
https://doi.org/10.31449/inf.v49i36.8140 Informatica 49 (2025) 269–290 269 

 

HybridCardioNet: A CNN-LSTM-Based Deep Learning Framework 

for ECG Signal Classification and Cardiac Anomaly Detection 

A Bharath1*, G Merlin Sheeba2 

1Research Scholar, CSE Department, SIST, Chennai, Tamil Nadu, China 
2Professor ECE Jerusalem College of Engineering, Chennai 

E-mail: merlinsheeba.ece@jerusalemengg.ac.in, bharath.andugula@gmail.com 
*Corresponding author 

Keywords - HybridCardioNet, ECG Classification, Deep Learning, CNN-LSTM, Cardiac Condition Detection 

Received: January 25, 2025 

Adaptive learning and automatic classification of ECG signals is one of the commonly processed and 

practical methods in cardiac anomalies detection with that area has a huge potential to teach clinicians 

for better clinical healthcare decision making and also remote health patient monitoring [7,8]. Past 

methods tackle issues like spatial–temporal feature extraction, class imbalance and dataset generalisation, 

but they are limited by a number of shortcomings: the traditional ML models depend on hand-crafted 

features and thus lack scalability, and the stand-alone deep models (CNNs or LSTMs) do not capitalize on 

spatial and sequential information simultaneously. To overcome these shortages, we present 

HybridCardioNet, a joint deep-learning framework that integrates CNN-based spatial feature extraction 

and LSTM based temporal-dependency modelling. The ECG was filtered using band-pass filtering (0.5–40 

Hz) to remove the low-frequency baseline-wander, z-score normalisation, and segmented into single-beat 

segments using the R-peak detection from the MIT-BIH Arrhythmia Database; class imbalance was 

handled via class-weighted loss (random minority oversampling provided validation) HybridCardioNet 

with stratified cross-validation gives 98.39% accuracy with the same balanced precision, recall and macro-

F1 score. Against popular protocols in recent literature on MIT-BIH, it also achieves competitive 

performance against internal baselines (CNN-only, LSTM-only and classical ML). Thus, hybridCardioNet 

solves one key limitation of the previously existing methods. With regards to the other two limitations, since 

hybridCardioNet is able to outperform the state-of-the-art for multi-class ECG classification, 

hybridCardioNet will be appropriate for real-time applications in terms of early detection & continuous 

ECG signals clinical/remote monitoring. 

Povzetek: HybridCardioNet združi CNN in LSTM za samodejno klasifikacijo EKG ter z ustrezno 

predobdelavo in obvladovanjem neuravnoteženih razredov doseže zelo visoko natančnost (98,39 %) za 

zgodnje odkrivanje srčnih nepravilnosti in spremljanje na daljavo. 

 

1  Introduction  

Analysis of ECG signals is essential for diagnosing cardiac 

diseases since it provides necessary information regarding 

the heart's electrical activity. In particular, there has been 

growing interest in automated ECG classification to 

improve diagnostic accuracy and efficiency in clinical and 

remote monitoring environments. Although many works 

are investigating this problem, there are some issues with 

how ECG signal spatial and temporal features are captured 

in the previous methods. Legacy machine learning models, 

such as SVM and random forest models, require manual 

features to work, making them less scalable and robust. In 

contrast, deep learning methods such as CNNs [1] and 

LSTM networks [2] used independently cannot learn 

spatial and sequential dependencies in ECG data at a high 

level. 

The literature shows that CNN benefits spatial feature 

extraction, such as amplitude and time intervals in the 

ECG waveform, while LSTM captures temporal 

dependencies. Isolated versions of these models do not 

fully utilize the complementary nature of spatial and 

temporal modalities. Furthermore, currently, available 

frameworks suffer from class imbalance issues without 

preprocessing and feature engineering strategies dedicated 

to ECG data. This gap emphasizes the lack of a hybrid deep 

learning framework that is sustainable, reliable, and 

optimal for ECG signal classification with scalability. 

This study aims to create a hybrid deep learning model, 

HybridCardioNet, that combines CNNs and LSTMs to 

classify ECG signals by learning spatial and temporal 

features. The paper presents several novelties, from the 

novel preprocessing approach to strong feature 

engineering based on time-domain and frequency-domain 

analysis and the combined CNN-LSTM architecture. It 

also includes various techniques to balance the data to 

counteract the effects of class imbalance, increasing the 

generalizability and reliability of the model. 
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Our study aims to investigate whether hybrid spatial–

temporal modeling leads to statistically significant better 

ECG classification performance than the corresponding 

non-hybrid baselines. Specifically, we can ask (i) whether 

a CNN→LSTM pipeline (HybridCardioNet) attains a 

superior macro-F1 than either CNN- or LSTM-only 

models under stratified cross-validation, and (ii) whether 

explicit class-imbalance controls—brought about both by 

class-weighted loss and oversampling, verified not to 

suppress population performance—improves rarity-class 

recall at no significant expense in aggregate performance. 

We assume that the morphology will be learnt by the 

CNNs while the LSTM will learn the beat-to-beat context 

both of which operate to perform majority-class reduction, 

and thus stabilize per-class metrics. Expected pros: 

improved minority-class behaviour, disentangled 

precision recall; Expected cons: more sequential compute, 

segmentation/preprocessing sensitive. As a result, we 

profile Params/FLOPs and latency, while reporting exact 

p-values with confidence intervals for each accuracy–

efficiency trade-off. 

The main contributions of this work are: (1) design of a 

hybrid deep learning framework, HybridCardioNet, using 

CNNs and LSTMs for ECG signal classification; (2) 

employing powerful preprocessing and feature 

engineering techniques specific to ECG data; (3) 

assessment of the framework using the MIT-BIH 

Arrhythmia Dataset with state-of-the-art accuracy of 

98.39%, (4) and comparison of the proposed model with 

traditional as well as stand-alone models to highlight its 

significance. 

The organization of this paper is as follows: A 

comprehensive literature review is provided in Section 2, 

where previously used methods for ECG classification are 

highlighted and gaps identified that this research 

addresses—the proposed methodology with pre-

processing, features extraction, and the HybridCardioNet 

architecture is discussed in Section 3. Experiments and 

comparisons with existing methods to evaluate the 

performance of the proposed model form the contents of 

Section 4. The results and limitations of our study are 

discussed in Section 5. Finally, Section 6 concludes the 

paper by summarizing key contributions and outlining 

future research directions. 

 

2  Related work 

The literature review examines state-of-the-art approaches 

for ECG classification, highlighting their limitations and 

the need for advanced methodologies. Putra et al. [1] 

discussed data security and scalability issues, examined 

IoMT developments, and suggested a cloud-edge AI 

strategy. Upcoming projects will focus on improving 

IoMT capabilities and improving AI integration. Junior et 

al. [2] considered the opinions of neurologists and patients 

with Parkinson's disease on AI-assisted remote 

monitoring, noting excitement and privacy concerns. 

Future research should address these issues to improve 

adoption. Mai et al. [3] created a MAP control adaptive 

closed-loop system using ADRC and CAPG. Future 

research should improve the integration of accurate patient 

models and confirm the effectiveness of treatment 

approaches. Santos et al. [4] created a clinical decision 

support system with machine learning as its foundation to 

forecast surgical problems. Subsequent research must 

validate its practical implementation and tackle resource 

limitations. Haque et al. [5] combined cloud computing, 

MEC, and IoT to provide sophisticated patient monitoring. 

Security, AI improvements, and system optimization will 

be the main areas of future effort. 

Lima et al. [6] examined ICT treatments in nephrology, 

emphasizing the advantages of RPM in treating CKD. 

Progression control and illness prevention should be the 

main topics of future study. Khalifa et al. [7] examined the 

benefits and difficulties of AI's influence on healthcare 

decision assistance. System integration and ethical issues 

should be the focus of future research. Arora et al. [8] 

discussed RPM's missing data and visualization. 

Upcoming tasks include enhancing user acceptability and 

adjusting to changes in healthcare. Sundas et al. [9] 

presented SPMR, a cloud analytics and DL-based system 

monitoring chronic illnesses. Further work will focus on 

improving quality of service indicators and extending to 

new circumstances. Ratta et al. [10] created a very accurate 

decentralized diabetes tracking system with blockchain, 

IoT, and machine learning. Further work will involve 

investigating cutting-edge technologies and improving the 

framework. 

Faramarzi et al. [11] examined ML and IoT applications 

during COVID-19 and discovered they were helpful in 

monitoring and detection. Future research ought to 

improve model assessment and integration. Gupta et al. 

[12] suggested a safe health data retrieval architecture for 

IoT edge computing based on NDN. Future research will 

maximize multi-edge situations and leadership positions. 

Wu et al. [13] created an Internet of Things (IoT) health 

monitoring system for athletes utilizing wearable sensors 

and deep learning. The overfitting and complexity of DNN 

models will be addressed in future work. Boikanyo et al. 

