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Due to climate change–induced sea level rise, coastal flood risk is increasing significantly, creating an 

urgent need for improved flood risk assessment and mitigation strategies. Effective flood analysis 

requires both time series forecasting and hazard risk evaluation, including the determination of 

appropriate weights for flood-related parameters such as elevation, runoff, distance to the shoreline, 

and sea level. Traditional forecasting methods like exponential smoothing are limited in capturing 

relationships between variables, while neural networks can model non-linear interactions but are less 

commonly applied to long-term forecasting. To address these limitations, this study proposes a hybrid 

method that integrates Exponential Smoothing (ES) and Neural Networks (NN) for panel data analysis, 

where ES identifies trends and seasonal patterns and its output is used as additional input for NN. The 

NN is also employed to objectively determine parameter weights, reducing the subjectivity of 

conventional AHP-based approaches. The method integrates geographic and climatic variables, 

including wind speed, temperature, sea surface pressure, and rainfall, and is applied to coastal areas in 

Semarang, Demak, and Jepara, Indonesia. Results show that the hybrid model outperforms standard ES 

and NN methods, achieving flood forecasting errors (MAPE) between 3.5% and 8.3% and parameter 

weighting accuracy of 88–94%, contributing to a more holistic and reliable flood risk analysis. 

 

Povzetek: Raziskava predlaga hibridni pristop, ki združuje eksponentno glajenje in nevronske mreže za 

natančnejše napovedovanje obalnih poplav ter objektivno določanje uteži poplavnih dejavnikov, s čimer 

izboljša oceno poplavnega tveganja na podlagi geografskih in podnebnih podatkov. 

 

 

1 Introduction 
Rob floods are one type of flood that increasingly 

threaten coastal areas worldwide, occurring as a 

phenomenon when high tide sea water overflows onto 

land. Global warming causes rising sea levels, increase 

the risk of coastal flooding by up to five times this 

century worldwide, putting more than 70 million people 

in danger in increasingly expanding floodplain areas, 

with projections of loss of land and critical infrastructure 

due to permanent inundation [1]. The fact that many 

major cities and communities are situated along the 

shore, making more people and infrastructure susceptible 

to coastal flooding, makes this situation much worse. By 

2050, hundreds of densely populated coastal cities are 

expected to face increased flood risk, with that risk 

doubling by 2100 [1]. This increase could lead to a 

setback in human development globally, especially in 

coastal areas that are centers of important social and 

economic activity. In addition to being caused by human 

activities such as urbanization and land-use change,  

 

climate change factors also exacerbate these conditions 

through rising sea levels and increasing frequency of 

floods. Therefore, a deep understanding of flood risk and 

developing effective mitigation strategies are critical to 

protecting coastal communities from such negative 

impacts. 

Hazard risk analysis and time-series forecasting are 

important approaches in flood mitigation [2], [3], [4]. 

This involves assessing the flood potential in an area, 

with: evaluation of historical flood data [5], [6], [7], [8], 

weight determination [2], [9], [10], and future climate 

projections to predict where and when floods might 

occur [11], [12]. Predictive models in this field are 

increasingly being enhanced by the application of Spatial 

Data Mining (SDM), which enables the analysis of large 

datasets to identify trends and improve forecast accuracy 

[13], [14]. SDM plays a crucial role in enhancing 

predictive models for flood forecasting by enabling the 

analysis of large datasets to identify trends and improve 

forecast accuracy. It integrates various data types, 

including historical flood data and geographical, 
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climatic, and land use variations, essential for practical 

flood risk analysis. The application of SDM allows for 

identifying non-linear correlations between variables that 

traditional forecasting methods, such as univariate 

approaches, often overlook. By combining SDM with 

techniques like Artificial Neural Networks (ANN) and 

Exponential Smoothing (ES), predictive models can 

achieve significantly improved accuracy, as evidenced by 

a hybrid model that achieves an error smaller than single 

methods [1], [2], [6]. This methodological advancement 

is significant in regions like Indonesia, where 

geographical and climatic variances can significantly 

affect flood dynamics. 

Long-term forecasting techniques used in predicting 

floods in time series generally employ a univariate 

approach [15], with time series data, such as the 

exponential smoothing method, which has the advantage 

of simplicity in the mathematical formulas used. 

However, exponential smoothing has the disadvantage of 

being limited in depicting relationships with other 

influencing variables [16], [17]. The solution to the 

problem of the relationship between variables causing 

floods can use non-linear approach  neural networks, 

with cross-sectional data, which has the advantage of 

making fairly accurate estimates in the short term but 

does not have the advantage of long-term forecasting like 

the univariate approach [18]. Both types of data, time-

series and cross-section data, when combined in the form 

of panel data, can be used for time-series forecasting 

analysis that links the relationships between variables in 

making forecasts, by combining both approaches (time-

series forecast and non-linear estimation) with hybrid 

method (Triple Exponential Smoothing and Neural 

Network). The hybrid method approach is expected to 

offer solutions that not only improve the accuracy of 

predictions but also adaptive flexibility to environmental 

dynamics, making them a relevant and strategic topic in 

today's era of climate change [13], [19], [20], [21]. 

Previous studies with various methods (ARIMA, 

SARIMA, LSTM, etc.) have highlighted the 

effectiveness of different forecasting models in coastal 

flood forecasting but have not consistently reported 

MAPE values as part of their evaluation metrics, 

focusing only on RMSE and MAE [22], [23], [24]. 

Although Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) are valuable tools for assessing 

model performance in a particular context or study, they 

have limitations in terms of cross-study comparisons due 

to their subjectivity related to the characteristics of the 

data [25], [26]. In contrast, MAPE provides a more 

standardized approach that facilitates comparisons across 

multiple scenarios [27], [28], so the use of MAPE in 

coastal flood forecasting studies is a novelty. 

To provide accurate visualization in the form of a flood 

hazard map, it is critical to determine the proper weight 

of flood risk parameters so that each pixel on the map 

can be given a representative risk score. This weight 

reflects the degree of influence of each variable, such as 

elevation, runoff, distance to water sources, and sea 

level, on the potential for flooding in the location. 

Weighting is essential because of geographic variation. 

In flood hazard risk analysis, it is necessary to determine 

the weight values for various parameters that influence 

flood risk. Geographic, climatic, and land use variations 

in different regions of Indonesia cause the flood hazard 

weights to differ in each area. The Analytic Hierarchy 

Process (AHP) method, which is often used to determine 

parameter weights, is quite effective in empirical analysis 

[29], [30]. However, this method needs to be improved 

due to subjectivity and the potential bias of experts [31]. 

AHP relies heavily on subjective judgments for assigning 

weights to different criteria, which can introduce bias and 

inconsistency [32], [33]. Additionally, AHP may struggle 

with handling complex, nonlinear relationships among 

flood risk factors and can be limited in capturing the 

dynamic interactions between variables over time and 

space.  

In this study, we propose an innovative solution using 

Historical Flood Data-Based Neural Networks to 

determine parameter weights more objectively and 

accurately. This approach is expected to reduce bias and 

enhance the reliability of flood risk analysis through 

data-based optimization [2], [33]. Neural network-based 

approach addresses these limitations by learning directly 

from data, which allows it to model complex, nonlinear 

patterns in flood risk factors without requiring subjective 

weight assignments. Neural networks can integrate 

multiple influential variables and their interactions more 

effectively, improving prediction accuracy and 

robustness. Moreover, when combined with GIS and 

remote sensing data, neural networks provide a more 

data-driven, adaptive, and precise flood susceptibility 

mapping compared to the more rigid and expert-opinion-

dependent AHP. 

The objective of this study is to evaluate the 

effectiveness of combining Neural Networks and 

Exponential Smoothing in improving long-term and 

short-term flood forecasting accuracy in coastal areas. 

