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Adaptive learning and automatic classification of ECG signals is one of the commonly processed and
practical methods in cardiac anomalies detection with that area has a huge potential to teach clinicians
for better clinical healthcare decision making and also remote health patient monitoring [7,8]. Past
methods tackle issues like spatial-temporal feature extraction, class imbalance and dataset generalisation,
but they are limited by a number of shortcomings: the traditional ML models depend on hand-crafted
features and thus lack scalability, and the stand-alone deep models (CNNs or LSTMSs) do not capitalize on
spatial and sequential information simultaneously. To overcome these shortages, we present
HybridCardioNet, a joint deep-learning framework that integrates CNN-based spatial feature extraction
and LSTM based temporal-dependency modelling. The ECG was filtered using band-pass filtering (0.5-40
Hz) to remove the low-frequency baseline-wander, z-score normalisation, and segmented into single-beat
segments using the R-peak detection from the MIT-BIH Arrhythmia Database; class imbalance was
handled via class-weighted loss (random minority oversampling provided validation) HybridCardioNet
with stratified cross-validation gives 98.39% accuracy with the same balanced precision, recall and macro-
F1 score. Against popular protocols in recent literature on MIT-BIH, it also achieves competitive
performance against internal baselines (CNN-only, LSTM-only and classical ML). Thus, hybridCardioNet
solves one key limitation of the previously existing methods. With regards to the other two limitations, since
hybridCardioNet is able to outperform the state-of-the-art for multi-class ECG classification,
hybridCardioNet will be appropriate for real-time applications in terms of early detection & continuous

ECG signals clinical/remote monitoring.

Povzetek:

1 Introduction

Analysis of ECG signals is essential for diagnosing cardiac
diseases since it provides necessary information regarding
the heart's electrical activity. In particular, there has been
growing interest in automated ECG classification to
improve diagnostic accuracy and efficiency in clinical and
remote monitoring environments. Although many works
are investigating this problem, there are some issues with
how ECG signal spatial and temporal features are captured
in the previous methods. Legacy machine learning models,
such as SVM and random forest models, require manual
features to work, making them less scalable and robust. In
contrast, deep learning methods such as CNNs [1] and
LSTM networks [2] used independently cannot learn
spatial and sequential dependencies in ECG data at a high
level.

The literature shows that CNN benefits spatial feature
extraction, such as amplitude and time intervals in the
ECG waveform, while LSTM captures temporal
dependencies. Isolated versions of these models do not

fully utilize the complementary nature of spatial and
temporal modalities. Furthermore, currently, available
frameworks suffer from class imbalance issues without
preprocessing and feature engineering strategies dedicated
to ECG data. This gap emphasizes the lack of a hybrid deep
learning framework that is sustainable, reliable, and
optimal for ECG signal classification with scalability.

This study aims to create a hybrid deep learning model,
HybridCardioNet, that combines CNNs and LSTMs to
classify ECG signals by learning spatial and temporal
features. The paper presents several novelties, from the
novel preprocessing approach to strong feature
engineering based on time-domain and frequency-domain
analysis and the combined CNN-LSTM architecture. It
also includes various techniques to balance the data to
counteract the effects of class imbalance, increasing the
generalizability and reliability of the model.

Our study aims to investigate whether hybrid spatial—
temporal modeling leads to statistically significant better
ECG classification performance than the corresponding
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non-hybrid baselines. Specifically, we can ask (i) whether
a CNN—LSTM pipeline (HybridCardioNet) attains a
superior macro-F1 than either CNN- or LSTM-only
models under stratified cross-validation, and (ii) whether
explicit class-imbalance controls—brought about both by
class-weighted loss and oversampling, verified not to
suppress population performance—improves rarity-class
recall at no significant expense in aggregate performance.
We assume that the morphology will be learnt by the
CNNs while the LSTM will learn the beat-to-beat context
both of which operate to perform majority-class reduction,
and thus stabilize per-class metrics. Expected pros:
improved  minority-class  behaviour, disentangled
precision recall; Expected cons: more sequential compute,
segmentation/preprocessing sensitive. As a result, we
profile Params/FLOPs and latency, while reporting exact
p-values with confidence intervals for each accuracy—
efficiency trade-off.

The main contributions of this work are: (1) design of a
hybrid deep learning framework, HybridCardioNet, using
CNNs and LSTMs for ECG signal classification; (2)
employing powerful preprocessing and feature
engineering techniques specific to ECG data; (3)
assessment of the framework using the MIT-BIH
Arrhythmia Dataset with state-of-the-art accuracy of
98.39%, (4) and comparison of the proposed model with
traditional as well as stand-alone models to highlight its
significance.

The organization of this paper is as follows: A
comprehensive literature review is provided in Section 2,
where previously used methods for ECG classification are
highlighted and gaps identified that this research
addresses—the proposed methodology with pre-
processing, features extraction, and the HybridCardioNet
architecture is discussed in Section 3. Experiments and
comparisons with existing methods to evaluate the
performance of the proposed model form the contents of
Section 4. The results and limitations of our study are
discussed in Section 5. Finally, Section 6 concludes the
paper by summarizing key contributions and outlining
future research directions.

2 Related work

The literature review examines state-of-the-art approaches
for ECG classification, highlighting their limitations and
the need for advanced methodologies. Putra et al. [1]
discussed data security and scalability issues, examined
IoMT developments, and suggested a cloud-edge Al
strategy. Upcoming projects will focus on improving
IoMT capabilities and improving Al integration. Junior et
al. [2] considered the opinions of neurologists and patients
with Parkinson's disease on Al-assisted remote
monitoring, noting excitement and privacy concerns.
Future research should address these issues to improve
adoption. Mai et al. [3] created a MAP control adaptive
closed-loop system using ADRC and CAPG. Future
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research should improve the integration of accurate patient
models and confirm the effectiveness of treatment
approaches. Santos et al. [4] created a clinical decision
support system with machine learning as its foundation to
forecast surgical problems. Subsequent research must
validate its practical implementation and tackle resource
limitations. Haque et al. [5] combined cloud computing,
MEC, and IoT to provide sophisticated patient monitoring.
Security, Al improvements, and system optimization will
be the main areas of future effort.

Lima et al. [6] examined ICT treatments in nephrology,
emphasizing the advantages of RPM in treating CKD.
Progression control and illness prevention should be the
main topics of future study. Khalifa et al. [7] examined the
benefits and difficulties of Al's influence on healthcare
decision assistance. System integration and ethical issues
should be the focus of future research. Arora et al. [8]
discussed RPM's missing data and visualization.
Upcoming tasks include enhancing user acceptability and
adjusting to changes in healthcare. Sundas et al. [9]
presented SPMR, a cloud analytics and DL-based system
monitoring chronic illnesses. Further work will focus on
improving quality of service indicators and extending to
new circumstances. Ratta et al. [10] created a very accurate
decentralized diabetes tracking system with blockchain,
IoT, and machine learning. Further work will involve
investigating cutting-edge technologies and improving the
framework.

Faramarzi et al. [11] examined ML and IoT applications
during COVID-19 and discovered they were helpful in
monitoring and detection. Future research ought to
improve model assessment and integration. Gupta et al.
[12] suggested a safe health data retrieval architecture for
IoT edge computing based on NDN. Future research will
maximize multi-edge situations and leadership positions.
Wau et al. [13] created an Internet of Things (IoT) health
monitoring system for athletes utilizing wearable sensors
and deep learning. The overfitting and complexity of DNN
models will be addressed in future work. Boikanyo et al.
[14] examined the uses, design, and difficulties of remote
patient monitoring systems (RPMS), highlighting
upcoming work on quality service enhancements and
novel solutions. Alshammari et al. [15] suggest an MQTT-
based real-time Internet of Things patient monitoring
system that addresses latency and security and
recommends future improvements.

