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Due to climate change—induced sea level rise, coastal flood risk is increasing significantly, creating an
urgent need for improved flood risk assessment and mitigation strategies. Effective flood analysis
requires both time series forecasting and hazard risk evaluation, including the determination of
appropriate weights for flood-related parameters such as elevation, runoff, distance to the shoreline,
and sea level. Traditional forecasting methods like exponential smoothing are limited in capturing
relationships between variables, while neural networks can model non-linear interactions but are less
commonly applied to long-term forecasting. To address these limitations, this study proposes a hybrid
method that integrates Exponential Smoothing (ES) and Neural Networks (NN) for panel data analysis,
where ES identifies trends and seasonal patterns and its output is used as additional input for NN. The
NN is also employed to objectively determine parameter weights, reducing the subjectivity of
conventional AHP-based approaches. The method integrates geographic and climatic variables,
including wind speed, temperature, sea surface pressure, and rainfall, and is applied to coastal areas in
Semarang, Demak, and Jepara, Indonesia. Results show that the hybrid model outperforms standard ES
and NN methods, achieving flood forecasting errors (MAPE) between 3.5% and 8.3% and parameter
weighting accuracy of 88-94%, contributing to a more holistic and reliable flood risk analysis.

Povzetek: Raziskava predlaga hibridni pristop, ki zdruzuje eksponentno glajenje in nevronske mreze za
natancnejsSe napovedovanje obalnih poplav ter objektivno dolocanje utezi poplavnih dejavnikov, s ¢imer

izboljsa  oceno poplavnega tveganja

1 Introduction

Rob floods are one type of flood that increasingly
threaten coastal areas worldwide, occurring as a
phenomenon when high tide sea water overflows onto
land. Global warming causes rising sea levels, increase
the risk of coastal flooding by up to five times this
century worldwide, putting more than 70 million people
in danger in increasingly expanding floodplain areas,
with projections of loss of land and critical infrastructure
due to permanent inundation [1]. The fact that many
major cities and communities are situated along the
shore, making more people and infrastructure susceptible
to coastal flooding, makes this situation much worse. By
2050, hundreds of densely populated coastal cities are
expected to face increased flood risk, with that risk
doubling by 2100 [1]. This increase could lead to a
setback in human development globally, especially in
coastal areas that are centers of important social and
economic activity. In addition to being caused by human
activities such as urbanization and land-use change,
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climate change factors also exacerbate these conditions
through rising sea levels and increasing frequency of
floods. Therefore, a deep understanding of flood risk and
developing effective mitigation strategies are critical to
protecting coastal communities from such negative
impacts.

Hazard risk analysis and time-series forecasting are
important approaches in flood mitigation [2], [3], [4].
This involves assessing the flood potential in an area,
with: evaluation of historical flood data [5], [6], [7], [8],
weight determination [2], [9], [10], and future climate
projections to predict where and when floods might
occur [11], [12]. Predictive models in this field are
increasingly being enhanced by the application of Spatial
Data Mining (SDM), which enables the analysis of large
datasets to identify trends and improve forecast accuracy
[13], [14]. SDM plays a crucial role in enhancing
predictive models for flood forecasting by enabling the
analysis of large datasets to identify trends and improve
forecast accuracy. It integrates various data types,
including historical flood data and geographical,
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climatic, and land use variations, essential for practical
flood risk analysis. The application of SDM allows for
identifying non-linear correlations between variables that
traditional forecasting methods, such as univariate
approaches, often overlook. By combining SDM with
techniques like Artificial Neural Networks (ANN) and
Exponential Smoothing (ES), predictive models can
achieve significantly improved accuracy, as evidenced by
a hybrid model that achieves an error smaller than single
methods [1], [2], [6]. This methodological advancement
is significant in regions like Indonesia, where
geographical and climatic variances can significantly
affect flood dynamics.

Long-term forecasting techniques used in predicting
floods in time series generally employ a univariate
approach [15], with time series data, such as the
exponential smoothing method, which has the advantage
of simplicity in the mathematical formulas used.
However, exponential smoothing has the disadvantage of
being limited in depicting relationships with other
influencing variables [16], [17]. The solution to the
problem of the relationship between variables causing
floods can use non-linear approach neural networks,
with cross-sectional data, which has the advantage of
making fairly accurate estimates in the short term but
does not have the advantage of long-term forecasting like
the univariate approach [18]. Both types of data, time-
series and cross-section data, when combined in the form
of panel data, can be used for time-series forecasting
analysis that links the relationships between variables in
making forecasts, by combining both approaches (time-
series forecast and non-linear estimation) with hybrid
method (Triple Exponential Smoothing and Neural
Network). The hybrid method approach is expected to
offer solutions that not only improve the accuracy of
predictions but also adaptive flexibility to environmental
dynamics, making them a relevant and strategic topic in
today's era of climate change [13], [19], [20], [21].
Previous studies with various methods (ARIMA,
SARIMA, LSTM, etc.) have highlighted the
effectiveness of different forecasting models in coastal
flood forecasting but have not consistently reported
MAPE values as part of their evaluation metrics,
focusing only on RMSE and MAE [22], [23], [24].
Although Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are valuable tools for assessing
model performance in a particular context or study, they
have limitations in terms of cross-study comparisons due
to their subjectivity related to the characteristics of the
data [25], [26]. In contrast, MAPE provides a more
standardized approach that facilitates comparisons across
multiple scenarios [27], [28], so the use of MAPE in
coastal flood forecasting studies is a novelty.

To provide accurate visualization in the form of a flood
hazard map, it is critical to determine the proper weight
of flood risk parameters so that each pixel on the map
can be given a representative risk score. This weight
reflects the degree of influence of each variable, such as
elevation, runoff, distance to water sources, and sea
level, on the potential for flooding in the location.
Weighting is essential because of geographic variation.
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In flood hazard risk analysis, it is necessary to determine
the weight values for various parameters that influence
flood risk. Geographic, climatic, and land use variations
in different regions of Indonesia cause the flood hazard
weights to differ in each area. The Analytic Hierarchy
Process (AHP) method, which is often used to determine
parameter weights, is quite effective in empirical analysis
[29], [30]. However, this method needs to be improved
due to subjectivity and the potential bias of experts [31].
AHP relies heavily on subjective judgments for assigning
weights to different criteria, which can introduce bias and
inconsistency [32], [33]. Additionally, AHP may struggle
with handling complex, nonlinear relationships among
flood risk factors and can be limited in capturing the
dynamic interactions between variables over time and
space.

In this study, we propose an innovative solution using
Historical Flood Data-Based Neural Networks to
determine parameter weights more objectively and
accurately. This approach is expected to reduce bias and
enhance the reliability of flood risk analysis through
data-based optimization [2], [33]. Neural network-based
approach addresses these limitations by learning directly
from data, which allows it to model complex, nonlinear
patterns in flood risk factors without requiring subjective
weight assignments. Neural networks can integrate
multiple influential variables and their interactions more
effectively, improving prediction accuracy and
robustness. Moreover, when combined with GIS and
remote sensing data, neural networks provide a more
data-driven, adaptive, and precise flood susceptibility
mapping compared to the more rigid and expert-opinion-
dependent AHP.