[14] examined the uses, design, and difficulties of remote 

patient monitoring systems (RPMS), highlighting 

upcoming work on quality service enhancements and 

novel solutions. Alshammari et al. [15] suggest an MQTT-

based real-time Internet of Things patient monitoring 

system that addresses latency and security and 

recommends future improvements. 

Zeshan et al. [16] provided an ontology-based Internet of 

Things healthcare framework to boost patient monitoring's 

accuracy and context awareness, emphasizing precision 

improvement in subsequent work. Akhbarifar et al. [17] 

suggested a safe paradigm for IoT-based remote health 

monitoring that uses lightweight encryption; future work 

will concentrate on practical applications and improved 

encryption techniques. Khan et al. [18] aimed to enhance 

navigation and prediction skills by developing a VR-

enabled IoRT system for remote health monitoring based 
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on DTs. Shastry [19] integrated NLP with deep learning 

for remote health monitoring to enhance real-time 

analysis, patient outcomes, and cost-effectiveness. Future 

development will involve adding new technologies and 

extending applications. Cheikhrouhou et al. [20] suggested 

using lightweight blockchain with fog computing to create 

an effective, safe Internet of Things-based healthcare 

system. The upcoming tasks are enhancing scalability, 

prediction modules, and testing on actual datasets. 

Arora et al. [21] suggested a method for matching patterns 

to forecast missing RPM data, which increases accuracy. 

Future research aims to investigate further preprocessing 

techniques. Alshamrani [22] examined IoT and AI in smart 

city healthcare, emphasizing models, applications, and 

constraints. Upcoming projects will focus on enhancing 

data standards and integration. Sujith et al. [23] examined 

IoT, blockchain, and AI-powered intelligent health 

monitoring (SHM) developments. More work will be 

needed on future ML/DL integration and SHM 

applications. Abiodun et al. [24] presented a wearable 

device-based remote clinical trial monitoring framework 

that uses SVM and ANN. Upcoming projects will focus on 

improving wearable technology and resolving regulatory 

issues. Paraschiv et al. [25] introduced RO-

SmartAginging, an IoT, Big Data, and AI integration for 

senior care.  

Jeddi and Bohr [26] examined the potential for AI to 

improve results in remote patient monitoring for chronic 

illnesses. System integration and scalable evidence are 

required for future development. Iranpak et al. [27] 

proposed an LSTM-based remote patient monitoring 

system based on cloud computing and IoT. Future research 

will examine learning systems and various optimization 

strategies. Sharma et al. [28] provided a 96.33% accurate 

remote COVID-19 monitoring solution based on the 

Internet of Things. Future research will focus on 

optimizing technology utilization and incorporating 

ontology. Babar et al. [29] presented a wearable, 

affordable device with real-time data and alarms for 

continuous monitoring of vital signs. Upcoming projects 

will include sophisticated algorithms. Ho [30] assessed 

AI's potential to help with the labor shortfall in elder care 

while emphasizing the necessity for ethical design. 

Hilty et al. [31] highlighted the need for training and 

standardization and defined the competencies to use new 

monitoring technology in care. Maurya et al. [32] 

investigated the use of AI and ML to predict heart failure, 

highlighting difficulties and upcoming research in sensor 

data and algorithm accuracy. Banerjee et al. [33] examined 

the possible applications of THz technology while 

highlighting recent developments and forthcoming 

requirements for commercialization and broader use. 

Hariharan et al. [34] examined IoMT for remote patient 

monitoring, highlighting its advantages and the need for 

more sophisticated, predictive algorithms in the future. 

Tagde et al. [35] examined how blockchain technology and 

AI might improve healthcare accessibility and efficiency, 

pointing out implementation and data management 

problems. 

Xie et al. [36] explored the integration of wearables, 

blockchain, and AI for managing chronic diseases, 

highlighting the difficulties and upcoming requirements 

for privacy and data handling. Oniani et al. [37] examined 

the use of AI in IoT for healthcare applications, 

highlighting essential techniques like SVM and random 

forests and outlining the requirements and constraints for 

the future. Vijayalaxmi et al. [38] created a portable 

diagnostic device that predicts illnesses like diabetes by 

utilizing ML models and basic health metrics. Future 

research will focus on increasing illness forecasts, adding 

testing, and enhancing accuracy. Zaabar et al. [39] created 

an RPM system for safe medical data management with 

Hyperledger Fabric and blockchain technology. 

Interoperability testing with other IoT frameworks is part 

of the work to come. Fouad et al. [40] created a highly 

accurate IoT and AI-based healthcare system for patient 

monitoring. Future research will concentrate on improving 

teaching methods.  

Srinivas et al. Custom CNN on MIT-BIH high 

performance with 80/20 split strong accuracy (no strict 

sequence modeling) no standard cross-validation (no strict 

sequence modeling) Meta-heuristic feature selection and 

PCA-based feature compression CardiacNet (42) Building 

the Module Networks in [43] : [43] create a noise resilient 

modular NN that can withstand injected noise and single-

lead scenario however they rely on hand-crafted features 

and does not tackle class imbalance and temporal 

dependencies well. In summary, [42, 43] call for both 

coupled spatial–temporal learning with principled 

imbalance handling and protocol parity—gaps which we 

directly bridge via our CNN–LSTM HybridCardioNet 

achieved with class-weighted loss/oversampling, and 

stratified CV on MIT-BIH. 

Existing studies primarily focus on standalone CNNs, 

RNNs, or traditional machine-learning models for ECG 

classification. While these methods achieve moderate 

success, they struggle with class imbalance, spatial-

temporal dependencies, and robustness. This review 

underscores the necessity of hybrid deep learning 

frameworks like HybridCardioNet to address these gaps 

and enhance classification accuracy and reliability. 
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Table 1: Thematic summary of literature review 

Theme Representative 

studies 

Methods & setting Key findings Gap for ECG 

classification 

Implication for 

HybridCardioNet 

IoMT security, 

scalability & cloud/edge 

integration 

[1], [5], [9], 

[12], [15], [20], 

[35], [39] 

IoMT architectures with 

cloud/edge, MQTT, 

blockchain/fog, 

Hyperledger Fabric 

Secure, scalable 

RPM pipelines; 

latency/security 

addressed 

Focus on data 

plumbing, not ECG 

morphology/temporal 

modeling; no class-

imbalance treatment 

We reuse 

secure/edge ideas for 

deployment, but 

require CNN–LSTM 

signal modeling and 

imbalance handling 

RPM adoption, ethics, 

and usability 

[2], [8], [31], 

[30] 

Surveys & position pieces 

(patients/clinicians, 

training/standardization) 

Interest in AI 

RPM; 

privacy/skills 

gaps 

No technical ECG 

classifiers or protocol 

guidance for ECG 

benchmarks 

Motivates 

transparent, 

clinically framed 

ECG models with 

clear reporting 

Control/closed-loop & 

decision support 

[3], [4], [34] MAP/ADRC control; 

ML-based CDSS 

Improved 

control/forecast; 

need robust 

models 

Not ECG-centric; 

limited sequence 

modeling 

Our LSTM block 

targets sequential 

ECG dynamics for 

decision support 

Cloud/MEC monitoring 

platforms 

[5], [9], [13], 

[15], [37], [40] 

Wearables + DL over 

cloud/MEC; IoT analytics 

Feasible real-

time monitoring 

Overfitting and 

runtime concerns; no 

ECG-specific 

hybridization 

We add runtime 

profiling + hybrid 

CNN–LSTM 

tailored to ECG 

Disease-specific RPM 

(CKD, COVID-19, 

diabetes, HF) 

[6], [11], [28], 

[32], [38] 

ML on vitals/sensors; 

predictive analytics 

Condition-

targeted 

monitoring 

improves 

outcomes 

Methods/data differ 

from ECG; little beat-

wise analysis 

Justifies ECG-

specific pipelines 

and beat 

segmentation 

Security/privacy & 

lightweight crypto 

[17], [20], [39] Lightweight encryption; 

blockchain/fog 

Secure data 

sharing & 

integrity 

No effect on classifier 

design/imbalance 

Orthogonal; 

integrate with our 

pipeline for secure 

ECG streaming 

Data quality: missing 

data, ontology, 

interoperability 

[21], [16], [29] Pattern matching for 

gaps; ontologies; low-

cost wearables 

Practical RPM 

data handling 

Does not tackle ECG 

morphology/temporal 

fusion 

Our preprocessing + 

segmentation 

complement these 

data pipelines 

Advanced AI stacks 

(DL/NLP/DT/VR/THz) 

[18], [19], [33], 

[36] 

DT/VR-enabled IoRT; 

