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This paper presents a novel approach for tracking moving crowds. Departing from conventional methods 

that focus on individual pedestrians, our method conceptualizes a moving crowd as a single, dynamically 

evolving entity. This entity can split into smaller sub-crowds or merge with others to form larger 

aggregations, making the approach particularly suitable for highly crowded scenarios. The proposed 

framework operates in two primary stages. First, moving crowds are detected using an integral optical 

flow technique, which accumulates optical flow vectors across consecutive video frames. Second, crowd 

identities are maintained via an ID management mechanism underpinned by a contribution matrix. This 

matrix records the contribution degree of detected crowds in the previous frame to those identified in the 

subsequent frame. The method is evaluated on manually annotated clips from three publicly available 

videos. The evaluation yields an average Multiple Object Tracking Accuracy (MOTA) of 0.361. 

Furthermore, the method demonstrates high performance in capturing crowd dynamics, with average 

precision and recall for crowd merging reaching 0.942 and 0.811, respectively, and for crowd splitting 

reaching 0.905 and 0.952, respectively. Additionally, the study defines internal motion patterns, referred 

to as "groups", within the moving crowds. These groups are identified based on local motion feature 

similarity and can be tracked in a manner analogous to the crowds themselves. Finally, several 

parameters are proposed, which hold potential for enabling more in-depth analysis of crowd movement 

behaviors. 

Povzetek: Obravnavano je sledenje gibajočim se množicam z uporabo integralnega optičnega toka, kjer 

množico obravnava kot celoto. Predstavljena metoda omogoča zaznavanje združevanja, razdruževanja 

ter notranjih gibalnih vzorcev brez sledenja posameznikom. 

 

1 Introduction 
Crowd analysis represents a significant and challenging 

research domain within computer vision, encompassing 

critical tasks such as crowd density estimation, behavior 

recognition, and abnormal event detection. Several 

comprehensive reviews have effectively summarized the 

advancements in this field [1-3]. While some studies, like 

[4], attempt to detect and track individuals within a crowd, 

these methods often encounter limitations in high-density 

scenarios due to severe occlusion and substantial inter-

object overlapping. Consequently, a holistic approach that 

treats the crowd as a single entity is frequently adopted to 

overcome these challenges. 

 

Prevailing crowd analysis methods can be broadly 

categorized into optical flow-based techniques and deep 

learning approaches utilizing Convolutional Neural  

Networks (CNNs). For instance, Chen et al. [5] developed 

an end-to-end Crowd Attention Convolutional Neural 

Network (CAT-CNN) for accurate crowd counting. To 

enhance performance, Guo et al. [6] proposed a dual-CNN 

architecture, where one network generates density maps 

from crowd images, and another reconstructs the images 

from these maps, ensuring consistency. Similarly, Sharma 

et al. [7] introduced a unified CNN-based framework that 

integrates multi-scale information to simultaneously 

address crowd density estimation and behavior analysis, 

effectively handling scale variations. 
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As a classical and powerful tool for motion analysis, 

optical flow [8] has been widely applied to crowd 

dynamics. Nayan et al. [9] leveraged optical flow 

correlation analysis for anomaly detection in crowds. 

Drawing inspiration from fluid mechanics, Wang et al. [10] 

combined streaklines with a high-accuracy variational 

optical flow model for robust crowd behavior 

identification. Altalbi et al. [11] utilized optical flow to 

identify panic-induced distortions in crowd movements, 

while Zhang et al. [12] proposed a radar particle flow 

(RPF) method grounded in optical flow principles for 

crowd motion analysis. Furthermore, Bhuiyan et al. [13] 

demonstrated the effectiveness of fusing optical flow 

features with CNNs for abnormality detection in Hajj 

pilgrimage videos. 

Building upon our previous work [14], which 

introduced the concept of integral optical flow and motion 

maps for categorizing three fundamental crowd behaviors, 

we further advanced a crowd tracking methodology [15]. 

This method tracks crowds frame-by-frame by calculating 

crowd centroids and measuring inter-frame correlations, 

visualizing overall crowd trajectories. In this paper, we 

extend our research by proposing a comprehensive 

framework for analyzing the evolution of moving crowds 

from a holistic perspective, based on motion information. 

The principal contributions of this work are threefold: 

(1) We propose a novel method for detecting and 

tracking moving crowds as dynamic, evolving entities, 

eliminating the reliance on individual-level tracking. This 

approach offers a robust solution for analyzing crowd 

movements in high-density environments. 

(2) We introduce definitions and detection 

mechanisms for distinct motion patterns within a crowd, 

providing a novel means to reveal and analyze internal 

crowd dynamics in detail. 

(3) We define a set of quantitative crowd parameters 

to facilitate the future recognition and classification of 

crowd behavior patterns. 

To evaluate the efficacy of our proposed crowd 

tracking method, we conducted experiments on three 

publicly available video clips, which were manually 

annotated to create evaluation datasets. Performance was 

assessed using established metrics, including precision, 

recall, MOTP, and MOTA, alongside four novel metrics 

specifically designed to measure the accuracy of crowd 

merging and splitting events. Experimental results 

indicate that the proposed method, despite being in its 

early developmental stages, demonstrates promising 

effectiveness. 

2 Crowd detection and tracking 

2.1 Crowd definition and detection 

In the context of computer vision, a moving crowd 

specifically refers to such a gathering that exhibits 

collective motion, as opposed to a static crowd that 

remains stationary. For analytical purposes, moving 

crowds are often the primary focus due to their dynamic 

nature and associated challenges. 