Zeshan et al. [16] provided an ontology-based Internet of
Things healthcare framework to boost patient monitoring's
accuracy and context awareness, emphasizing precision
improvement in subsequent work. Akhbarifar et al. [17]
suggested a safe paradigm for IoT-based remote health
monitoring that uses lightweight encryption; future work
will concentrate on practical applications and improved
encryption techniques. Khan et al. [18] aimed to enhance
navigation and prediction skills by developing a VR-
enabled IoRT system for remote health monitoring based
on DTs. Shastry [19] integrated NLP with deep learning
for remote health monitoring to enhance real-time
analysis, patient outcomes, and cost-effectiveness. Future
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development will involve adding new technologies and
extending applications. Cheikhrouhou et al. [20] suggested
using lightweight blockchain with fog computing to create
an effective, safe Internet of Things-based healthcare
system. The upcoming tasks are enhancing scalability,
prediction modules, and testing on actual datasets.

Arora et al. [21] suggested a method for matching patterns
to forecast missing RPM data, which increases accuracy.
Future research aims to investigate further preprocessing
techniques. Alshamrani [22] examined [oT and Al in smart
city healthcare, emphasizing models, applications, and
constraints. Upcoming projects will focus on enhancing
data standards and integration. Sujith et al. [23] examined
IoT, blockchain, and Al-powered intelligent health
monitoring (SHM) developments. More work will be
needed on future ML/DL integration and SHM
applications. Abiodun et al. [24] presented a wearable
device-based remote clinical trial monitoring framework
that uses SVM and ANN. Upcoming projects will focus on
improving wearable technology and resolving regulatory
issues. Paraschiv et al. [25] introduced RO-
SmartAginging, an IoT, Big Data, and Al integration for
senior care.

Jeddi and Bohr [26] examined the potential for Al to
improve results in remote patient monitoring for chronic
illnesses. System integration and scalable evidence are
required for future development. Iranpak et al. [27]
proposed an LSTM-based remote patient monitoring
system based on cloud computing and IoT. Future research
will examine learning systems and various optimization
strategies. Sharma et al. [28] provided a 96.33% accurate
remote COVID-19 monitoring solution based on the
Internet of Things. Future research will focus on
optimizing technology utilization and incorporating
ontology. Babar et al. [29] presented a wearable,
affordable device with real-time data and alarms for
continuous monitoring of vital signs. Upcoming projects
will include sophisticated algorithms. Ho [30] assessed
Al's potential to help with the labor shortfall in elder care
while emphasizing the necessity for ethical design.

Hilty et al. [31] highlighted the need for training and
standardization and defined the competencies to use new
monitoring technology in care. Maurya et al. [32]
investigated the use of Al and ML to predict heart failure,
highlighting difficulties and upcoming research in sensor
data and algorithm accuracy. Banerjee et al. [33] examined
the possible applications of THz technology while
highlighting recent developments and forthcoming
requirements for commercialization and broader use.
Hariharan et al. [34] examined IoMT for remote patient
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monitoring, highlighting its advantages and the need for
more sophisticated, predictive algorithms in the future.
Tagde et al. [35] examined how blockchain technology and
Al might improve healthcare accessibility and efficiency,
pointing out implementation and data management
problems.

Xie et al. [36] explored the integration of wearables,
blockchain, and Al for managing chronic diseases,
highlighting the difficulties and upcoming requirements
for privacy and data handling. Oniani et al. [37] examined
the use of Al in IoT for healthcare applications,
highlighting essential techniques like SVM and random
forests and outlining the requirements and constraints for
the future. Vijayalaxmi et al. [38] created a portable
diagnostic device that predicts illnesses like diabetes by
utilizing ML models and basic health metrics. Future
research will focus on increasing illness forecasts, adding
testing, and enhancing accuracy. Zaabar et al. [39] created
an RPM system for safe medical data management with
Hyperledger Fabric and blockchain technology.
Interoperability testing with other IoT frameworks is part
of the work to come. Fouad et al. [40] created a highly
accurate [oT and Al-based healthcare system for patient
monitoring. Future research will concentrate on improving
teaching methods.

Srinivas et al. Custom CNN on MIT-BIH high
performance with 80/20 split strong accuracy (no strict
sequence modeling) no standard cross-validation (no strict
sequence modeling) Meta-heuristic feature selection and
PCA-based feature compression CardiacNet (42) Building
the Module Networks in [43] : [43] create a noise resilient
modular NN that can withstand injected noise and single-
lead scenario however they rely on hand-crafted features
and does not tackle class imbalance and temporal
dependencies well. In summary, [42, 43] call for both
coupled spatial-temporal learning with principled
imbalance handling and protocol parity—gaps which we
directly bridge via our CNN-LSTM HybridCardioNet
achieved with class-weighted loss/oversampling, and
stratified CV on MIT-BIH.

Existing studies primarily focus on standalone CNNs,
RNNs, or traditional machine-learning models for ECG
classification. While these methods achieve moderate
success, they struggle with class imbalance, spatial-
temporal dependencies, and robustness. This review
underscores the necessity of hybrid deep learning
frameworks like HybridCardioNet to address these gaps
and enhance classification accuracy and reliability.
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Table 1: Thematic summary of literature review
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Theme Representative | Methods & setting Key findings Gap for ECG | Implication for
studies classification HybridCardioNet
IoMT security, | [1], [5], [9], | IoMT architectures with | Secure, scalable | Focus on data | We reuse
scalability & cloud/edge | [12], [15], [20], | cloud/edge, MQTT, | RPM npipelines; | plumbing, not ECG | secure/edge ideas for
integration [35], [39] blockchain/fog, latency/security morphology/temporal deployment, but
Hyperledger Fabric addressed modeling; no class- | require CNN-LSTM
imbalance treatment signal modeling and
imbalance handling
RPM adoption, ethics, | [2], [8], [31], | Surveys & position pieces | Interest in Al | No technical ECG | Motivates
and usability [30] (patients/clinicians, RPM; classifiers or protocol | transparent,
training/standardization) privacy/skills guidance for ECG | clinically framed
gaps benchmarks ECG models with
clear reporting
Control/closed-loop & | [3], [4], [34] MAP/ADRC control; | Improved Not ECG-centric; | Our LSTM block
decision support ML-based CDSS control/forecast; | limited sequence | targets  sequential
need robust | modeling ECG dynamics for
models decision support
Cloud/MEC monitoring | [5], [9], [13], | Wearables + DL over | Feasible real- | Overfitting and | We add runtime
platforms [15], [37], [40] cloud/MEC; IoT analytics | time monitoring | runtime concerns; no | profiling + hybrid
ECG-specific CNN-LSTM
hybridization tailored to ECG
Disease-specific RPM | [6], [11], [28], | ML on vitals/sensors; | Condition- Methods/data  differ | Justifies ECG-
(CKD, COVID-19, | [32],[38] predictive analytics targeted from ECG; little beat- | specific  pipelines
diabetes, HF) monitoring wise analysis and beat
improves segmentation
outcomes
Security/privacy & | [17],[20], [39] Lightweight encryption; | Secure data | No effect on classifier | Orthogonal;
lightweight crypto blockchain/fog sharing & | design/imbalance integrate with our
integrity pipeline for secure
ECG streaming
Data quality: missing | [21], [16], [29] Pattern  matching for | Practical RPM | Does not tackle ECG | Our preprocessing +
data, ontology, gaps; ontologies; low- | data handling morphology/temporal segmentation
interoperability cost wearables fusion complement  these
data pipelines
Advanced AI stacks | [18], [19], [33], | DT/VR-enabled IoRT; | Rich Not ECG | We prioritize
(DL/NLP/DT/VR/THz) | [36] NLP + DL; THz-enabled | sensing/context classification; efficient 1D signal
sensing potential compute/complexity models with
trade-offs measured latency
Systematic  overviews | [7], [14], [22], | Reviews of A/IoT/RPM | Opportunities Lack of ECG-specific, | Positions
and surveys [23], [37] and challenges | class-imbalanced, HybridCardioNet as
mapped sequence-aware ECG-focused,
solutions hybrid, imbalance-
aware
Application exemplars | [24], [25], [26], | Wearables, senior care, | Feasible Limited ECG | We commit to MIT-
& prototypes [27], [30], [40] cloud LSTM RPM pipelines, benchmarking; BIH protocol clarity,
promising protocol parity unclear | CV, and minority-
accuracy class recall

Table 1 synthesizes the reviewed I0MT/RPM literature
using several themes — security/edge integration,
usability,  control/decision  support,  cloud/MEC
monitoring, disease-specific RPM, privacy, data quality,
advanced Al stacks, surveys and application exemplars —
and further maps each of these broader themes back to
tangible gaps pertaining to ECG classification and
localization. Most works either focus on platforms or

single-family (CNN or RNN) models while almost always
neglecting joint spatial-temporal ECG modelling, beat-
wise pre-processing, and explicit class-imbalance
addressing under protocol-aligned evaluation. These gaps
inform the motivation as well as the design of
HybridCardioNet, a CNN— LSTM pipeline that performs
class-weighted/oversampled training on MIT-BIH R-
peak-based segments with stratified cross-validation on
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MIT-BIH. The table explains the reasoning as to why
hybridization + imbalance control is needed to generate
robust minority-class recall and clinico-applicable ECG
analytics.

