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In the context of complex data warehousing, Typically, the analysis and decision-making process for 

Data Warehouses schematized in a relational star model is conducted through OLAP (On-Line 

Analytical Processing) queries. These queries are generally complex, characterized by several 

operations of selections, joins, grouping and aggregations on voluminous tables. Which requires a lot of 

computing time and therefore a very high response time. The cost of running OLAP decision queries on 

large tables is very high. The reduction of this cost becomes essential to allow decision-makers to 

interact within a reasonable time frame. The objective of this study is to enhance system performance by 

minimizing the response time of OLAP decision-making queries. The approach proposed in this article 

aims to search for frequent patterns for the automatic selection of binary join indexes used for reducing 

the execution costs of OLAP decision-making queries. To automatically generate the configuration of 

binary join indexes minimizing response time, an implementation of the CFPGrowth++ frequent pattern 

matching algorithm was well carried out and then applied to a load of queries on a test Data Warehouse 

created using the Analytical Processing Benchmark 1 (ABP-1) test bench, in order to validate our 

approach. The results of the experiment indicate that the index configuration produced by the proposed 

approach leads to a significant improvement in performance improvement of approximately 75%. We 

note that for a large portion of the load, execution time is significantly improved after applying our 

approach. The overall query execution time decreased compared to the general context. The overall 

execution time for queries decreased from 20,032.57 seconds before the application of our approach to 

5,388.49 seconds after applying our approach. The experiments carried out show that the index 

configuration generated by the proposed approach allows a very performance gain. 

Povzetek: Predlagana metoda samodejne izbire binarnih indeksov za OLAP z algoritmom 

CFPGrowth++ zmanjša čas izvajanja poizvedb za približno 75 %.

1 Introduction 
In decision-making computing, Data Warehouses have 

still experienced a very significant boom today. They are 

fed by analytical data supporting a set of analysis 

processes coming from different distributed and 

heterogeneous sources [1][2][3][4] and their volumes are 

destined to increase. 

In 1990, Bill Inmon conceptualized the Data 

Warehouse as a comprehensive and dynamic data 

repository designed to be subject-oriented, integrated, 

time-variant, and non-volatile, serving as a valuable 

resource for management decision-making [5]. 

In the data warehouse, information is structured in 

the configuration of a multidimensional cube [4].  

 

 

 

 

 

 

Here, each dimension acts as an analytical axis, and each 

cell encapsulates the analyzed fact [6].  

This organization is specifically designed to proficiently 

facilitate the operations of online analysis [7], commonly 

known as OLAP (online analytical processing) [4]. 

The ROLAP (Relational On-Line Analytical 

Processing) relational model is introduced for physical 

storage. 

Data warehouses are usually modeled by a star 

schema [8]. This schema is characterized by a fact table 

very voluminous (Giga or Terra Bytes) linked by foreign 

keys to a set of smaller size dimension tables thus 

forming a star schema (Figure 1). 
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Figure 1 : The relational model for storing a data 

warehouse. 

Queries formulated within a star schema exhibit 

significant complexity, involving the integration of joins, 

selections, and aggregations. Specifically, these joins, 

denoted as star joins, traverse the entirety of the fact 

table. Selection operations in this context, referred to as 

selection predicates, are executed on dimension attributes 

identified as selection attributes. Achieving satisfactory 

performance in the context of intricate decisional queries 

and their extended response times poses a significant 

challenge for Data Warehouse administrators [9]. 

Effectively addressing this challenge requires 

administrators to possess a robust understanding of 

optimization structures [10] and to apply logical and 

physical design methods for selecting the most optimal 

design policy. 

Within the fact table, attributes comprise both 

activity measures and foreign keys leading to dimension 

tables [11]. This model's advantage lies in its utilization 

of pre-existing database management systems, resulting 

in a reduction of implementation costs. However, the 

challenge persists, as optimizing the performance of Data 

Warehouses remains an increasingly critical concern. 