The accurate detection and tracking of individuals 

within a dense moving crowd present significant difficulty. 

Severe occlusions, where individuals are blocked from 

view by others, make it frequently impractical or even 

impossible to reliably detect and track every single person. 

Furthermore, a moving crowd is not a static entity; it 

evolves over time. Individuals may leave the crowd, 

others may join it, and the relative positions of people 

within the crowd can change constantly. These factors, 

among others, justify adopting a holistic perspective that 

treats the moving crowd as a single, evolving entity, rather 

than attempting to track its constituent individuals. 

From a holistic viewpoint, a moving crowd can be 

conceptually decomposed into smaller groups of people 

and individual persons. A small group within a crowd can 

be characterized as a subset of individuals who are 

spatially proximate and may exhibit coordinated behavior 

or share a common goal. 

Since our approach does not rely on detecting or 

tracking individual persons, we define the basic analytical 

unit based on distinguishable motion patterns. These basic 

units can be pixels, blocks of pixels, or other small image 

regions. 

(1) Conditional connectivity 

To formally define the spatial coherence of a crowd 

based on motion, we introduce the concept of conditional 

connectivity. For any two basic units 𝑃𝑎 and 𝑃𝑏 , if there 

exists a path 𝑃1, 𝑃2, … , 𝑃𝑛  connecting them (where 𝑃1 =
𝑃𝑎 and 𝑃2 = 𝑃𝑏), such that for every 𝑖 (1 ≤ 𝑖 < 𝑛), units 

𝑃𝑖  and 𝑃𝑖+1  are adjacent, and each unit 𝑃𝑖(1 ≤ 𝑖 ≤ 𝑛) 
satisfies a specific condition 𝐶𝑜𝑛 , then 𝑃𝑎  and 𝑃𝑏  are 

considered connected under the constraint 𝐶𝑜𝑛, denoted 

as 𝑃𝑎
𝐶𝑜𝑛
↔ 𝑃𝑏 . 

(2) Moving crowd detection 

A moving crowd can be detected by analyzing the 

motion features of the basic units. In a two-dimensional 

image domain, the motion feature of a basic unit 𝑃𝑖  can be 

represented as a vector 𝑀𝐹𝑖 = (𝑢, 𝑣) , where 𝑢  and 𝑣 

denote the horizontal and vertical components of 

displacement, respectively. A moving crowd is thus 

defined as a set of basic units that are conditionally 

connected based on a motion magnitude threshold. 

Formally, a crowd 𝐶 is defined as: 

𝐶 = {𝑃𝑖|𝑃𝑘
‖𝑀𝐹‖2≥𝑇𝐷
↔      𝑃𝑙 , 1 ≤ 𝑘, 𝑙 ≤ 𝑁𝑃, 𝑘 ≠ 𝑙} , 𝑖 =

1,… , 𝑁𝑃,      (1) 

where 𝑇𝐷 is a predefined threshold for the magnitude of 

the motion vector (e.g., the L2 norm ‖𝑀𝐹‖2), and 𝑁𝑃 is 

the total number of basic units. This set comprises all units 

interconnected through paths where each unit's motion 

magnitude meets or exceeds the threshold 𝑇𝐷. 

2.2 Group determination 

Within a moving crowd, individuals do not necessarily 

exhibit uniform motion. It is common to observe spatially 

connected groups of people moving in different directions, 

which may soon separate from one another. This 

observation indicates that multiple distinct motion 

patterns can coexist within a same moving crowd. From 

this perspective, a moving crowd can be conceptualized as 
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being composed of several groups. Within each group, 

individuals share a similar motion pattern. Formally, a 

moving crowd 𝐶  can be represented as a collection of 

these groups: 

𝐶 = {𝐺𝑖}, 𝑖 = 1,⋯ ,𝑁𝐺 ,    (2) 

where 𝑁𝐺  denotes the number of spatially separated 

motion patterns, which corresponds to the number of 

groups. 

Mathematically, a group within a moving crowd is 

defined as a subset of the crowd, comprising basic units 

that are connected under a specific condition. To quantify 

the dissimilarity between the movements of two basic 

units, a distance function is defined based on their motion 

features (𝑀𝐹):  

𝑑𝑖𝑠(𝑀𝐹𝑖1 , 𝑀𝐹𝑖2) = ‖𝑀𝐹𝑖1 −𝑀𝐹𝑖2‖2
,  (3) 

where 𝑀𝐹 = (𝑢, 𝑣) represents the motion vector. If the 

distance 𝑑𝑖𝑠(𝑀𝐹𝑖1 , 𝑀𝐹𝑖2)  is less than or equal to a 

predefined threshold 𝑇𝑀𝐹 , the two basic units 𝑃𝑖1  and 𝑃𝑖2  

are considered to have similar motion patterns. 

In certain scenarios, such as when two units are 

located far apart on a curved path, their instantaneous 

motion vectors may differ significantly even if they 

belong to the same group. To prevent the over-

segmentation of groups in such cases, membership is 

determined not only by the direct similarity between units 

but also by the consistency with their local neighborhood. 