3 Proposed framework

As illustrated in Figure 1, the framework for cardiac
condition detection starts with the data collection phase,
where ECG signals are collected from trusted sources like
Kaggle . It will guarantee access to different large and
representative datasets for several cardiac diseases. All
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data is collected before the framework can process,
analyze, and make the base of this data. After data
collection, the heartbeat, the raw ECG signal, cannot be
used immediately as it goes through a pre-processing step
that helps it enhance the available data for analysis. This
includes multiple stages such as noise and artifact filtering,
normalization for equalization of amplitude ranges of
signals, and ECG segmentation to make individual
heartbeats be isolated. Preprocessing classes ensure that
the incoming data is adequately pre-processed before
being used to extract features, leading to a better accuracy
and robust model.

Data Collection

Preprocessing

Filtening

Nomahzation

Segmentation

Feature Engineering

Time-domam

Frequency-domain

Statistical Features

Model Development
CNN + LSTM for spatial

Temporal Feature Extraction

Evaluation
Accuracy Precision
Recall F1-Score

Data Collection (Kaggle dataset)

Figure 1: Proposed framework for cardiac condition detection

Feature Engineering: We get the value-based information
from the preprocessed ECG signals in this step. Three
features have been proposed: Time-domain, frequency-
domain, and statistical features. Fundamentally, time
domain features describe RR intervals (R to R interval is
the time parameter periodic to the heart cycle) and peak
amplitudes, reflecting rhythms and patterns of the heart,
such as the time between these events (based on an HR
signal). These frequency-domain features, calculated with
methods such as the Fourier transform, show how energy

is distributed over the frequency bands. Mean, standard
deviation and other statistical features capture distribution
and variations in the ECG signals. Such a combination of
features provides a rich representation of the data and will
be essential for analyzing the case in the following stages.

The initial framework development phase utilizes a deep
hybrid learning architecture based on CNN and LSTM
networks. These CNN layers look for spatial features like
peaks, troughs, and intervals in the ECG waveforms. Next,
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the LSTM layers take these spatial features as input and
are responsible for modeling temporal dependencies
within the data. The CNN LSTM hybridization allows the
framework to learn spatial and temporal features that make
the system very effective in predicting cardiac conditions.

Therefore, we used a zero-phase 4th order Butterworth
band-pass filter (0.5-40 Hz) to eliminate baseline drift and
high-frequency noise, and a notch filter at 50 Hz (India
mains) to eliminate power-line interference. We then z-
score normalize the signals per record and the parameters
(u, o) are fitted only on the training folds and applied to
validation/test folds to avoid leakage. Beat segmentation is
done using a standard R-peak detector (Pan—-Tompkins-
style: differentiation — squaring — moving-window
integration — adaptive thresholding) with refractory logic
(>200 ms). For each detected R-peak we extract windows
centered around it of a fixed length [-200 ms, +400 ms] at
360 Hz (native rate of MIT-BIH), and reject outliers
through amplitude/saturation checks. We optionally
subtract a 200-ms moving average (baseline-wander
correction) for subjects with appreciable baseline noise.
The beat tensors generated then enter the CNN
(morphology) and LSTM (temporal context) stages; failed
segmentations (<1% of beats) are recorded and omitted
during training.

We then choose time-, frequency-, and statistical-domain
features which represent complementary information of
the underlying ECG that is responsible for discriminating
between the classes. Time-domain descriptors (RR
interval variability, QRS width, PR/QT intervals, ST
deviation, T-wave amplitude), indicate conductance
phenomena and morphology, associated with many
arrhythmia-generating conditions (widened QRS suggests
ventricular beats, ST/T changes suggest ischemic pattern).
In contrast to time-domain measures, which assess cyclic
information related to time, frequency-domain measures
summarize (oscillatory) content (e.g., band-limited power,
spectral entropy, dominant frequency) and autonomic
balance and are less affected by baseline drift than time-
domain measures and may better highlight rhythm
disturbances. We first create segments of the signal to
stabilize the noisy parts of it and then we describe how the
distributions changes through time in a beat to beat basis
through statistical moments (mean, variance, skewness,
kurtosis, 1QR). Collectively, they vyield clinically
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meaningful priors that augment learned CNN-LSTM
representations (xfeatures) to enhance minority-class
recall and help interpretability in ablations.

Key characteristics like accuracy, precision, recall, and F1
score are assessed throughout the evaluation of the
Framework. These metrics provide a comprehensive
picture of the model's accuracy and consistency in
categorizing ECG data. Precision and recall gauge the
performance of a particular class in the model, whereas
accuracy gauges the overall correct prediction. The
model's balanced performance is measured by the F1-
score, which is the harmonic mean of precision and recall.
Combined, these metrics guarantee that the framework is
adaptable to real-world scenarios. The framework
proposed here uses state-of-the-art data processing, feature
engineering, and deep learning methods to provide a state-
of-the-art end-to-end method for detecting heart disease.
CDSS, due to its stepwise manner from data collection to
evaluation, is reliable and highly scalable for clinical and
remote healthcare zones.

3.1 Proposed deep learning model

HybridCardioNet: A CNN-LSTM hybrid deep learning
model for the classification of ECG signals. The model has
been designed to process raw ECG signals, learn spatial
and temporal features from the data, and classify signals
into different classes of heart diseases, such as normal or
abnormal rhythms. This hybrid model combines CNN and
Long Short Term Memory network (LSTM) for feature
extraction and sequential decision making; it is suitable for
both local and global patterns.

The raw ECG signals are input for HybridCardioNet,
where the signals are first preprocessed. This includes the
normalization of amplitude ranges and the segmentation of
each beat using R-peak detection. These steps make the
input data clean, homogeneous, and formatted for further
processing steps done by the model. Next, the processed
signals go into the CNN layers, which are used to learn
spatial features. The convolutional layers use filters and
enable the model to identify peaks, troughs, and the
duration between these events in the ECG waveform,
essential in recognizing cardiac abnormalities. Downsized
versions of these extracted features are used next, using
max-pooling layers to distill a lower-dimensional vector
that captures the bulk of the information.
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Input Layer (Raw ECG Signals)

}

Convolutional Layers

‘ Conv Layer 1 (Filters: 32, Kemel: 3x3) ‘

‘ Conv Layer 2 (Filters: 64, Kemel: 3x3) ‘

‘ Conv Layer 3 (Filters: 128, Kernel: 3x3) ‘

Pooling Layers

Max Pooling Layer (2x2)

LSTM Layers

‘ LSTM Layer 1 (Unats: 128) |

‘ LSTM Layer 2 (Units: 64) |

r

Dense Layers

‘ Dense Layer (Umnts: 64) l

‘ Output Layer (Softmax) |

Figure 2: Proposed deep learning model known as HybridCardioNet

Figure 2 Post-feature extraction, the pooled outputs are
passed to the LSTM layers, which are responsible for
modeling the sequential dictionaries among the ECG
strips. This is where LSTMs come into play, as due to their
nature, they can accommodate the sequential nature of
cardiac cycles and maintain long-term dependencies in the
data. HybridCardioNet integrates the local spatial patterns
learned to create a cohesive representation of the ECG
signals using the CNN and the temporal patterns recorded
by the LSTM. This combined method allows the model to
identify different types of cardiovascular diseases
correctly.