We hypothesize that combining Neural Networks and 

Exponential Smoothing improves long-term and short-

term flood forecasting accuracy compared to single-

model approaches. The study focuses on Semarang, 

Demak, and Jepara due to their significant exposure to 

flooding events, as evidenced by historical data 

indicating a high frequency of flood occurrences in these 

areas. Additionally, these locations are characterized by 

unique environmental conditions that make them 

particularly susceptible to the impacts of climate change, 

thus providing a relevant context for this research. 

 

2 Data 
The study was carried out in coastal areas representing 

tropical climates in Indonesia, specifically in Semarang 

City, Demak, and Jepara, covering an area of 

approximately 2,291.456 km² with a total population of 

4,819,953 people, where Semarang City has 373.78 km² 

and 1,694,743 people, Demak has 897.43 km² and 

1,252,970 people, and Jepara has 1,020.246 km² and 

1,872,240 people based on the latest measurements [34]. 

The three areas were chosen because they are prone to 
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hydrometeorological disasters on the north coast of Java, 

especially coastal floods, caused by a combination of 

high rainfall, extreme sea tides, and land subsidence due 

to both human activities and natural processes, and they 

also have a long history of flood events [35], [36], [37].  

For the analysis of coastal flood hazards, several 

variables are used: sea level data, elevation, runoff (from 

land cover), and distance to the coastline. Elevation, 

runoff, and distance are variables that tend to remain 

constant (not experiencing significant changes), whereas 

sea level data is a variable that varies over time.  

In contrast to other variables, sea level is changing 

continuously over time as a water surface along the 

coast. Tidal gauge records and sea tide models are used 

to recreate normal high tide conditions as well as 

infrequent but significant extreme events [38]. The study 

makes use of historical sea level data for the years 1995–

2024 from the Indonesian Geospatial Reference System 

(SRGI) [45]. Many time-based weather variables, such as 

U10 & V10 (10m Wind Speed), D2M (2m Dew Point 

Temperature), T2M (2m Temperature), MSL (Mean Sea 

Level Pressure), SP (Surface Pressure), TP (Total 

Precipitation), and SWH (Significant Wave Height), are 

used to forecast sea level with the assumption that all of 

these variables have an impact on sea level [47], [48], 

[49]. Wind speed has an impact on water flow and can 

lead to storm surges, which raises the possibility of 

coastal flooding [39], [40]. Rainfall patterns and cloud 

formation are influenced by atmospheric humidity and 

condensation, which are influenced by the dew point and 

air temperature [40]. In addition, surface pressure and 

average sea surface pressure have a direct impact on 

ocean and atmospheric dynamics that affect water level 

variations [41], [42]. Both the intensity of tropical storms 

and the thermal expansion of seawater are influenced by 

sea surface temperature [42]. Meanwhile, total 

precipitation increases the amount of water on land [42], 

which can make runoff worse. Information about wave 

patterns that can either increase or lessen the impact of 

extreme tides in coastal areas can be found in the 

direction of the waves [42]. By combining these 

variables, the prediction model is able to account for the 

intricacy of the atmosphere-ocean interaction, producing 

estimates of flood risk and sea level rise that are more 

accurate. Hourly weather data recorded as time series 

with a resolution of roughly 27.83 meters is the source of 

ERA5 hourly data on single levels (Copernicus), from 

which weather data is derived [46]. 

Elevation is fundamental in flood threat analysis because 

it determines which areas are physically vulnerable to 

inundation. For example, low-lying areas are more 

susceptible to flooding due to their proximity to sea 

level, directly affecting the level and depth of potential 

flood inundation [38]. Elevation data is obtained from 

DEMNAS Indonesia (National Digital Elevation Model), 

provided by the Geospatial Information Agency (BIG). 

Runoff values, derived from land cover data conversion, 

represent how much rainfall becomes surface runoff 

rather than infiltrating into the ground [38]. Therefore, 

areas with impermeable surfaces or specific land uses 

generate higher runoff, increasing the flood threat. 

Runoff data is derived from land cover: Copernicus 

Global Land Cover Layers: CGLS-LC100 Collection 3 

[43], which is then converted based on the Rational 

Method Runoff Coefficient [44].  

Distance to the coastline is essential because closeness 

increases exposure: locations closer to the coast are at 

greater risk from storm surges and sea level rise events. 

A spatial relationship between the location of each pixel 

and its distance from the coastline is concluded when 

creating flood threat maps [38]. The distance to the 

coastline is essential because proximity increases 

exposure: locations closer to the coast are at greater risk 

from storm surges and sea level rise events, concluding 

that there is a spatial relationship between the location of 

each pixel and its distance from the coastline when 

creating flood threat maps. Distance to the coastline is 

calculated by measuring the distance of each pixel from 

Shapefile to the nearest coastline in each area. 

 

3 Method 
 

3.1 State of the art and related works 
Forecasting, especially related to flooding, is a research 

field that continues to be discussed, with various 

approaches being used. One of the main focuses is on 

coastal locations vulnerable to rising sea levels and land 

subsidence, which significantly increases the risk of 

flooding [52] and ultimately negatively impacts the local 

economy [53]. Some topics related to Coastal Flood 

Forecasting (Fig. 1) are flood risk and adaptation 

response modeling, hydrodynamic modeling, and flood 

risk assessments. 

Coastal flood risk modeling and adaptation response 

assesses future flood risk and formulates effective 

adaptation strategies. By analyzing climate change 

scenarios and their consequences on flood risk, this 

method integrates physical and social models to 

understand potential impacts comprehensively [54]. 

Hydrodynamic modeling examines and predicts water 

flow behavior and its interactions with the environment 

[55]. Using principles of physics, mathematics, and 

engineering, these models accurately simulate water 

movement under various conditions, including floods, 

waves, currents, and other hydrologic phenomena. 

Flood risk assessment systematically identifies, analyzes, 

and evaluates the risks associated with flooding [56], 

[57], [58]. This approach seeks to understand the 

potential hazards of flooding, evaluate their likely 

impacts, and assess the vulnerability of infrastructure and 

populations to flood events. 

These approaches can stand alone or be enhanced 

through integration with statistical or data mining 

techniques [56], strengthening the ability to predict and 

respond to coastal flood hazards. This study seeks to 

explore flood risk assessment through an innovative 

approach that leverages data mining for accurate 

estimates. 
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Figure 1: Coastal flood forecasting mind map 

 

Several methods have been used in sea level forecasting 

associated with risk assessment (Table 1), with various 

advantages and disadvantages. Using a single method in 

prediction has the advantages of simplicity and clarity. 

However, this method has several limitations: limitations 

in capturing data complexity, risk of overfitting or 

underfitting, and difficulty handling data variability. In 

terms of data complexity, forecasting methods are 

generally univariate (e.g., ARIMA, ES, etc.) which do 

not consider the influence between variables as in 

regression approaches (linear regression, neural 

networks, etc.), so a hybrid approach is proposed by 

combining forecasting and the influence between 

variables. 

 

Table 1: Sea level forecasting related works 

 

Data Techniques Accuracy 

Metrics 

Limitations 

Tide Gauge 
Data 

ARIMA 
[59], [60], [61] 

RMSE Limited to linear 

relationships, struggles 
with non-stationary data 

Satellite 

Altimetry 

Neural Network 

Auto-
Regressive 

(NNAR) 

[62], [63] 

MSE, 

MAE,  
RMSE 

Requires large datasets, 

computationally 
intensive 

Tide Gauge 
+ Satellite 

Data 

Extreme 
Gradient 

Boosting 

(XGBoost) 

MSE, 
MAE,  

RMSE 

Sensitive to outliers, 
overfitting risk 

Tide Gauge 

Data 

Facebook 

Prophet 
(FProphet) 

[64] 

MSE, 

MAE,  
RMSE 

Assumes additive 

seasonality, less 
effective for 

multiplicative trends 

Tide Gauge Exponential MAE,   Less effective for non-

Data Techniques Accuracy 

Metrics 

Limitations 

Data Smoothing 

[65] 

RMSE linear trends, sensitive 

to sudden changes 

Tide Gauge 
+ Satellite 

Data 

Long Short-
Term Memory 

(LSTM) 

MSE, 
MAE,  

RMSE 

Requires large datasets, 
computationally 

intensive 

Tide Gauge 

Data 

Moving 

Average 

RMSE Limited to short-term 

forecasting, less 

effective for capturing 
seasonality 

Tide Gauge 

Data 

ARMA RMSE Limited to linear 

relationships, struggles 

with non-stationary data 

Tide Gauge 

+ Satellite 
Data 

Recurrent 

Neural Network 
(RNN) 

MSE, 

MAE,  
RMSE 

Requires large datasets, 

computationally 
intensive 

 

In several recent studies, hybrid approaches can improve 

prediction accuracy by reducing bias and variance, thus 

handling non-linear relationships and complex 

interactions among environmental variables [66], as well 

as capturing temporal patterns and long-term 

dependencies in data [67], which are very important for 

hydrological predictions. This approach adds an essential 

dimension to flood vulnerability analysis by emphasizing 

the use of predictive machine learning to assess 

relationships among variables [68], making it possible to 

predict spatial vulnerability levels in areas. 