Specifically, a basic unit is assigned to a group if its 

motion feature is similar to the average motion feature of 

its neighboring units. Therefore, a group 𝐺  is formally 

defined as: 

𝐺 = {𝑃𝑖|𝑃𝑘
𝐶𝑜𝑛
↔ 𝑃𝑙 , 1 ≤ 𝑘, 𝑙 ≤ 𝑁𝑃, 𝑘 ≠ 𝑙, 𝑃𝑖 ∈ 𝐶} , 𝑖 =

1,⋯ ,𝑁𝑃 ,     (4) 

where the connectivity condition 𝐶𝑜𝑛  requires that 

‖𝑀𝐹𝑘 −𝑀𝐹𝑘̅̅ ̅̅ ̅̅ ‖2 ≤ 𝑇𝑀𝐹  and ‖𝑀𝐹𝑙 −𝑀𝐹𝑙̅̅ ̅̅ ̅‖2 ≤ 𝑇𝑀𝐹 . Here,  

𝑁𝑃  is the number of basic units, 𝐶  is the overarching 

crowd, and 𝑀𝐹𝑘̅̅ ̅̅ ̅̅  and 𝑀𝐹𝑙̅̅ ̅̅ ̅  represent the average motion 

features of the neighbors of units 𝑃𝑘 and 𝑃𝑙 , respectively. 

2.3 Identity management 

A moving object, whether it is a crowd as a whole or an 

internal small group, undergoes continuous evolution over 

time in a video sequence. In surveillance videos, this 

evolution is often manifested through events such as 

individuals splitting from the principal group or multiple 

subgroups gathering together. Effectively tracking a 

crowd or a group thus necessitates addressing three key 

aspects: 

(1) Does the object continue to exist in the subsequent 

frame? 

(2) Does any part of the object separate from its 

principal region (i.e., the largest contiguous area)? 

(3) Do any separated parts of the object, or the 

principal part itself, merge with parts from other distinct 

objects? 

To manage the identities of these evolving objects, we 

assign a unique identifier (ID) to each detected moving 

object. The core of the tracking process lies in the 

inheritance of these ID numbers across frames, which is 

determined based on the spatial correlation between 

objects in consecutive frames. 

Suppose {𝑂𝑏1
𝑖 , 𝑂𝑏2

𝑖 … ,𝑂𝑏𝑁𝑖
𝑖 } represents the set of all 

𝑁𝑖 moving objects detected in frame 𝑖 . As the scene 

progresses to a later frame 𝑗, these objects may fragment 

and regroup. New objects may also appear. The resulting 

set of objects in frame 𝑗  is {𝑂𝑏1
𝑗
, 𝑂𝑏2

𝑗
… ,𝑂𝑏𝑁𝑗

𝑗
}. To 

quantify the relationship between objects across these 

frames, a contribution matrix 𝐶𝑁𝑖×𝑁𝑗  is computed. Each 

element 𝐶𝑘𝑙 in this matrix denotes the unit number that 

fragment originating from object 𝑂𝑏𝑘
𝑖  in frame 𝑖 

contribute to the formation of object 𝑂𝑏𝑙
𝑗
 in frame 𝑗. 

The ID management procedure for each new frame 

(after the first) involves the following three steps: 

Step 1: Primary inheritance. 

Identify all pairs (𝑘, 𝑙) for which the contribution 𝐶𝑘𝑙 
is simultaneously the maximum value in its column 

max({𝐶∙𝑙})  AND the maximum value in its row 

max({𝐶𝑘∙}). For each such pair, object 𝑂𝑏𝑙
𝑗
 inherits the ID 

number from object 𝑂𝑏𝑘
𝑖 . Each ID number from frame 𝑖 

can be inherited at most once. 

Step 2: Secondary assignment. 

For any 𝑂𝑏𝑙
𝑗
 in frame 𝑗 that has not yet received an ID 

number via Step 1, find the object 𝑂𝑏𝑘
𝑖  in frame 𝑖  for 

which 𝐶𝑘𝑙  is the maximum value in column 𝑙  (i.e., 

max({𝐶∙𝑙})). If the ID number of 𝑂𝑏𝑘
𝑖  has not yet been 

inherited by any object in frame 𝑗, then assign this ID to 

𝑂𝑏𝑙
𝑗
. 

Step 3: New ID assignment. 

Assign a new unique ID number for each remaining 

object. Any object 𝑂𝑏𝑙
𝑗
 in frame 𝑗 that remains without an 

ID number after Steps 1 and 2 is assigned a brand new, 

unique ID number. 

An object from frame 𝑖 is considered to have ceased 

existence if its ID number is not inherited by any object in 

frame 𝑗.  

3 Crowd parameters 
Once moving crowds and their internal groups are 

detected, a set of quantitative parameters can be derived to 

characterize their dynamic properties. This section defines 

several parameters proposed for the subsequent analysis 

of crowd behavior. These parameters are designed to 

provide theoretical insights into crowd motion patterns. 

(1) Centroid and trajectory 

The centroid of a crowd or a group represents its 

geometric center, calculated as the average coordinates of 

all its constituent basic units. The centroid coordinates 
(𝑥̅, 𝑦̅) are computed as follows: 

𝐶𝑡 = (𝑥̅, 𝑦̅) = (
1

𝑁
∑ 𝑥𝑗
𝑁
𝑗=1 ,

1

𝑁
∑ 𝑦𝑗
𝑁
𝑗=1 ),  (5) 

where 𝑁  is the total number of basic units within the 

crowd or group, and (𝑥𝑗 , 𝑦𝑗) are the coordinates of the j-th 

unit. 

