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This paper presents a novel approach for tracking moving crowds. Departing from conventional methods
that focus on individual pedestrians, our method conceptualizes a moving crowd as a single, dynamically
evolving entity. This entity can split into smaller sub-crowds or merge with others to form larger
aggregations, making the approach particularly suitable for highly crowded scenarios. The proposed
framework operates in two primary stages. First, moving crowds are detected using an integral optical
flow technique, which accumulates optical flow vectors across consecutive video frames. Second, crowd
identities are maintained via an ID management mechanism underpinned by a contribution matrix. This
matrix records the contribution degree of detected crowds in the previous frame to those identified in the
subsequent frame. The method is evaluated on manually annotated clips from three publicly available
videos. The evaluation yields an average Multiple Object Tracking Accuracy (MOTA) of 0.361.
Furthermore, the method demonstrates high performance in capturing crowd dynamics, with average
precision and recall for crowd merging reaching 0.942 and 0.811, respectively, and for crowd splitting
reaching 0.905 and 0.952, respectively. Additionally, the study defines internal motion patterns, referred
to as "groups", within the moving crowds. These groups are identified based on local motion feature
similarity and can be tracked in a manner analogous to the crowds themselves. Finally, several
parameters are proposed, which hold potential for enabling more in-depth analysis of crowd movement

behaviors.

Povzetek: Obravnavano je sledenje gibajocim se mnoZicam z uporabo integralnega opticnega toka, kjer
mnozico obravnava kot celoto. Predstavijena metoda omogoca zaznavanje zdruzevanja, razdruzevanja
ter notranjih gibalnih vzorcev brez sledenja posameznikom.

1 Introduction

Crowd analysis represents a significant and challenging
research domain within computer vision, encompassing
critical tasks such as crowd density estimation, behavior
recognition, and abnormal event detection. Several
comprehensive reviews have effectively summarized the
advancements in this field [1-3]. While some studies, like
[4], attempt to detect and track individuals within a crowd,
these methods often encounter limitations in high-density
scenarios due to severe occlusion and substantial inter-
object overlapping. Consequently, a holistic approach that
treats the crowd as a single entity is frequently adopted to
overcome these challenges.

Prevailing crowd analysis methods can be broadly
categorized into optical flow-based techniques and deep
learning approaches utilizing Convolutional Neural
Networks (CNNSs). For instance, Chen et al. [5] developed
an end-to-end Crowd Attention Convolutional Neural
Network (CAT-CNN) for accurate crowd counting. To
enhance performance, Guo et al. [6] proposed a dual-CNN
architecture, where one network generates density maps
from crowd images, and another reconstructs the images
from these maps, ensuring consistency. Similarly, Sharma
et al. [7] introduced a unified CNN-based framework that
integrates multi-scale information to simultaneously
address crowd density estimation and behavior analysis,
effectively handling scale variations.
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As a classical and powerful tool for motion analysis,
optical flow [8] has been widely applied to crowd
dynamics. Nayan et al. [9] leveraged optical flow
correlation analysis for anomaly detection in crowds.
Drawing inspiration from fluid mechanics, Wang et al. [10]
combined streaklines with a high-accuracy variational
optical flow model for robust crowd behavior
identification. Altalbi et al. [11] utilized optical flow to
identify panic-induced distortions in crowd movements,
while Zhang et al. [12] proposed a radar particle flow
(RPF) method grounded in optical flow principles for
crowd motion analysis. Furthermore, Bhuiyan et al. [13]
demonstrated the effectiveness of fusing optical flow
features with CNNs for abnormality detection in Hajj
pilgrimage videos.

Building upon our previous work [14], which
introduced the concept of integral optical flow and motion
maps for categorizing three fundamental crowd behaviors,
we further advanced a crowd tracking methodology [15].
This method tracks crowds frame-by-frame by calculating
crowd centroids and measuring inter-frame correlations,
visualizing overall crowd trajectories. In this paper, we
extend our research by proposing a comprehensive
framework for analyzing the evolution of moving crowds
from a holistic perspective, based on motion information.
The principal contributions of this work are threefold:

(1) We propose a novel method for detecting and
tracking moving crowds as dynamic, evolving entities,
eliminating the reliance on individual-level tracking. This
approach offers a robust solution for analyzing crowd
movements in high-density environments.

(2) We introduce definitions and detection
mechanisms for distinct motion patterns within a crowd,
providing a novel means to reveal and analyze internal
crowd dynamics in detail.