Exponential Smoothing effectively captures trends and 

seasonality in time series data, providing stable and 

interpretable predictions. However, this method struggles 

with non-linear patterns and complex interactions 

between variables. On the other hand, neural networks 

excel at modeling non-linear relationships. They can 

learn complex patterns from large datasets, but they often 

operate as a black box, making interpretation difficult. 

Integration of Exponential Smoothing and Neural 

Networks by combining the strengths of both 

methodologies is expected to improve the accuracy of 

sea level forecasting for coastal flood hazard prediction 

[69]. 

Integrating these two methods is expected to leverage the 

stability and interpretability of Exponential Smoothing 

while leveraging the predictive power of Neural 

Networks, ultimately resulting in more robust and 

reliable flood hazard forecasts that can adapt to changing 

environmental conditions. 

3.2 Flood hazard in coastal area 
In several disaster risk studies, especially the flood 

hazard assessment conducted in this study, hazards are 

measured using a multi-criteria approach, where several 

variables that make up hazards are given scores and 

weights according to the level of impact, such as in 

Indonesia, which uses the Indonesia Disaster Risk Index 

[70], [71]. The formula used is the classic weighted sum, 

the sum of the multiplication results between the weight 

and the value/score of each variable. It is commonly used 

in risk analysis, multi-criteria decision-making, and 

hazard evaluation (Eq.1). The Variable Score (𝑆𝑖) is the 

value of the intensity of the hazard based on various 



Hybrid Panel Data Forecasting for Coastal Flood Hazard…                                                       Informatica 50 (2026) 267–286   271                                                                                                                                            

 

factors. Weights (𝑤𝑖) can be determined in various ways: 

expert judgment, AHP, or data-driven (used in this study) 

to assess the contribution of each factor to the overall 

hazard. 

 

Hazard Index = ∑ 𝑤𝑖𝑆𝑖
𝑛
𝑖  (1) 

H = 𝑤1𝑆1 +  𝑤2𝑆2 + 𝑤3𝑆3 + 𝑤4𝑆4 (2) 

 

The Hazard Index (H) assesses an area's danger level 

based on several factors (Eq.2). The first factor, elevation 

(𝑆1), is the height of a location from sea level that affects 

the risk of flooding [71]. The second factor, runoff (𝑆2), 

is the water flow above the surface that exceeds the soil's 

capacity to absorb water [72]. The third factor, distance 

to the coastline (𝑆3), is the distance of a location from the 

coastline, where locations closer to the coast may be 

more vulnerable to hazards such as tsunamis and 

hurricanes [73]. The last factor, sea level (𝑆4), measures 

the influence of tides that can affect flood risk in coastal 

areas [74]. Each of these factors is weighted (𝑤1, 𝑤2, 𝑤3, 

𝑤4) according to the degree of its influence on the overall 

Hazard Index (H). 

All variables are stored in raster format (GeoTIFF), and 

calculations are performed on each pixel with a 

resolution of about 8 meters (adjusting to the initial 

Raster: DEM). Each raster has been cut and re-sampled 

to ensure consistency and accuracy of the data. 

 

3.3 Neural network data driven weighting 

The use of feature importance in determining flood 

hazard weights provides a more objective and data-

driven approach compared to traditional methods such as 

the Analytic Hierarchy Process (AHP), which heavily 

relies on the subjective judgments of experts. With 

feature importance, the relative contribution of various 

parameters is assessed. Differences between regions 

significantly affect the results of flood hazard 

assessments because each area has unique geographic 

characteristics [75], [76], climate, land use, and socio-

economic conditions, all of which influence how the 

flood risk parameters play a role. 

Weighting using neural networks can be done by 

calculating feature importance and measuring the 

variance of the weights connected to each input feature 

during the training phase [77], [78]. This process 

involves assessing how much each feature affects the 

output by observing the changes in related weights. The 

more significant the weight change, the more important 

the corresponding feature influences the output [77]. This 

method is beneficial for understanding which input 

variables impact the model's predictions most, thereby 

allowing for better interpretation and optimization of 

model performance. The final feature importance scores 

are calculated based on the variance of the weights 

combined with the final weights for each input feature; 

this helps identify the most critical factors affecting the 

model's output, such as flood hazard assessment. 

Several feature variables are used to calculate feature 

importance in the flood depth prediction model: 

elevation, runoff, distance to the coastline, and sea level 

[79], [80]. The flood depth class variable plays a role as 

the target to be predicted. The value of the flood depth 

class is obtained from the flood depth classification 

process, which is measured on a meter scale and then 

categorized into certain classes to facilitate analysis and 

modeling. 

Each of these feature variables has an important role in 

flood modeling. Elevation determines the height of the 

land relative to sea level, which directly affects the risk 

and level of flooding [81]. Runoff describes the flow of 

surface water from rainfall and runoff, contributing to the 

water volume that can cause flooding [82]. Distance to 

the coastline affects the potential impact of coastal 

flooding because the closer a location is to the coast [82], 

the more likely it is to be flooded due to rising sea levels. 

Sea level is in the form of sea level fluctuations that can 

worsen flood conditions, especially in coastal areas [82]. 

Calculating feature importance in neural network [77] 

starts with data preparation, building a model, training, 

evaluation, and the last is feature importance analysis 

(Fig. 2). Building model involves: determining the 

number of hidden layers and neurons, using ReLU (Eq.3) 

and softmax (Eq.4) activation functions, and finally 

initializing weights and biases. 

 

Start

Building a Neural 
Network Model

Data Preparation & 
Preprocessing

Train the Model

Model Evaluation

Feature Importance 
Analysis

End

 
Figure 2: Weighting with NN 

 

 

𝑓(𝑥) = max (0, 𝑥) (3) 

𝑃𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 
(4) 

 

The ReLU (Rectified Linear Unit) activation function is 

a straightforward function in neural networks, which 

converts all negative input values to zero and maintains 

positive values as they are (Eq.3), with a graph in the 

form of a straight line on the positive side and a flat line 

on zero for the negative side, so that non-linear 

relationships are captured yet efficiently while keeping 

computation light [83]. The softmax activation function 

(Eq.4) is used on the output layer of the multiclass 

classification model to convert the raw output value (𝑍𝑖) 

into an interpretable probability (𝑃𝑖) by converting the 

input vector (𝑧 = (𝑧1, 𝑧2, … , 𝑧𝐾) into a probability 

distribution (𝑝 [𝑝1, 𝑝2, … . , 𝑝𝐾]), each output element is in 

the range of 0 to 1 and the sum of all components is 1, so 

that softmax provides a prediction in the form of the odds 
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of each class (the class with the highest probability is 

selected as the prediction result) [83].   