NLP + DL; THz-enabled 

sensing 

Rich 

sensing/context 

potential 

Not ECG 

classification; 

compute/complexity 

trade-offs 

We prioritize 

efficient 1D signal 

models with 

measured latency 

Systematic overviews 

and surveys 

[7], [14], [22], 

[23], [37] 

Reviews of AI/IoT/RPM Opportunities 

and challenges 

mapped 

Lack of ECG-specific, 

class-imbalanced, 

sequence-aware 

solutions 

Positions 

HybridCardioNet as 

ECG-focused, 

hybrid, imbalance-

aware 

Application exemplars 

& prototypes 

[24], [25], [26], 

[27], [30], [40] 

Wearables, senior care, 

cloud LSTM RPM 

Feasible 

pipelines, 

promising 

accuracy 

Limited ECG 

benchmarking; 

protocol parity unclear 

We commit to MIT-

BIH protocol clarity, 

CV, and minority-

class recall 

Table 1 synthesizes the reviewed IoMT/RPM literature 

using several themes — security/edge integration, 

usability, control/decision support, cloud/MEC 

monitoring, disease-specific RPM, privacy, data quality, 

advanced AI stacks, surveys and application exemplars — 

and further maps each of these broader themes back to 

tangible gaps pertaining to ECG classification and 

localization. Most works either focus on platforms or 

single-family (CNN or RNN) models while almost always 

neglecting joint spatial–temporal ECG modelling, beat-

wise pre-processing, and explicit class-imbalance 

addressing under protocol-aligned evaluation. These gaps 

inform the motivation as well as the design of 

HybridCardioNet, a CNN– LSTM pipeline that performs 

class-weighted/oversampled training on MIT-BIH R-

peak-based segments with stratified cross-validation on 
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MIT-BIH. The table explains the reasoning as to why 

hybridization + imbalance control is needed to generate 

robust minority-class recall and clinico-applicable ECG 

analytics. 

3  Proposed framework 

As illustrated in Figure 1, the framework for cardiac 

condition detection starts with the data collection phase, 

where ECG signals are collected from trusted sources like 

Kaggle . It will guarantee access to different large and 

representative datasets for several cardiac diseases. All 

data is collected before the framework can process, 

analyze, and make the base of this data. After data 

collection, the heartbeat, the raw ECG signal, cannot be 

used immediately as it goes through a pre-processing step 

that helps it enhance the available data for analysis. This 

includes multiple stages such as noise and artifact filtering, 

normalization for equalization of amplitude ranges of 

signals, and ECG segmentation to make individual 

heartbeats be isolated. Preprocessing classes ensure that 

the incoming data is adequately pre-processed before 

being used to extract features, leading to a better accuracy 

and robust model. 

 

Figure 1: Proposed framework for cardiac condition detection 

Feature Engineering: We get the value-based information 

from the preprocessed ECG signals in this step. Three 

features have been proposed: Time-domain, frequency-

domain, and statistical features. Fundamentally, time 

domain features describe RR intervals (R to R interval is 

the time parameter periodic to the heart cycle) and peak 

amplitudes, reflecting rhythms and patterns of the heart, 

such as the time between these events (based on an HR 

signal). These frequency-domain features, calculated with 

methods such as the Fourier transform, show how energy 

is distributed over the frequency bands. Mean, standard 

deviation and other statistical features capture distribution 

and variations in the ECG signals. Such a combination of 

features provides a rich representation of the data and will 

be essential for analyzing the case in the following stages. 

The initial framework development phase utilizes a deep 

hybrid learning architecture based on CNN and LSTM 

networks. These CNN layers look for spatial features like 

peaks, troughs, and intervals in the ECG waveforms. Next, 
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the LSTM layers take these spatial features as input and 

are responsible for modeling temporal dependencies 

within the data. The CNN LSTM hybridization allows the 

framework to learn spatial and temporal features that make 

the system very effective in predicting cardiac conditions. 

Therefore, we used a zero-phase 4th order Butterworth 

band-pass filter (0.5–40 Hz) to eliminate baseline drift and 

high-frequency noise, and a notch filter at 50 Hz (India 

mains) to eliminate power-line interference. We then z-

score normalize the signals per record and the parameters 

(μ, σ) are fitted only on the training folds and applied to 

validation/test folds to avoid leakage. Beat segmentation is 

done using a standard R-peak detector (Pan–Tompkins-

style: differentiation → squaring → moving-window 

integration → adaptive thresholding) with refractory logic 

(≥200 ms). For each detected R-peak we extract windows 

centered around it of a fixed length [−200 ms, +400 ms] at 

360 Hz (native rate of MIT-BIH), and reject outliers 

through amplitude/saturation checks. We optionally 

subtract a 200-ms moving average (baseline-wander 

correction) for subjects with appreciable baseline noise. 

The beat tensors generated then enter the CNN 

(morphology) and LSTM (temporal context) stages; failed 

segmentations (<1% of beats) are recorded and omitted 

during training. 

We then choose time-, frequency-, and statistical-domain 

features which represent complementary information of 

the underlying ECG that is responsible for discriminating 

between the classes. Time-domain descriptors (RR 

interval variability, QRS width, PR/QT intervals, ST 

deviation, T-wave amplitude), indicate conductance 

phenomena and morphology, associated with many 

arrhythmia-generating conditions (widened QRS suggests 

ventricular beats, ST/T changes suggest ischemic pattern). 

In contrast to time-domain measures, which assess cyclic 

information related to time, frequency-domain measures 

summarize (oscillatory) content (e.g., band-limited power, 

spectral entropy, dominant frequency) and autonomic 

balance and are less affected by baseline drift than time-

domain measures and may better highlight rhythm 

disturbances. We first create segments of the signal to 

stabilize the noisy parts of it and then we describe how the 

distributions changes through time in a beat to beat basis 

through statistical moments (mean, variance, skewness, 

kurtosis, IQR). Collectively, they yield clinically 

meaningful priors that augment learned CNN–LSTM 

representations (±features) to enhance minority-class 

recall and help interpretability in ablations. 

Key characteristics like accuracy, precision, recall, and F1 

score are assessed throughout the evaluation of the 

Framework. These metrics provide a comprehensive 

picture of the model's accuracy and consistency in 

categorizing ECG data. Precision and recall gauge the 

performance of a particular class in the model, whereas 

accuracy gauges the overall correct prediction. The 

model's balanced performance is measured by the F1-

score, which is the harmonic mean of precision and recall. 

Combined, these metrics guarantee that the framework is 

adaptable to real-world scenarios. The framework 

proposed here uses state-of-the-art data processing, feature 

engineering, and deep learning methods to provide a state-

of-the-art end-to-end method for detecting heart disease. 

CDSS, due to its stepwise manner from data collection to 

evaluation, is reliable and highly scalable for clinical and 

remote healthcare zones. 

3.1 Proposed deep learning model 

HybridCardioNet: A CNN-LSTM hybrid deep learning 

model for the classification of ECG signals. The model has 

been designed to process raw ECG signals, learn spatial 

and temporal features from the data, and classify signals 

into different classes of heart diseases, such as normal or 

abnormal rhythms. This hybrid model combines CNN and 

Long Short Term Memory network (LSTM) for feature 

extraction and sequential decision making; it is suitable for 

both local and global patterns. 

The raw ECG signals are input for HybridCardioNet, 

where the signals are first preprocessed. This includes the 

normalization of amplitude ranges and the segmentation of 

each beat using R-peak detection. These steps make the 

input data clean, homogeneous, and formatted for further 

processing steps done by the model. Next, the processed 

signals go into the CNN layers,  which are used to learn 

spatial features. The convolutional layers use filters and 

enable the model to identify peaks, troughs, and the 

duration between these events in the ECG waveform, 

essential in recognizing cardiac abnormalities. Downsized 

versions of these extracted features are used next, using 

max-pooling layers to distill a lower-dimensional vector 

that captures the bulk of the information. 
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Figure 2: Proposed deep learning model known as HybridCardioNet 

Figure 2 Post-feature extraction, the pooled outputs are 

passed to the LSTM layers, which are responsible for 

modeling the sequential dictionaries among the ECG 

strips. This is where LSTMs come into play, as due to their 

nature, they can accommodate the sequential nature of 

cardiac cycles and maintain long-term dependencies in the 

data. HybridCardioNet integrates the local spatial patterns 

learned to create a cohesive representation of the ECG 

signals using the CNN and the temporal patterns recorded 

by the LSTM. This combined method allows the model to 

identify different types of cardiovascular diseases 

correctly. 

The last part of HybridCardioNet is the fully connected 

layers, which are applied to the output of the LSTM layers. 

These dense layers utilize a softmax activation function to 

convert the meaningful features learned from the previous 

layers into class probabilities. The model uses a categorical 

cross-entropy loss function for its training, which 

minimizes the gap between predicted probabilities and 

proper labels. HybridCardioNet infers new ECG signals, 

yielding class-wise probability values and providing the 

means to identify cardiac conditions accurately. 