The trajectory of a crowd or group over its lifetime is 

defined as the temporal sequence of its centroid positions 

across consecutive frames. This trajectory is denoted as 
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(𝐶𝑡1, 𝐶𝑡2, … , 𝐶𝑡𝑛)  , where 𝑛  is the number of frames 

during which the entity exists. 

(2) Motion intensity 

Motion intensity quantifies the overall magnitude of 

movement within a crowd or group between two 

consecutive frames. It is defined as the average magnitude 

of the displacement vectors of all its basic units: 

𝑀𝑖 =
1

𝑁
∑ ‖𝑑𝑗‖2
𝑁
𝑗=1 ,    (6) 

where 𝑁  is the number of basic units,  𝑑𝑗  is the 

displacement vector of the j-th unit, and ‖∙‖2 denotes the 

L2 norm (magnitude) of the vector. 

(3) Crowd movement homogeneity 

This parameter measures the degree to which the 

motion within a crowd is uniform. A crowd comprising a 

single group typically exhibits high homogeneity, as all 

units share a similar motion pattern. In contrast, a crowd 

containing multiple groups with divergent motion patterns 

displays lower homogeneity and appears more chaotic. 

Homogeneity 𝑀ℎ is calculated as the ratio of the size of 

the principal group (the largest group within the crowd) to 

the total size of the crowd: 

𝑀ℎ =
𝑁𝑝

𝑁
,     (7) 

where 𝑁𝑝  is the number of basic units in the principal 

group, 𝑁 is the total number of units in the crowd. The 

value of 𝑀ℎ  lies in the interval (0,1] . A higher value 

indicates a more homogeneous crowd movement. 

(4) Group movement consistency  

While the motion within a group may be 

homogeneous (spatially similar), it is not necessarily 

consistent in terms of direction. Movement consistency 

characterizes the alignment of motion vectors within a 

group. For instance, units moving in a straight line at 

similar speeds exhibit high consistency, whereas units 

following a curved path or moving in a circular formation 

may have opposing directional vectors, leading to low 

consistency. Consistency 𝑀𝑐 is defined as the ratio of the 

magnitude of the average displacement vector to the 

motion intensity: 

𝑀𝑐 =
‖
1

𝑁
∑ 𝑑𝑗
𝑁
𝑗=1 ‖

2

𝑀𝑖
,    (8) 

where  𝑁 is the number of units, 𝑑𝑗  is the displacement 

vector of j-th unit, and 𝑀𝑖  is the motion intensity as 

defined in Equation (6).   The value of 𝑀𝑐 falls within 

[0,1] . A value closer to 1 indicates highly consistent 

(directional) movement, while a value closer to 0 suggests 

that individual motions cancel each other out due to a lack 

of directional alignment.  

4 Algorithm for crowd analysis 

4.1 Optical flow 

Optical flow provides a fundamental technique for 

analyzing the apparent motion of pixels between 

consecutive frames in a video sequence, forming the basis 

for motion analysis in dynamic scenes. Numerous 

methods have been developed for computing optical flow, 

which can be broadly categorized into different classes, 

such as gradient-based, matching-based, energy-based, 

and phase-based methods, depending on their underlying 

theoretical foundations and mathematical formulations. In 

this work, we employ the method detailed in [16] to 

compute dense optical flow, which estimates the motion 

vector for every pixel in the frame, as opposed to sparse 

methods that only track a limited set of feature points. 

A standard optical flow field, denoted as 𝑂𝐹𝑡  for 

frame 𝑡, captures the displacement vector of each pixel 

between two consecutive frames. However, due to the 

extremely short time interval ( ∆𝑡 ) involved, the 

displacement magnitude of moving foreground objects 

(e.g., people) is often comparable to the inherent, random 

motion of the background (e.g., slight camera jitter or 

environmental noise). This makes it challenging to 

robustly distinguish foreground from background based 

on a single two-frame optical flow calculation. While 

background motion often appears random (e.g., small 

back-and-forth or circular movements) over short periods, 

this characteristic is not discernible instantaneously. Over 

a sufficiently long duration, however, the random nature 

of background motion causes its accumulated 

displacement vectors to remain small, whereas the 

consistent motion of foreground objects leads to steadily 

growing displacement vectors. 

To leverage this temporal characteristic, we introduce 

the concept of Integral Optical Flow (IOF). The core idea 

is intuitive: instead of relying on the optical flow between 

two frames, we accumulate the optical flow vectors over a 

series of consecutive frames. This accumulation amplifies 

the motion signals of consistently moving foreground 

objects while suppressing the random noise associated 

with background motion. 

For formal description, let 𝐼𝑡 denote the t-th frame of 

a video sequence 𝐼 , and 𝐼𝑡(𝑝)  denote the pixel at 

coordinates 𝑝 in that frame. Let 𝑂𝐹𝑡  represent the basic 

optical flow field computed between frame 𝑡 and 𝑡 + 1. 

The Integral Optical Flow for frame 𝑡 over an interval of 

𝑖𝑡𝑣 frames is denoted as 𝐼𝑂𝐹𝑡
𝑖𝑡𝑣 . This 𝐼𝑂𝐹𝑡

𝑖𝑡𝑣  is a vector 

field that records the accumulated displacement 

information for all pixels in 𝐼𝑡 over a period of 𝑖𝑡𝑣 frames. 