The objective of this study is to evaluate the
effectiveness of combining Neural Networks and
Exponential Smoothing in improving long-term and
short-term flood forecasting accuracy in coastal areas.
We hypothesize that combining Neural Networks and
Exponential Smoothing improves long-term and short-
term flood forecasting accuracy compared to single-
model approaches. The study focuses on Semarang,
Demak, and Jepara due to their significant exposure to
flooding events, as evidenced by historical data
indicating a high frequency of flood occurrences in these
areas. Additionally, these locations are characterized by
unique environmental conditions that make them
particularly susceptible to the impacts of climate change,
thus providing a relevant context for this research.

2 Data

The study was carried out in coastal areas representing
tropical climates in Indonesia, specifically in Semarang
City, Demak, and Jepara, covering an area of
approximately 2,291.456 kmz2 with a total population of
4,819,953 people, where Semarang City has 373.78 km?
and 1,694,743 people, Demak has 897.43 km? and
1,252,970 people, and Jepara has 1,020.246 km? and
1,872,240 people based on the latest measurements [34].
The three areas were chosen because they are prone to
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hydrometeorological disasters on the north coast of Java,
especially coastal floods, caused by a combination of
high rainfall, extreme sea tides, and land subsidence due
to both human activities and natural processes, and they
also have a long history of flood events [35], [36], [37].
For the analysis of coastal flood hazards, several
variables are used: sea level data, elevation, runoff (from
land cover), and distance to the coastline. Elevation,
runoff, and distance are variables that tend to remain
constant (not experiencing significant changes), whereas
sea level data is a variable that varies over time.

In contrast to other variables, sea level is changing
continuously over time as a water surface along the
coast. Tidal gauge records and sea tide models are used
to recreate normal high tide conditions as well as
infrequent but significant extreme events [38]. The study
makes use of historical sea level data for the years 1995—
2024 from the Indonesian Geospatial Reference System
(SRGI) [45]. Many time-based weather variables, such as
U10 & V10 (10m Wind Speed), D2M (2m Dew Point
Temperature), T2M (2m Temperature), MSL (Mean Sea
Level Pressure), SP (Surface Pressure), TP (Total
Precipitation), and SWH (Significant Wave Height), are
used to forecast sea level with the assumption that all of
these variables have an impact on sea level [47], [48],
[49]. Wind speed has an impact on water flow and can
lead to storm surges, which raises the possibility of
coastal flooding [39], [40]. Rainfall patterns and cloud
formation are influenced by atmospheric humidity and
condensation, which are influenced by the dew point and
air temperature [40]. In addition, surface pressure and
average sea surface pressure have a direct impact on
ocean and atmospheric dynamics that affect water level
variations [41], [42]. Both the intensity of tropical storms
and the thermal expansion of seawater are influenced by
sea surface temperature [42]. Meanwhile, total
precipitation increases the amount of water on land [42],
which can make runoff worse. Information about wave
patterns that can either increase or lessen the impact of
extreme tides in coastal areas can be found in the
direction of the waves [42]. By combining these
variables, the prediction model is able to account for the
intricacy of the atmosphere-ocean interaction, producing
estimates of flood risk and sea level rise that are more
accurate. Hourly weather data recorded as time series
with a resolution of roughly 27.83 meters is the source of
ERAS5 hourly data on single levels (Copernicus), from
which weather data is derived [46].

Elevation is fundamental in flood threat analysis because
it determines which areas are physically vulnerable to
inundation. For example, low-lying areas are more
susceptible to flooding due to their proximity to sea
level, directly affecting the level and depth of potential
flood inundation [38]. Elevation data is obtained from
DEMNAS Indonesia (National Digital Elevation Model),
provided by the Geospatial Information Agency (BIG).
Runoff values, derived from land cover data conversion,
represent how much rainfall becomes surface runoff
rather than infiltrating into the ground [38]. Therefore,
areas with impermeable surfaces or specific land uses
generate higher runoff, increasing the flood threat.
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Runoff data is derived from land cover: Copernicus
Global Land Cover Layers: CGLS-LC100 Collection 3
[43], which is then converted based on the Rational
Method Runoff Coefficient [44].

Distance to the coastline is essential because closeness
increases exposure: locations closer to the coast are at
greater risk from storm surges and sea level rise events.
A spatial relationship between the location of each pixel
and its distance from the coastline is concluded when
creating flood threat maps [38]. The distance to the
coastline is essential because proximity increases
exposure: locations closer to the coast are at greater risk
from storm surges and sea level rise events, concluding
that there is a spatial relationship between the location of
each pixel and its distance from the coastline when
creating flood threat maps. Distance to the coastline is
calculated by measuring the distance of each pixel from
Shapefile to the nearest coastline in each area.

3 Method

3.1 State of the art and related works
Forecasting, especially related to flooding, is a research
field that continues to be discussed, with various
approaches being used. One of the main focuses is on
coastal locations vulnerable to rising sea levels and land
subsidence, which significantly increases the risk of
flooding [52] and ultimately negatively impacts the local
economy [53]. Some topics related to Coastal Flood
Forecasting (Fig. 1) are flood risk and adaptation
response modeling, hydrodynamic modeling, and flood
risk assessments.

Coastal flood risk modeling and adaptation response
assesses future flood risk and formulates effective
adaptation strategies. By analyzing climate change
scenarios and their consequences on flood risk, this
method integrates physical and social models to
understand potential impacts comprehensively [54].
Hydrodynamic modeling examines and predicts water
flow behavior and its interactions with the environment
[55]. Using principles of physics, mathematics, and
engineering, these models accurately simulate water
movement under various conditions, including floods,
waves, currents, and other hydrologic phenomena.

Flood risk assessment systematically identifies, analyzes,
and evaluates the risks associated with flooding [56],
[57], [58]. This approach seeks to understand the
potential hazards of flooding, evaluate their likely
impacts, and assess the vulnerability of infrastructure and
populations to flood events.

These approaches can stand alone or be enhanced
through integration with statistical or data mining
techniques [56], strengthening the ability to predict and
respond to coastal flood hazards. This study seeks to
explore flood risk assessment through an innovative
approach that leverages data mining for accurate
estimates.
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Figure 1: Coastal flood forecasting mind map

Several methods have been used in sea level forecasting
associated with risk assessment (Table 1), with various
advantages and disadvantages. Using a single method in
prediction has the advantages of simplicity and clarity.
However, this method has several limitations: limitations
in capturing data complexity, risk of overfitting or
underfitting, and difficulty handling data variability. In
terms of data complexity, forecasting methods are
generally univariate (e.g., ARIMA, ES, etc.) which do
not consider the influence between variables as in
regression  approaches (linear  regression, neural
networks, etc.), so a hybrid approach is proposed by
combining forecasting and the influence between
variables.