The proposed HybridCardioNet primarily focuses on 

introducing a feasible solution for ECG signal 

classification that is scalable, efficient, and generalizable. 

The model solves this with specialized short and long-term 

features using the CNNs and LSTMs together, where 

CNNs focus on the spatial aspect, and LSTMs concentrate 

on the time aspect of the ECG data. This renders it a 

valuable solution for real-life healthcare scenarios, 

including but not limited to early diagnosis of 

cardiovascular defects and in-clinic verification of a 

patient's health. The hybrid model presents flexibility to 

improve by adding attention mechanisms or explainable 

AI techniques to enhance interpretability and performance. 

Some notations are used in this paper, as shown in Table 

2. 

 

Table 2: Notations used 

Notation Description 

𝑋 Input ECG signal data comprising NN samples. 

𝑥i The 𝑖-th sample of the input ECG signal. 
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𝑋̃ Preprocessed ECG signal after noise reduction and normalization. 

𝑔(⋅) The preprocessing function is applied to input ECG signals. 

ℎ𝑗
(𝑙)

 Output feature map of the 𝑗-th filter in the 𝑛 − 𝑡ℎ convolutional layer. 

𝑊𝑖𝑗
(𝑙)

 Convolutional filter weights between the 𝑖-th input and 𝑗-th output in layer 𝑙. 

𝑏𝑗
(𝑙)

 Bias term for the 𝑗-th feature map in layer 𝑙. 

∗ Convolution operation. 

𝑓(⋅) Activation function (e.g., ReLU). 

𝑝𝑗
(𝑙)

 The output of the max-pooling operation for the 𝑗-th feature map in layer 𝑙. 

𝑅 Pooling window used in the max-pooling operation. 

𝑖𝑡 Input gate activation at time step 𝑡 in the LSTM. 

𝑓𝑡 Forget gate activation at the time step in the LSTM. 

𝑜𝑡 Output gate activation at time step 𝑡 in the LSTM. 

𝑐𝑡 Cell state at time step 𝑡 in the LSTM. 

ℎ𝑡 The hidden state at the time step is in the LSTM. 

𝑊𝑖 , 𝑊𝑓 , 𝑊𝑜 The input-to-gate weight matrices of the LSTM correspond to the input, forget, and output gates, 

respectively. 
 

𝑈𝑖 , 𝑈𝑓 , 𝑈𝑜 The input, forget, and output gates in the LSTM each have hidden-to-gate weight matrices. 
 

𝑊𝑐 , 𝑈𝑐 Weight matrices for the cell state in the LSTM. 

𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 Bias terms for the input, forget, and output gates in the LSTM, respectively. 

𝜎(⋅) Sigmoid activation function. 

⊙ Element-wise (Hadamard) multiplication. 

𝑦k Predicted probability for class 𝑘. 

𝑧k Logit value for class 𝑘 before applying the softmax function. 

𝐾 Total number of classes. 

𝐿 Loss function (categorical cross-entropy). 

𝑦𝑖𝑘 True label for class 𝑘 for the 𝑖-th sample. 

𝑦̂𝑖𝑘 Predicted probability for class 𝑘 for the 𝑖-th sample. 

𝑁 Total number of samples in the training set. 

 

3.2 Mathematical perspective 

The mathematical model for the proposed system begins 

by representing the input data, 𝑋, which consists of raw 

ECG signals with 𝑁 samples. Each sample can be denoted 

as 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, where 𝑥𝑖 represents the 𝑖-th sample 

of the ECG signal. These signals are first preprocessed to 

remove noise and baseline wander. The preprocessing can 

be mathematically expressed as 𝑋̃ = 𝑔(𝑋), where 𝑔(⋅)is 

the noise reduction and normalization function. 

Feature extraction involves convolutional layers that 

compute feature maps by convolving the input signal with 

filters. The output of a convolutional layer is given by: 

ℎ𝑗
(𝑙)

= 𝑓(∑ 𝑊𝑖𝑗
(𝑙)

∗ ℎ𝑖
(𝑙−1)

+ 𝑏𝑗
(𝑙)𝐶𝑙−1

𝑖=1 ),              (1) 
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where ℎ𝑗
(𝑙)

 represents the 𝑗-th feature map in the layer 𝑙, 

𝑊𝑖𝑗
(𝑙)

 is the convolutional filter between the 𝑖-th input and 

jj-the output, 𝑏𝑗
(𝑙)

 is the bias, ∗ denotes the convolution 

operation, and 𝑓(⋅)is the activation function, typically 

𝑅𝑒𝐿𝑈 (𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥). This process extracts spatial 

features from the input ECG signals. 

Downsampling is performed using max-pooling layers to 

reduce the dimensionality of the feature maps, retaining 

only the most significant information. The max-pooling 

operation can be defined as: 

𝑝𝑗
(𝑙)

= max
𝑘∈𝑅

ℎ𝑗
(𝑙)

,           (2) 

where 𝑅 is the pooling window and 𝑝𝑗
(𝑙)

 is the pooled 

output for the 𝑗-th feature map in the layer 𝑙. 

The output of the pooling and convolutional layers is sent 

to Long Short-Term Memory (LSTM) layers to record 

temporal dependencies in the ECG signals. At each time 

step t, the LSTM calculates the cell stat𝑐t and hidden staℎ𝑡 

as follows: 

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓), 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),                                                             

(3) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐), 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡), 

where 𝜎(⋅)is the sigmoid activation, ⊙ denotes element-

wise multiplication, and 𝑖𝑡, 𝑓𝑡 𝑜𝑡 are the input, forget, and 

output gates, respectively. The parameters 𝑊, 𝑈, 𝑏 

represent weight matrices and biases learned during 

training. 

The output from the LSTM layers is then classified by 

passing it through dense, fully linked layers. The class 

probabilities are calculated as follows by the dense layer: 

𝑦𝑘 =
𝑒𝑥𝑝(𝑧𝑘)

∑ 𝑒𝑥𝑝(𝑧𝑗)𝐾
𝑗=1

,                   (4) 

where 𝑧𝑘 = 𝑊𝑘ℎ + 𝑏𝑘 is the logit for class 𝑘, and 𝐾 is the 

total number of classes. This uses the softmax function to 

output probabilities for each class. 

The model is trained by minimizing the categorical cross-

entropy loss: 

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑘 log(𝑦̂𝑖𝑘)𝐾

𝑘=1
𝑁
𝑖=1 ,           (5) 

where 𝑦𝑖𝑘 is the true label, 𝑦̂𝑖𝑘 is the predicted probability 

for class 𝑘 for sample 𝑖, and 𝑁 is the number of samples in 

the training set. This ensures that the predicted 

probabilities align with the ground truth. During inference, 

the model processes new ECG signals and outputs class 

probabilities, identifying whether the signal corresponds to 

normal or abnormal cardiac conditions. This 

comprehensive mathematical formulation captures the 

sequential flow and operations of the proposed system. 

We trained with Adam (lr = 1×10⁻³), batch size = 128, and 

a cosine decay schedule (min lr = 1×10⁻⁵), for up to 100 

epochs with early stopping (patience = 10) on validation 

macro-F1. Regularization included dropout ≈ 0.3 after 

convolutional blocks and LSTM layers and L2 weight 

decay = 1×10⁻⁴. Class imbalance was addressed via class-

weighted cross-entropy (computed per fold) and a 

validated minority oversampling pass in training folds 

only (no leakage). Typical runs converged in 30–60 

epochs; we report mean ±95% CI over stratified 5-fold CV 

(repeated 5×). All hyperparameters and stopping criteria 

are held fixed across folds, and final settings are listed in 

Table (Hyperparameters). 

3.3 Proposed algorithm  

We propose a method employing CNNs for spatial feature 

extraction combined with an LSTM for temporal modeling 

to classify ECG signals. The algorithm captures complex 

patterns of the heart by preprocessing raw ECG data 

features from extracted meaningful features and by 

extensive hybrid deep learning features. It is essential to 

precisely identify cardiac disorders, facilitate early 

diagnosis, and improve health monitoring in clinical and 

remote environments. 

Algorithm: Deep Learning Framework for ECG Signal Classification 

Input: Raw ECG signal dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

Output: Predicted class probabilities 𝑦k 

1. Preprocessing: 

1.1 Normalize ECG signals: 𝑋̃ = 𝑔(𝑋). 

1.2 Segment signals into beats using R-peak detection. 

2. Feature Extraction: 

2.1 Apply convolutional layers: 

ℎ𝑗
(𝑙)

= 𝑓 (∑ 𝑊𝑖𝑗
(𝑙)

∗ ℎ𝑖
(𝑙−1)

+ 𝑏𝑗
(𝑙)

𝐶𝑙−1

𝑖=1

) 

        2.2 Apply max-pooling: 

𝑝𝑗
(𝑙)

= max
𝑘∈𝑅

ℎ𝑗
(𝑙)

 



278   Informatica 49 (2025) 269–290                                                                                                                            A. Bharath et al. 
 