During the training phase (Fig.2), backpropagation is 

performed to calculate the output, calculate MSE & 

MSE, and update the weights based on the loss gradient 

with the Adam optimizer (Adaptive Moment Estimation) 

to adaptively adjust the learning level for each parameter 

to accelerating convergence and improving model 

performance [84]. Adam is an optimization algorithm 

that combines the concepts of momentum and adaptive 

learning rate concepts by calculating the moving average 

of the first gradient (momentum) and the second 

quadratic gradient to adjust parameter updates 

adaptively. At iteration 𝑡, Adam calculates the biased 

first moment estimate 𝑚𝑡 (Eq. 5), which is a moving 

average of current gradients gt weighted by decay rate 

β1; similarly, it computes the biased second raw moment 

estimate 𝑣𝑡 (Eq. 6), a moving average of squared 

gradients weighted by decay rate β2. These estimates are 

then bias-corrected to obtain unbiased moments (Eq. 7 

and Eq. 8). Finally, parameters are updated (Eq. 9) where 

α > 0 is the learning rate controlling step size, and small 

constant (𝜖 > 0) ensures numerical stability to avoid 

division by zero. This mechanism allows Adam to 

efficiently adapt to complex loss landscapes, accelerating 

convergence during training. 

 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 −  𝛽1)gt (5) 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)g𝑡
2 (6) 

𝑚𝑡̂ =  
𝑚𝑡

1 − 𝛽1
𝑡 (7) 

𝑣𝑡̂ =  
𝑣𝑡

1 −  𝛽2
𝑡   (8) 

𝜃𝑡+1 =  𝜃𝑡 −  𝛼
𝑚𝑡̂

√𝑣𝑡̂+ ∈
  (9) 

 

The Magnitude of Weights (Absolute Weights) on the 

Input Layer is used to calculate feature importance, 

which is often used to measure feature importance in 

neural networks. It is done by referring to the absolute 

value of the weights (𝑤𝑖𝑗) that connect the input neuron 

to the neuron in the next layer (Eq. 10), where the 𝑖 index 

indicates the 𝑖 input feature and the 𝑗 index indicates the 

neuron in the hidden layer. By calculating the sum or 

average of the absolute value of the weight, the 

contribution value (influence) of the feature on the output 

of the model is obtained. The greater the magnitude of a 

feature's weight, the more important the role it plays in 

the model's prediction process because small changes to 

that feature will significantly impact subsequent neuron 

activation. 

FIi =    ∑ | 𝑊𝑖𝑗|

n

j=1

  
(10) 

3.4 Time series, cross-section, and panel 

data 

Time series data is a sequence of data points collected or 

recorded at consecutive time points (e.g., Table 2), with 

the characteristics of a date (period) and one actual 

variable [85] , which are analyzed using a univariate time 

series forecasting approach such as the Triple 

Exponential Smoothing (TES) method [17]. 

 

Table 2: Sample of time series data 

 

Date Sea level (cm) 

2022-11 54.3 

2022-12 55.1 

2023-01 49.8 

2023-02 51.3 

 

Cross-sectional data is data collected by capturing 

snapshots of various variables without considering 

changes over time. Cross-sectional data (example: Table 

3) are analyzed using a non-linear estimation approach 

[86], [87] like Neural Network (NN), which is effective 

in capturing complex and non-linear relationships in the 

data. NN utilizes learning algorithms to model intricate 

patterns and interactions among variables, making it 

suitable for handling cross-sectional data.  

 

Table 3: Sample of Cross-sectional data 

 

Location Temperature Wind 

Speed 

Sea 

Level 

Demak 30.82 1.1302 54.3 

Demak 30.47 1.4842 55.1 

Jepara 29.87 0.8074 49.8 

Jepara 30.48 1.2403 51.3 

Semarang 29.54 1.1908 44.7 

Semarang 30.45 1.6641 55.6 

 

Panel Data, which is a combination of time series and 

cross-sectional data, for example, sea level data collected 

from several locations at different points in time 

(example: Table 4). 

 

Table 4: Sample of panel data 

 
Date Location Temperature Wind 

Speed 

Tide 

2022-

12 

Demak 30.82 1.1302 54.3 

2023-

01 

Demak 30.47 1.4842 55.1 

2022-

12 

Jepara 29.87 0.8074 49.8 

2023-

01 

Jepara 30.48 1.2403 51.3 

2022-

12 

Semarang 29.54 1.1908 44.7 

2023-

01 

Semarang 30.45 1.6641 55.6 

 

The data panel has a key advantage over purely time-

series or cross-sectional data by integrating diverse data 

sources from time and space in flood risk assessments, 

emphasizing the need for dynamic models that can 

incorporate changing variables such as land use, climate, 

etc [88]. The evolution of flood modeling techniques 

increasingly prioritizes integrating spatial and temporal 
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data, supporting models that can dynamically respond to 

changes in environmental and anthropogenic factors [2]. 

Various case studies and methodologies also highlight 

the importance of applying advanced data techniques, 

including spatial-temporal modeling, to reduce 

uncertainty in flood risk assessments more accurately and 

effectively [89]. Panel data enables evaluation how flood 

risk mitigation measures perform over time and across 

regions. 

In this study, UTC was used as a global time standard, 

which provides a consistent reference, which is officially 

abbreviated from Coordinated Universal Time as a 

neutral compromise between the English terms 

(Coordinated Universal Time) and the French term 

(Temps Universel Coordonné)—used [90]. Panel data is 

stored in Excel format and then imported into Pandas 

DataFrame using Python to facilitate data analysis and 

processing. 

3.5 TES & NN combination to forecast 

panel data 

Temporal dependencies in the panel data are included in 

two main steps [91] that carried out on the panel data; the 

first step focuses on the classic statistical method of 

Triple Exponential Smoothing (TES) to capture trend and 

seasonal patterns in the data, while the second step 

combines the approach with a NN model that utilizes 

feature selection [92] in the form of the selection of 

relevant weather features as inputs to capture complex 

non-linear relationships. The combination of the results 

of the two and aims to produce predictions that utilize 

each method's strengths and optimize input features [93], 

which models non-linear patterns and complex 

interactions between variables. Thus, this integration 

allows the model to effectively accommodate temporal 

dependencies while improving the accuracy of 

predictions on multivariate panel data. 

The use of the TES for time series data is characterized 

by calculations: Level, Trend and Seasonal [94], which is 

a moving forecasting method that gives weight in stages 

to the latest data, so that if the data is new, the 

forecasting value will be updated.  

The data is divided into a period (annual / biennial / five 

years / etc.), the initial level value is obtained from the 

average actual value in the first period (Fig.2), the initial 

trend value is obtained from the average value of the 

difference in the actual value of each month in the same 

2 periods and divided by the number of months, and the 

initial seasonal value for each month is the actual value 

divided by the Initial Level value. Then the Level (𝐿𝑡), 

Trend (𝑇𝑡), Seasonal (𝑆𝑡) and Forecast (𝐹𝑡+𝑚) are 

calculated. Smoothing parameters used: 𝛼 as level 

parameters,  β as trend parameters, and  γ as seasonal 

parameters.  𝑌𝑡  is the value of observation at time (t). 

 𝑆𝑡−𝑚 is a seasonal factor in the previous period,  𝐿𝑡 is the 

smoothed level,  𝑇𝑡 is a smoothed trend, and (m) is the 

length of the season. 