Table 1: Sea level forecasting related works

D.K. Hakim et al.
Data Techniques Accuracy Limitations
Metrics
Data Smoothing RMSE linear trends, sensitive
[65] to sudden changes
Tide Gauge Long Short- MSE, Requires large datasets,
+ Satellite  Term Memory ~ MAE, computationally
Data (LSTM) RMSE intensive
Tide Gauge Moving RMSE Limited to short-term
Data Average forecasting, less
effective for capturing
seasonality
Tide Gauge ARMA RMSE Limited to linear
Data relationships, struggles
with non-stationary data
Tide Gauge Recurrent MSE, Requires large datasets,
+ Satellite Neural Network  MAE, computationally
Data (RNN) RMSE intensive

Data Techniques Accuracy Limitations
Metrics
Tide Gauge ARIMA RMSE Limited to linear
Data [59], [60], [61] relationships, struggles
with non-stationary data
Satellite Neural Network  MSE, Requires large datasets,
Altimetry Auto- MAE, computationally
Regressive RMSE intensive
(NNAR)
[62], [63]
Tide Gauge Extreme MSE, Sensitive to outliers,
+ Satellite  Gradient MAE, overfitting risk
Data Boosting RMSE
(XGBoost)
Tide Gauge Facebook MSE, Assumes additive
Data Prophet MAE, seasonality, less
(FProphet) RMSE effective for
[64] multiplicative trends
Tide Gauge Exponential MAE, Less effective for non-

In several recent studies, hybrid approaches can improve
prediction accuracy by reducing bias and variance, thus
handling  non-linear  relationships and  complex
interactions among environmental variables [66], as well
as capturing temporal patterns and long-term
dependencies in data [67], which are very important for
hydrological predictions. This approach adds an essential
dimension to flood vulnerability analysis by emphasizing
the use of predictive machine learning to assess
relationships among variables [68], making it possible to
predict spatial vulnerability levels in areas.

Exponential Smoothing effectively captures trends and
seasonality in time series data, providing stable and
interpretable predictions. However, this method struggles
with non-linear patterns and complex interactions
between variables. On the other hand, neural networks
excel at modeling non-linear relationships. They can
learn complex patterns from large datasets, but they often
operate as a black box, making interpretation difficult.
Integration of Exponential Smoothing and Neural
Networks by combining the strengths of both
methodologies is expected to improve the accuracy of
sea level forecasting for coastal flood hazard prediction
[69].

Integrating these two methods is expected to leverage the
stability and interpretability of Exponential Smoothing
while leveraging the predictive power of Neural
Networks, ultimately resulting in more robust and
reliable flood hazard forecasts that can adapt to changing
environmental conditions.

3.2 Flood hazard in coastal area

In several disaster risk studies, especially the flood
hazard assessment conducted in this study, hazards are
measured using a multi-criteria approach, where several
variables that make up hazards are given scores and
weights according to the level of impact, such as in
Indonesia, which uses the Indonesia Disaster Risk Index
[70], [71]. The formula used is the classic weighted sum,
the sum of the multiplication results between the weight
and the value/score of each variable. It is commonly used
in risk analysis, multi-criteria decision-making, and
hazard evaluation (Eg.1). The Variable Score (S;) is the
value of the intensity of the hazard based on various
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factors. Weights (w;) can be determined in various ways:
expert judgment, AHP, or data-driven (used in this study)
to assess the contribution of each factor to the overall
hazard.

Hazard Index = ¥ w;S; 1)
H=w,5; + w,S, + w383 +w,S, 2

The Hazard Index (H) assesses an area's danger level
based on several factors (Eq.2). The first factor, elevation
(S,), is the height of a location from sea level that affects
the risk of flooding [71]. The second factor, runoff (S,),
is the water flow above the surface that exceeds the soil's
capacity to absorb water [72]. The third factor, distance
to the coastline (S3), is the distance of a location from the
coastline, where locations closer to the coast may be
more vulnerable to hazards such as tsunamis and
hurricanes [73]. The last factor, sea level (S,), measures
the influence of tides that can affect flood risk in coastal
areas [74]. Each of these factors is weighted (w,, w,, ws,
w,) according to the degree of its influence on the overall
Hazard Index (H).

All variables are stored in raster format (GeoTIFF), and
calculations are performed on each pixel with a
resolution of about 8 meters (adjusting to the initial
Raster: DEM). Each raster has been cut and re-sampled
to ensure consistency and accuracy of the data.

3.3 Neural network data driven weighting

The use of feature importance in determining flood
hazard weights provides a more objective and data-
driven approach compared to traditional methods such as
the Analytic Hierarchy Process (AHP), which heavily
relies on the subjective judgments of experts. With
feature importance, the relative contribution of various
parameters is assessed. Differences between regions
significantly affect the results of flood hazard
assessments because each area has unique geographic
characteristics [75], [76], climate, land use, and socio-
economic conditions, all of which influence how the
flood risk parameters play a role.

Weighting using neural networks can be done by
calculating feature importance and measuring the
variance of the weights connected to each input feature
during the training phase [77], [78]. This process
involves assessing how much each feature affects the
output by observing the changes in related weights. The
more significant the weight change, the more important
the corresponding feature influences the output [77]. This
method is beneficial for understanding which input
variables impact the model's predictions most, thereby
allowing for better interpretation and optimization of
model performance. The final feature importance scores
are calculated based on the variance of the weights
combined with the final weights for each input feature;
this helps identify the most critical factors affecting the
model's output, such as flood hazard assessment.

Several feature variables are used to calculate feature
importance in the flood depth prediction model:
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elevation, runoff, distance to the coastline, and sea level
[79], [80]. The flood depth class variable plays a role as
the target to be predicted. The value of the flood depth
class is obtained from the flood depth classification
process, which is measured on a meter scale and then
categorized into certain classes to facilitate analysis and
modeling.

Each of these feature variables has an important role in
flood modeling. Elevation determines the height of the
land relative to sea level, which directly affects the risk
and level of flooding [81]. Runoff describes the flow of
surface water from rainfall and runoff, contributing to the
water volume that can cause flooding [82]. Distance to
the coastline affects the potential impact of coastal
flooding because the closer a location is to the coast [82],
the more likely it is to be flooded due to rising sea levels.
Sea level is in the form of sea level fluctuations that can
worsen flood conditions, especially in coastal areas [82].

Calculating feature importance in neural network [77]
starts with data preparation, building a model, training,
evaluation, and the last is feature importance analysis
(Fig. 2). Building model involves: determining the
number of hidden layers and neurons, using ReLU (EQ.3)
and softmax (Eq.4) activation functions, and finally
initializing weights and biases.

m «  Model Evaluation
Data Preparation &
Preprocessing

Feature Importance

Building a Neural
Network Model

Analysis

Train the Model

HHH

Figure 2: Weighting with NN
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The ReLU (Rectified Linear Unit) activation function is
a straightforward function in neural networks, which
converts all negative input values to zero and maintains
positive values as they are (Eq.3), with a graph in the
form of a straight line on the positive side and a flat line
on zero for the negative side, so that non-linear
relationships are captured yet efficiently while keeping
computation light [83]. The softmax activation function
(Eq.4) is used on the output layer of the multiclass
classification model to convert the raw output value (Z;)
into an interpretable probability (P;) by converting the
input vector (z = (zy,2,,...,2x) Into a probability
distribution (p [p1, P2, ----, Pk 1), €ach output element is in
the range of 0 to 1 and the sum of all components is 1, so
that softmax provides a prediction in the form of the odds
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of each class (the class with the highest probability is
selected as the prediction result) [83].