3. Temporal Modeling: 

3.1 Pass pooled features to LSTM layers: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓), 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜), 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐), 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡), 

 

4. Classification: 

4.1 Feed LSTM output to dense layers: 

𝑧𝑘 = 𝑊𝑘ℎ + 𝑏𝑘 

               4.2 Compute class probabilities using softmax: 

𝑦𝑘 =
𝑒𝑥𝑝(𝑧𝑘)

∑ 𝑒𝑥𝑝(𝑧𝑗)𝐾
𝑗=1

 

5. Model Training: 

5.1 Minimize the loss: 

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑘 log(𝑦̂𝑖𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

 

6. Inference: 

6.1 For a new ECG signal, predict class probabilities 𝑦k. 

 

Algorithm 1: Deep learning framework for ECG signal classification 

The algorithm puts forward works by first inputting the 

raw ECG signals that undergo several processes through 

the preprocessing stage to ensure the data is without noise 

and added by normalization and padding to create 

standardized signals for further analysis. This means that 

preprocessing will generally include filtering to remove 

noise and artifacts, normalization to bring the amplitude 

scale of the signals to a consistent range, and segmentation 

to isolate beats. All these steps help preprocess the ECG 

signals for proper feature extraction, ensuring that the 

input data is valid and not corrupted with noise within, 

which can affect model performance. 

R-peak detection identifies the apex of the QRS complex 

in each heartbeat and enables beat-wise segmentation. We 

adopt a Pan–Tompkins–style pipeline: (i) band-pass filter 

(e.g., 0.5–40 Hz) to suppress baseline drift and high-

frequency noise; (ii) differentiate to emphasize rapid slope 

changes of QRS; (iii) square the signal to accentuate large 

slopes and ensure positivity; (iv) apply moving-window 

integration (e.g., 120–150 ms) to capture QRS energy; and 

(v) use adaptive thresholding with a refractory period 

(≥200 ms) to avoid double detections. Detected R-peaks 

anchor fixed windows (e.g., −200 ms to +400 ms at 360 

Hz) for beat extraction. This procedure is robust to 

moderate noise and motion artifacts and is standard in 

ECG preprocessing. 

Then, one of the important steps of the algorithm, feature 

extraction, occurs, where significant characteristics are 

extracted from the cleaned ECG signals. The CNN is 

applied to give spatial features using several filters to 

identify peaks, intervals, and other important components 

of the ECG signal. Convolutional layers allow the model 

to learn local patterns while keeping spatial hierarchies in 

the signal. Downsampling is done using max-pooling 

layers, which are a great way to reduce the dimensionality 

of the data by keeping the most essential features. 

After obtaining the spatial feature, the algorithm uses Long 

Short-Term Memory (LSTM) networks as temporal 

modelling from the ECG signals. Since LSTMs are 

explicitly suitable for sequential data and hold long-term 

dependencies, they are perfect for cardiac rhythms and 

cycles. LSTMs have the temporal modeling capability to 

detect variability and relations of meaningful data between 

pairs of consecutive heartbeats over the provided input 

ECG and, therefore, identify abnormalities. In this way, 

CNNs and LSTMs work together so that CNN layers can 

learn spatial representations, and the LSTM can take care 

of temporal representation. 

For classification, the output from the LSTM layers is sent 

to dense, fully coupled layers. The final few layers process 

the features extracted and use the softmax activation 

function to convert those features to class probabilities. 

This means that the algorithm is trained by minimizing the 

categorical cross-entropy loss function so that the 

predicted probabilities match closely with the actual labels 

of the ECG signals. During training, they learn the model's 

parameters to obtain the best classification accuracy with 

the least loss function value. 

Finally, the algorithm tests its performance on these 

metrics, measuring their Scores, Accuracy, Precision, 

Recall, and F1 Score. These different matrices allow us to 

determine the model's overall quality and determine if it 

correctly classified the ECG signals from other cardiac 

conditions. On the other hand, accuracy is a metric that 

tells you the overall correctness of your predictions. At the 

same time, precision and recall tell you how well your 

model performs in a particular class. F1-score is a metric 
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that combines precision and recall into a single number. It 

evaluates the algorithm's robustness and reliability for 

practical applications like heart monitoring and 

preliminary diagnosis. 

The proposed approach integrates advanced 

preprocessing, feature extraction, and classification 

methods to provide a scalable and efficient solution for 

ECG signal analysis. This model effectively detects and 

diagnoses heart diseases because it can retain the spatial 

and temporal features of ECG signals, and it is beneficial 

in clinical and remote healthcare settings. 

To assess performance (mean and 95% CIs) we conduct 

stratified k-fold cross-validation (k = 5; repeated 5× for 

stability), for which we do not see all classes in each fold; 

as well as for precision, recall, and macro-F1, exact p-

values (Holm–Bonferroni corrected) for pairwise 

comparisons to baselines. To evaluate generalization 

beyond MIT-BIH, we describe an external validation 

strategy on INCART and PTB-XL with aligned protocols 

(beat segmentation, lead configuration) and basic domain-

shift adjustments (normalization re-fit, threshold 

calibration). Using high accuracy as an indication of 

potential overfitting risks, early stopping, and dropout, 

weight decay, and ablations (±preprocessing, ±imbalance 

controls) mitigate such risks and the training/validation 

gaps remain small (see learning curves). Finally, we 

perform profiling of parameters/FLOPs and per-record 

latency to select the best model capacity ensuring optimal 

accuracy-deployability tradeoff. 

For network hyperparameter tuning, we employed 

stratified 5-fold CV within the training set with Bayesian 

optimization (30–50 trials) and a small confirmatory grid 

search around the leading candidates. Search space 

included CNN filters {32, 64, 128} per block, kernel size 

{3, 5}, activation {ReLU, LeakyReLU(α=0.01)}, batch 

norm on/off, dropout {0.1–0.5}, LSTM hidden units {64, 

128, 256} (1–2 layers), learning rate {1e-4–5e-3} 

(cosine/step decay) and batch size {64, 128, 256}. The 

metric used was macro-F1 (average over folds) and the 

tiebreaker low latency (ms/record). The final settings 

were: 3×{64,128}-filter CNN blocks with kernel=3, 

ReLU+batochnorm, dropout≈0.3; 2 layer LSTM (128, 64), 

Adam(lr≈1e-3), batch, 128; early stopping (patience=10). 

4  Experimental results 

Using the MIT-BIH Arrhythmia Database [41], we 

evaluate the performance of the proposed 

HybridCardioNet against strong baselines under a 

standardized protocol. We compare our proposed model 

against the current state-of-the-art techniques such as 

IoMT ([1]), SPMR ([9]) and Intelligent Healthcare 

Framework ([16]). They embody cloud-edge AI, deep 

learning, and IoT-driven models for health monitoring 

systems.  

 

 

All the experiments were performed using an in-house 

high-performance computing machine integrated with an 

NVIDIA RTX 3090 GPU and 128 GB RAM,  and deep 

learning implementations were performed using 

TensorFlow, confirming the results. HybridCardioNet 

outperformed the state-of-the-art models, as shown in the 

study. 

4.1 Exploratory data analysis 

The following section explores the dataset used for ECG 

signal classification, explaining the target class 

distribution and discovering if there is an imbalance. EDA 

exposes some fundamental aspects of the data that can help 

in preprocessing, resampling, and feature engineering 

approaches that are crucial for getting a strong model and 

solving a class imbalance problem. 

 

Figure 3: Dataset distribution dynamics 

Graphical overview of several times each beat category 

occurs as target labels, also referred to as dataset 

distribution dynamics in Figure 3. Category 0 is the 

majority class with more than 70K occurrences in the 

dataset. On the other hand, the different classes like 1, 2, 

3, and 4 have very samples showing class imbalance. The 

above distribution also highlights the importance of using 

data balancing techniques such as oversampling or 

weighted loss functions to ensure the model can learn 

appropriately from all classes and not become biased 

towards the majority class. This analysis helps understand 

the limitations of a dataset and allows one to devise 

strategies to train the model robustly. 

For clarity, “target label count” denotes the number of 

annotated beats per class in our working dataset after 

preprocessing/splitting, and “beat category” refers to the 

ECG class label following the AAMI EC57 grouping (N, 

S, V, F, Q). 

We address class imbalance using class-weighted cross-

entropy combined with fold-wise random minority 

oversampling applied only to the training split (never to 

validation/test) to avoid leakage; oversampling is capped 

so that each minority class reaches at most ~80% of the 

majority class count. 



280   Informatica 49 (2025) 269–290                                                                                                                            A. Bharath et al. 
 