 

𝐿𝑡 = α (
𝑌𝑡

𝑆𝑡−𝑚

) + (1 − α)(𝐿𝑡−1 + 𝑇𝑡−1) 
(6) 

𝑇𝑡 = β(𝐿𝑡 − 𝐿𝑡−1) + (1 − β)𝑇𝑡−1 (7) 

 

𝑆𝑡 = γ (
𝑌𝑡

𝐿𝑡
) + (1 − γ)𝑆𝑡−𝑚  (8) 

 
𝐹𝑡+𝑚 = (𝐿𝑡 + 𝑚𝑇𝑡)𝑆𝑡−𝑚+𝑘 (9) 

 

Start

Determine initial values 
for Parameters 

(α, β, γ, m)

Calculate initial values 
for Components: 
L₀, T₀, S₀, S₁,.. Sm-₁

Calculate Level (Lt)

Calculate Trend (Tt)

Calculate Seasonality (St)

Forecast 
(Ft+m)

End

until time period (t) 
ends

 

Figure 3: TES 

 

The calculation of some of these parameters (Fig.3) is 

repeated until a minimum error is obtained through the 

optimization process up to the specified period (t). Each 

iteration is performed by updating the model parameters 

using the L-BFGS-B algorithm that efficiently searches 

for the optimal solution and ends when the convergence 

criteria are met (a slight change in the value of the error 

function or reaching a predetermined maximum number 

of iterations). The resulting model is expected to have 

optimal performance in predicting data in a certain 

period. Various optimization methods have been tried to 

perform smoothing parameter optimization, including 

popular algorithms such as Adam, Stochastic Gradient 

Descent (SGD), etc. However, the results of the 

experiments showed that L-BFGS-B provided the highest 

accuracy compared to these alternatives. L-BFGS-B 

consistently produces more optimal objective function 

values and predictions with the highest precision [95], so 

it is considered superior in smoothing parameter 

optimization. L-BFGS-B uses Hessian matrix 

approximation efficiently, allowing faster and more 

stable convergence than gradient-based methods such as 

SGD or Adam [84]. 

To make predictions from the forecast results (cross-

sectional data), NN is used on weather data to predict sea 

level (Fig.4). The data is divided into training and testing 

data, each covering a specific year period. The features 

used to train the model are several columns that have 

been normalized. Then, several hidden layers, neurons, 

and the ReLU activation function (Eq.10) are used. The 

prediction results are evaluated using the MAPE (Eq.11) 

and MSE (Mean Squared Error) (Eq.12) metrics [94]. 

 
ReLU(𝑥) = max(0, 𝑥) (10) 
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MAPE =
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

|

𝑛

𝑡=1

× 100 
(11) 
 

 

 

MSE =
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖̂)

2
𝑛

𝑖=1

 
(12) 

 

Start

Model Initialization

Data Preparation

Training & Predict

Model Evaluation

End

 
Figure 4: NN for prediction 

 

There is no set rule for choosing the number of hidden 

layers or neurons. This decision is highly dependent on 

the data's nature and the modeling's purpose, so it is often 

trial-and-error or validation-based tuning [96], [97]. The 

NN architecture design chosen in this research, which is 

six hidden layers with 50 neurons each, is based on 

empirical experiments and the complexity of the modeled 

data. The architecture was chosen to balance the capacity 

of the model to study complex patterns while avoiding 

over-installing. Using multiple hidden layers allows the 

model to capture hierarchical features in the data, which 

is crucial in flood prediction by considering the 

relationships between variables. 

The activation functions, ReLU, were selected based on 

performance in capturing non-linear relationships [98]. 

ReLU was chosen for its ability to reduce the problem of 

disappearing gradients [99], allowing for faster 

convergence during training [100], [101]. 

The hybrid forecasting method that combines TES and 

NN aims to solve panel data problems, improving 

prediction accuracy by leveraging the strengths of each 

technique, resulting in forecasting data that considers the 

influence between variables. 

The first step is to forecast each variable using TES, 

effectively capturing seasonal patterns and trends in the 

data. The forecast results from TES are combined into a 

single dataset used as input for the NN model. NN  is 

trained using this dataset to capture non-linear patterns 

and complex interactions between variables that TES 

may not capture. After the NN  model is trained, 

predictions are made on the testing data, and the results 

are evaluated using metrics such as MAPE and MSE to 

measure the model's accuracy. By combining these two 

methods, the forecasting results are expected to be better 

than the univariate approach, as TES handles seasonal 

patterns and trends while Neural Networks capture 

complex prediction patterns. 

 

3.6 TES & NN combination to forecast 

panel data with predicted bias 

Bias refers to systematic errors that occur during training, 

leading to an inaccurate representation of the studied 

population [102], [103]. To improve prediction accuracy, 

the value of bias is optimized during the training process. 

This optimized bias can then be used in ensemble 

methods, combining predictions from multiple models to 

enhance overall accuracy [104]. Specifically, the output 

from neural networks, including the optimized bias, can 

be combined with the output from other models to 

generate final predictions. This approach aims to correct 

bias in time series data and improve the accuracy of 

forecasting models. 

Analyzing the panel data with Average Bias involves two 

key stages: TES is used to identify trends and seasonal 

patterns within the dataset; subsequently, this method is 

integrated with the NN model that employs feature 

selection by choosing pertinent weather variables as 

inputs to model complex non-linear relationships. By 

combining the outputs of both processes and applying 

bias correction, the approach aims to generate predictions 

that leverage the strengths of each technique while 

optimizing the selected input features.  

 

𝐵𝑖𝑎𝑠 =
1

𝑁
 ∑(yi − 𝑦̂i)

𝑁

𝑖=1

 

(13) 

 

Bias in data mining refers to systematic errors that occur 

during training, leading to an inaccurate representation of 

the population being studied. Bias can arise from the data 

used or from the algorithm itself that shows a certain 

tendency. Bias assessment can be done data-driven using 

an estimation approach, such as the NN method. In a NN, 

bias is a parameter that is added to the input of each 

neuron before an activation function is applied. The Bias 

prediction carried out in this study is post-processing by 

adjusting the model output to be fairer or correcting the 

prediction based on specific metrics [105]. In detail, it is 

calculated by predicting the bias value for each sample in 

the test data using a trained model and then taking the 

average of all these predictions ((Eq.13)) to obtain one 

representative value [106]. This average value is then 

normalized by dividing it by the number of features 

(variables) used in the model. The result is a scalar value 

representing the overall bias estimate after normalization. 

The use of a single bias value from a NN (or similar 

method) can be used in ensemble methods, which 

combine predictions from multiple models to improve 

accuracy. In this case, the output from the NN (including 

the bias that has been optimized during training) can be 

combined with the output from other models to make the 

final prediction. 
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3.7 Forecasting model accuracy 

To evaluate how well a model can predict the true values, 

including in the context of flood forecasting (sea level 

rise), several metrics are often used: MSE, RMSE and 

MAPE.  

MSE (Mean Squared Error) measures the average of the 

squared errors between the predicted and actual values. 

While RMSE (Root Mean Square Error) measures the 

average of the squared errors between the predicted and 

actual values, then takes the square root. MSE and 

RMSE give a larger penalty for larger errors and are the 

basis for calculating RMSE [107]. MSE is the basis for 

calculating RMSE which is more sensitive to outliers 

[13], [108] so it is important in flood forecasting because 

flood events often involve extreme values (severe flood 

events). 

MAPE (Mean Absolute Percentage Error) measures the 

relative error between predicted and actual values in 

percentage form. Unlike other metrics, MAPE is 

objective to the data and easy to interpret, as it is 

expressed as a percentage. It can be classified into the 

following categories [107]: MAPE < 10% is considered 

very good, 10% ≤ MAPE < 20% is good, 20% ≤ MAPE 

< 50% is sufficient, and MAPE ≥ 50% is deemed poor. 

All metrics are used, as an approach to evaluate how well 

the model can predict flood peaks or flood occurrence 

times. 

A hybrid method between NN and TES is used, aiming 

to combine the advantages of both techniques to improve 

forecasting accuracy. Then, the gradient descent method 

is used as an optimization to obtain optimal weight 

values for NN and alpha (level), beta (trend), and gamma 

(seasonal) values for TES. The result of the analysis of 

the gathered data will be a geographic information 

system that shows maps of Flood Hazards (H).   