During the training phase (Fig.2), backpropagation is
performed to calculate the output, calculate MSE &
MSE, and update the weights based on the loss gradient
with the Adam optimizer (Adaptive Moment Estimation)
to adaptively adjust the learning level for each parameter
to accelerating convergence and improving model
performance [84]. Adam is an optimization algorithm
that combines the concepts of momentum and adaptive
learning rate concepts by calculating the moving average
of the first gradient (momentum) and the second
quadratic gradient to adjust parameter updates
adaptively. At iteration t, Adam calculates the biased
first moment estimate m, (Eqg. 5), which is a moving
average of current gradients gt weighted by decay rate
B1; similarly, it computes the biased second raw moment
estimate v, (Eq. 6), a moving average of squared
gradients weighted by decay rate B,. These estimates are
then bias-corrected to obtain unbiased moments (Eg. 7
and Eq. 8). Finally, parameters are updated (Eq. 9) where
o > 0 is the learning rate controlling step size, and small
constant (e > 0) ensures numerical stability to avoid
division by zero. This mechanism allows Adam to
efficiently adapt to complex loss landscapes, accelerating
convergence during training.

my = pyme_y + (1 — B1)g: (%)
Ve = BV g+ (1— ﬁz)g% (6)
m, = My )
1 - Bi @
P t
I
Op41 = 6 — a‘/v;:ie ©)

The Magnitude of Weights (Absolute Weights) on the
Input Layer is used to calculate feature importance,
which is often used to measure feature importance in
neural networks. It is done by referring to the absolute
value of the weights (w;;) that connect the input neuron
to the neuron in the next layer (Eg. 10), where the i index
indicates the i input feature and the j index indicates the
neuron in the hidden layer. By calculating the sum or
average of the absolute value of the weight, the
contribution value (influence) of the feature on the output
of the model is obtained. The greater the magnitude of a
feature's weight, the more important the role it plays in
the model's prediction process because small changes to
that feature will significantly impact subsequent neuron

activation.
n
Fl= ) Wy
j=1

3.4 Time series, cross-section, and panel
data
Time series data is a sequence of data points collected or

recorded at consecutive time points (e.g., Table 2), with
the characteristics of a date (period) and one actual

(10)
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variable [85] , which are analyzed using a univariate time
series forecasting approach such as the Triple
Exponential Smoothing (TES) method [17].

Table 2: Sample of time series data

Date Sea level (cm)
2022-11  54.3
2022-12  55.1
2023-01 498
2023-02 51.3

Cross-sectional data is data collected by capturing
snapshots of various variables without considering
changes over time. Cross-sectional data (example: Table
3) are analyzed using a non-linear estimation approach
[86], [87] like Neural Network (NN), which is effective
in capturing complex and non-linear relationships in the
data. NN utilizes learning algorithms to model intricate
patterns and interactions among variables, making it
suitable for handling cross-sectional data.

Table 3: Sample of Cross-sectional data

Location  Temperature Wind Sea
Speed Level

Demak 30.82 1.1302 54.3
Demak 30.47 1.4842 55.1
Jepara 29.87 0.8074 49.8
Jepara 30.48 1.2403 51.3
Semarang 29.54 1.1908 44.7
Semarang  30.45 1.6641 55.6

Panel Data, which is a combination of time series and
cross-sectional data, for example, sea level data collected
from several locations at different points in time
(example: Table 4).

Table 4: Sample of panel data

Date Location = Temperature Wind Tide
Speed
2022- Demak 30.82 1.1302 54.3
12
2023- Demak 30.47 1.4842 55.1
01
2022- Jepara 29.87 0.8074 49.8
12
2023- Jepara 30.48 1.2403 51.3
01
2022- Semarang 29.54 1.1908 44.7
12
2023- Semarang  30.45 1.6641 55.6
01

The data panel has a key advantage over purely time-
series or cross-sectional data by integrating diverse data
sources from time and space in flood risk assessments,
emphasizing the need for dynamic models that can
incorporate changing variables such as land use, climate,
etc [88]. The evolution of flood modeling techniques
increasingly prioritizes integrating spatial and temporal
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data, supporting models that can dynamically respond to
changes in environmental and anthropogenic factors [2].
Various case studies and methodologies also highlight
the importance of applying advanced data techniques,
including  spatial-temporal modeling, to reduce
uncertainty in flood risk assessments more accurately and
effectively [89]. Panel data enables evaluation how flood
risk mitigation measures perform over time and across
regions.

In this study, UTC was used as a global time standard,
which provides a consistent reference, which is officially
abbreviated from Coordinated Universal Time as a
neutral compromise between the English terms
(Coordinated Universal Time) and the French term
(Temps Universel Coordonné)—used [90]. Panel data is
stored in Excel format and then imported into Pandas
DataFrame using Python to facilitate data analysis and
processing.

3.5 TES & NN combination to forecast
panel data

Temporal dependencies in the panel data are included in
two main steps [91] that carried out on the panel data; the
first step focuses on the classic statistical method of
Triple Exponential Smoothing (TES) to capture trend and
seasonal patterns in the data, while the second step
combines the approach with a NN model that utilizes
feature selection [92] in the form of the selection of
relevant weather features as inputs to capture complex
non-linear relationships. The combination of the results
of the two and aims to produce predictions that utilize
each method's strengths and optimize input features [93],
which  models non-linear patterns and complex
interactions between variables. Thus, this integration
allows the model to effectively accommodate temporal
dependencies while improving the accuracy of
predictions on multivariate panel data.

The use of the TES for time series data is characterized
by calculations: Level, Trend and Seasonal [94], which is
a moving forecasting method that gives weight in stages
to the latest data, so that if the data is new, the
forecasting value will be updated.

The data is divided into a period (annual / biennial / five
years / etc.), the initial level value is obtained from the
average actual value in the first period (Fig.2), the initial
trend value is obtained from the average value of the
difference in the actual value of each month in the same
2 periods and divided by the number of months, and the
initial seasonal value for each month is the actual value
divided by the Initial Level value. Then the Level (L,),
Trend (T,), Seasonal (S;) and Forecast (F..,) are
calculated. Smoothing parameters used: @ as level
parameters, [ as trend parameters, and y as seasonal
parameters. Y; is the value of observation at time (t).
S:_m 1S @ seasonal factor in the previous period, L, is the
smoothed level, T; is a smoothed trend, and (m) is the
length of the season.

(6)

L, = (X(SYt ) + (A= )@Ley +Teon)

t-m
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Figure 3: TES

The calculation of some of these parameters (Fig.3) is
repeated until a minimum error is obtained through the
optimization process up to the specified period (t). Each
iteration is performed by updating the model parameters
using the L-BFGS-B algorithm that efficiently searches
for the optimal solution and ends when the convergence
criteria are met (a slight change in the value of the error
function or reaching a predetermined maximum number
of iterations). The resulting model is expected to have
optimal performance in predicting data in a certain
period. Various optimization methods have been tried to
perform smoothing parameter optimization, including
popular algorithms such as Adam, Stochastic Gradient
Descent (SGD), etc. However, the results of the
experiments showed that L-BFGS-B provided the highest
accuracy compared to these alternatives. L-BFGS-B
consistently produces more optimal objective function
values and predictions with the highest precision [95], so
it is considered superior in smoothing parameter
optimization. L-BFGS-B  uses Hessian  matrix
approximation efficiently, allowing faster and more
stable convergence than gradient-based methods such as
SGD or Adam [84].