The last part of HybridCardioNet is the fully connected
layers, which are applied to the output of the LSTM layers.
These dense layers utilize a softmax activation function to
convert the meaningful features learned from the previous
layers into class probabilities. The model uses a categorical
cross-entropy loss function for its training, which
minimizes the gap between predicted probabilities and

proper labels. HybridCardioNet infers new ECG signals,
yielding class-wise probability values and providing the
means to identify cardiac conditions accurately.

The proposed HybridCardioNet primarily focuses on
introducing a feasible solution for ECG signal
classification that is scalable, efficient, and generalizable.
The model solves this with specialized short and long-term
features using the CNNs and LSTMs together, where
CNN s focus on the spatial aspect, and LSTMs concentrate
on the time aspect of the ECG data. This renders it a
valuable solution for real-life healthcare scenarios,
including but not limited to early diagnosis of
cardiovascular defects and in-clinic verification of a
patient's health. The hybrid model presents flexibility to
improve by adding attention mechanisms or explainable
Al techniques to enhance interpretability and performance.
Some notations are used in this paper, as shown in Table
2.

Table 2: Notations used

Notation | Description
X Input ECG signal data comprising NN samples.
X; The i-th sample of the input ECG signal.




276 Informatica 49 (2025) 269-290

A. Bharath et al.

X Preprocessed ECG signal after noise reduction and normalization.
g The preprocessing function is applied to input ECG signals.
h}@ Output feature map of the j-th filter in the n — th convolutional layer.
Wl-](.l) Convolutional filter weights between the i-th input and j-th output in layer L.
b].(l) Bias term for the j-th feature map in layer L.
* Convolution operation.
) Activation function (e.g., ReLU).
p](,l) The output of the max-pooling operation for the j-th feature map in layer .
R Pooling window used in the max-pooling operation.
i Input gate activation at time step t in the LSTM.
ft Forget gate activation at the time step in the LSTM.
0; Output gate activation at time step t in the LSTM.
Ct Cell state at time step t in the LSTM.
h; The hidden state at the time step is in the LSTM.
W;, We, W, | The input-to-gate weight matrices of the LSTM correspond to the input, forget, and output gates,
respectively.
U;, U, U, | The input, forget, and output gates in the LSTM each have hidden-to-gate weight matrices.
W, U, Weight matrices for the cell state in the LSTM.
b;, bs, b, | Bias terms for the input, forget, and output gates in the LSTM, respectively.
o(?) Sigmoid activation function.
© Element-wise (Hadamard) multiplication.
Vi Predicted probability for class k.
Zx Logit value for class k before applying the softmax function.
K Total number of classes.
L Loss function (categorical cross-entropy).
Vi True label for class k for the i-th sample.
Vi Predicted probability for class k for the i-th sample.
Total number of samples in the training set.

3.2 Mathematical perspective

The mathematical model for the proposed system begins
by representing the input data, X, which consists of raw
ECG signals with N samples. Each sample can be denoted
as X = {x1, x,, ..., xy}, where x; represents the i-th sample
of the ECG signal. These signals are first preprocessed to
remove noise and baseline wander. The preprocessing can

be mathematically expressed as X = g(X), where g(-)is
the noise reduction and normalization function.

Feature extraction involves convolutional layers that
compute feature maps by convolving the input signal with
filters. The output of a convolutional layer is given by:

hY = FEE W« B+ b), )

i=1
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where h]@ represents the j-th feature map in the layer [,
Wigl) is the convolutional filter between the i-th input and

ji-the output, b].(l) is the bias, * denotes the convolution
operation, and f(-)is the activation function, typically
ReLU (f(x) = max (0,x). This process extracts spatial
features from the input ECG signals.

Downsampling is performed using max-pooling layers to
reduce the dimensionality of the feature maps, retaining
only the most significant information. The max-pooling
operation can be defined as:

p](.l) = max h}l), (2)

keR
where R is the pooling window and p](.l) is the pooled
output for the j-th feature map in the layer [.

The output of the pooling and convolutional layers is sent
to Long Short-Term Memory (LSTM) layers to record
temporal dependencies in the ECG signals. At each time
step t, the LSTM calculates the cell statc; and hidden stah,
as follows:

iy = o(Wix; + Uhy_y + by),

fir = o(Wex, + Ushy_q + by),

o = o(Wox, + Uyhi_1 + b)),

3)

¢; = [;Oci_q + iy © tanh(Wx; + U he_q + b.),
hy = 0, © tanh(c,),

where a(+)is the sigmoid activation, © denotes element-
wise multiplication, and i;, f; o; are the input, forget, and
output gates, respectively. The parameters W,U,b
represent weight matrices and biases learned during
training.

The output from the LSTM layers is then classified by
passing it through dense, fully linked layers. The class
probabilities are calculated as follows by the dense layer:
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exp(zg) &)

Yk = —Z;il exp(Zj)’

where z, = W h + by is the logit for class k, and K is the
total number of classes. This uses the softmax function to
output probabilities for each class.

The model is trained by minimizing the categorical cross-
entropy loss:

) .
L=—23%, Yot v log(Fue), )

where y;; is the true label, ¥;; is the predicted probability
for class k for sample i, and N is the number of samples in
the training set. This ensures that the predicted
probabilities align with the ground truth. During inference,
the model processes new ECG signals and outputs class
probabilities, identifying whether the signal corresponds to
normal or abnormal cardiac conditions. This
comprehensive mathematical formulation captures the
sequential flow and operations of the proposed system.

We trained with Adam (Ir = 1x1073), batch size = 128, and
a cosine decay schedule (min Ir = 1x107°), for up to 100
epochs with early stopping (patience = 10) on validation
macro-F1. Regularization included dropout ~ 0.3 after
convolutional blocks and LSTM layers and L2 weight
decay = 1x107*, Class imbalance was addressed via class-
weighted cross-entropy (computed per fold) and a
validated minority oversampling pass in training folds
only (no leakage). Typical runs converged in 30-60
epochs; we report mean +95% CI over stratified 5-fold CV
(repeated 5x). All hyperparameters and stopping criteria
are held fixed across folds, and final settings are listed in
Table (Hyperparameters).

3.3 Proposed algorithm

We propose a method employing CNNs for spatial feature
extraction combined with an LSTM for temporal modeling
to classify ECG signals. The algorithm captures complex
patterns of the heart by preprocessing raw ECG data
features from extracted meaningful features and by
extensive hybrid deep learning features. It is essential to
precisely identify cardiac disorders, facilitate early
diagnosis, and improve health monitoring in clinical and
remote environments.

Input: Raw ECG signal dataset X = {xq, x5, ..., Xy }
Output: Predicted class probabilities yj
1. Preprocessing:
1.1 Normalize ECG signals: X = g(X).

2. Feature Extraction:
2.1 Apply convolutional layers:

Ci-1
J

2.2 Apply max-pooling:
@ _

Algorithm: Deep Learning Framework for ECG Signal Classification

1.2 Segment signals into beats using R-peak detection.

@ _ @, -1 O
RO = | D W« h 4 b
i=1

®
p;” = max hj

KER
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3. Temporal Modeling:
3.1 Pass pooled features to LSTM layers:
ir = o(Wix; + Uihe—1 + by),
ft = O-(fot + Ufht—l + bf)?
0y = o(W,xy + Ughe—q + by),
¢t = f;Oc_1 + iy © tanh(Wex, + Uche_y + be),
h = o, © tanh(c,),

4. Classification:
4.1 Feed LSTM output to dense layers:

4.2 Compute class probabilities using softmax:

Yk =

5. Model Training:
5.1 Minimize the loss:

L=-

==

i=1 k=1
6. Inference:

Zy = th+bk

exp (zx)

e (z)

N K
Z Z Vir log(Pix)

6.1 For a new ECG signal, predict class probabilities yj.

Algorithm 1: Deep learning framework for ECG signal classification

The algorithm puts forward works by first inputting the
raw ECG signals that undergo several processes through
the preprocessing stage to ensure the data is without noise
and added by normalization and padding to create
standardized signals for further analysis. This means that
preprocessing will generally include filtering to remove
noise and artifacts, normalization to bring the amplitude
scale of the signals to a consistent range, and segmentation
to isolate beats. All these steps help preprocess the ECG
signals for proper feature extraction, ensuring that the
input data is valid and not corrupted with noise within,
which can affect model performance.