 

3.8 Raster visualization for flood hazard 

analysis 

Raster visualization for flood hazard analysis plays a 

crucial role in disaster risk management by providing a 

detailed, spatially explicit representation of flood hazard 

levels across a region [109]. Flooding poses significant 

threats to lives, infrastructure, and economies, especially 

in coastal and low-lying areas [110]. Accurate flood 

hazard maps enable policymakers, urban planners, and 

emergency responders to identify vulnerable zones, 

prioritize mitigation efforts, and design effective 

evacuation plans, ultimately reducing the impact of flood 

events on communities.This process begins with creating 

a raster for elevation by combining and cropping several 

GeoTIFF files from the Digital Elevation Model 

(DEMNAS) according to the region's boundaries [111], 

[112]. Using raster-based methods for final visualization 

allows for a fine-grained depiction of flood hazard levels, 

where each cell is assigned a score based on predicted or 

observed values, effectively highlighting areas with 

varying flood hazard [110], [113], [114].  

The coordinate reference system (CRS) is standardized to 

EPSG:4326, and the spatial resolution is set to 8.35 

meters, matching the original resolution of the DEMNAS 

data [115]. Maintaining this high resolution preserves 

critical topographic details for accurately analyzing 

elevation variations—a key determinant of flood risk. 

Furthermore, consistent resolution facilitates the 

integration of diverse datasets, enhancing the reliability 

and informativeness of the resulting flood hazard map. 

Elevation data undergoes min-max normalization, where 

higher elevations correspond to lower flood risk scores, 

reflecting the inverse relationship between elevation and 

flood susceptibility. Land cover data is converted into 

runoff values using the Rational Method Runoff 

Coefficient, contributing to the overall flood hazard score 

by accounting for surface permeability and water 

retention capacity. Distance to the coastline is calculated 

using a shapefile from the Indonesian Landmark, with an 

Euclidean distance transform applied to measure 

proximity to the sea. This distance is normalized and 

inverted, as areas closer to the coastline generally face 

higher flood risks due to storm surges and sea-level rise. 

A sea level raster is created by combining sea level 

scores with distance scores linked to estimated sea level 

values. The method produces a comprehensive flood 

hazard map by integrating all these factors—elevation, 

land cover runoff, coastline proximity, and sea level—

into a weighted composite raster. This nuanced 

visualization supports targeted flood risk assessment and 

informs sustainable coastal management strategies, 

helping to safeguard vulnerable populations and 

infrastructure from future flood events. 

4 Result  
The analysis begins by determining the weight of each 

coastal flood hazard factor, with each factor assigned a 

weight based on its level of influence on the coastal flood 

risk. After the weights of the hazard factors are 

determined, the next step is to perform univariate 

forecasting for each variable using the TES.  The results 

of this univariate forecasting are then used as input for 

the next prediction step using NN. This prediction aims 

to determine the flood depth class while considering the 

complex interactions between variables. 

4.1 Weight determination with NN 

Determining flood hazard weights using neural networks 

involves several steps, from data collection and 

processing to model training and evaluation. The first 

step is to determine the coastal flood database, which 

contains a history of flood and non-flood events. This 

data includes several parameters that occur during floods 

(average height, average runoff, average closest distance 

to shoreline, and flood depth). Once the data was 

collected, average values for elevation and runoff 

parameters were calculated, which were then saved to the 

flood database. In addition, distance to coastline 

measurements were taken and saved in raster form for 

further analysis. 
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Next, the features used for training and testing the 

NNmodel were determined. These features include all 

the parameters that have been collected (elevation, 

surface flow, distance to coastline, and tide). The target 

is then the flood depth class. The data is then divided into 

training and testing sets to train the model and evaluate 

its performance. 

The first layer has 64 neurons, and the second layer also 

has 32 neurons, both using the sigmoid activation 

function, which helps capture non-linear patterns in the 

data. The last layer contains one neuron with a linear 

activation function, which is used to produce continuous 

output. Backpropagation was performed using the 

ADAM optimizer the MSE loss function, and the model 

was trained for 50 epochs. 

This step presents a flood hazard analysis for three 

regions: Jepara, Semarang, and Demak. The analysis 

consists of two primary components: an evaluation of the 

predictive model's performance, assessed using key 

classification metrics (Accuracy, Precision, Recall, and 

F1-Score) to ensure its reliability; and the calculation of 

Relative Feature Importance Weights, which ultimately 

serve as the final flood hazard weights for each location. 

 

Table 5: Flood hazard weight 

 

  Jepara Semarang Demak 

Evaluation 

Accuracy 0.9474 0.9333 0.8788 

Precision 0.9649 0.8800 0.8970 

Recall 0.9474 0.9333 0.8788 

F1-Score 0.9502 0.9037 0.8697 

     

Relative 

Feature 

Importance 

Weight 

Elevation 0.2278 0.2321 0.1679 

Runoff 0.3616 0.1998 0.3235 

Distance 0.2264 0.2775 0.3220 

Sea 

Level 

0.1842 0.2906 0.1866 

 

Based on the evaluation metrics (Table 5), the predictive 

models demonstrate results ranging from good to 

excellent across all three regions. The model for Jepara 

delivers the strongest outcome, achieving an exceptional 

F1-Score of 95.02% and an accuracy of 94.74%. This 

indicates an outstanding balance between precision and 

recall. Similarly, Semarang's model is also highly 

effective, yielding a strong F1-score of 90.37% and an 

accuracy of 93.33%. Meanwhile, the Demak model 

operates at a competent level, although slightly lower 

than the others, registering an F1-score of 86.97% and an 

accuracy of 87.88%. The high accuracy scores signify 

that the models are reliable in distinguishing between 

flood-prone and non-flood-prone areas. For instance, the 

94.74% accuracy in Jepara means the model correctly 

classified approximately 95 out of every 100 conditions. 

It is important to note that while a predictive model was 

developed in this study, its primary output is the 

calculation of these feature weights, which will be 

utilized for hazard visualization and mapping. 

Regarding the Determining Factors of Flood Hazard 

(Relative Feature Importance Weight), the analysis 

reveals that the primary drivers of flood risk vary by 

location, highlighting the unique characteristics of each 

region. In Jepara, flood hazard is primarily driven by 

Runoff (surface runoff), which holds a weight of 0.3616. 

For the Semarang region, the most significant variable is 

Sea Level (weight: 0.2906), closely followed by Distance 

from a river/sea at 0.2775. In Demak, the risk is most 

influenced by two nearly equally powerful factors: 

Runoff (0.3235) and Distance (0.3220). Overall, these 

results indicate that although all features (Elevation, 

Runoff, Distance, and Sea Level) are relevant, the 

mitigation priorities should differ for each regency. 

Jepara needs to focus on surface runoff management, 

while Semarang must prioritize mitigation related to sea-

level rise, and Demak should address runoff and distance 

from water sources in a balanced manner. 

The differences in weights reflect each location's unique 

environmental conditions and flood dynamics, which 

necessitate tailored approaches to flood risk analysis and 

management. 

 

4.2 TES & NN combination to forecast 

panel data  

To create the first model: forecasting with TES, starting 

with the processing of sea level and weather data. This 

data processing includes: converting dates from UTC to 

UTC+7, pre-processing each variable (converting sea 

level values from meters to centimeters, converting 

temperature from Kelvin to Celsius, etc.), grouping data 

by month for maximum values (sea level, V10, U10), 

average values (D2M, T2M), and minimum values 

(MSL, SP), then normalizing the data using the decimal 

scaling method. The forecasting results in three regions 

(Semarang, Demak, and Jepara) show different error 

rates for each variable. Table 6 presents the performance 

evaluation of the initial forecasting model, which was 

created as the first model in the study. The model's 

performance is measured using error metrics: MSE, 

RMSE, & MAPE, with lower error values indicating 

higher model accuracy. The results show the model's 

high accuracy (MAPE in 1.6%-2.2%) in predicting the 

weather variables: U10, V10, D2M, T2M, MSL, and SP. 