In this study, the concept of optimal performance 

specifically refers to the reduction of query execution 

costs in OLAP (Online Analytical Processing) 

environments, with a particular focus on minimizing 

query response time. Since decision-support queries in 

data warehouses often involve complex join operations 

over large volumes of data, improving response time is 

crucial for maintaining system efficiency and user 

satisfaction [12]. 

While other performance aspects such as storage 

space, index maintenance overhead, and system 

scalability are important considerations in data 

warehouse optimization, this paper primarily targets 

response time reduction as the key performance metric. 

The proposed approach achieves this by selecting 

effective binary join indexes based on frequent pattern 

discovery, using the CFPGrowth++ algorithm with 

multiple support thresholds to enhance query processing 

efficiency. 

Performance optimization in data warehouses is 

primarily concerned with reducing the query response 

time for decision-support queries. This allows users to 

quickly obtain the information they need, improving the 

overall efficiency of analysis and decision-making. In 

this work this is achieved by minimizing the query 

response time for decision-support (OLAP) through 

efficient Selection of binary join indexes. 

Indexing is one of the important techniques used in 

the physical design phase to optimize OLAP queries [13] 

in relational Data Warehouses. In this research paper, 

we're using an indexing approach. 

The proposed approach is designed to assist Data 

Warehouse administrators and system designers in 

making informed decisions regarding index selection to 

optimize query performance. 

Although the solution is partially automated - as it 

automatically extracts frequent query patterns and 

suggests candidate binary join indexes - human expertise 

is still valuable in the final decision-making process. 

Administrators need to have a basic understanding of the 

data warehouse schema, query workload characteristics, 

and index management principles to evaluate the 

relevance of the recommended indexes before 

implementation. 

In practice, this approach serves as a decision-

support tool rather than a fully autonomous system. It 

aims to reduce the complexity of index selection by 

narrowing down the most relevant candidates based on 

query patterns, leaving administrators with clearer, data-

driven recommendations. 

Some of these techniques inherit from those 

proposed in the context of traditional databases such as B 

trees [14][15]. Others are proposed to optimize selections 

defined on low cardinality attributes such as binary 

indexes. 

Binary join indexes have demonstrated their utility in 

mitigating the execution costs of decisional OLAP 

queries formulated on a relational star schema. [13]. 

The task of index selection is categorized as an NP-

Complete problem [16]  due to its inherent complexity, 

stemming from the fact that the number of potential 

indexes grows exponentially with the total number of 

attributes present in the Data Warehouse [17][18][19]. 

Given the aforementioned challenge, our focus lies 

in the automatic selection of a set of indexes 

(configuration) minimizing the cost of executing OLAP 

queries. 

By mining frequent itemsets from OLAP query 

workloads, we can identify the most commonly accessed 

attribute combinations. Creating indexes based on these 

patterns ensures that the most relevant data retrieval 

paths are optimized, leading to faster query execution, 

reduced response times, and more efficient resource 

utilization. 

In the context of OLAP (Online Analytical 

Processing), queries often involve analyzing large 

datasets with multiple dimensions and measures. To 

make these queries faster, databases use indexes special 

data structures that help retrieve data quickly. 
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Now, frequent itemsets come from data mining 

techniques, especially association rule mining. They 

identify combinations of items or attribute values that 

appear together often in the data. 

Here's how these frequent itemsets can help optimize 

OLAP query execution: 

Identifying Common Patterns: 

By discovering which attribute combinations occur 

frequently, the system can prioritize creating indexes on 

those combinations. This means that when a query 

involves these attributes, the data warehouses can 

quickly locate relevant data without scanning the entire 

dataset. 

Selective Index Creation: 

Instead of indexing every possible combination 

(which can be costly), the system uses frequent itemsets 

to select only the most relevant attribute combinations. 

This targeted approach ensures efficient use of storage 

and maintenance resources. 

Improved Query Performance: 

When an OLAP query involves dimensions that 

match these frequent itemsets, the pre-existing indexes 

allow for rapid data retrieval, significantly reducing 

query response times. 