To make predictions from the forecast results (cross-
sectional data), NN is used on weather data to predict sea
level (Fig.4). The data is divided into training and testing
data, each covering a specific year period. The features
used to train the model are several columns that have
been normalized. Then, several hidden layers, neurons,
and the ReLU activation function (Eq.10) are used. The
prediction results are evaluated using the MAPE (Eq.11)
and MSE (Mean Squared Error) (Eq.12) metrics [94].

ReLU(x) = max(0, x) (10)
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Figure 4: NN for prediction

There is no set rule for choosing the number of hidden
layers or neurons. This decision is highly dependent on
the data’'s nature and the modeling's purpose, so it is often
trial-and-error or validation-based tuning [96], [97]. The
NN architecture design chosen in this research, which is
six hidden layers with 50 neurons each, is based on
empirical experiments and the complexity of the modeled
data. The architecture was chosen to balance the capacity
of the model to study complex patterns while avoiding
over-installing. Using multiple hidden layers allows the
model to capture hierarchical features in the data, which
is crucial in flood prediction by considering the
relationships between variables.

The activation functions, ReLU, were selected based on
performance in capturing non-linear relationships [98].
RelLU was chosen for its ability to reduce the problem of
disappearing gradients [99], allowing for faster
convergence during training [100], [101].

The hybrid forecasting method that combines TES and
NN aims to solve panel data problems, improving
prediction accuracy by leveraging the strengths of each
technique, resulting in forecasting data that considers the
influence between variables.

The first step is to forecast each variable using TES,
effectively capturing seasonal patterns and trends in the
data. The forecast results from TES are combined into a
single dataset used as input for the NN model. NN is
trained using this dataset to capture non-linear patterns
and complex interactions between variables that TES
may not capture. After the NN model is trained,
predictions are made on the testing data, and the results
are evaluated using metrics such as MAPE and MSE to
measure the model's accuracy. By combining these two
methods, the forecasting results are expected to be better
than the univariate approach, as TES handles seasonal
patterns and trends while Neural Networks capture
complex prediction patterns.
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3.6 TES & NN combination to forecast
panel data with predicted bias

Bias refers to systematic errors that occur during training,
leading to an inaccurate representation of the studied
population [102], [103]. To improve prediction accuracy,
the value of bias is optimized during the training process.
This optimized bias can then be used in ensemble
methods, combining predictions from multiple models to
enhance overall accuracy [104]. Specifically, the output
from neural networks, including the optimized bias, can
be combined with the output from other models to
generate final predictions. This approach aims to correct
bias in time series data and improve the accuracy of
forecasting models.

Analyzing the panel data with Average Bias involves two
key stages: TES is used to identify trends and seasonal
patterns within the dataset; subsequently, this method is
integrated with the NN model that employs feature
selection by choosing pertinent weather variables as
inputs to model complex non-linear relationships. By
combining the outputs of both processes and applying
bias correction, the approach aims to generate predictions
that leverage the strengths of each technique while
optimizing the selected input features.

1 < (13)
Bias =+ Z(yi -9
i=

Bias in data mining refers to systematic errors that occur
during training, leading to an inaccurate representation of
the population being studied. Bias can arise from the data
used or from the algorithm itself that shows a certain
tendency. Bias assessment can be done data-driven using
an estimation approach, such as the NN method. In a NN,
bias is a parameter that is added to the input of each
neuron before an activation function is applied. The Bias
prediction carried out in this study is post-processing by
adjusting the model output to be fairer or correcting the
prediction based on specific metrics [105]. In detail, it is
calculated by predicting the bias value for each sample in
the test data using a trained model and then taking the
average of all these predictions ((Eg.13)) to obtain one
representative value [106]. This average value is then
normalized by dividing it by the number of features
(variables) used in the model. The result is a scalar value
representing the overall bias estimate after normalization.
The use of a single bias value from a NN (or similar
method) can be used in ensemble methods, which
combine predictions from multiple models to improve
accuracy. In this case, the output from the NN (including
the bias that has been optimized during training) can be
combined with the output from other models to make the
final prediction.
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3.7 Forecasting model accuracy

To evaluate how well a model can predict the true values,
including in the context of flood forecasting (sea level
rise), several metrics are often used: MSE, RMSE and
MAPE.

MSE (Mean Squared Error) measures the average of the
squared errors between the predicted and actual values.
While RMSE (Root Mean Square Error) measures the
average of the squared errors between the predicted and
actual values, then takes the square root. MSE and
RMSE give a larger penalty for larger errors and are the
basis for calculating RMSE [107]. MSE is the basis for
calculating RMSE which is more sensitive to outliers
[13], [108] so it is important in flood forecasting because
flood events often involve extreme values (severe flood
events).

MAPE (Mean Absolute Percentage Error) measures the
relative error between predicted and actual values in
percentage form. Unlike other metrics, MAPE is
objective to the data and easy to interpret, as it is
expressed as a percentage. It can be classified into the
following categories [107]: MAPE < 10% is considered
very good, 10% < MAPE < 20% is good, 20% < MAPE
< 50% is sufficient, and MAPE > 50% is deemed poor.
All metrics are used, as an approach to evaluate how well
the model can predict flood peaks or flood occurrence
times.

A hybrid method between NN and TES is used, aiming
to combine the advantages of both techniques to improve
forecasting accuracy. Then, the gradient descent method
is used as an optimization to obtain optimal weight
values for NN and alpha (level), beta (trend), and gamma
(seasonal) values for TES. The result of the analysis of
the gathered data will be a geographic information
system that shows maps of Flood Hazards (H).