Conversely, the model faces significant challenges in 

predicting TP (MAPE≈70%), which has the highest error 

values, so this variable is excluded in the next process, 

also with SWH which actually has a fairly good error 

(MAPE≈18%) but not as high as other variables. For the 

Z variable (sea level) at three locations (Jepara, 

Semarang, and Demak), the prediction errors range from 

22% to 25%, indicating moderate accuracy. Overall, this 

table indicates that the initial model is already very 

reliable for some meteorological variables but requires 

substantial improvements for other variables, especially 

rainfall and wave height. Accurate initial predictions for 

these variables are the reason they are included in the 

next stage. Z (sea level) has a moderate error rate, 

indicating that this model has fairly good accuracy in 

predicting sea level (Table 6, Figure 5), but it needs to 

consider the influence of weather variables to improve 

accuracy results. 
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Table 6: Initial Forecast, to create first model 

 

Variables MSE RMSE MAPE (%) 

U10 0.0011 0.0327 1.67 

V10 0.0008 0.0282 2.01 

D2M 0.3895 0.6241 1.94 

T2M 0.4683 0.6843 1.71 

MSL 610.8699 24.7158 2.20 

SP 626.0488 25.0210 2.23 

TP 0.0062 0.0790 72.36 

SWH 0.0253 0.1590 18.67 

Z Jepara 174.7511 13.2193 22.87 

Z 

Semarang 

177.2125 13.3121 23.71 

Z Demak 196.6765 14.0241 24.75 
 

 
Figure 5: Initial forecast using TES 

 

Training the NN model (for the second model, hybrid), 

by combining two methods: Triple Exponential 

Smoothing (TES) and Neural Network (NN), using sea 

level data influenced by several weather variables, 

starting with reading the data. Then, the data is divided 

into training data (1995-2020) and testing data (2021-

2024). Next, two models are trained separately using the 

training data: (1) The TES model is trained on the time 

series data z to capture trend and seasonality patterns, (2) 

The NN model is trained to learn the relationship 

between selected feature variables (U10, V10, D2M, 

T2M, MSL, and SP) and the target variable z. These 

feature data are first scaled using MinMaxScaler. The 

NN model was created using MLPRegressor with six 

hidden layers containing 50 neurons.  

The model performance evaluation (Table 7 & Figure 6) 

clearly shows that the Hybrid Method consistently 

outperforms the single method in all three regions. This 

superiority is evidenced by a drastic reduction in error 

values, with the MAPE error rate successfully reduced to 

less than half in all locations (e.g., from 20% to 4%). The 

primary reason behind this improvement in accuracy is 

that the hybrid method has higher accountability by 

incorporating the influence of weather variables into the 

modeling, a factor not considered by single methods. As 

a result, the hybrid approach produces forecasts that are 

not only more statistically accurate but also more reliable 

and comprehensive. 

 

 

 

 

Table 7: Comparison between single method (TES) and 

hybrid method (TES & NN) 

 
  Jepara Semarang Demak 

Single 

Method 

 

MSE 174.751

1 

177.2125 196.676

5 

RMS

E 

13.2193 13.3121 14.0241 

MAP

E 

22.8745

% 

 23.7123

% 

24.7514

% 

     

Hybrid 

 

MSE 25.1946 22.3257 22.6336 

RMS

E 

5.0194 4.7250 4.7575 

MAP

E 

8.6873% 8.3628% 8.3404% 

     

Hybrid 

with 

Predicte

d Bias 

MSE 4.8567 5.3047 5.0739 

RMS

E 

2.2038 2.3032 2.2525 

MAP

E 

3.5509% 3.7958% 3.6839% 

 

 

 
Figure 6: Forecast training & testing using hybrid 

method 

 

4.3 Forecast with TES, NN & predicted 

bias  

NN training was carried out to correct bias in time series 

data. The data was divided into training sets and test sets, 

with the features (X) and target (Y) used. The feature is 

then normalized using the MinMaxScaler into a range of 

0 to 1. The NN model is made with three layers: an input 

layer with 64 neurons, a hidden layer with 32 neurons, 

and an output layer with 1 neuron. The model was 

compiled with the ADAM optimizer and MSE loss 

function, and then trained using training data that had 

been scaled over 50 epochs with a batch size of 32 and 

validation of 20% of the training data. The trained model 

is used to predict bias on the test set. The predicted 

average bias is calculated and adjusted by dividing by the 

number of features and factors. 

Next, a combination of the TES and NN methods to 

make a combined prediction. The data was divided into 

training sets and test sets. The TES model is trained 

using training data and is used to make predictions on the 

test set. The NN model is trained with training data and 

is also used to make predictions on the test set. The 

predictions from both models were combined by taking 
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the mean from the predictions of the TES and the NN 

and then subtracting the bias. Actual data is combined 

with forecast data. MSE and MAPE are calculated to 

evaluate the performance of the model on the test set. In 

addition, a forecast for the 2024-2044 period was also 

made (Figure 7). In the context of this long-term flood 

hazard forecast, model deviations are of significant 

concern. To take this into account, this hybrid forecasting 

method allows for the integration of time series data and 

complex interactions between various influencing 

factors. This approach helps in adapting the model to 

better reflect changing conditions over time, thereby 

reducing the risk of model deviation. 

 

 
Figure 7: Sea Level Forecast 2025-2044 

 

4.4 Visualization (Flood Hazard) 

The visualization is provided in the form of a raster map 

created by calculating the flood hazard levels. Starting 

with creating a raster for elevation, several GeoTIFF files 

from DEMNAS, which form each region 

(Jepara/Semarang/Demak), are merged and then clipped 

according to the regional boundaries (shapefile of 

Indonesia's topographical boundary). The coordinate 

reference system (CRS) was changed to EPSG:4326, and 

the spatial resolution was converted to 8.35 meters. Then, 

for visualization purposes on the flood hazard map in the 

form of scores, the elevation was transformed using min-

max normalization, and an inversion was performed (the 

higher the elevation, the lower the score).  

Determination of CRS, clipping, and resampling to 

achieve the exact resolution is also performed on the 

landcover raster. The landcover values are converted to 

runoff based on the Rational Method Runoff Coefficient. 

This runoff value is considered as the score. 

To create a raster distance to the coastline, the shapefile 

of the Indonesian Landform Boundary was used, and 

then the Euclidean distance transformation was 

calculated to determine the distance from each point of 

each pixel in the raster to the nearest coastline (which has 

been defined previously). This distance is then converted 

to meters. For score determination, min-max 

normalization is performed, and since this distance has a 

negative correlation with flood risk, inversion is carried 

out.  

To create the sea level raster, each pixel is calculated: 

Sea level = Sea level Score × Distance Score, which 

means using the distance raster and linking it with the sea 

level value from the forecast (or actual value) at a 

specific time (month and year) determined as a 

parameter. 

Finally, the flood hazard map is created by calculating 

the pixel values on all rasters associated with the 

predetermined weight values (different in each region). 

 

  

  

 
 

 

Figure 8: Flood Hazard: Demak 

 

The projected future growth in flood-affected areas and 

increased hazard in the Demak area are depicted in 

Figure 8. Greater danger is indicated by darker blue hues, 

and the extent of the at-risk areas is depicted by larger 

blue regions. The northwestern coastal region was the 

primary location for flood hazards in January 2016 and 

January 2020. From 2016 to 2020, the number of flood-

prone areas increased slightly, with areas at risk of 

flooding (light blue) seemingly moving a little farther 

inland. This means that the risk has already shown an 

upward trend during those four years. Predictions for 

January 2028 indicate a marked expansion of the at-

hazard area in comparison to 2020. The light-blue 

patches extend farther into the interior, suggesting that 

areas that were previously low-hazard or not at risk are 

now starting to face the threat of flooding. In coastal 
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areas (dark blue), the level of hazard intensity is still high 

and has somewhat increased. The most dire scenario is 

projected for June 2043 (Long-Term Prediction), when 

areas at risk of flooding will have greatly expanded. 

Flood risk is expected to be low to high in nearly half of 

the northern portion of the region. According to this, the 

impact of climate change or other factors (like land 

subsidence and changes in land use) is expected to 

significantly worsen the flood situation within a 20-year 

period starting in 2028. 