(3) We define a set of quantitative crowd parameters
to facilitate the future recognition and classification of
crowd behavior patterns.

To evaluate the efficacy of our proposed crowd
tracking method, we conducted experiments on three
publicly available video clips, which were manually
annotated to create evaluation datasets. Performance was
assessed using established metrics, including precision,
recall, MOTP, and MOTA, alongside four novel metrics
specifically designed to measure the accuracy of crowd
merging and splitting events. Experimental results
indicate that the proposed method, despite being in its
early developmental stages, demonstrates promising
effectiveness.

2 Crowd detection and tracking

2.1 Crowd definition and detection

In the context of computer vision, a moving crowd
specifically refers to such a gathering that exhibits
collective motion, as opposed to a static crowd that
remains stationary. For analytical purposes, moving
crowds are often the primary focus due to their dynamic
nature and associated challenges.
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The accurate detection and tracking of individuals
within a dense moving crowd present significant difficulty.
Severe occlusions, where individuals are blocked from
view by others, make it frequently impractical or even
impossible to reliably detect and track every single person.
Furthermore, a moving crowd is not a static entity; it
evolves over time. Individuals may leave the crowd,
others may join it, and the relative positions of people
within the crowd can change constantly. These factors,
among others, justify adopting a holistic perspective that
treats the moving crowd as a single, evolving entity, rather
than attempting to track its constituent individuals.

From a holistic viewpoint, a moving crowd can be
conceptually decomposed into smaller groups of people
and individual persons. A small group within a crowd can
be characterized as a subset of individuals who are
spatially proximate and may exhibit coordinated behavior
or share a common goal.

Since our approach does not rely on detecting or
tracking individual persons, we define the basic analytical
unit based on distinguishable motion patterns. These basic
units can be pixels, blocks of pixels, or other small image
regions.

(1) Conditional connectivity

To formally define the spatial coherence of a crowd
based on motion, we introduce the concept of conditional
connectivity. For any two basic units P, and Py, if there
exists a path P, P,, ..., B, connecting them (where P, =
P, and P, = P,), such that for every i (1 < i < n), units
P; and P;,, are adjacent, and each unit P;(1 <i <n)
satisfies a specific condition Con, then P, and P, are

considered connected under the constraint Con, denoted
Con
as P, & P,.

(2) Moving crowd detection

A moving crowd can be detected by analyzing the
motion features of the basic units. In a two-dimensional
image domain, the motion feature of a basic unit P; can be
represented as a vector MF; = (u,v), where u and v
denote the horizontal and vertical components of
displacement, respectively. A moving crowd is thus
defined as a set of basic units that are conditionally
connected based on a motion magnitude threshold.
Formally, a crowd C is defined as:

IMFll2>Tp ,
= {Pi|Pk<—>Pz,1 Sk 1< Npk# l},z =

1,...,Np, 1)
where T}, is a predefined threshold for the magnitude of
the motion vector (e.g., the L2 norm |[|[MF||,), and Np is
the total number of basic units. This set comprises all units
interconnected through paths where each unit's motion
magnitude meets or exceeds the threshold Tp.

2.2 Group determination

Within a moving crowd, individuals do not necessarily
exhibit uniform motion. It is common to observe spatially
connected groups of people moving in different directions,
which may soon separate from one another. This
observation indicates that multiple distinct motion
patterns can coexist within a same moving crowd. From
this perspective, a moving crowd can be conceptualized as
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being composed of several groups. Within each group,
individuals share a similar motion pattern. Formally, a
moving crowd C can be represented as a collection of
these groups:

C={G}i=1,Ng 2)
where N, denotes the number of spatially separated
motion patterns, which corresponds to the number of
groups.

Mathematically, a group within a moving crowd is
defined as a subset of the crowd, comprising basic units
that are connected under a specific condition. To quantify
the dissimilarity between the movements of two basic
units, a distance function is defined based on their motion
features (MF):

dis(MF;,,MF,,) = ||MF,, — MF,, ||2, )
where MF = (u, v) represents the motion vector. If the
distance dis(MF;,,MF;,) is less than or equal to a
predefined threshold Ty, the two basic units P;, and P,
are considered to have similar motion patterns.