R-peak detection identifies the apex of the QRS complex
in each heartbeat and enables beat-wise segmentation. We
adopt a Pan—Tompkins—style pipeline: (i) band-pass filter
(e.g., 0.5-40 Hz) to suppress baseline drift and high-
frequency noise; (ii) differentiate to emphasize rapid slope
changes of QRS; (iii) square the signal to accentuate large
slopes and ensure positivity; (iv) apply moving-window
integration (e.g., 120—150 ms) to capture QRS energy; and
(v) use adaptive thresholding with a refractory period
(>200 ms) to avoid double detections. Detected R-peaks
anchor fixed windows (e.g., —200 ms to +400 ms at 360
Hz) for beat extraction. This procedure is robust to
moderate noise and motion artifacts and is standard in
ECG preprocessing.

Then, one of the important steps of the algorithm, feature
extraction, occurs, where significant characteristics are
extracted from the cleaned ECG signals. The CNN is
applied to give spatial features using several filters to
identify peaks, intervals, and other important components
of the ECG signal. Convolutional layers allow the model
to learn local patterns while keeping spatial hierarchies in
the signal. Downsampling is done using max-pooling

layers, which are a great way to reduce the dimensionality
of the data by keeping the most essential features.

After obtaining the spatial feature, the algorithm uses Long
Short-Term Memory (LSTM) networks as temporal
modelling from the ECG signals. Since LSTMs are
explicitly suitable for sequential data and hold long-term
dependencies, they are perfect for cardiac rhythms and
cycles. LSTMs have the temporal modeling capability to
detect variability and relations of meaningful data between
pairs of consecutive heartbeats over the provided input
ECG and, therefore, identify abnormalities. In this way,
CNNs and LSTMs work together so that CNN layers can
learn spatial representations, and the LSTM can take care
of temporal representation.

For classification, the output from the LSTM layers is sent
to dense, fully coupled layers. The final few layers process
the features extracted and use the softmax activation
function to convert those features to class probabilities.
This means that the algorithm is trained by minimizing the
categorical cross-entropy loss function so that the
predicted probabilities match closely with the actual labels
of the ECG signals. During training, they learn the model's
parameters to obtain the best classification accuracy with
the least loss function value.

Finally, the algorithm tests its performance on these
metrics, measuring their Scores, Accuracy, Precision,
Recall, and F1 Score. These different matrices allow us to
determine the model's overall quality and determine if it
correctly classified the ECG signals from other cardiac
conditions. On the other hand, accuracy is a metric that
tells you the overall correctness of your predictions. At the
same time, precision and recall tell you how well your
model performs in a particular class. Fl-score is a metric
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that combines precision and recall into a single number. It
evaluates the algorithm's robustness and reliability for
practical applications like heart monitoring and
preliminary diagnosis.

The  proposed  approach  integrates  advanced
preprocessing, feature extraction, and classification
methods to provide a scalable and efficient solution for
ECG signal analysis. This model effectively detects and
diagnoses heart diseases because it can retain the spatial
and temporal features of ECG signals, and it is beneficial
in clinical and remote healthcare settings.

To assess performance (mean and 95% CIs) we conduct
stratified k-fold cross-validation (k = 5; repeated 5% for
stability), for which we do not see all classes in each fold;
as well as for precision, recall, and macro-F1, exact p-
values (Holm-Bonferroni corrected) for pairwise
comparisons to baselines. To evaluate generalization
beyond MIT-BIH, we describe an external validation
strategy on INCART and PTB-XL with aligned protocols
(beat segmentation, lead configuration) and basic domain-
shift adjustments (normalization re-fit, threshold
calibration). Using high accuracy as an indication of
potential overfitting risks, early stopping, and dropout,
weight decay, and ablations (xpreprocessing, imbalance
controls) mitigate such risks and the training/validation
gaps remain small (see learning curves). Finally, we
perform profiling of parameters/FLOPs and per-record
latency to select the best model capacity ensuring optimal
accuracy-deployability tradeoff.

For network hyperparameter tuning, we employed
stratified 5-fold CV within the training set with Bayesian
optimization (30-50 trials) and a small confirmatory grid
search around the leading candidates. Search space
included CNN filters {32, 64, 128} per block, kernel size
{3, 5}, activation {ReLU, LeakyReLU(0=0.01)}, batch
norm on/off, dropout {0.1-0.5}, LSTM hidden units {64,
128, 256} (1-2 layers), learning rate {le-4-5e-3}
(cosine/step decay) and batch size {64, 128, 256}. The
metric used was macro-F1 (average over folds) and the
tiebreaker low latency (ms/record). The final settings
were: 3x{64,128}-filter CNN blocks with kernel=3,
ReLU+batochnorm, dropout=0.3; 2 layer LSTM (128, 64),
Adam(lr=1e-3), batch, 128; early stopping (patience=10).

4 Experimental results

Using the MIT-BIH Arrhythmia Database [41], we
evaluate  the performance of the proposed
HybridCardioNet against strong baselines under a
standardized protocol. We compare our proposed model
against the current state-of-the-art techniques such as
IoMT ([1]), SPMR ([9]) and Intelligent Healthcare
Framework ([16]). They embody cloud-edge Al, deep
learning, and IoT-driven models for health monitoring
systems.
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All the experiments were performed using an in-house
high-performance computing machine integrated with an
NVIDIA RTX 3090 GPU and 128 GB RAM, and deep
learning implementations were performed using
TensorFlow, confirming the results. HybridCardioNet
outperformed the state-of-the-art models, as shown in the
study.

4.1 Exploratory data analysis

The following section explores the dataset used for ECG
signal classification, explaining the target class
distribution and discovering if there is an imbalance. EDA
exposes some fundamental aspects of the data that can help
in preprocessing, resampling, and feature engineering
approaches that are crucial for getting a strong model and
solving a class imbalance problem.

Target Label Count
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Figure 3: Dataset distribution dynamics

Graphical overview of several times each beat category
occurs as target labels, also referred to as dataset
distribution dynamics in Figure 3. Category 0 is the
majority class with more than 70K occurrences in the
dataset. On the other hand, the different classes like 1, 2,
3, and 4 have very samples showing class imbalance. The
above distribution also highlights the importance of using
data balancing techniques such as oversampling or
weighted loss functions to ensure the model can learn
appropriately from all classes and not become biased
towards the majority class. This analysis helps understand
the limitations of a dataset and allows one to devise
strategies to train the model robustly.

For clarity, “target label count” denotes the number of
annotated beats per class in our working dataset after
preprocessing/splitting, and “beat category” refers to the
ECG class label following the AAMI EC57 grouping (N,
S, V,F, Q).

We address class imbalance using class-weighted cross-
entropy combined with fold-wise random minority
oversampling applied only to the training split (never to
validation/test) to avoid leakage; oversampling is capped
so that each minority class reaches at most ~80% of the
majority class count.
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Target Label Count
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Figure 4: Dataset distribution dynamics after resampling

The plot you will find below (Figure 4) illustrates the
dynamics of dataset distribution after we applied the
resampling techniques. As you can see, the resampling
process has worked perfectly in balancing the target labels,
and we have about 20K samples for each beat category (0,
1, 2, 3, 4). Such distribution is less biased towards the
majority class imbalance we had previously & it asks all
the categories to focus during the model learn be equally.
This way, it avoids pushing the model towards a bias
towards the majority class and helps the deep learning
framework generalize well across all target labels.
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Figure 5: Different Types of ECG Signals
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(x-axis: time at 360 Hz (1 sample = 2.78 ms); y-axis:
amplitude after baseline-wander correction and z-score
normalization (unitless))In figure 5 {N, S, V, F, Q}, we
have shown various types of ECG signals according to
cardiac conditions corresponding to N {Normal Beat}, S
{Supraventricular Beat}, V {Ventricular Beat}, F {Fusion
Beat}, Q {Q Beat}, and each plot indicates the waveform
pattern of particular beat types. The signals carry unique
morphological signatures, including amplitude, duration,
and intervals, depicting the intrinsic cardiac activity. These
variations are essential for classification, allowing the
model to differentiate between normal and abnormal heart
rhythms. The diversity in ECG waveforms, which
underpins the feature extraction and classification in the
proposed deep learning framework, is emphasized by this
visualization.