 

  

  

 

 
 

Figure 9: Flood Hazard: Jepara 

 

The Jepara area, which has a long coastline, is predicted 

to have tidal flood or coastal inundation hazards, as 

shown in Figure 9. This set particularly emphasizes the 

dangers along the coast, in contrast to the Demak area, 

which depicts the spread of floods inland. Flood hazards 

were concentrated in the bay areas, river estuaries, and 

lowlands along the coastline during both of the 2016–

2020 timeframes. The nearly identical hazard pattern 

during this time suggests that the risk of coastal 

inundation is comparatively constant. The most 

dangerous areas (dark blue) are found in the coastal 

basins that are most at risk. Hazardous area extent is 

predicted to slightly increase in 2028. The inundation 

areas (light blue) have slightly expanded at a number of 

locations along the coast, though not significantly, 

suggesting that the sea level may be rising or that high 

tides may be occurring more frequently. This long-term 

forecast shows a more pronounced increase in danger 

than in prior years. Particularly in the southern portion 

and in a number of coastal areas in the north, the 

inundation areas (light blue) seem to be more 

widespread. This suggests that low-lying coastal areas 

will experience more widespread and long-lasting 

flooding by 2043 as a result of the anticipated rise in sea 

levels. Wider low-risk zones now encircle the highest-

risk areas (dark blue), which stay in the same place. 

 

  

  

 

 
Figure 10: Flood Hazard: Semarang 

 

The city of Semarang is seriously threatened by coastal 

flooding (rob), which is expected to get worse and spread 

more widely in the future, according to Figure 10. The 

majority of Semarang's northern coastal regions already 

had a high risk of flooding in 2016. While the light blue 

(lower risk) areas have already spread quite far 

southward (inland), the dark blue (highest risk) areas are 

concentrated close to the coast. Comparing 2020 to 2016, 

there was a minor decline. Flooded areas appear slightly 

larger and have spread farther inland, particularly those 

at lower risk (light blue). The impacted area is expected 

to significantly expand by 2028. A larger area to the 



280   Informatica 50 (2026) 267–286                                                                                                                          D.K. Hakim et al. 

 

south is expected to be inundated by flooding than in 

2020. Deeper or more frequent flooding is indicated by 

the dark blue areas' apparent slight increase in intensity. 

The Long-Term Prediction for 2043 is a worrying 

situation. The map displays a significant and striking 

increase in tidal flooding. It is anticipated that the 

inundation area will "consume" a significant portion of 

North Semarang and extend deep into the city center. 

Nearly the whole coastal region has turned into a high-

risk zone (dark blue), meaning that flooding is likely to 

occur there either permanently or very frequently. 

 

5 Discussion section 
This study examines how rising sea levels made worse 

by climate change are increasing the risk of coastal 

floods in Indonesia's coastal regions, especially in 

Semarang, Demak, and Jepara, using spatial data mining 

forecasting techniques. Compared to conventional 

approaches, the hybrid model combining TES and  NN 

significantly improves flood prediction accuracy. The 

hybrid model achieved a MAPE value of 8.3% to 3.5%, 

indicating that it is better at predicting floods more 

accurately compared to single methods [12]. 

Incorporating sea level data, elevation, runoff, distance to 

the coastline, and other parameters into the model allows 

for a comprehensive analysis of flood hazards. By using 

historical flood data to measure the weight of these 

parameters through NN, the assessment becomes more 

objective and subjectivity in the Analytic Hierarchy 

Process (AHP) is reduced [8]. For areas like Indonesia, 

where geographical and climatic variances can greatly 

affect flood dynamics, this methodological development 

is essential.  This study also highlights how crucial it is 

to analyze very large datasets using spatial data mining to 

spot trends and raise the precision of predictive models. 

In addition to identifying non-linear correlations, the 

hybrid approach is expected to overcome the weaknesses 

of traditional forecasting techniques, which often ignore 

the influences between variables [6]. The results indicate 

that the risk of flooding will increase in hundreds of 

densely populated cities by 2050, potentially doubling by 

2100 [1]. 

The trade-off between  NN, exponential smoothing, and 

hybrid approaches (Table 10) involves many 

considerations.  NN provide scalability and the ability to 

model complex relationships at the expense of 

computational efficiency and interpretability. 

Exponential Smoothing offers a more straightforward 

and interpretable approach that is computationally 

efficient but may struggle with scalability and 

complexity. Hybrid Approaches aim to combine the 

strengths of both methods, providing a balanced solution 

that improves scalability, maintains a degree of 

interpretability, and improves accuracy. 

 

 

 

 

 

Table 10: Trade-offs between all the methods used 

 

Aspect NN ES Hybrid 

Computatio

nal 

Efficiency 

High 

computatio

nal 

demand; 

longer 

training 

times 

Low 

computation

al demand; 

quick 

execution 

High 

computation

al demand; 

resource-

intensive 

Scalability Highly 

scalable; 

adapts to 

large 

datasets 

Limited 

scalability; 

struggles 

with 

complexity 

Highly 

scalable; 

flexible 

adaptation 

Interpretabi

lity 

Low 

interpretabi

lity (black 

box nature) 

High 

interpretabil

ity; 

straightforw

ard 

mechanics 

Moderate 

interpretabil

ity; 

combines 

strengths 

Model 

Accuracy 

High 

accuracy 

potential; 

risk of 

overfitting 

Good 

accuracy for 

simple 

patterns; 

limited in 

complexity 

Enhanced 

accuracy; 

robust to 

variability 

 

Based on the weight analysis derived from Feature 

importance (Table 5), it can be concluded that the main 

triggers of coastal flooding vary significantly in each 

location, indicating unique local vulnerabilities  [116]. 

High water runoff from the land poses the biggest risk in 

Jepara. Semarang, on the other hand, is more susceptible 

to direct sea influences, especially those related to sea 

level and land subsidence (elevation). In the meantime, 

water runoff and Demak's closeness to the coast pose a 

nearly equal threat. This key distinction highlights the 

fact that mitigation strategies must be tailored to each 

region and cannot be applied universally. 

6 Conclussion 
The hybrid method applied has successfully addressed 

the panel data problem with relatively better MAPE 

values, ranging from 8.3% to 3.5%. Additionally, the 

flood hazard weights have also been well identified, with 

accuracy values varying between 88% and 94%, regional 

differences can affect results due to the different 

geographical and climatic characteristics in each region, 

which can affect flood dynamics. 

The findings of this study contribute to the increasing 

knowledge of flood risk assessment and management, 

providing a solid framework for future studies and 

practical applications in flood-prone areas.  
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The success of the hybrid model in predicting coastal 

floods can serve as a valuable tool for policymakers and 

urban planners in developing effective flood 

management strategies. It is hoped that decision-makers 

can benefit from appropriate flood mitigation techniques 

for coastal areas, as infrastructure and lives are seriously 

threatened by this condition. 

Some points that can be concluded: 

1. Integrating a hybrid approach with climate 

model projections is recommended in climate 

change uncertainty with significant variations 

due to differences in physics assumptions, 

parameterization, and emission scenarios by 

capturing a more comprehensive range of 

possible future conditions. 

2. Predictions become more resilient to biases or 

model-specific errors by using multiple 

projections at once, resulting in more reliable 

estimates of flood risk or related variables under 

climate change scenarios. 

3. Probabilistic information from hybrids 

supporting risk-based decision-making can be 

used to design flexible adaptation strategies for 

future possibilities. 

 

This research opens up essential insights and broader 

implications for coastal policy and risk management:  

 

1. Scalability of the System 

Hybrid models can be widely applied in various 

coastal areas with different characteristics as 

long as adequate data is available.  

2. Real-World Application 

The model must be followed by real 

implementation, including integration with early 

warning systems and regional spatial planning.  

3. Implementation Challenges 

Field implementation may face data limitations, 

human resources, and technological 

infrastructure. Therefore, adequate policy 

support and investment must be needed to 

overcome these barriers. 
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