In certain scenarios, such as when two units are
located far apart on a curved path, their instantaneous
motion vectors may differ significantly even if they
belong to the same group. To prevent the over-
segmentation of groups in such cases, membership is
determined not only by the direct similarity between units
but also by the consistency with their local neighborhood.
Specifically, a basic unit is assigned to a group if its
motion feature is similar to the average motion feature of
its neighboring units. Therefore, a group G is formally
defined as:

Con

¢={P|Pc>P, 1<klI<Nyk=LPecC}i=
1’ e NP’ (4)
where the connectivity condition Con requires that
IMF,, — MFy|l, < Tyr and |[MF, — MF||, < Tyr. Here,
Np is the number of basic units, C is the overarching
crowd, and MF, and MF, represent the average motion
features of the neighbors of units P, and P;, respectively.

2.3 ldentity management

A moving object, whether it is a crowd as a whole or an
internal small group, undergoes continuous evolution over
time in a video sequence. In surveillance videos, this
evolution is often manifested through events such as
individuals splitting from the principal group or multiple
subgroups gathering together. Effectively tracking a
crowd or a group thus necessitates addressing three key
aspects:

(1) Does the object continue to exist in the subsequent
frame?

(2) Does any part of the object separate from its
principal region (i.e., the largest contiguous area)?

(3) Do any separated parts of the object, or the
principal part itself, merge with parts from other distinct
objects?

To manage the identities of these evolving objects, we
assign a unique identifier (ID) to each detected moving
object. The core of the tracking process lies in the
inheritance of these ID numbers across frames, which is
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determined based on the spatial correlation between
objects in consecutive frames.

Suppose {Obi, Ob; ..., Ob} } represents the set of all
N; moving objects detected in frame i. As the scene
progresses to a later frame j, these objects may fragment
and regroup. New objects may also appear. The resulting

set of objects in frame j is {Ob",Obé’ ...,Ob,{',j}. To

quantify the relationship between objects across these
frames, a contribution matrix Cryxn; is computed. Each

element Cy; in this matrix denotes the unit number that
fragment originating from object Ob; in frame i

contribute to the formation of object Ob;/ in frame ;.

The ID management procedure for each new frame
(after the first) involves the following three steps:

Step 1: Primary inheritance.

Identify all pairs (k, ) for which the contribution Cy;
is simultaneously the maximum value in its column
max({C;}) AND the maximum value in its row
max({C.}). For each such pair, object Ob; inherits the ID
number from object ObL. Each ID number from frame i
can be inherited at most once.

Step 2: Secondary assignment.

For any Ob{ in frame j that has not yet received an 1D
number via Step 1, find the object Ob}. in frame i for
which Cy; is the maximum value in column [ (i.e.,
max({C;})). If the ID number of Ob\ has not yet been
inherited by any object in frame j, then assign this ID to
b

Step 3: New ID assignment.

Assign a new unique ID number for each remaining
object. Any object Ob] in frame j that remains without an
ID number after Steps 1 and 2 is assigned a brand new,
unique 1D number.

An object from frame i is considered to have ceased
existence if its ID number is not inherited by any object in
frame j.

3 Crowd parameters

Once moving crowds and their internal groups are
detected, a set of quantitative parameters can be derived to
characterize their dynamic properties. This section defines
several parameters proposed for the subsequent analysis
of crowd behavior. These parameters are designed to
provide theoretical insights into crowd motion patterns.

(1) Centroid and trajectory

The centroid of a crowd or a group represents its
geometric center, calculated as the average coordinates of
all its constituent basic units. The centroid coordinates
(x,y) are computed as follows:

ct=@y = (+2%,2 20 y), (5)
where N is the total number of basic units within the
crowd or group, and (xj, yj) are the coordinates of the j-th
unit.

The trajectory of a crowd or group over its lifetime is
defined as the temporal sequence of its centroid positions
across consecutive frames. This trajectory is denoted as
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(Cty, Ct,, ..., Ct,) , where n is the number of frames
during which the entity exists.

(2) Motion intensity

Motion intensity quantifies the overall magnitude of
movement within a crowd or group between two
consecutive frames. It is defined as the average magnitude
of the displacement vectors of all its basic units:

Mi =23l (6)
where N is the number of basic units, d; is the
displacement vector of the j-th unit, and ||-||, denotes the
L2 norm (magnitude) of the vector.

(3) Crowd movement homogeneity

This parameter measures the degree to which the
motion within a crowd is uniform. A crowd comprising a
single group typically exhibits high homogeneity, as all
units share a similar motion pattern. In contrast, a crowd
containing multiple groups with divergent motion patterns
displays lower homogeneity and appears more chaotic.
Homogeneity Mh is calculated as the ratio of the size of
the principal group (the largest group within the crowd) to

the total size of the crowd:
N.