3.8 Raster visualization for flood hazard
analysis

Raster visualization for flood hazard analysis plays a
crucial role in disaster risk management by providing a
detailed, spatially explicit representation of flood hazard
levels across a region [109]. Flooding poses significant
threats to lives, infrastructure, and economies, especially
in coastal and low-lying areas [110]. Accurate flood
hazard maps enable policymakers, urban planners, and
emergency responders to identify vulnerable zones,
prioritize mitigation efforts, and design effective
evacuation plans, ultimately reducing the impact of flood
events on communities. This process begins with creating
a raster for elevation by combining and cropping several
GeoTIFF files from the Digital Elevation Model
(DEMNAS) according to the region's boundaries [111],
[112]. Using raster-based methods for final visualization
allows for a fine-grained depiction of flood hazard levels,
where each cell is assigned a score based on predicted or
observed values, effectively highlighting areas with
varying flood hazard [110], [113], [114].
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The coordinate reference system (CRS) is standardized to
EPSG:4326, and the spatial resolution is set to 8.35
meters, matching the original resolution of the DEMNAS
data [115]. Maintaining this high resolution preserves
critical topographic details for accurately analyzing
elevation variations—a key determinant of flood risk.
Furthermore, consistent resolution facilitates the
integration of diverse datasets, enhancing the reliability
and informativeness of the resulting flood hazard map.
Elevation data undergoes min-max normalization, where
higher elevations correspond to lower flood risk scores,
reflecting the inverse relationship between elevation and
flood susceptibility. Land cover data is converted into
runoff values using the Rational Method Runoff
Coefficient, contributing to the overall flood hazard score
by accounting for surface permeability and water
retention capacity. Distance to the coastline is calculated
using a shapefile from the Indonesian Landmark, with an
Euclidean distance transform applied to measure
proximity to the sea. This distance is normalized and
inverted, as areas closer to the coastline generally face
higher flood risks due to storm surges and sea-level rise.
A sea level raster is created by combining sea level
scores with distance scores linked to estimated sea level
values. The method produces a comprehensive flood
hazard map by integrating all these factors—elevation,
land cover runoff, coastline proximity, and sea level—
into a weighted composite raster. This nuanced
visualization supports targeted flood risk assessment and
informs sustainable coastal management strategies,
helping to safeguard vulnerable populations and
infrastructure from future flood events.

4 Result

The analysis begins by determining the weight of each
coastal flood hazard factor, with each factor assigned a
weight based on its level of influence on the coastal flood
risk. After the weights of the hazard factors are
determined, the next step is to perform univariate
forecasting for each variable using the TES. The results
of this univariate forecasting are then used as input for
the next prediction step using NN. This prediction aims
to determine the flood depth class while considering the
complex interactions between variables.

4.1 Weight determination with NN

Determining flood hazard weights using neural networks
involves several steps, from data collection and
processing to model training and evaluation. The first
step is to determine the coastal flood database, which
contains a history of flood and non-flood events. This
data includes several parameters that occur during floods
(average height, average runoff, average closest distance
to shoreline, and flood depth). Once the data was
collected, average values for elevation and runoff
parameters were calculated, which were then saved to the
flood database. In addition, distance to coastline
measurements were taken and saved in raster form for
further analysis.
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Next, the features used for training and testing the
NNmodel were determined. These features include all
the parameters that have been collected (elevation,
surface flow, distance to coastline, and tide). The target
is then the flood depth class. The data is then divided into
training and testing sets to train the model and evaluate
its performance.

The first layer has 64 neurons, and the second layer also
has 32 neurons, both using the sigmoid activation
function, which helps capture non-linear patterns in the
data. The last layer contains one neuron with a linear
activation function, which is used to produce continuous
output. Backpropagation was performed using the
ADAM optimizer the MSE loss function, and the model
was trained for 50 epochs.

This step presents a flood hazard analysis for three
regions: Jepara, Semarang, and Demak. The analysis
consists of two primary components: an evaluation of the
predictive model's performance, assessed using key
classification metrics (Accuracy, Precision, Recall, and
F1-Score) to ensure its reliability; and the calculation of
Relative Feature Importance Weights, which ultimately
serve as the final flood hazard weights for each location.

Table 5: Flood hazard weight

Jepara  Semarang Demak

Accuracy 0.9474 0.9333 0.8788

Evaluation Precision  0.9649 0.8800 0.8970

Recall 0.9474 0.9333 0.8788

F1-Score 0.9502 0.9037 0.8697

. Elevation 0.2278 0.2321 0.1679

Eg;‘;‘a'r‘;e Runoff ~ 03616  0.1998 0.3235

Importance Distance  0.2264 0.2775 0.3220

. Sea 0.1842 0.2906 0.1866

Weight

Level

Based on the evaluation metrics (Table 5), the predictive
models demonstrate results ranging from good to
excellent across all three regions. The model for Jepara
delivers the strongest outcome, achieving an exceptional
F1-Score of 95.02% and an accuracy of 94.74%. This
indicates an outstanding balance between precision and
recall. Similarly, Semarang's model is also highly
effective, yielding a strong F1-score of 90.37% and an
accuracy of 93.33%. Meanwhile, the Demak model
operates at a competent level, although slightly lower
than the others, registering an F1-score of 86.97% and an
accuracy of 87.88%. The high accuracy scores signify
that the models are reliable in distinguishing between
flood-prone and non-flood-prone areas. For instance, the
94.74% accuracy in Jepara means the model correctly
classified approximately 95 out of every 100 conditions.
It is important to note that while a predictive model was
developed in this study, its primary output is the
calculation of these feature weights, which will be
utilized for hazard visualization and mapping.

Regarding the Determining Factors of Flood Hazard
(Relative Feature Importance Weight), the analysis
reveals that the primary drivers of flood risk vary by
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location, highlighting the unique characteristics of each
region. In Jepara, flood hazard is primarily driven by
Runoff (surface runoff), which holds a weight of 0.3616.
For the Semarang region, the most significant variable is
Sea Level (weight: 0.2906), closely followed by Distance
from a river/sea at 0.2775. In Demak, the risk is most
influenced by two nearly equally powerful factors:
Runoff (0.3235) and Distance (0.3220). Overall, these
results indicate that although all features (Elevation,
Runoff, Distance, and Sea Level) are relevant, the
mitigation priorities should differ for each regency.
Jepara needs to focus on surface runoff management,
while Semarang must prioritize mitigation related to sea-
level rise, and Demak should address runoff and distance
from water sources in a balanced manner.

The differences in weights reflect each location's unique
environmental conditions and flood dynamics, which
necessitate tailored approaches to flood risk analysis and
management.

4.2 TES & NN combination to forecast
panel data

To create the first model: forecasting with TES, starting
with the processing of sea level and weather data. This
data processing includes: converting dates from UTC to
UTC+7, pre-processing each variable (converting sea
level values from meters to centimeters, converting
temperature from Kelvin to Celsius, etc.), grouping data
by month for maximum values (sea level, V10, U10),
average values (D2M, T2M), and minimum values
(MSL, SP), then normalizing the data using the decimal
scaling method. The forecasting results in three regions
(Semarang, Demak, and Jepara) show different error
rates for each variable. Table 6 presents the performance
evaluation of the initial forecasting model, which was
created as the first model in the study. The model's
performance is measured using error metrics: MSE,
RMSE, & MAPE, with lower error values indicating
higher model accuracy. The results show the model's
high accuracy (MAPE in 1.6%-2.2%) in predicting the
weather variables: U10, V10, D2M, T2M, MSL, and SP.
Conversely, the model faces significant challenges in
predicting TP (MAPE=70%), which has the highest error
values, so this variable is excluded in the next process,
also with SWH which actually has a fairly good error
(MAPE~18%) but not as high as other variables. For the
Z variable (sea level) at three locations (Jepara,
Semarang, and Demak), the prediction errors range from
22% to 25%, indicating moderate accuracy. Overall, this
table indicates that the initial model is already very
reliable for some meteorological variables but requires
substantial improvements for other variables, especially
rainfall and wave height. Accurate initial predictions for
these variables are the reason they are included in the
next stage. Z (sea level) has a moderate error rate,
indicating that this model has fairly good accuracy in
predicting sea level (Table 6, Figure 5), but it needs to
consider the influence of weather variables to improve
accuracy results.
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Table 6: Initial Forecast, to create first model
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Table 7: Comparison between single method (TES) and
hybrid method (TES & NN)