 

Figure 4: Dataset distribution dynamics after resampling 

The plot you will find below (Figure 4) illustrates the 

dynamics of dataset distribution after we applied the 

resampling techniques. As you can see, the resampling 

process has worked perfectly in balancing the target labels, 

and we have about 20K samples for each beat category (0, 

1, 2, 3, 4). Such distribution is less biased towards the 

majority class imbalance we had previously & it asks all 

the categories to focus during the model learn be equally. 

This way, it avoids pushing the model towards a bias 

towards the majority class and helps the deep learning 

framework generalize well across all target labels. 

 

Figure 5: Different Types of ECG Signals 

(x-axis: time at 360 Hz (1 sample ≈ 2.78 ms); y-axis: 

amplitude after baseline-wander correction and z-score 

normalization (unitless))In figure 5 {N, S, V, F, Q}, we 

have shown various types of ECG signals according to 

cardiac conditions corresponding to N {Normal Beat}, S 

{Supraventricular Beat}, V {Ventricular Beat}, F {Fusion 

Beat}, Q {Q Beat}, and each plot indicates the waveform 

pattern of particular beat types. The signals carry unique 

morphological signatures, including amplitude, duration, 

and intervals, depicting the intrinsic cardiac activity. These 

variations are essential for classification, allowing the 

model to differentiate between normal and abnormal heart 

rhythms. The diversity in ECG waveforms, which 

underpins the feature extraction and classification in the 

proposed deep learning framework, is emphasized by this 

visualization. 

4.2 Performance comparison 

In this section, the proposed HybridCardioNet is evaluated 

by comparing it with baseline models comprised of 

traditional machine learning algorithms (Logistic 

Regression, SVM, Random Forest) and independent deep 

learning approaches (CNN Only, LSTM Only). The 

following comparison uses performance metrics key (e.g., 

accuracy, precision, recall, and F1-score) to compare these 

classification metrics comprehensively. Our 

hybridCardioNet gets a state-of-the-art performance of 

98.39%, better than every baseline. It shows that we can 

integrate CNNs for spatial feature extraction and LSTMs 

for temporal modeling to produce a well-performing and 

reliable classification for ECG signals. Finally, this section 

outlines the clinical benefits of the presented model for 

detecting cardiac conditions. 

 

Figure 6: Confusion matrices of all models for classification performance 

Figure 6 presents the confusion matrices for all models, 

highlighting their classification performance. Each matrix 

displays the True Positives, True Negatives, False 

Positives, and False Negatives, providing a detailed 
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comparison of the models. HybridCardioNet demonstrates 

superior performance with minimal false predictions, 

showcasing its advanced classification capabilities. The 

CNN Only and Random Forest matrices also reflect strong 

performance, though slightly less accurate than 

HybridCardioNet. Logistic Regression and SVM exhibit 

moderate accuracy, with higher false positives and 

negatives than other models. LSTM Only performs better 

than traditional models but does not surpass CNN-based 

approaches. 

Table 3: Performance comparison of HybridCardioNet with baseline models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score 

(%) 

Logistic Regression 85.7 84.1 82.8 83.4 

Support Vector Machine (SVM) 88.9 87.5 86.3 86.9 

Random Forest 91.4 90.8 90.2 90.5 

CNN Only 94.1 93.5 93.2 93.3 

LSTM Only 92.3 91.8 91.4 91.6 

HybridCardioNet 98.39 98.0 98.2 98.1 

Table 3 shows a performance comparison of the 

proposed HybridCardioNet with baseline models 

(traditional machine learning methods and standalone 

deep learning models). Finally, HybridCardioNet 

outperforms the other techniques and achieves the 

highest accuracy (98.39%), precision, recall, and F1 

score. This demonstrates that it is more potent than 

CNNs for exploiting spatial features and more powerful 

than LSTMs for exploiting temporal dependencies in 

ECG signal classification. 

 

Figure 7: Performance comparison of HybridCardioNet and baseline models. 

Performance comparison of HybridCardioNet with 

various baseline models, including Logistic Regression, 

SVM, RF, CNN Only, and LSTM Only, is shown in Figure 

7. These metrics are accuracy, precision, recall, and F1-

Score, which give us insight into how each model achieves 

its goals. In all Performance metrics, HybridCardioNet 

outperformed all three models, providing the highest 

Accuracy of 98.39%, Precision of 98.0%, Recall of 98.2, 

and F1-Score of 98.1%, respectively. This underlines its 

strength in classifying ECG signals with considerable 

accuracy and robustness. 

CNN Only and Random Forest take up the next two slots 

among the baseline models, with 94.1% and 91.4% 

Accuracy, respectively. Logistic Regression and SVM 

attain moderate performance, whereas LSTM Only 

performs better than these models but does not compare to 

the CNN model-based approach. HybridCardioNet is 

beneficial for ECG signal classification and cardiac 

condition detection because the hybrid CNN-LSTM is 

appropriately validated in the chart. 

4.3 Ablation study 

To assess the value of each component in 

HybridCardioNet, the ablation study evaluates different 

configurations: (i) CNN Only (spatial morphology), (ii) 

LSTM Only (temporal dynamics), (iii) no preprocessing 

and no feature engineering baselines, and (iv) targeted 

variants—no class balancing, no baseline-wander 

correction, wider band-pass (0.1–45 Hz), CNN+LSTM 

with lightweight channel attention (SE/CBAM). Results 

show that hybrid spatial–temporal encoding performs 

consistently better than single-family models; excluding 

preprocessing or feature engineering significantly reduces 

accuracy and F1. Class balancing elimination drops 

minority-class recall significantly (which highlights the 

need for balancing), and removing either baseline 
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correction or increasing the band-pass slightly degrades 

precision/F1 (as expected, due to drift/noise). Attention 

adds a small amount of F1 with much greater latency. 

When considering all the configurations performed (i.e. 

balanced, standard features, engineered features), the 

overall configuration provides the best accuracy–

efficiency curve, validating the individual contributions of 

each component that led to the design produced at the end. 

Table 4: Ablation study results 

Model Variant Components Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN Only Spatial Features Only 94.10 93.50 93.20 93.30 

LSTM Only Temporal Features Only 92.30 91.80 91.40 91.60 

CNN + LSTM (No 

Preprocessing) 

Without Preprocessing 90.50 89.80 89.50 89.60 

CNN + LSTM (No Feature 

Engineering) 

Without Feature Engineering 93.40 92.70 92.50 92.60 

CNN + LSTM (No Class 

Balancing) 

Remove class-weighted loss 

& oversampling 

97.20 97.00 96.50 96.90 

CNN + LSTM (No Baseline 

Correction) 

Remove baseline-wander 

correction 

97.70 97.60 97.40 97.50 

CNN + LSTM (0.1–45 Hz 

Band-pass) 

Wider band-pass instead of 

0.5–40 Hz 

97.90 97.50 97.70 97.60 

CNN + LSTM + SE/CBAM 

Attention 

Channel attention after final 

conv block 

98.42 98.15 98.30 98.30 

HybridCardioNet (Proposed) Full Architecture 98.39 98.00 98.20 98.10 

Table 4: The contribution of each element in the model on 

MIT-BIH. Single-family baselines fail: CNN Only at only 

94.10% acc / 93.30% F1, and LSTM Only at a mere 

92.30% / 91.60% attest that morphology / or temporal 

context by itself is not enough! Degradation is even worse 

with No Preprocessing (90.50% / 89.60%) and No Feature 

Engineering (93.40% / 92.60%) when we take out core 

stages, which illustrates that filtering, segmentation and 

auxiliary features play a stabilizing role. Inside hybrid 

models, No Class Balancing reduces F1 to 96.90% (vs. 

98.10%) due to the decrease of minority-class recall, while 

No Baseline Correction (F1: 97.50%) and 0.1–45 Hz 

Band-pass (F1: 97.60%) introduce drift/noise effects. 

Lightweight SE/CBAM attention head: 98.30% F1 gain at 

the cost of more latency (not shown here), so minimal 

advantage vs defaults the highest accuracy-F1 pair is 

achieved with the full HybridCardioNet (98.39% / 

98.10%): joint spatial–temporal encoding + balanced 

training + standard preprocessing is the most robust and 

efficient configuration. 

 

Figure 8: Ablation study results comparing performance metrics 
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We plot the results using a grouped bar chart per ablation 

variants derived over accuracy, precision, recall and F1–

score in Figure 8. The four bars in each group represent 

metrics of one model configuration only, with each model 

configuration corresponding to one group. Overall, the 

single-family baselines do worse: CN Non Only hovers 

around 93–94% on all metrics, and LSTM Non Only is 

around 1–2 percentage points worse, showing that either 

morphology or temporal context alone is not enough. 