Mh = W‘” @)
where N, is the number of basic units in the principal
group, N is the total number of units in the crowd. The
value of Mh lies in the interval (0,1]. A higher value
indicates a more homogeneous crowd movement.

(4) Group movement consistency

While the motion within a group may be
homogeneous (spatially similar), it is not necessarily
consistent in terms of direction. Movement consistency
characterizes the alignment of motion vectors within a
group. For instance, units moving in a straight line at
similar speeds exhibit high consistency, whereas units
following a curved path or moving in a circular formation
may have opposing directional vectors, leading to low
consistency. Consistency Mc is defined as the ratio of the
magnitude of the average displacement vector to the
motion intensity:

1¢N

Mc = M’ (8)
where N is the number of units, d; is the displacement
vector of j-th unit, and Mi is the motion intensity as
defined in Equation (6). The value of Mc falls within
[0,1]. A value closer to 1 indicates highly consistent
(directional) movement, while a value closer to 0 suggests
that individual motions cancel each other out due to a lack
of directional alignment.

4 Algorithm for crowd analysis

4.1 Optical flow

Optical flow provides a fundamental technique for
analyzing the apparent motion of pixels between
consecutive frames in a video sequence, forming the basis
for motion analysis in dynamic scenes. Numerous
methods have been developed for computing optical flow,
which can be broadly categorized into different classes,
such as gradient-based, matching-based, energy-based,
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and phase-based methods, depending on their underlying
theoretical foundations and mathematical formulations. In
this work, we employ the method detailed in [16] to
compute dense optical flow, which estimates the motion
vector for every pixel in the frame, as opposed to sparse
methods that only track a limited set of feature points.

A standard optical flow field, denoted as OF; for
frame t, captures the displacement vector of each pixel
between two consecutive frames. However, due to the
extremely short time interval ( At ) involved, the
displacement magnitude of moving foreground objects
(e.g., people) is often comparable to the inherent, random
motion of the background (e.g., slight camera jitter or
environmental noise). This makes it challenging to
robustly distinguish foreground from background based
on a single two-frame optical flow calculation. While
background motion often appears random (e.g., small
back-and-forth or circular movements) over short periods,
this characteristic is not discernible instantaneously. Over
a sufficiently long duration, however, the random nature
of background motion causes its accumulated
displacement vectors to remain small, whereas the
consistent motion of foreground objects leads to steadily
growing displacement vectors.

To leverage this temporal characteristic, we introduce
the concept of Integral Optical Flow (IOF). The core idea
is intuitive: instead of relying on the optical flow between
two frames, we accumulate the optical flow vectors over a
series of consecutive frames. This accumulation amplifies
the motion signals of consistently moving foreground
objects while suppressing the random noise associated
with background motion.

For formal description, let I, denote the t-th frame of
a video sequence I, and I.(p) denote the pixel at
coordinates p in that frame. Let OF; represent the basic
optical flow field computed between frame t and ¢t + 1.
The Integral Optical Flow for frame t over an interval of
itv frames is denoted as IOF*. This IOF/* is a vector
field that records the accumulated displacement
information for all pixels in I, over a period of itv frames.
For any pixel I.(p), its integral optical flow vector
I0F}*(p) is computed as follows:

I0F (p) = ZiZ5 " OF ¢4 (Prs), 9)
where the path of the pixel is tracked recursively:

Pt+o =P
{pt+i = Pesi-1) + OF i (i=1) (Pesi-1)), 1 > 0.

This formulation ensures that the integral optical flow
at a starting point p in frame t is the vector sum of the
displacements along the trajectory that the pixel (or the
scene point it represents) follows through the subsequent
itv frames. This accumulated vector provides a more
robust and significant motion measure for detecting
coherently moving regions like crowds.

4.2  Moving crowd tracking flow

The overall procedure for tracking moving crowds is
executed according to the workflow illustrated in Figure
1. The process involves distinct computational steps for
different types of frames within a video sequence. For
every frame except the final one in the sequence, the basic
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Figure 1: Moving crowd tracking flow.

optical flow between it and its subsequent frame is
computed. Additionally, for frames at positions defined by
1+ n x itv (where n = 0), the integral optical flow is
calculated over an interval of itv frames, as defined in
Equation (9) of Section 4.1. The parameter itv is a key
frame interval parameter that determines the temporal
scope for motion accumulation.