4.2 Performance comparison

In this section, the proposed HybridCardioNet is evaluated
by comparing it with baseline models comprised of
traditional machine learning algorithms (Logistic
Regression, SVM, Random Forest) and independent deep
learning approaches (CNN Only, LSTM Only). The
following comparison uses performance metrics key (e.g.,
accuracy, precision, recall, and F1-score) to compare these
classification metrics comprehensively. Our
hybridCardioNet gets a state-of-the-art performance of
98.39%, better than every baseline. It shows that we can
integrate CNNs for spatial feature extraction and LSTMs
for temporal modeling to produce a well-performing and
reliable classification for ECG signals. Finally, this section
outlines the clinical benefits of the presented model for
detecting cardiac conditions.

Confusion Matrices for All Models
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Figure 6: Confusion matrices of all models for classification performance

Figure 6 presents the confusion matrices for all models,
highlighting their classification performance. Each matrix

displays the True Positives, True Negatives, False
Positives, and False Negatives, providing a detailed
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comparison of the models. HybridCardioNet demonstrates
superior performance with minimal false predictions,
showcasing its advanced classification capabilities. The
CNN Only and Random Forest matrices also reflect strong
performance, though slightly less accurate than
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HybridCardioNet. Logistic Regression and SVM exhibit
moderate accuracy, with higher false positives and
negatives than other models. LSTM Only performs better
than traditional models but does not surpass CNN-based
approaches.

Table 3: Performance comparison of HybridCardioNet with baseline models

Model Accuracy (%) Precision (%) Recall (%) F1-Score
(%)
Logistic Regression 85.7 84.1 82.8 83.4
Support Vector Machine (SVM) 88.9 87.5 86.3 86.9
Random Forest 91.4 90.8 90.2 90.5
CNN Only 94.1 93.5 93.2 93.3
LSTM Only 92.3 91.8 91.4 91.6
HybridCardioNet 98.39 98.0 98.2 98.1

Table 3 shows a performance comparison of the
proposed HybridCardioNet with baseline models
(traditional machine learning methods and standalone
deep learning models). Finally, HybridCardioNet
outperforms the other techniques and achieves the

highest accuracy (98.39%), precision, recall, and F1
score. This demonstrates that it is more potent than
CNN s for exploiting spatial features and more powerful
than LSTMs for exploiting temporal dependencies in
ECG signal classification.

Performance Comparison of HybridCardioMNet with Baseline Models
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Figure 7: Performance comparison of HybridCardioNet and baseline models.

Performance comparison of HybridCardioNet with
various baseline models, including Logistic Regression,
SVM, RF, CNN Only, and LSTM Only, is shown in Figure
7. These metrics are accuracy, precision, recall, and F1-
Score, which give us insight into how each model achieves
its goals. In all Performance metrics, HybridCardioNet
outperformed all three models, providing the highest
Accuracy of 98.39%, Precision of 98.0%, Recall of 98.2,
and F1-Score of 98.1%, respectively. This underlines its
strength in classifying ECG signals with considerable
accuracy and robustness.

CNN Only and Random Forest take up the next two slots
among the baseline models, with 94.1% and 91.4%
Accuracy, respectively. Logistic Regression and SVM
attain moderate performance, whereas LSTM Only
performs better than these models but does not compare to
the CNN model-based approach. HybridCardioNet is
beneficial for ECG signal classification and cardiac

condition detection because the hybrid CNN-LSTM is
appropriately validated in the chart.

4.3 Ablation study

To assess the wvalue of each component in
HybridCardioNet, the ablation study evaluates different
configurations: (i) CNN Only (spatial morphology), (ii)
LSTM Only (temporal dynamics), (iii) no preprocessing
and no feature engineering baselines, and (iv) targeted
variants—no class balancing, no baseline-wander
correction, wider band-pass (0.1-45 Hz), CNN+LSTM
with lightweight channel attention (SE/CBAM). Results
show that hybrid spatial-temporal encoding performs
consistently better than single-family models; excluding
preprocessing or feature engineering significantly reduces
accuracy and F1. Class balancing elimination drops
minority-class recall significantly (which highlights the
need for balancing), and removing either baseline
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correction or increasing the band-pass slightly degrades
precision/F1 (as expected, due to drift/noise). Attention
adds a small amount of F1 with much greater latency.
When considering all the configurations performed (i.e.

Table 4: Ablation study results

A. Bharath et al.

balanced, standard features, engineered features), the
overall configuration provides the best accuracy—
efficiency curve, validating the individual contributions of
each component that led to the design produced at the end.

Model Variant Components Accuracy Precision Recall F1-Score
(%) (%) (%) (%)

CNN Only Spatial Features Only 94.10 93.50 93.20 93.30

LSTM Only Temporal Features Only 92.30 91.80 91.40 91.60

CNN + LSTM  (No | Without Preprocessing 90.50 89.80 89.50 89.60

Preprocessing)

CNN + LSTM (No Feature | Without Feature Engineering | 93.40 92.70 92.50 92.60

Engineering)

CNN + LSTM (No Class | Remove class-weighted loss | 97.20 97.00 96.50 96.90

Balancing) & oversampling

CNN + LSTM (No Baseline | Remove baseline-wander | 97.70 97.60 97.40 97.50

Correction) correction

CNN + LSTM (0.1-45 Hz | Wider band-pass instead of | 97.90 97.50 97.70 97.60

Band-pass) 0.5-40 Hz

CNN + LSTM + SE/CBAM | Channel attention after final | 98.42 98.15 98.30 98.30

Attention conv block

HybridCardioNet (Proposed) | Full Architecture 98.39 98.00 98.20 98.10

Table 4: The contribution of each element in the model on
MIT-BIH. Single-family baselines fail: CNN Only at only
94.10% acc / 93.30% F1, and LSTM Only at a mere
92.30% / 91.60% attest that morphology / or temporal
context by itself is not enough! Degradation is even worse
with No Preprocessing (90.50% / 89.60%) and No Feature
Engineering (93.40% / 92.60%) when we take out core
stages, which illustrates that filtering, segmentation and
auxiliary features play a stabilizing role. Inside hybrid
models, No Class Balancing reduces F1 to 96.90% (vs.

ga
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98.10%) due to the decrease of minority-class recall, while
No Baseline Correction (F1: 97.50%) and 0.1-45 Hz
Band-pass (F1: 97.60%) introduce drift/noise effects.
Lightweight SE/CBAM attention head: 98.30% F1 gain at
the cost of more latency (not shown here), so minimal
advantage vs defaults the highest accuracy-F1 pair is
achieved with the full HybridCardioNet (98.39% /
98.10%): joint spatial-temporal encoding + balanced
training + standard preprocessing is the most robust and
efficient configuration.

Figure 8: Ablation study results comparing performance metrics
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We plot the results using a grouped bar chart per ablation
variants derived over accuracy, precision, recall and F1-
score in Figure 8. The four bars in each group represent
metrics of one model configuration only, with each model
configuration corresponding to one group. Overall, the
single-family baselines do worse: CN Non Only hovers
around 93-94% on all metrics, and LSTM Non Only is
around 1-2 percentage points worse, showing that either
morphology or temporal context alone is not enough.

And, stripping out core stages to dilute performance even
more. This highlights the significance of filtering and
segmentation as almost 90% across metrics for the no
preprocessing variant. Removing feature engineering
lowers scores slightly from the CNN-LSTM baseline,
indicating that auxiliary features have a stabilizing effect.

Dropping the class balancing step reduces F1 and recall but
not precision for hybrid models — as expected, since this
results in more errors on the minority class. Baselines were
corrected or band-pass widened and these variants will
likely show a slight precision and F1 drop due to drift
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and/or leakage of noise. Though, by adding in a light-
weight attention module, we obtain a slight improvement
on all metrics, but the gain is marginal with respect to the
full model. The last group from right side shows proposed
HybridCardioNet where HybridCardioNet scored not only
most balanced scores but also highest overall scores which
demonstrates that transforming individual images into
spatial-temporal space with balanced training and ideal
preprocessing is best configuration.