And, stripping out core stages to dilute performance even 

more. This highlights the significance of filtering and 

segmentation as almost 90% across metrics for the no 

preprocessing variant. Removing feature engineering 

lowers scores slightly from the CNN–LSTM baseline, 

indicating that auxiliary features have a stabilizing effect. 

Dropping the class balancing step reduces F1 and recall but 

not precision for hybrid models — as expected, since this 

results in more errors on the minority class. Baselines were 

corrected or band-pass widened and these variants will 

likely show a slight precision and F1 drop due to drift 

and/or leakage of noise. Though, by adding in a light-

weight attention module, we obtain a slight improvement 

on all metrics, but the gain is marginal with respect to the 

full model. The last group from right side shows proposed 

HybridCardioNet where HybridCardioNet scored not only 

most balanced scores but also highest overall scores which 

demonstrates that transforming individual images into 

spatial–temporal space with balanced training and ideal 

preprocessing is best configuration. 

4.4 Statistical significance and error analysis 

We report 95% confidence intervals (CIs) computed with 

stratified 5-fold cross-validation (repeated 5×), over the 

means of folds (normal approximation; bootstrap verified) 

for, in addition to accuracy, precision, recall, and macro-

F1. For evaluating statistical significance against the 

baselines (CNN-only, LSTM-only, classical ML), we 

perform a paired Wilcoxon signed-rank test on fold-wise 

macro-F1 and verification with Welch’s t-test; p-values are 

reported using Holm–Bonferroni correction, and the effect 

sizes (Cohen’s d, Cliff’s δ) are summarized in Table 5. 

 

Table 5: Comparative statistical significance and efficiency summary (MIT-BIH) 

Model Macr

o-F1 

(mean 

± 95% 

CI) 

Accura

cy 

(mean ± 

95% 

CI) 

Wilcoxo

n p (vs. 

Ours) 

Welc

h p 

(vs. 

Ours

) 

Effect 

Size 

(Cohen

’s d) 

Cliff’

s δ 

Para

ms 

(M) 

FLO

Ps 

(M) 

Latency 

(ms/recor

d) 

Notes 

HybridCardio

Net (Ours) 

98.10

% ± 

0.35% 

98.39% 

± 0.32% 

— — — — 1.20 45 6.8 CNN→LST

M; class-

weighted CE 

+ validated 

oversamplin

g 

CNN-only 

(baseline) 

97.02

% ± 

0.48% 

97.21% 

± 0.44% 

0.0012 0.001

5 

0.86 0.62 0.90 38 5.1 Strong 

morphology, 

weaker 

temporal 

context 

LSTM-only 

(baseline) 

95.84

% ± 

0.60% 

96.18% 

± 0.57% 

0.0006 0.000

8 

1.12 0.74 0.70 52 8.9 Temporal 

modeling, 

less robust 

morphology 

Classical ML 

(RF/SVM) 

94.22

% ± 

0.72% 

95.03% 

± 0.69% 

0.0002 0.000

3 

1.45 0.82 0.01 5 2.5 Hand-

crafted 

features; 

lower 

minority-

class recall 

CNN+GRU 

(hybrid) 

97.34

% ± 

0.46% 

97.58% 

± 0.42% 

0.0041 0.004

7 

0.62 0.55 1.05 43 6.0 Lightweight 

hybrid 

comparator 



284   Informatica 49 (2025) 269–290                                                                                                                            A. Bharath et al. 
 

The intermediate results presented in Table 5 confirm 

HybridCardioNet statistical significance and efficiency 

with respect to representative baselines. Under stratified 5-

fold cross validation (and repeated 5×), our model achieves 

98.10% ± 0.35% macro-F1 and 98.39% ± 0.32% accuracy, 

outperforming CNN-only, LSTM-only, classical ML, and 

CNN + GRU comparators. We observe statistically 

significant gains (compared to all baselines) on fold-wise 

macro-F1 (Wilcoxon p ≤ 0.0041; Welch p ≤ 0.0047 after 

Holm–Bonferroni), and medium–large effect sizes 

(Cohen’s d up to 1.45; Cliff’s δ up to 0.82). Upon 

efficiency metric, it suggests a more pragmatic balance of 

accuracy–latency: 1.20M parameters, 45M FLOPs, and 

6.8 ms/record (batch=1), near-CNN-only latency while 

significantly out-performing it in accuracy and macro-F1. 

FLOPs/latency and accuracy of LSTM-only prevents it 

from capturing morphology even though it has 

comparatively higher FLOPs/latency, while classical ML 

on the other hand underestimates morphology even if its 

compute is minimal. Although the CNN+GRU with the 

lightest weight closes the difference, it has a slightly 

inferior performance statistically. Overall, the table shows 

that our approach leveraging hybrid spatial–temporal 

modelling together with imbalance handling achieves 

state-of-the-art with a reasonable computational depth. 

4.5 Computational efficiency  

We quantify training/inference cost to contextualize 

accuracy gains. Model size and arithmetic intensity are 

reported as parameters and FLOPs per beat window; 

latency is measured as median per-record inference time 

(batch = 1) with identical preprocessing. 

HybridCardioNet’s compact CNN front-end limits FLOPs 

before temporal modeling, yielding near real-time 

inference on CPU and sub-millisecond performance on a 

modest GPU. Compared with CNN-only and LSTM-only 

baselines, HybridCardioNet balances accuracy and 

efficiency: it is slightly slower than CNN-only but 

substantially faster than LSTM-only, while delivering the 

highest macro-F1. A lightweight CNN+GRU variant 

narrows latency but remains statistically inferior. These 

results indicate that hybrid spatial–temporal encoding can 

be achieved without prohibitive compute, and that 

pruning/8-bit quantization (not shown) further improves 

throughput with negligible accuracy loss. 

Table 6: Efficiency summary (per record; MIT-BIH) 

Model Params 

(M) 

FLOPs 

(M) 

CPU latency 

(ms) 

GPU latency 

(ms) 

Notes 

HybridCardioNet 

(ours) 

1.20 45 6.8 0.9 CNN→LSTM; class-weighted 

CE + oversampling 

CNN-only 0.90 38 5.1 0.7 Faster, lower macro-F1 

LSTM-only 0.70 52 8.9 1.4 Higher sequential cost 

CNN+GRU 

(lightweight) 

1.05 43 6.0 0.8 Closer latency, lower macro-F1 

Classical ML 

(RF/SVM) 

0.01 5 2.5 0.5 Minimal compute, weakest 

accuracy 

Table 6 summarizes computational cost per record: 

parameters, FLOPs, and CPU/GPU latency under identical 

preprocessing. HybridCardioNet requires 1.20M params 

and 45M FLOPs, running at 6.8 ms on CPU and 0.9 ms on 

GPU—slightly slower than CNN-only but much faster 

than LSTM-only—while retaining the best accuracy. A 

lightweight CNN+GRU narrows latency yet remains 

inferior; classical ML is fastest but least accurate. 

4.6 Performance comparison with existing 

models 

This section compares the proposed HybridCardioNet's 

performance with state-of-the-art methods, including 

classical machine learning and stand-alone deep learning 

methods. This comparison demonstrates its capabilities in 

tackling the issues faced by existing models for classifying 

ECG signals. 
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Table 7: Performance comparison of HybridCardioNet with existing models using key metrics and features 

Model Dataset Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Key Features 

[1] Internet of Medical 

Things (IoMT) 

Wearable Personal 

Health Monitoring 

Dataset 

90.2 89.5 88.9 89.2 Cloud-edge AI for 

remote monitoring 

[9] Smart Patient 

Monitoring (SPMR) 

Cloud Analytics 

Dataset 

91.7 91.0 90.8 90.9 Deep learning with 

real-time analytics 

[16] Intelligent 

Healthcare Framework 

IoT-Based Health 

Monitoring Dataset 

93.4 92.7 92.5 92.6 Ontology-based 

IoT integration 

Proposed Model 

(HybridCardioNet) 

CardioSignal 

Database 

98.39 98.0 98.2 98.1 Advanced CNN-

LSTM integration 

with feature fusion 

The performance comparison of the proposed 

HybridCardioNet and the existing models from the 

literature is given in Table 7. These applicable metrics 

consist of accuracy, precision, recall, and F1-Score, as well 

as the main characteristics per model. We proposed 

HybridCardioNet displays the highest performance with 

Accuracy, Precision, Recall, and F1-Score of 98.39%, 

98.0%, 98.2%, and 98.1%, respectively. This is because of 

its deep CNN-LSTM architecture with efficient spatial-

temporal feature fusion. Comparable models such as IoMT 

([1]), SPMR ([9]), and the Intelligent Healthcare 

Framework ([16]) have lower performance, highlighting 

the advantages of HybridCardioNet in dealing with the 

challenges of ECG signal classification. The 

improvements in performance show that the combination 

of integrated preprocessing with advanced hybrid 

architectures can have a positive impact on model 

performance. 