The tracking pipeline initializes with the first frame of
the sequence (n = 0). Once its integral optical flow is
computed, the algorithm proceeds to detect all moving
crowds and the distinct motion patterns (groups) within
them. Each detected crowd and internal group is then
assigned a unique identifier (ID number), starting from 1
and sequentially incremented. This establishes the initial
state of the tracking system.

For all subsequent frames where integral optical flow
is calculated, specifically at frames 1 + n X itv (withn >
1), the tracking system updates the identities of the
evolving entities. This step involves managing the
inheritance of existing ID numbers by crowds and groups
that persist from the previous integral optical flow frame.
Simultaneously, newly emerged moving crowds and
motion patterns that were not present before are assigned
new, unique ID numbers. The specific rules governing this
ID inheritance and assignment are detailed in Section 2.3
(Identity Management), which ensures consistent tracking
across temporal evolution.

A critical aspect handled at each integral optical flow
frame is the prediction of fragment destinations. As
crowds and groups evolve, they may split into spatially
separated fragments. Based on the computed integral
optical flow vectors, the algorithm predicts the future
positions of these fragments. This prediction is essential
for correctly associating fragments in the current frame
with the reconstituted or merged entities they will form in
subsequent frames, thereby maintaining holistic tracking
of dynamically evolving objects.

5 Experimental results

This section presents a comprehensive evaluation of the
proposed crowd analysis framework using manually
annotated real-world video sequences. To visually
demonstrate the performance of our method, the
experimental results are illustrated with figures that
delineate the detected moving crowds and their internal
motion patterns. Specifically, the outer boundaries of
moving crowds are explicitly outlined, while distinct
motion patterns (groups) within each crowd are
highlighted using transparent masks. For clear

identification in these visualizations, a unique identifier is
assigned to each entity: moving crowds are prefixed with
the symbol #, and internal motion patterns are prefixed
with the symbol *.

5.1 In-door moving crowd tracking

The performance of the proposed tracking algorithm in an
indoor environment is demonstrated in Figure 2. The test
sequence is a surveillance video capturing a large hall
where numerous pedestrians walk towards various
destinations, with a minority making brief stops. The
video comprises 201 frames, each with a resolution of
856x568 pixels. The key parameters for the algorithm
were set as follows: the frame interval (itv) for integral
optical flow calculation was 10 frames; the displacement
magnitude threshold (T},) for crowd detection was 8 pixels;
and the motion feature difference threshold (Tyr) for
group determination was 1.5 pixels. Furthermore, to filter
out noise and very small moving objects, any detected
entity with an area of less than 500 pixels was disregarded
in the analysis.

Figures 2a, 2b, and 2c visually present the detection
and tracking results at frames 11, 21, and 31, respectively.
These subfigures illustrate the original video frames
overlaid with the detected crowd boundaries, internal
motion patterns (groups) highlighted with masks, and their
corresponding unique identifiers (crowds prefixed with #,
groups with *). For enhanced clarity in observing the
spatiotemporal evolution of the crowds, Figures 2d, 2e,
and 2f show the corresponding simplified representations
at the same frames, displaying only the outer boundaries
and the ID numbers of the tracked crowds.

A detailed analysis of the sequence reveals the
dynamic nature of crowd movement and interaction:

® At Frame 11 (Fig. 2a & 2d): In the bottom-left

corner, two distinct crowds are observed: crowd
#22 is moving predominantly upwards, while
crowd #17 is moving downwards. Crowd #13
exhibits more complex internal dynamics;
individuals in the center of this crowd are
moving rightwards, while those on the periphery
are moving upwards. This heterogeneity in
motion vectors within #13 leads to the detection
of six distinct internal motion patterns (*1 to
*6). The segmentation within crowd #10
provides an intuitive example of the group
determination  logic. Although all  four
individuals are moving in a generally upward
direction, slight variations in their precise
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motion vectors cause the algorithm to
distinguish the person positioned slightly higher
(assigned to group *6) from the cluster of three
below (assigned to group *9).

At Frame 21 (Fig. 2b & 2e): A significant
merging event occurs between crowds #17 and
#22. Following the ID inheritance rules defined
in Section 2.3, the merged entity retains the ID
#22 of the larger original crowd (#22) which
contributed the greater area to the new
formation.

At Frame 31 (Fig. 2c & 2f): The previously
merged crowd #22 undergoes a splitting event.
A portion of its constituents breaks away to form
a new, independent crowd assigned a new ID
(#60). The remainder of the original #22 merges
with the existing crowd #13 and some newly
appeared individuals. This combined entity
forms a single, larger crowd. Consistent with the
ID management protocol, this new crowd
inherits the ID #22 from its largest constituent
part. Furthermore, within the evolving scene, the
motion pattern *69 (located towards the middle-
left) is noteworthy. The individuals within this
group are moving to the right, creating a clear
motion contrast with the surrounding groups
which are exhibiting different movement
patterns.