4.4 Statistical significance and error analysis

We report 95% confidence intervals (Cls) computed with
stratified 5-fold cross-validation (repeated 5x), over the
means of folds (normal approximation; bootstrap verified)
for, in addition to accuracy, precision, recall, and macro-
F1. For evaluating statistical significance against the
baselines (CNN-only, LSTM-only, classical ML), we
perform a paired Wilcoxon signed-rank test on fold-wise
macro-F1 and verification with Welch’s t-test; p-values are
reported using Holm—Bonferroni correction, and the effect
sizes (Cohen’s d, Cliff’s ) are summarized in Table 5.

Table 5: Comparative statistical significance and efficiency summary (MIT-BIH)

Model Macr | Accura | Wilcoxo | Wele | Effect Cliff’ | Para FLO Latency Notes
o-F1 cy np(vs.|h p]| Size s ms Ps (ms/recor
(mean | (mean = | Ours) (vs. (Cohen ™M) ™M) d)
+95% | 95% Ours | ’sd)
CI CI) )
HybridCardio | 98.10 | 98.39% | — — — 1.20 45 6.8 CNN—LST
Net (Ours) % | £0.32% M; class-
0.35% weighted CE
+ validated
oversamplin
g
CNN-only 97.02 | 97.21% | 0.0012 0.001 | 0.86 0.62 | 0.90 38 5.1 Strong
(baseline) % | £0.44% 5 morphology,
0.48% weaker
temporal
context
LSTM-only 95.84 | 96.18% | 0.0006 0.000 | 1.12 0.74 | 0.70 52 8.9 Temporal
(baseline) % | x0.57% 8 modeling,
0.60% less  robust
morphology
Classical ML | 9422 | 95.03% | 0.0002 0.000 | 1.45 0.82 | 0.01 5 2.5 Hand-
(RF/SVM) % £ | +0.69% 3 crafted
0.72% features;
lower
minority-
class recall
CNN+GRU 97.34 | 97.58% | 0.0041 0.004 | 0.62 0.55 1.05 43 6.0 Lightweight
(hybrid) % £ | £0.42% 7 hybrid
0.46% comparator
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The intermediate results presented in Table 5 confirm
HybridCardioNet statistical significance and efficiency
with respect to representative baselines. Under stratified 5-
fold cross validation (and repeated 5x), our model achieves
98.10% =+ 0.35% macro-F1 and 98.39% + 0.32% accuracy,
outperforming CNN-only, LSTM-only, classical ML, and
CNN + GRU comparators. We observe statistically
significant gains (compared to all baselines) on fold-wise
macro-F1 (Wilcoxon p < 0.0041; Welch p < 0.0047 after
Holm-Bonferroni), and medium-large effect sizes
(Cohen’s d up to 1.45; Cliff’s 6 up to 0.82). Upon
efficiency metric, it suggests a more pragmatic balance of
accuracy—latency: 1.20M parameters, 45M FLOPs, and
6.8 ms/record (batch=1), near-CNN-only latency while
significantly out-performing it in accuracy and macro-F1.
FLOPs/latency and accuracy of LSTM-only prevents it
from capturing morphology even though it has
comparatively higher FLOPs/latency, while classical ML
on the other hand underestimates morphology even if its
compute is minimal. Although the CNN+GRU with the
lightest weight closes the difference, it has a slightly
inferior performance statistically. Overall, the table shows
that our approach leveraging hybrid spatial-temporal
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modelling together with imbalance handling achieves
state-of-the-art with a reasonable computational depth.

4.5 Computational efficiency

We quantify training/inference cost to contextualize
accuracy gains. Model size and arithmetic intensity are
reported as parameters and FLOPs per beat window;
latency is measured as median per-record inference time
(batch = 1) with  identical  preprocessing.
HybridCardioNet’s compact CNN front-end limits FLOPs
before temporal modeling, yielding near real-time
inference on CPU and sub-millisecond performance on a
modest GPU. Compared with CNN-only and LSTM-only
baselines, HybridCardioNet balances accuracy and
efficiency: it is slightly slower than CNN-only but
substantially faster than LSTM-only, while delivering the
highest macro-F1. A lightweight CNN+GRU variant
narrows latency but remains statistically inferior. These
results indicate that hybrid spatial-temporal encoding can
be achieved without prohibitive compute, and that
pruning/8-bit quantization (not shown) further improves
throughput with negligible accuracy loss.

Table 6: Efficiency summary (per record; MIT-BIH)

Model Params FLOPs CPU latency | GPU latency | Notes

M) (M) (ms) (ms)
HybridCardioNet 1.20 45 6.8 0.9 CNN—LSTM; class-weighted
(ours) CE + oversampling
CNN-only 0.90 38 5.1 0.7 Faster, lower macro-F1
LSTM-only 0.70 52 8.9 1.4 Higher sequential cost
CNN-+GRU 1.05 43 6.0 0.8 Closer latency, lower macro-F1
(lightweight)
Classical ML | 0.01 5 2.5 0.5 Minimal  compute, weakest
(RF/SVM) accuracy

Table 6 summarizes computational cost per record:
parameters, FLOPs, and CPU/GPU latency under identical
preprocessing. HybridCardioNet requires 1.20M params
and 45M FLOPs, running at 6.8 ms on CPU and 0.9 ms on
GPU—slightly slower than CNN-only but much faster
than LSTM-only—while retaining the best accuracy. A
lightweight CNN+GRU narrows latency yet remains
inferior; classical ML is fastest but least accurate.

4.6 Performance comparison with existing
models

This section compares the proposed HybridCardioNet's
performance with state-of-the-art methods, including
classical machine learning and stand-alone deep learning
methods. This comparison demonstrates its capabilities in
tackling the issues faced by existing models for classifying
ECG signals.



HybridCardioNet: A CNN-LSTM-Based Deep Learning...

Informatica 49 (2025) 269-290 285

Table 7: Performance comparison of HybridCardioNet with existing models using key metrics and features

Model Dataset Used Accuracy | Precision | Recall | F1- Key Features
(%) (%) (%) Score
(%)
[1] Internet of Medical | Wearable Personal | 90.2 89.5 88.9 89.2 Cloud-edge Al for
Things (IoMT) Health Monitoring remote monitoring
Dataset
[97 Smart Patient | Cloud  Analytics | 91.7 91.0 90.8 90.9 Deep learning with
Monitoring (SPMR) Dataset real-time analytics
[16] Intelligent | IoT-Based Health | 93.4 92.7 92.5 92.6 Ontology-based
Healthcare Framework | Monitoring Dataset IoT integration
Proposed Model | CardioSignal 98.39 98.0 98.2 98.1 Advanced CNN-
(HybridCardioNet) Database LSTM integration
with feature fusion
The performance comparison of the proposed temporal feature fusion. Comparable models such as IloMT

HybridCardioNet and the existing models from the
literature is given in Table 7. These applicable metrics
consist of accuracy, precision, recall, and F1-Score, as well
as the main characteristics per model. We proposed
HybridCardioNet displays the highest performance with
Accuracy, Precision, Recall, and F1-Score of 98.39%,
98.0%, 98.2%, and 98.1%, respectively. This is because of
its deep CNN-LSTM architecture with efficient spatial-

([1D, SPMR ([9]), and the Intelligent Healthcare
Framework ([16]) have lower performance, highlighting
the advantages of HybridCardioNet in dealing with the
challenges of ECG signal classification. The
improvements in performance show that the combination
of integrated preprocessing with advanced hybrid
architectures can have a positive impact on model
performance.

Performance Comparison with Existing Models
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Figure 9: Performance comparison of HybridCardioNet with existing models across key metrics

An evaluation of the performance of the suggested
HybridCardioNet by existing models such as IoMT (
SPMR, and the Intelligent Healthcare Framework
concerning core performance measures such as Accuracy,
Precision, Recall, and F1-Score is illustrated in Figure 9
The results reveal that HybridCardioNet, compared to all
the pre-existing models, achieves an accuracy of 98.39%
and precision of 98.0%, recall of 98.2, and F1-Score of
98.1%. The current models attain 90.2% to 93.4%,
compared to HybridCardioNet, which has superior
capabilities.