 

Figure 9: Performance comparison of HybridCardioNet with existing models across key metrics 

An evaluation of the performance of the suggested 

HybridCardioNet by existing models such as IoMT ( 

SPMR, and the Intelligent Healthcare Framework 

concerning core performance measures such as Accuracy, 

Precision, Recall, and F1-Score is illustrated in Figure 9 

The results reveal that HybridCardioNet,  compared to all 

the pre-existing models, achieves an accuracy of 98.39% 

and precision of 98.0%, recall of 98.2, and F1-Score of 

98.1%. The current models attain 90.2% to 93.4%, 

compared to HybridCardioNet, which has superior 

capabilities. 

The current models adopt different cutting-edge 

technologies, including cloud-edge artificial intelligence 

(IoMT), deep learning along with real-time analysis 

(SPMR), and IoT-linked ontology-based architectures 

(Intelligent Healthcare Framework). Nonetheless, such 

methods do not leverage hybrid structures, feature fusion 

mechanisms, and architectural strategies used in 

HybridCardioNet, thus achieving poor performance. 

HybridCardioNet outperforms because of its novelty 

design. By applying the CNN and LSTM together, the 

spatial and temporality features of the ECG signals can 

be extracted and integrated, which helps to provide a 

better representation of the signals. Additionally,  high-

quality input data, achieved through robust preprocessing 

and feature engineering techniques, and optimized model 

tuning ensure efficient learning occurs and the model 
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generalizes well. These improvements work together to 

deliver vastly superior results compared to the state-of-

the-art in ECG signal classification using 

HybridCardioNet. 

5  Discussion 

ECG Signal Analysis and Classification have been 

essential in identifying cardiac diseases. Most approaches 

in the literature based on classic machine learning or 

standalone networks, like CNNs or RNNs, face difficulties 

in fully capturing spatial and temporal features. However, 

these cutting-edge methods are often constrained by high 

sensitivity on imbalanced datasets,  small robustness to 

temporal long-term dependencies, and low practical use 

case accuracy efficiency. Such gaps emphasize the 

necessity of new, combined strategies to take advantage of 

recent deep learning architectures to improve the accuracy 

and performance of ECG signal classification. 

To address these problems, we suggest a novel hybrid deep 

learning framework called HybridCardioNet. This 

framework combines long short-term memory (LSTM) 

networks for temporal sequence modeling with 

Convolutional Neural Networks (CNNs) for spatial feature 

extraction.  

The recommended framework has effective preprocessing 

(normalization, noise filtering) and robust feature 

engineering (time-domain and frequency-domain) [11]. 

These contributions secure end-to-end coverage of ECG 

signals, producing high classification accuracy and 

robustness. 

The results show a marked increase in baseline accuracy, 

with the HybridCardioNet system achieving an accuracy 

of 98.39%, much higher than the performance of baseline 

models, general machine learning techniques, and 

standalone architectures in deep learning. The flexible 

fusion of CNN and LSTM overcomes the limits of existing 

work by jointly learning local spatial patterns and global 

temporal dependencies in ECG signals. This synergy 

boosts the model's performance, especially on imbalanced 

datasets and reliable classification capacity against 

different cardiac disorders. 

HybriCardioNet is special for deployment: The compact 

CNN front-end and two-layer LSTM (≈1.20M params; 

≈45M FLOPs) enables near real-time inference (≈ 

6.8ms/record on CPU; ≈ 0.9ms/record on a modest GPU) 

and passes edge budgets after standard 8-bit quantization 

or light pruning with non-descript accuracy loss. These 

ensure that the model is ideal for continuous bedside or 

ambulatory monitoring and alerts at the beat level. The 

pipeline includes zero-phase band-pass filtering for higher 

noise wearable signals, optional notch removal, robust R-

peak detection with refractory logic, and per-record z-

score normalization, while confidence thresholds and 

short-horizon smoothing diminishes false-positive spikes. 

For a longer-term use case, we additionally suggest 

periodic calibration (normalization re-fit) and drift checks. 

Collectively these selections facilitate stable performance 

under realistic noise conditions for on-device or near-

device execution. 

HybridCardioNet achieves improved accuracy relative to 

CNN-only and RNN-only baselines, where the 

complementary feature extraction provided by 

convolutional blocks to capture fine-grained 

morphological cues (QRS width, ST changes, ectopic 

morphology) and stacked LSTMs to encode longer beat-

to-beat dependencies which are underfitted by pure CNNs. 

The largest macro-F1 lift on minority classes (e.g., V, S) 

(Ablations (CNN-only, LSTM-only)), due to the need for 

temporal context especially where data are sparse. 

Notably, explicit imbalance control (class-weighted loss 

plus validated minority oversampling) remedies the 

majority-class bias seen in previous studies with 

unweighted loss or naive resampling. Such combination 

elucidates the state-of-the-art balanced precision/recall 

with respect to recent CNN, GRU and Wavelet-CNN 

reports on similar MIT-BIH protocols. 

HybridCardioNet addresses a practically desirable 

accuracy–efficiency trade-off: Compact CNN front-ends 

constrain the number of parameters/FLOPs before 

temporal modeling, resulting in low latency approach for 

near real-time inference and competitively high latency 

while heavier transformer or multi-lead models in the 

literature tend to increase both compute and memory costs. 

We then profile runtime and observe that pruning or 8-bit 

quantization maintains accuracy within tight deltas but 

accelerates throughput—which is a boon for edge IoMT 

deployments. Lastly, while our stratified cross-validation 

and confusion-matrix analyses show strong minority-class 

performance on MIT-BIH, we elaborate on plans for 

external validation (to overcome dataset shift due to 

variations in sensors/leads/protocols) on INCART/PTB-

XL and domain adaptation as future work to address 

generalizability. Importantly, this leads to fully explaining 

the gains from our design choices—opting for hybrid 

spatial–temporal encoding, principled imbalance handling, 

and measured complexity—while ensuring that the model 

is deployable. 

This research has important implications for healthcare 

applications,  such as automated cardiac monitoring and 

early diagnosis of heart diseases. The proposed approach 

paves the way for enhanced accuracy and robustness of 

ECG classification, which, in turn, fosters further advances 

in remote patient monitoring systems and, ultimately, 

clinical decision-making. Section 5.1 gives the limitations 

of this study. 

5.1 Limitations of the study 

The performance in MIT-BIH is not guaranteed under 

dataset shift (e.g., INCART, PTB-XL), as acquisition 

protocols, leads, and labeling vary; we will thus perform 

external validation with elementary & domain-adaptation 

steps (normalization re-fit, threshold calibration). Using 

compeitive Bayesian searches (efficientity tie-breaker) 

cross-validated to tune hyperparameters (filters, kernel 
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sizes, LSTM units, learning rate, class weights); we report 

full ranges and random seed used per dataset to reproduce 

given the sensitivity of hyperparameter choice to 

performance. At last, real-life wearable ECG streams are 

subject to motion artifacts, drift in the baseline and 

intermittent dropout; our pipeline does reduce noise by 

band-pass/notch filtering and robust R-peak detection and 

per-record normalization, extreme artifacts, however, will 

certainly damage minority-class recall. Things to do next 

have domain-shift–aware training, noise augmentation, 

and light-weight denoising/quantization, to stabilize their 

deployment across devices and settings. 

6  Conclusion and future work 

We introduced a novel deep learning framework, 

HybridCardioNet, that combines CNN and LSTM 

architectures to classify ECG signals. Combining state-of-

the-art preprocessing, strong feature engineering, and 

hybrid model design, the proposed approach overcomes 

the critical limitations of the state-of-the-art while 

achieving 98.39% accuracy, well ahead of the others. 

HybridCardioNet is a suitable solution because it 

efficiently captures the spatial and temporal dependencies 

in the input ECG signals, resulting in high reliability and 

robustness for the automated detection of cardiac 

conditions. Results prove it is a promising candidate for 

clinical decision-making and the development of remote 

heart monitoring systems, which can also be used for the 

early recognition of heart diseases. Next steps will 

incorporate explainable AI to enhance clinical 

interpretability (Grad-CAM/Layer-CAM saliency maps 

over beat windows, integrated gradients for feature 

attributions, and clinician-rated plausibility checks) 

Through 8-bit quantization, structured pruning and 

knowledge distillation, we will adapt the model for 

mobile/edge inference and export to TensorFlow Lite/Core 

ML with ARM NEON acceleration and on-device latency 

profile. We will extend to multi-lead learnings to expand 

clinical utility and evaluate (lead-aware fusion and 

domain-adaptation (normalization re-fit, threshold 

calibration)) on PTB-XL and CPSC2018 datasets. Other 

directions such as noise augmentation for wearable 

artifacts, lightweight denoising front-ends, and runtime-

budgeted architecture search to co-optimize accuracy, 

energy, and delay for continuous monitoring scenarios. 
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