5.2 Out-door moving crowd tracking

The proposed method is further evaluated using an
outdoor video sequence depicting a dynamic riot control
scenario, as illustrated in Figure 3. The video captures a
simulated confrontation: South Korean police forces are
lined up on the right side, while a group of rioter’s charges
from the left. This sequence, comprising 168 frames with

©

Figure 3: In-door moving crowd tracking results.

a resolution of 480x360 pixels, presents a challenging
environment with rapid movements and complex
interactions between two opposing groups. The algorithm
parameters were configured as follows: the frame interval
(itv) for integral optical flow was set to 10 frames; the
displacement threshold (T, ) was 10 pixels; and the
displacement difference threshold (T,,r) was 1. To filter
out noise, any detected moving object with an area smaller
than 300 pixels was ignored.

5.2.1 Initial Deployment and police maneuvers
(Frames 11 & 21)

Figures 3a and 3b present the detailed tracking results for
frames 11 and 21, respectively, while Figures 3g and 3h
provide the corresponding simplified views showing only
crowd boundaries and their IDs. In the initial phase, the
police line is the primary moving entity. The analysis
shows that police officers at both ends of the line advance
more quickly. As they move, their motion patterns become
increasingly complex and are segmented into distinct
groups by the algorithm, demonstrating its sensitivity to
variations in velocity and direction within a seemingly
cohesive line.

5.2.2 Engagement: rioters' charge and police
response (frames 81 & 91)

The scenario intensifies at frames 81 and 91, shown in
Figures 3c/3d (detailed results) and 3i/3j (simplified
boundaries). The rioters on the left emerge and begin a
rapid charge towards the police line. Meanwhile, the
police response evolves dynamically; some officers who
had previously moved out from the right flank have
already established new positions, while others are still in
transit. Concurrently, parts of the original police queue
begin to advance forward, creating a multi-directional and
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multi-group movement landscape that the algorithm
successfully tracks.

5.2.3 Climax and ID inheritance: merger and
identity transition (frames 101 & 141)

The climax of the interaction is captured in frames 101 and
141, displayed in Figures 3e/3f and 3k/3l. The rioters
continue their advance, eventually meeting the police in
the middle of the scene. A critical observation from Figure
3e is the merging of police subgroups. Specifically, the
police officers originally marked as motion patterns *24
and *35 in the previous frame (Fig. 3d) merge into a single
pattern, *24, and subsequently combine with other still-
moving police to form the larger crowd identified as #1.
The most significant event regarding identity
management occurs towards the end of the sequence. The
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crowd of rioters (initially with ID #20) merges with the
primary police crowd (ID #1) during the confrontation.
Following the merger, the police cease moving. According
to the ID inheritance rules defined in Section 2.3, and
because the rioters constitute the principal moving
component after the merger, the entire resulting
conglomerate inherits the 1D #1. This outcome correctly
reflects the final state of the scene, where the only
coherently moving entity is the single crowd of rioters,
which has effectively absorbed the identity of the larger
group it merged with.

5.3 Method evaluation

The task of moving crowd tracking shares similarities with
Multiple Object Tracking (MOT) but is fundamentally
distinct due to the dynamic and collective nature of crowds.

®

Figure 4: Out-door moving crowd tracking results.
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The key differentiator lies in the phenomena of splitting
and merging, where crowds can dissolve into smaller
groups or coalesce into larger ones. In contrast, objects in
standard MOT are typically treated as independent entities
that do not merge or split. To bridge this gap and provide
a comprehensive evaluation, we adopt established MOT
metrics from [17]—including precision, recall, MOTA,
and MOTP—uwhile also introducing two novel metric
pairs specifically designed to assess the algorithm's
performance in handling crowd merging and splitting
events.

5.3.1 Standard MOT metrics

The following standard metrics are utilized:

(1) True Positives (TP): A predicted object mask is
considered a true positive if its Intersection over Union
(loU) with a ground-truth mask exceeds a predefined
threshold (e.g., loU > 0.5).

(2) False Positives (FP): This refers to predicted
object masks that do not correspond to any real object in
the ground truth. FP represents the total count of such
erroneous detections across the entire video sequence.