For any pixel 𝐼𝑡(𝑝) , its integral optical flow vector 

𝐼𝑂𝐹𝑡
𝑖𝑡𝑣(𝑝) is computed as follows: 

𝐼𝑂𝐹𝑡
𝑖𝑡𝑣(𝑝) = ∑ 𝑂𝐹𝑡+𝑖(𝑝𝑡+𝑖)

𝑖𝑡𝑣−1
𝑖=0 ,  (9) 

where the path of the pixel is tracked recursively: 

{
𝑝𝑡+0 = 𝑝,                                                                

𝑝𝑡+𝑖 = 𝑝𝑡+(𝑖−1) + 𝑂𝐹𝑡+(𝑖−1)(𝑝𝑡+(𝑖−1)), 𝑖 > 0.
 

This formulation ensures that the integral optical flow 

at a starting point 𝑝 in frame 𝑡 is the vector sum of the 

displacements along the trajectory that the pixel (or the 

scene point it represents) follows through the subsequent 

𝑖𝑡𝑣  frames. This accumulated vector provides a more 

robust and significant motion measure for detecting 

coherently moving regions like crowds. 

4.2 Moving crowd tracking flow 

The overall procedure for tracking moving crowds is 

executed according to the workflow illustrated in Figure 

1. The process involves distinct computational steps for 

different types of frames within a video sequence. For 

every frame except the final one in the sequence, the basic 
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optical flow between it and its subsequent frame is 

computed. Additionally, for frames at positions defined by 

1 + 𝑛 × 𝑖𝑡𝑣  (where 𝑛 ≥ 0), the integral optical flow is 

calculated over an interval of 𝑖𝑡𝑣  frames, as defined in 

Equation (9) of Section 4.1. The parameter 𝑖𝑡𝑣 is a key 

frame interval parameter that determines the temporal 

scope for motion accumulation. 

The tracking pipeline initializes with the first frame of 

the sequence (𝑛 = 0). Once its integral optical flow is 

computed, the algorithm proceeds to detect all moving 

crowds and the distinct motion patterns (groups) within 

them. Each detected crowd and internal group is then 

assigned a unique identifier (ID number), starting from 1 

and sequentially incremented. This establishes the initial 

state of the tracking system. 

For all subsequent frames where integral optical flow 

is calculated, specifically at frames 1 + 𝑛 × 𝑖𝑡𝑣 (with 𝑛 ≥
1 ), the tracking system updates the identities of the 

evolving entities. This step involves managing the 

inheritance of existing ID numbers by crowds and groups 

that persist from the previous integral optical flow frame. 

Simultaneously, newly emerged moving crowds and 

motion patterns that were not present before are assigned 

new, unique ID numbers. The specific rules governing this 

ID inheritance and assignment are detailed in Section 2.3 

(Identity Management), which ensures consistent tracking 

across temporal evolution. 

A critical aspect handled at each integral optical flow 

frame is the prediction of fragment destinations. As 

crowds and groups evolve, they may split into spatially 

separated fragments. Based on the computed integral 

optical flow vectors, the algorithm predicts the future 

positions of these fragments. This prediction is essential 

for correctly associating fragments in the current frame 

with the reconstituted or merged entities they will form in 

subsequent frames, thereby maintaining holistic tracking 

of dynamically evolving objects. 

5 Experimental results 
This section presents a comprehensive evaluation of the 

proposed crowd analysis framework using manually 

annotated real-world video sequences. To visually 

demonstrate the performance of our method, the 

experimental results are illustrated with figures that 

delineate the detected moving crowds and their internal 

motion patterns. Specifically, the outer boundaries of 

moving crowds are explicitly outlined, while distinct 

motion patterns (groups) within each crowd are 

highlighted using transparent masks. For clear 

identification in these visualizations, a unique identifier is 

assigned to each entity: moving crowds are prefixed with 

the symbol #, and internal motion patterns are prefixed 

with the symbol *. 

5.1 In-door moving crowd tracking 

The performance of the proposed tracking algorithm in an 

indoor environment is demonstrated in Figure 2. The test 

sequence is a surveillance video capturing a large hall 

where numerous pedestrians walk towards various 

destinations, with a minority making brief stops. The 

video comprises 201 frames, each with a resolution of 

856×568 pixels. The key parameters for the algorithm 

were set as follows: the frame interval (𝑖𝑡𝑣) for integral 

optical flow calculation was 10 frames; the displacement 

magnitude threshold (𝑇𝐷) for crowd detection was 8 pixels; 

and the motion feature difference threshold (𝑇𝑀𝐹 ) for 

group determination was 1.5 pixels. Furthermore, to filter 

out noise and very small moving objects, any detected 

entity with an area of less than 500 pixels was disregarded 

in the analysis. 

Figures 2a, 2b, and 2c visually present the detection 

and tracking results at frames 11, 21, and 31, respectively. 

These subfigures illustrate the original video frames 

overlaid with the detected crowd boundaries, internal 

motion patterns (groups) highlighted with masks, and their 

corresponding unique identifiers (crowds prefixed with #, 

groups with *). For enhanced clarity in observing the 

spatiotemporal evolution of the crowds, Figures 2d, 2e, 

and 2f show the corresponding simplified representations 

at the same frames, displaying only the outer boundaries 

and the ID numbers of the tracked crowds. 