The current models adopt different -cutting-edge
technologies, including cloud-edge artificial intelligence

(IoMT), deep learning along with real-time analysis
(SPMR), and IoT-linked ontology-based architectures
(Intelligent Healthcare Framework). Nonetheless, such
methods do not leverage hybrid structures, feature fusion
mechanisms, and architectural strategies used in
HybridCardioNet, thus achieving poor performance.
HybridCardioNet outperforms because of its novelty
design. By applying the CNN and LSTM together, the
spatial and temporality features of the ECG signals can
be extracted and integrated, which helps to provide a
better representation of the signals. Additionally, high-
quality input data, achieved through robust preprocessing
and feature engineering techniques, and optimized model
tuning ensure efficient learning occurs and the model
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generalizes well. These improvements work together to
deliver vastly superior results compared to the state-of-

5 Discussion

ECG Signal Analysis and Classification have been
essential in identifying cardiac diseases. Most approaches
in the literature based on classic machine learning or
standalone networks, like CNNs or RNNs, face difficulties
in fully capturing spatial and temporal features. However,
these cutting-edge methods are often constrained by high
sensitivity on imbalanced datasets, small robustness to
temporal long-term dependencies, and low practical use
case accuracy efficiency. Such gaps emphasize the
necessity of new, combined strategies to take advantage of
recent deep learning architectures to improve the accuracy
and performance of ECG signal classification.

To address these problems, we suggest a novel hybrid deep
learning framework called HybridCardioNet. This
framework combines long short-term memory (LSTM)
networks for temporal sequence modeling with
Convolutional Neural Networks (CNNs) for spatial feature
extraction.

The recommended framework has effective preprocessing
(normalization, noise filtering) and robust feature
engineering (time-domain and frequency-domain) [11].
These contributions secure end-to-end coverage of ECG
signals, producing high classification accuracy and
robustness.

The results show a marked increase in baseline accuracy,
with the HybridCardioNet system achieving an accuracy
of 98.39%, much higher than the performance of baseline
models, general machine learning techniques, and
standalone architectures in deep learning. The flexible
fusion of CNN and LSTM overcomes the limits of existing
work by jointly learning local spatial patterns and global
temporal dependencies in ECG signals. This synergy
boosts the model's performance, especially on imbalanced
datasets and reliable classification capacity against
different cardiac disorders.

HybriCardioNet is special for deployment: The compact
CNN front-end and two-layer LSTM (=1.20M params;
~45M FLOPs) enables near real-time inference (=
6.8ms/record on CPU; = 0.9ms/record on a modest GPU)
and passes edge budgets after standard 8-bit quantization
or light pruning with non-descript accuracy loss. These
ensure that the model is ideal for continuous bedside or
ambulatory monitoring and alerts at the beat level. The
pipeline includes zero-phase band-pass filtering for higher
noise wearable signals, optional notch removal, robust R-
peak detection with refractory logic, and per-record z-
score normalization, while confidence thresholds and
short-horizon smoothing diminishes false-positive spikes.
For a longer-term use case, we additionally suggest
periodic calibration (normalization re-fit) and drift checks.
Collectively these selections facilitate stable performance
under realistic noise conditions for on-device or near-
device execution.

A. Bharath et al.

the-art in ECG
HybridCardioNet.

signal  classification  using

HybridCardioNet achieves improved accuracy relative to

CNN-only and RNN-only baselines, where the
complementary  feature  extraction provided by
convolutional  blocks to  capture  fine-grained

morphological cues (QRS width, ST changes, ectopic
morphology) and stacked LSTMs to encode longer beat-
to-beat dependencies which are underfitted by pure CNNs.
The largest macro-F1 lift on minority classes (e.g., V, S)
(Ablations (CNN-only, LSTM-only)), due to the need for
temporal context especially where data are sparse.
Notably, explicit imbalance control (class-weighted loss
plus validated minority oversampling) remedies the
majority-class bias seen in previous studies with
unweighted loss or naive resampling. Such combination
elucidates the state-of-the-art balanced precision/recall
with respect to recent CNN, GRU and Wavelet-CNN
reports on similar MIT-BIH protocols.

HybridCardioNet addresses a practically desirable
accuracy—efficiency trade-off: Compact CNN front-ends
constrain the number of parameters/FLOPs before
temporal modeling, resulting in low latency approach for
near real-time inference and competitively high latency
while heavier transformer or multi-lead models in the
literature tend to increase both compute and memory costs.
We then profile runtime and observe that pruning or 8-bit
quantization maintains accuracy within tight deltas but
accelerates throughput—which is a boon for edge loMT
deployments. Lastly, while our stratified cross-validation
and confusion-matrix analyses show strong minority-class
performance on MIT-BIH, we elaborate on plans for
external validation (to overcome dataset shift due to
variations in sensors/leads/protocols) on INCART/PTB-
XL and domain adaptation as future work to address
generalizability. Importantly, this leads to fully explaining
the gains from our design choices—opting for hybrid
spatial-temporal encoding, principled imbalance handling,
and measured complexity—while ensuring that the model
is deployable.

This research has important implications for healthcare
applications, such as automated cardiac monitoring and
early diagnosis of heart diseases. The proposed approach
paves the way for enhanced accuracy and robustness of
ECG classification, which, in turn, fosters further advances
in remote patient monitoring systems and, ultimately,
clinical decision-making. Section 5.1 gives the limitations
of this study.

5.1 Limitations of the study

The performance in MIT-BIH is not guaranteed under
dataset shift (e.g., INCART, PTB-XL), as acquisition
protocols, leads, and labeling vary; we will thus perform
external validation with elementary & domain-adaptation
steps (normalization re-fit, threshold calibration). Using
compeitive Bayesian searches (efficientity tie-breaker)
cross-validated to tune hyperparameters (filters, kernel
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sizes, LSTM units, learning rate, class weights); we report
full ranges and random seed used per dataset to reproduce
given the sensitivity of hyperparameter choice to
performance. At last, real-life wearable ECG streams are
subject to motion artifacts, drift in the baseline and
intermittent dropout; our pipeline does reduce noise by
band-pass/notch filtering and robust R-peak detection and
per-record normalization, extreme artifacts, however, will
certainly damage minority-class recall. Things to do next
have domain-shift-aware training, noise augmentation,
and light-weight denoising/quantization, to stabilize their
deployment across devices and settings.

6 Conclusion and future work

We introduced a novel deep learning framework,
HybridCardioNet, that combines CNN and LSTM
architectures to classify ECG signals. Combining state-of-
the-art preprocessing, strong feature engineering, and
hybrid model design, the proposed approach overcomes
the critical limitations of the state-of-the-art while
achieving 98.39% accuracy, well ahead of the others.
HybridCardioNet is a suitable solution because it
efficiently captures the spatial and temporal dependencies
in the input ECG signals, resulting in high reliability and
robustness for the automated detection of cardiac
conditions. Results prove it is a promising candidate for
clinical decision-making and the development of remote
heart monitoring systems, which can also be used for the
early recognition of heart diseases. Next steps will
incorporate  explainable Al to enhance clinical
interpretability (Grad-CAM/Layer-CAM saliency maps
over beat windows, integrated gradients for feature
attributions, and clinician-rated plausibility checks)
Through 8-bit quantization, structured pruning and
knowledge distillation, we will adapt the model for
mobile/edge inference and export to TensorFlow Lite/Core
ML with ARM NEON acceleration and on-device latency
profile. We will extend to multi-lead learnings to expand
clinical utility and evaluate (lead-aware fusion and
domain-adaptation  (normalization  re-fit, threshold
calibration)) on PTB-XL and CPSC2018 datasets. Other
directions such as noise augmentation for wearable
artifacts, lightweight denoising front-ends, and runtime-
budgeted architecture search to co-optimize accuracy,
energy, and delay for continuous monitoring scenarios.
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