(3) False Negatives (FN): This denotes real objects in
the ground truth that the algorithm fails to detect. FN
represents the total count of these missed detections in the
sequence.

(4) Precision: This metric quantifies the accuracy of
the detections, answering the question: "Of all the crowds
detected, what proportion are genuine?" It is calculated to

minimize false detections.
TP

TP+FP’ (10)

(5) Recall: This metric measures the algorithm's
ability to find all genuine crowds, answering the question:
"Of all the actual crowds present, what proportion did we
successfully detect?" It is calculated to minimize missed
cases.

Precison =

(11)

(6) ID Switches (IDSW): An identity switch occurs
when the tracking identity of a crowd is incorrectly
changed. IDSW counts the total number of such identity
changes.

(7) Multiple Object Tracking Accuracy (MOTA):
This metric provides a holistic measure of tracking
performance by combining errors from false positives,
false negatives, and identity switches. It assesses the
tracker's effectiveness in detecting targets and maintaining

consistent trajectories, independent of localization
precision.
MOTA = 1 - T2 (12)

where GT represents the total number of ground-truth
objects in the entire video sequence.

(8) Multiple Object Tracking Precision (MOTP): This
metric evaluates the average accuracy of the spatial
localization for all correctly tracked targets (TPs). It is
defined as the average loU between the predicted masks
and their corresponding ground-truth masks.

MOTP = M’
TP

(13)
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where IoUp is the Intersection over Union between a
True Positive detection and its matched ground-truth mask.

5.3.2 Proposed metrics for crowd dynamics

Given the specific challenges of crowd tracking, it is
insufficient to rely solely on standard MOT metrics. Our
method is designed to track moving crowds; therefore,
static crowds are intentionally not detected, which can
inherently lower recall and MOTA scores in scenes
containing stationary groups. Furthermore, the algorithm's
identity management strategy—where a smaller crowd
merging into a larger one loses its ID and is assigned a new
one upon splitting—can lead to ID switches during
transient interactions like crossing without genuine
merger. To address these nuances and provide a fair
evaluation, we propose two new pairs of metrics focused
on the core crowd behaviors of merging and splitting:
®  Merging Precision (MPrecision) and Merging Recall

(MRecall): These metrics evaluate the algorithm's

accuracy in detecting genuine merging events and its

ability to identify all actual merges, respectively.

M

MPrecision = ——2 (14)
TPM+FPM
MRecall = ———. (15)
TPM+FNM
®  Splitting Precision (SPrecision) and Splitting Recall
(SRecall): These metrics evaluate the algorithm's

accuracy in detecting genuine splitting events and its
ability to identify all actual splits, respectively.

SPrecision = ——> , (16)
TPS+FPS
SRecall = . 17
TPS+FNS

Here, TPM, FPM, FNM represent the true positives,
false positives, and false negatives for merging events.
Similarly, TPS, FPS, FNS represent the corresponding
quantities for splitting events.

5.3.3 Datasets and evaluation setup

The evaluation was conducted on three video sequences:
®  Hall: The indoor surveillance video from Section 5.1.
® Riot Control Exercise: The outdoor scenario from
Section 5.2.
® Mall: A new video sequence depicting people
shopping in a mall (resolution: 640x480, 200
frames).
The integral optical flow was calculated with a frame
interval (itv) of 10 for all sequences. The comprehensive
evaluation results are presented in Table 1.

5.4 Discussion

This section provides a comprehensive discussion on the
performance, advantages, and limitations of the proposed
moving crowd detection and tracking framework, based
on the experimental results presented in the previous
sections.

5.4.1 Advantages and application potential

The proposed method successfully enables the detection
and tracking of moving crowds in video sequences. This
capability forms a critical foundation for subsequent high-
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Table 1: Evaluation results. TPM, FNM and FPM are true positives, false negatives, and false positives of merging,
respectively; TPS, FNS and FPS are true positives, false negatives, and false positives of splitting, respectively;
MPrecision, MRecall, SPresion and SRecall are precision, and recall of detection, merging, and splitting, respectively.