A detailed analysis of the sequence reveals the 

dynamic nature of crowd movement and interaction: 

⚫ At Frame 11 (Fig. 2a & 2d): In the bottom-left 

corner, two distinct crowds are observed: crowd 

#22 is moving predominantly upwards, while 

crowd #17 is moving downwards. Crowd #13 

exhibits more complex internal dynamics; 

individuals in the center of this crowd are 

moving rightwards, while those on the periphery 

are moving upwards. This heterogeneity in 

motion vectors within #13 leads to the detection 

of six distinct internal motion patterns (*1 to 

*6). The segmentation within crowd #10 

provides an intuitive example of the group 

determination logic. Although all four 

individuals are moving in a generally upward 

direction, slight variations in their precise 

Figure 1: Moving crowd tracking flow. 
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motion vectors cause the algorithm to 

distinguish the person positioned slightly higher 

(assigned to group *6) from the cluster of three 

below (assigned to group *9). 

⚫ At Frame 21 (Fig. 2b & 2e): A significant 

merging event occurs between crowds #17 and 

#22. Following the ID inheritance rules defined 

in Section 2.3, the merged entity retains the ID 

#22 of the larger original crowd (#22) which 

contributed the greater area to the new 

formation. 

⚫ At Frame 31 (Fig. 2c & 2f): The previously 

merged crowd #22 undergoes a splitting event. 

A portion of its constituents breaks away to form 

a new, independent crowd assigned a new ID 

(#60). The remainder of the original #22 merges 

with the existing crowd #13 and some newly 

appeared individuals. This combined entity 

forms a single, larger crowd. Consistent with the 

ID management protocol, this new crowd 

inherits the ID #22 from its largest constituent 

part. Furthermore, within the evolving scene, the 

motion pattern *69 (located towards the middle-

left) is noteworthy. The individuals within this 

group are moving to the right, creating a clear 

motion contrast with the surrounding groups 

which are exhibiting different movement 

patterns. 

5.2 Out-door moving crowd tracking 

The proposed method is further evaluated using an 

outdoor video sequence depicting a dynamic riot control 

scenario, as illustrated in Figure 3. The video captures a 

simulated confrontation: South Korean police forces are 

lined up on the right side, while a group of rioter’s charges 

from the left. This sequence, comprising 168 frames with 

a resolution of 480×360 pixels, presents a challenging 

environment with rapid movements and complex 

interactions between two opposing groups. The algorithm 

parameters were configured as follows: the frame interval 

(𝑖𝑡𝑣) for integral optical flow was set to 10 frames; the 

displacement threshold ( 𝑇𝐷 ) was 10 pixels; and the 

displacement difference threshold (𝑇𝑀𝐹) was 1. To filter 

out noise, any detected moving object with an area smaller 

than 300 pixels was ignored. 

5.2.1 Initial Deployment and police maneuvers 

(Frames 11 & 21) 

Figures 3a and 3b present the detailed tracking results for 

frames 11 and 21, respectively, while Figures 3g and 3h 

provide the corresponding simplified views showing only 

crowd boundaries and their IDs. In the initial phase, the 

police line is the primary moving entity. The analysis 

shows that police officers at both ends of the line advance 

more quickly. As they move, their motion patterns become 

increasingly complex and are segmented into distinct 

groups by the algorithm, demonstrating its sensitivity to 

variations in velocity and direction within a seemingly 

cohesive line. 

5.2.2 Engagement: rioters' charge and police 

response (frames 81 & 91) 

The scenario intensifies at frames 81 and 91, shown in 

Figures 3c/3d (detailed results) and 3i/3j (simplified 

boundaries). The rioters on the left emerge and begin a 

rapid charge towards the police line. Meanwhile, the 

police response evolves dynamically; some officers who 

had previously moved out from the right flank have 

already established new positions, while others are still in 

transit. Concurrently, parts of the original police queue 

begin to advance forward, creating a multi-directional and 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 3: In-door moving crowd tracking results. 
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multi-group movement landscape that the algorithm 

successfully tracks. 

5.2.3 Climax and ID inheritance: merger and 

identity transition (frames 101 & 141) 

The climax of the interaction is captured in frames 101 and 

141, displayed in Figures 3e/3f and 3k/3l. The rioters 

continue their advance, eventually meeting the police in 

the middle of the scene. A critical observation from Figure 

3e is the merging of police subgroups. Specifically, the 

police officers originally marked as motion patterns *24 

and *35 in the previous frame (Fig. 3d) merge into a single 

pattern, *24, and subsequently combine with other still-

moving police to form the larger crowd identified as #1. 

The most significant event regarding identity 

management occurs towards the end of the sequence. The 

crowd of rioters (initially with ID #20) merges with the 

primary police crowd (ID #1) during the confrontation. 

Following the merger, the police cease moving. According 

to the ID inheritance rules defined in Section 2.3, and 

because the rioters constitute the principal moving 

component after the merger, the entire resulting 

conglomerate inherits the ID #1. This outcome correctly 

reflects the final state of the scene, where the only 

coherently moving entity is the single crowd of rioters, 

which has effectively absorbed the identity of the larger 

group it merged with. 

5.3 Method evaluation 

The task of moving crowd tracking shares similarities with 

Multiple Object Tracking (MOT) but is fundamentally 

distinct due to the dynamic and collective nature of crowds. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
Figure 4: Out-door moving crowd tracking results. 
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The key differentiator lies in the phenomena of splitting 

and merging, where crowds can dissolve into smaller 

groups or coalesce into larger ones. In contrast, objects in 

standard MOT are typically treated as independent entities 

that do not merge or split. To bridge this gap and provide 

a comprehensive evaluation, we adopt established MOT 

metrics from [17]—including precision, recall, MOTA, 

and MOTP—while also introducing two novel metric 

pairs specifically designed to assess the algorithm's 

performance in handling crowd merging and splitting 

events. 