Variables MSE RMSE MAPE (%)
u10 0.0011 0.0327 1.67 Jepara Semarang Demak
V10 0.0008 0.0282 2.01 Single MSE 174.751 177.2125  196.676
D2M 0.3895 0.6241 1.94 Method 1 5
T2M 0.4683 0.6843 1.71 RMS 13.2193 13.3121 14.0241
. . . E
MSL 610.8699 24,7158 2.20
MAP 22.8745 23.7123 24.7514
SP 626.0488 25.0210 2.23 E % % %
TP 0.0062 0.0790 72.36
SWH 0.0253 0.1590 18.67 Hybrid ~ MSE  25.1946 223257  22.6336
Z Jepara 174.7511 13.2193 22.87 RMS 5.0194 4.7250 4.7575
Z 177.2125 13.3121 23.71 E
Semarang MAP 8.6873% 8.3628% 8.3404%
Z Demak 196.6765 14.0241 24.75 E
Triple Exponential Smoothing Forecast for Z Hybrld MSE 4.8567 5.3047 5.0739
= with RMS 2.2038 2.3032 2.2525
Predicte E
d Bias MAP  3.5509% 3.7958%  3.6839%
E

Dat

Figure 5: Initial forecast using TES
Training the NN model (for the second model, hybrid),
by combining two methods: Triple Exponential
Smoothing (TES) and Neural Network (NN), using sea
level data influenced by several weather variables,
starting with reading the data. Then, the data is divided
into training data (1995-2020) and testing data (2021-
2024). Next, two models are trained separately using the
training data: (1) The TES model is trained on the time
series data z to capture trend and seasonality patterns, (2)
The NN model is trained to learn the relationship
between selected feature variables (U10, V10, D2M,
T2M, MSL, and SP) and the target variable z. These
feature data are first scaled using MinMaxScaler. The
NN model was created using MLPRegressor with six
hidden layers containing 50 neurons.

The model performance evaluation (Table 7 & Figure 6)
clearly shows that the Hybrid Method consistently
outperforms the single method in all three regions. This
superiority is evidenced by a drastic reduction in error
values, with the MAPE error rate successfully reduced to
less than half in all locations (e.g., from 20% to 4%). The
primary reason behind this improvement in accuracy is
that the hybrid method has higher accountability by
incorporating the influence of weather variables into the
modeling, a factor not considered by single methods. As
a result, the hybrid approach produces forecasts that are
not only more statistically accurate but also more reliable
and comprehensive.

1996 000 2008 2008 2012 2016

Figure 6: Forecast training & testing using hybrid
method

4.3 Forecast with TES, NN & predicted
bias

NN training was carried out to correct bias in time series
data. The data was divided into training sets and test sets,
with the features (X) and target () used. The feature is
then normalized using the MinMaxScaler into a range of
0 to 1. The NN model is made with three layers: an input
layer with 64 neurons, a hidden layer with 32 neurons,
and an output layer with 1 neuron. The model was
compiled with the ADAM optimizer and MSE loss
function, and then trained using training data that had
been scaled over 50 epochs with a batch size of 32 and
validation of 20% of the training data. The trained model
is used to predict bias on the test set. The predicted
average bias is calculated and adjusted by dividing by the
number of features and factors.

Next, a combination of the TES and NN methods to
make a combined prediction. The data was divided into
training sets and test sets. The TES model is trained
using training data and is used to make predictions on the
test set. The NN model is trained with training data and
is also used to make predictions on the test set. The
predictions from both models were combined by taking
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the mean from the predictions of the TES and the NN
and then subtracting the bias. Actual data is combined
with forecast data. MSE and MAPE are calculated to
evaluate the performance of the model on the test set. In
addition, a forecast for the 2024-2044 period was also
made (Figure 7). In the context of this long-term flood
hazard forecast, model deviations are of significant
concern. To take this into account, this hybrid forecasting
method allows for the integration of time series data and
complex interactions between various influencing
factors. This approach helps in adapting the model to
better reflect changing conditions over time, thereby
reducing the risk of model deviation.

Figure 7: Sea Levei Forecast 2025-2044

4.4  Visualization (Flood Hazard)

The visualization is provided in the form of a raster map
created by calculating the flood hazard levels. Starting
with creating a raster for elevation, several GeoTIFF files
from  DEMNAS, which form each region
(Jepara/Semarang/Demak), are merged and then clipped
according to the regional boundaries (shapefile of
Indonesia's topographical boundary). The coordinate
reference system (CRS) was changed to EPSG:4326, and
the spatial resolution was converted to 8.35 meters. Then,
for visualization purposes on the flood hazard map in the
form of scores, the elevation was transformed using min-
max normalization, and an inversion was performed (the
higher the elevation, the lower the score).

Determination of CRS, clipping, and resampling to
achieve the exact resolution is also performed on the
landcover raster. The landcover values are converted to
runoff based on the Rational Method Runoff Coefficient.
This runoff value is considered as the score.

To create a raster distance to the coastline, the shapefile
of the Indonesian Landform Boundary was used, and
then the Euclidean distance transformation was
calculated to determine the distance from each point of
each pixel in the raster to the nearest coastline (which has
been defined previously). This distance is then converted
to meters. For score determination, min-max
normalization is performed, and since this distance has a
negative correlation with flood risk, inversion is carried
out.

To create the sea level raster, each pixel is calculated:
Sea level = Sea level Score x Distance Score, which
means using the distance raster and linking it with the sea
level value from the forecast (or actual value) at a
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specific time (month and year) determined as a
parameter.

Finally, the flood hazard map is created by calculating
the pixel values on all rasters associated with the
predetermined weight values (different in each region).

2016-01 2020-01

Figure 8: Flood Hazard: Demak

The projected future growth in flood-affected areas and
increased hazard in the Demak area are depicted in
Figure 8. Greater danger is indicated by darker blue hues,
and the extent of the at-risk areas is depicted by larger
blue regions. The northwestern coastal region was the
primary location for flood hazards in January 2016 and
January 2020. From 2016 to 2020, the number of flood-
prone areas increased slightly, with areas at risk of
flooding (light blue) seemingly moving a little farther
inland. This means that the risk has already shown an
upward trend during those four years. Predictions for
January 2028 indicate a marked expansion of the at-
hazard area in comparison to 2020. The light-blue
patches extend farther into the interior, suggesting that
areas that were previously low-hazard or not at risk are
now starting to face the threat of flooding. In coastal
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areas (dark blue), the level of hazard intensity is still high
and has somewhat increased. The most dire scenario is
projected for June 2043 (Long-Term Prediction), when
areas at risk of flooding will have greatly expanded.
Flood risk is expected to be low to high in nearly half of
the northern portion of the region. According to this, the
impact of climate change or other factors (like land
subsidence and changes in land use) is expected to
significantly worsen the flood situation within a 20-year
period starting in 2028.