Video Hall Riot Control Exercise Mall
TP 216 29 56
FN 54 18 18
Detection FP 48 8 15
Precision 0.818 0.784 0.789
Recall 0.800 0.617 0.757
ID switches 49 6 17
TPM 19 3 7
FNM 2 1 2
FPM 1 0 1
MPrecision 0.950 1.000 0.875
Evolution MRecall 0.905 0.750 0.778
TPS 28 2 6
FNS 0 0 1
FPS 1 0 2
SPrecion 0.966 1.000 0.750
SRecall 1.000 1.000 0.857
MOTP 0.926 0.783 0.816
MOTA 0.441 0.319 0.324

level analysis of crowded scenarios, such as crowd
behavior recognition and abnormal event detection. A
significant advantage of our approach is that it is training-
free, relying on optical flow and spatial-temporal
constraints rather than large annotated datasets, which
contributes to its computational efficiency and ease of
implementation in various environments.

The method's strength is further highlighted by
comparing it with our prior work [14]. While the method
in [14] could recognize typical crowd behaviors within
specific regions at a given time, it lacked the capability to
track crowd evolution. In contrast, the method proposed
herein monitors the entire lifecycle of crowds—including
their emergence, merging, splitting, and dissipation. This
ability to capture long-term motion trajectories and
structural changes makes the current method a far more
suitable candidate for understanding complex crowd
behaviors that unfold over extended periods.

5.4.2 Performance analysis and influencing
factors

The experimental evaluation on both indoor and outdoor
videos reveals several key factors influencing the method's
performance:

(1) Impact of Crowd Structure: The accuracy of
detecting merging and splitting events is highly dependent
on the spatial coherence of the crowds. The method
performs best when crowd movement patterns are
structured and cohesive. Conversely, performance
decreases when crowds are scattered or exhibit highly
irregular motion, as the spatial constraints for defining a
unified crowd become less reliable.

(2) Sources of Error in Standard MOT Metrics: The
analysis of standard tracking metrics (Section 5.3)
identifies primary sources of error.
®  Precision is primarily affected by noise in the optical
flow computation. Inaccurate flow vectors can lead
to false positive detections.

®  Recall is mainly impacted by the presence of static
crowds. Since the method is designed to detect
moving entities, completely stationary groups are
intentionally ignored, leading to false negatives in
scenes with a mix of moving and non-moving
people.

® MOTA (Multiple Object Tracking Accuracy) is
influenced by Identity Switches (IDSW). As
demonstrated in Sections 5.1 and 5.2, these switches
frequently occur during complex crowd interactions
like merging and splitting, which is an inherent
challenge in crowd (as opposed to individual object)
tracking.

(3) Explanation of MOTP Performance: The MOTP
(Multiple Object Tracking Precision) value, which
measures localization accuracy, is generally higher in
scenarios where moving crowds dominate the scene. This
is because the integral optical flow calculation provides a
robust representation of collective motion, leading to more
precise spatial delineation of the moving aggregates.

5.4.3 Limitations and future work

Despite its advantages, the method has limitations. The
dependence on optical flow makes it susceptible to
illumination changes and rapid motion. Furthermore, the
heuristic rules for ID management during merge/split
events, while effective, could be refined. Future work will
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focus on integrating more robust optical flow techniques
and exploring data-driven approaches to improve ID
management without sacrificing the method's efficiency.
Validation on larger and more complex datasets will also
be a priority.

6 Conclusion

Crowd motion analysis represents a pivotal yet
challenging frontier in computer vision. While significant
hurdles exist in the accurate detection of crowds, the tasks
of tracking and analyzing their dynamic movements
present even greater complexities. This paper has built
upon our previous research by introducing a novel
approach centered on integral optical flow for the
detection and tracking of moving crowds. Our method
effectively monitors the entire evolutionary process of
crowds, including their emergence, merging, splitting, and
dissipation, thereby providing a robust foundation for
understanding complex crowd behaviors.

The experimental studies conducted demonstrate that
moving crowds can be effectively detected and tracked
across various scenarios. The results visually articulate the
status and dynamic evolution of crowds, validating the
practicality of our approach. A key advantage of the
proposed method is its training-free nature, which allows
for efficient application without the need for large
annotated datasets. However, the performance is
influenced by factors such as the spatial coherence of
crowds and the inherent noise in optical flow computation.

Future research will focus on several promising
directions. We plan to delve deeper into the analysis of
crowd/group movement information and conduct more
detailed experimental evaluations of the proposed crowd
parameters. The objective is to develop more precise
descriptors for the evolution process of crowds, which
could significantly enhance the understanding of crowded
scenes. Furthermore, integrating advanced techniques for
handling complex interactions and exploring applications
in abnormal behavior detection will be a priority.
Ultimately, these efforts aim to provide richer information
to support a higher-level, semantic understanding of
crowded scenarios, paving the way for more intelligent
video surveillance systems.
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