5.3.1 Standard MOT metrics 

The following standard metrics are utilized: 

(1) True Positives (TP): A predicted object mask is 

considered a true positive if its Intersection over Union 

(IoU) with a ground-truth mask exceeds a predefined 

threshold (e.g., IoU > 0.5). 

(2) False Positives (FP): This refers to predicted 

object masks that do not correspond to any real object in 

the ground truth. FP represents the total count of such 

erroneous detections across the entire video sequence. 

(3) False Negatives (FN): This denotes real objects in 

the ground truth that the algorithm fails to detect. FN 

represents the total count of these missed detections in the 

sequence. 

(4) Precision: This metric quantifies the accuracy of 

the detections, answering the question: "Of all the crowds 

detected, what proportion are genuine?" It is calculated to 

minimize false detections. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.    (10) 

(5) Recall: This metric measures the algorithm's 

ability to find all genuine crowds, answering the question: 

"Of all the actual crowds present, what proportion did we 

successfully detect?" It is calculated to minimize missed 

cases. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.    (11) 

(6) ID Switches (IDSW): An identity switch occurs 

when the tracking identity of a crowd is incorrectly 

changed. IDSW counts the total number of such identity 

changes. 

(7) Multiple Object Tracking Accuracy (MOTA): 

This metric provides a holistic measure of tracking 

performance by combining errors from false positives, 

false negatives, and identity switches. It assesses the 

tracker's effectiveness in detecting targets and maintaining 

consistent trajectories, independent of localization 

precision. 

𝑀𝑂𝑇𝐴 = 1 −
𝐹𝑁+𝐹𝑃+𝐼𝐷𝑆𝑊

𝐺𝑇
,   (12) 

where 𝐺𝑇  represents the total number of ground-truth 

objects in the entire video sequence. 

(8) Multiple Object Tracking Precision (MOTP): This 

metric evaluates the average accuracy of the spatial 

localization for all correctly tracked targets (TPs). It is 

defined as the average IoU between the predicted masks 

and their corresponding ground-truth masks. 

𝑀𝑂𝑇𝑃 =
∑ 𝐼𝑜𝑈𝑇𝑃

𝑇𝑃
,    (13) 

where 𝐼𝑜𝑈𝑇𝑃  is the Intersection over Union between a 

True Positive detection and its matched ground-truth mask. 

5.3.2 Proposed metrics for crowd dynamics 

Given the specific challenges of crowd tracking, it is 

insufficient to rely solely on standard MOT metrics. Our 

method is designed to track moving crowds; therefore, 

static crowds are intentionally not detected, which can 

inherently lower recall and MOTA scores in scenes 

containing stationary groups. Furthermore, the algorithm's 

identity management strategy—where a smaller crowd 

merging into a larger one loses its ID and is assigned a new 

one upon splitting—can lead to ID switches during 

transient interactions like crossing without genuine 

merger. To address these nuances and provide a fair 

evaluation, we propose two new pairs of metrics focused 

on the core crowd behaviors of merging and splitting: 

⚫ Merging Precision (MPrecision) and Merging Recall 

(MRecall): These metrics evaluate the algorithm's 

accuracy in detecting genuine merging events and its 

ability to identify all actual merges, respectively. 

𝑀𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑀

𝑇𝑃𝑀+𝐹𝑃𝑀
,   (14) 

𝑀𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑀

𝑇𝑃𝑀+𝐹𝑁𝑀
.    (15) 

⚫ Splitting Precision (SPrecision) and Splitting Recall 

(SRecall): These metrics evaluate the algorithm's 

accuracy in detecting genuine splitting events and its 

ability to identify all actual splits, respectively. 

𝑆𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑆

𝑇𝑃𝑆+𝐹𝑃𝑆
,   (16) 

𝑆𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑆

𝑇𝑃𝑆+𝐹𝑁𝑆
.    (17) 

Here, 𝑇𝑃𝑀, 𝐹𝑃𝑀, 𝐹𝑁𝑀 represent the true positives, 

false positives, and false negatives for merging events. 

Similarly, 𝑇𝑃𝑆 , 𝐹𝑃𝑆 , 𝐹𝑁𝑆  represent the corresponding 

quantities for splitting events. 

5.3.3 Datasets and evaluation setup 

The evaluation was conducted on three video sequences: 

⚫ Hall: The indoor surveillance video from Section 5.1. 

⚫ Riot Control Exercise: The outdoor scenario from 

Section 5.2. 

⚫ Mall: A new video sequence depicting people 

shopping in a mall (resolution: 640×480, 200 

frames). 

The integral optical flow was calculated with a frame 

interval (𝑖𝑡𝑣) of 10 for all sequences. The comprehensive 

evaluation results are presented in Table 1. 

5.4 Discussion 

This section provides a comprehensive discussion on the 

performance, advantages, and limitations of the proposed 

moving crowd detection and tracking framework, based 

on the experimental results presented in the previous 

sections. 

5.4.1 Advantages and application potential 

The proposed method successfully enables the detection 

and tracking of moving crowds in video sequences. This 

capability forms a critical foundation for subsequent high-
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level analysis of crowded scenarios, such as crowd 

behavior recognition and abnormal event detection. A 

significant advantage of our approach is that it is training-

free, relying on optical flow and spatial-temporal 

constraints rather than large annotated datasets, which 

contributes to its computational efficiency and ease of 

implementation in various environments. 