2016-01

2020-01

202801 | 204306

Hazard Score

2044-01

Figure 9: Flood Hazard: Jepara

The Jepara area, which has a long coastline, is predicted
to have tidal flood or coastal inundation hazards, as
shown in Figure 9. This set particularly emphasizes the
dangers along the coast, in contrast to the Demak area,
which depicts the spread of floods inland. Flood hazards
were concentrated in the bay areas, river estuaries, and
lowlands along the coastline during both of the 2016—
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2020 timeframes. The nearly identical hazard pattern
during this time suggests that the risk of coastal
inundation is comparatively constant. The most
dangerous areas (dark blue) are found in the coastal
basins that are most at risk. Hazardous area extent is
predicted to slightly increase in 2028. The inundation
areas (light blue) have slightly expanded at a number of
locations along the coast, though not significantly,
suggesting that the sea level may be rising or that high
tides may be occurring more frequently. This long-term
forecast shows a more pronounced increase in danger
than in prior years. Particularly in the southern portion
and in a number of coastal areas in the north, the
inundation areas (light blue) seem to be more
widespread. This suggests that low-lying coastal areas
will experience more widespread and long-lasting
flooding by 2043 as a result of the anticipated rise in sea
levels. Wider low-risk zones now encircle the highest-
risk areas (dark blue), which stay in the same place.

2016-01

2020-01

" 2044-01

Figure 10: Flood Hazard: Semarang

The city of Semarang is seriously threatened by coastal
flooding (rob), which is expected to get worse and spread
more widely in the future, according to Figure 10. The
majority of Semarang's northern coastal regions already
had a high risk of flooding in 2016. While the light blue
(lower risk) areas have already spread quite far
southward (inland), the dark blue (highest risk) areas are
concentrated close to the coast. Comparing 2020 to 2016,
there was a minor decline. Flooded areas appear slightly
larger and have spread farther inland, particularly those
at lower risk (light blue). The impacted area is expected
to significantly expand by 2028. A larger area to the
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south is expected to be inundated by flooding than in
2020. Deeper or more frequent flooding is indicated by
the dark blue areas' apparent slight increase in intensity.
The Long-Term Prediction for 2043 is a worrying
situation. The map displays a significant and striking
increase in tidal flooding. It is anticipated that the
inundation area will "consume™ a significant portion of
North Semarang and extend deep into the city center.
Nearly the whole coastal region has turned into a high-
risk zone (dark blue), meaning that flooding is likely to
occur there either permanently or very frequently.

5 Discussion section

This study examines how rising sea levels made worse
by climate change are increasing the risk of coastal
floods in Indonesia's coastal regions, especially in
Semarang, Demak, and Jepara, using spatial data mining
forecasting techniques. Compared to conventional
approaches, the hybrid model combining TES and NN
significantly improves flood prediction accuracy. The
hybrid model achieved a MAPE value of 8.3% to 3.5%,
indicating that it is better at predicting floods more
accurately compared to single methods [12].
Incorporating sea level data, elevation, runoff, distance to
the coastline, and other parameters into the model allows
for a comprehensive analysis of flood hazards. By using
historical flood data to measure the weight of these
parameters through NN, the assessment becomes more
objective and subjectivity in the Analytic Hierarchy
Process (AHP) is reduced [8]. For areas like Indonesia,
where geographical and climatic variances can greatly
affect flood dynamics, this methodological development
is essential. This study also highlights how crucial it is
to analyze very large datasets using spatial data mining to
spot trends and raise the precision of predictive models.
In addition to identifying non-linear correlations, the
hybrid approach is expected to overcome the weaknesses
of traditional forecasting techniques, which often ignore
the influences between variables [6]. The results indicate
that the risk of flooding will increase in hundreds of
densely populated cities by 2050, potentially doubling by

2100 [1].
The trade-off between NN, exponential smoothing, and
hybrid approaches (Table 10) involves many

considerations. NN provide scalability and the ability to
model complex relationships at the expense of
computational efficiency and interpretability.
Exponential Smoothing offers a more straightforward
and interpretable approach that is computationally
efficient but may struggle with scalability and
complexity. Hybrid Approaches aim to combine the
strengths of both methods, providing a balanced solution
that improves scalability, maintains a degree of
interpretability, and improves accuracy.
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Table 10: Trade-offs between all the methods used

Aspect NN ES Hybrid
Computatio  High Low High
nal computatio  computation computation
Efficiency  nal al demand; al demand;
demand,; quick resource-
longer execution intensive
training
times
Scalability ~ Highly Limited Highly
scalable; scalability;  scalable;
adapts to struggles flexible
large with adaptation
datasets complexity
Interpretabi  Low High Moderate
lity interpretabi  interpretabil  interpretabil
lity (black ity; ity;
box nature)  straightforw combines
ard strengths
mechanics
Model High Good Enhanced
Accuracy accuracy accuracy for accuracy;
potential; simple robust to
risk of patterns; variability
overfitting limited in
complexity

Based on the weight analysis derived from Feature
importance (Table 5), it can be concluded that the main
triggers of coastal flooding vary significantly in each
location, indicating unique local vulnerabilities [116].
High water runoff from the land poses the biggest risk in
Jepara. Semarang, on the other hand, is more susceptible
to direct sea influences, especially those related to sea
level and land subsidence (elevation). In the meantime,
water runoff and Demak's closeness to the coast pose a
nearly equal threat. This key distinction highlights the
fact that mitigation strategies must be tailored to each
region and cannot be applied universally.

6 Conclussion

The hybrid method applied has successfully addressed
the panel data problem with relatively better MAPE
values, ranging from 8.3% to 3.5%. Additionally, the
flood hazard weights have also been well identified, with
accuracy values varying between 88% and 94%, regional
differences can affect results due to the different
geographical and climatic characteristics in each region,
which can affect flood dynamics.

The findings of this study contribute to the increasing
knowledge of flood risk assessment and management,
providing a solid framework for future studies and
practical  applications in  flood-prone  areas.
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The success of the hybrid model in predicting coastal
floods can serve as a valuable tool for policymakers and
urban
management strategies. It is hoped that decision-makers
can benefit from appropriate flood mitigation techniques
for coastal areas, as infrastructure and lives are seriously
threatened by this condition.

Some points that can be concluded:

1.

planners in  developing effective flood

Integrating a hybrid approach with climate
model projections is recommended in climate
change uncertainty with significant variations
due to differences in physics assumptions,
parameterization, and emission scenarios by
capturing a more comprehensive range of
possible future conditions.

Predictions become more resilient to biases or
model-specific errors by using multiple
projections at once, resulting in more reliable
estimates of flood risk or related variables under
climate change scenarios.

Probabilistic  information  from  hybrids
supporting risk-based decision-making can be
used to design flexible adaptation strategies for
future possibilities.

This research opens up essential insights and broader
implications for coastal policy and risk management:

1.

Scalability of the System

Hybrid models can be widely applied in various
coastal areas with different characteristics as
long as adequate data is available.

Real-World Application

The model must be followed by real
implementation, including integration with early
warning systems and regional spatial planning.
Implementation Challenges

Field implementation may face data limitations,
human resources, and technological
infrastructure.  Therefore, adequate policy
support and investment must be needed to
overcome these barriers.
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