efficient solution for 10T networks.

Regarding computational efficiency, MDQN's action
space compression technique reduced the computational
complexity, making it more suitable for resource-
constrained 1loT devices. Although it introduced some
additional computational overhead for prioritized
experience replay, the overall performance gain
outweighed this cost. In terms of robustness, MDQN
performed well under different network conditions, such
as varying arrival rates and system bandwidths. This is in
contrast to some of the methods reviewed, which may
struggle to adapt to changing network environments. For
example, the whale optimization algorithm proposed by
Pham Q V et al. [9] focused on energy efficiency and
spectrum efficiency trade-offs but may not be as robust in
handling dynamic network loads as MDQN.

5 Conclusion

A wireless RSMG algorithm based on MDQN was
proposed for I10T systems containing multiple UEs and
multiple spectrum resources, which combined MAC
frame structure, spatial compression strategy, and TD-
based priority experience replay strategy. The outcomes
showed that the MDQN algorithm had substantially raised
performance after training, surpassing RA and SAA,
achieving high CU and system rate, and converging faster
than DQN. When the reach rate was greater than 1.0, the
channel rate and average sum rate of the MDQN algorithm
reached 94% and 25bits/s/Hz respectively, significantly
better than the compared algorithms, and more than twice

L. Yuetal.

as good as the SAA and RA.As the system bandwidth
increased, the latency of each algorithm gradually
decreased. Among them, the performance of the MDQN
algorithm was superior to the compared algorithms, with
lower system latency and computational costs, and the
lowest system latency under different numbers of
blockchain nodes. However, this study proposes that
wireless RSMG algorithms have a high demand for
computing resources due to their combination of multiple
structures. To address these issues, lightweight network
models will be explored in the future to reduce
computational resource requirements. Meanwhile,
algorithm performance can be improved through
reasonable data preprocessing and enhancement.

The proposed algorithm excelled in simulations but
faces real-world deployment challenges, primarily due to
high computational demands from its integrated
structures, which edge devices with limited power may
struggle to handle. To address this, lightweighting through
model compression and code optimization is essential to
reduce computational complexity and enhance execution
efficiency. Additionally, energy consumption must be
managed to prevent excessive battery drain during
operation.
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