The method's strength is further highlighted by 

comparing it with our prior work [14]. While the method 

in [14] could recognize typical crowd behaviors within 

specific regions at a given time, it lacked the capability to 

track crowd evolution. In contrast, the method proposed 

herein monitors the entire lifecycle of crowds—including 

their emergence, merging, splitting, and dissipation. This 

ability to capture long-term motion trajectories and 

structural changes makes the current method a far more 

suitable candidate for understanding complex crowd 

behaviors that unfold over extended periods. 

5.4.2 Performance analysis and influencing 

factors 

The experimental evaluation on both indoor and outdoor 

videos reveals several key factors influencing the method's 

performance: 

(1) Impact of Crowd Structure: The accuracy of 

detecting merging and splitting events is highly dependent 

on the spatial coherence of the crowds. The method 

performs best when crowd movement patterns are 

structured and cohesive. Conversely, performance 

decreases when crowds are scattered or exhibit highly 

irregular motion, as the spatial constraints for defining a 

unified crowd become less reliable. 

(2) Sources of Error in Standard MOT Metrics: The 

analysis of standard tracking metrics (Section 5.3) 

identifies primary sources of error. 

⚫ Precision is primarily affected by noise in the optical 

flow computation. Inaccurate flow vectors can lead 

to false positive detections. 

⚫ Recall is mainly impacted by the presence of static 

crowds. Since the method is designed to detect 

moving entities, completely stationary groups are 

intentionally ignored, leading to false negatives in 

scenes with a mix of moving and non-moving 

people. 

⚫ MOTA (Multiple Object Tracking Accuracy) is 

influenced by Identity Switches (IDSW). As 

demonstrated in Sections 5.1 and 5.2, these switches 

frequently occur during complex crowd interactions 

like merging and splitting, which is an inherent 

challenge in crowd (as opposed to individual object) 

tracking. 

(3) Explanation of MOTP Performance: The MOTP 

(Multiple Object Tracking Precision) value, which 

measures localization accuracy, is generally higher in 

scenarios where moving crowds dominate the scene. This 

is because the integral optical flow calculation provides a 

robust representation of collective motion, leading to more 

precise spatial delineation of the moving aggregates. 

5.4.3 Limitations and future work 

Despite its advantages, the method has limitations. The 

dependence on optical flow makes it susceptible to 

illumination changes and rapid motion. Furthermore, the 

heuristic rules for ID management during merge/split 

events, while effective, could be refined. Future work will 

Video Hall Riot Control Exercise Mall 

Detection 

TP 216 29 56 

FN 54 18 18 

FP 48 8 15 

Precision 0.818 0.784 0.789 

Recall 0.800 0.617 0.757 

ID switches 49 6 17 

Evolution 

TPM 19 3 7 

FNM 2 1 2 

FPM 1 0 1 

MPrecision 0.950 1.000 0.875 

MRecall 0.905 0.750 0.778 

TPS 28 2 6 

FNS 0 0 1 

FPS 1 0 2 

SPrecion 0.966 1.000 0.750 

SRecall 1.000 1.000 0.857 

MOTP 0.926 0.783 0.816 

MOTA 0.441 0.319 0.324 

 

Table 1: Evaluation results. 𝑇𝑃𝑀, 𝐹𝑁𝑀 and FPM are true positives, false negatives, and false positives of merging, 

respectively; TPS, FNS and FPS are true positives, false negatives, and false positives of splitting, respectively; 

MPrecision, MRecall, SPresion and SRecall are precision, and recall of detection, merging, and splitting, respectively. 
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focus on integrating more robust optical flow techniques 

and exploring data-driven approaches to improve ID 

management without sacrificing the method's efficiency. 

Validation on larger and more complex datasets will also 

be a priority. 

6 Conclusion 
Crowd motion analysis represents a pivotal yet 

challenging frontier in computer vision. While significant 

hurdles exist in the accurate detection of crowds, the tasks 

of tracking and analyzing their dynamic movements 

present even greater complexities. This paper has built 

upon our previous research by introducing a novel 

approach centered on integral optical flow for the 

detection and tracking of moving crowds. Our method 

effectively monitors the entire evolutionary process of 

crowds, including their emergence, merging, splitting, and 

dissipation, thereby providing a robust foundation for 

understanding complex crowd behaviors. 

The experimental studies conducted demonstrate that 

moving crowds can be effectively detected and tracked 

across various scenarios. The results visually articulate the 

status and dynamic evolution of crowds, validating the 

practicality of our approach. A key advantage of the 

proposed method is its training-free nature, which allows 

for efficient application without the need for large 

annotated datasets. However, the performance is 

influenced by factors such as the spatial coherence of 

crowds and the inherent noise in optical flow computation. 

Future research will focus on several promising 

directions. We plan to delve deeper into the analysis of 

crowd/group movement information and conduct more 

detailed experimental evaluations of the proposed crowd 

parameters. The objective is to develop more precise 

descriptors for the evolution process of crowds, which 

could significantly enhance the understanding of crowded 

scenes. Furthermore, integrating advanced techniques for 

handling complex interactions and exploring applications 

in abnormal behavior detection will be a priority. 

Ultimately, these efforts aim to provide richer information 

to support a higher-level, semantic understanding of 

crowded scenarios, paving the way for more intelligent 

video surveillance systems. 
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