Dynamic Optimization: 

As data evolves, the system can periodically re-

analyze data to find new frequent itemsets, updating 

indexes accordingly. This dynamic approach ensures that 

the indexing strategy remains aligned with actual usage 

patterns. 

Leveraging frequent itemsets helps in smart index 

selection by focusing on the most commonly co-

occurring attribute combinations. This targeted indexing 

accelerates OLAP queries, making data analysis more 

efficient and responsive. 

The decision to adopt CFPGrowth++ over alternative 

frequent itemset mining algorithms is based on several 

key advantages that align with the specific requirements 

of OLAP index selection: 

Multiple Minimum Support Thresholds: 

Unlike classical algorithms such as Apriori, CLOS, 

or the original FP-Growth, which operate with a single 

global support threshold, CFPGrowth++ introduces the 

capability to assign different minimum support 

thresholds to individual items. This flexibility is crucial 

in OLAP environments, where data distributions are 

often skewed and certain attributes or combinations 

appear frequently within specific query contexts but 

remain infrequent globally. By supporting multiple 

thresholds, CFPGrowth++ can identify both globally 

frequent and contextually important patterns, leading to a 

more relevant and effective set of candidate indexes. 

Improved Efficiency and Scalability: 

CFPGrowth++ builds upon the FP-Tree structure but 

optimizes it by reducing redundant node traversals and 

minimizing memory overhead through enhanced pruning 

strategies.  

 

 

 

 

This makes it better suited for handling the large, high-

dimensional datasets commonly found in data 

warehouses, where conventional algorithms like Apriori 

suffer from high computational costs due to repeated data 

warehouses scans and exponential candidate generation. 

Suitability for Index Selection in Decision-Support 

Systems: 

Index selection in OLAP systems demands mining 

not just frequent patterns, but patterns that contribute 

meaningfully to query optimization. CFPGrowth++'s 

capacity to uncover rare yet strategically valuable 

itemsets thanks to its variable support thresholds enables 

the discovery of indexes that specifically target 

performance bottlenecks in diverse and heterogeneous 

workloads. 

Reduced Computational Overhead During Mining: 

Compared to algorithms CLOS, CFPGrowth++ 

demonstrates lower memory consumption and faster 

runtime for datasets with varying item frequencies. This 

balance between computational efficiency and mining 

depth makes it a practical choice for real-time or near-

real-time decision-support applications. 

CFPGrowth++ was chosen because it combines high 

efficiency, flexibility in support thresholds, scalability, 

and the ability to handle large, complex datasets features 

that are vital for effective and practical index selection in 

OLAP systems. Its advantages over other algorithms 

make it particularly well-suited for our goal of reducing 

query execution costs through intelligent binary join 

index recommendations. 

The main contribution of this study is an 

implementation of the CFPGrowth++ frequent pattern 

matching algorithm To automatically generate the 

configuration of binary join indexes minimizing response 

time and select the frequent itemsets. Then for the 

approach validation  to a load of queries applied on a test 

Data Warehouse created using ABP-1 test bench [20]. 

The article is orgnized into five sections. Section 2 

poutlines the overall workflow adopted in the study, 

emphasizing the integration of frequent itemset mining 

using CFPGrowth++ with automatic binary join index 

(BJI) selection for OLAP query optimization. Section 3 

provides an overview of the primary studies that have 

been advanced to tackle the intricacies of binary join 

index selection, with a specific emphasis on the data 

mining application techniques for resolution. Then, 

Section 4 delves into our unique approach to the 

selection of frequent itemsets, achieved through the 

adaptation of the CFPGrowth++ algorithm. Section 5 

details the experimental phase, offering validation for our 

proposed binary join index selection methodology. 

Section 6 compares the method against traditional 

indexing approaches, Furthermore, it acknowledges 

practical challenges such as index maintenance, 

scalability for high-dimensional schemas, and the 

absence of a fully integrated cost model. Lastly, in 

Section 7, the article concludes by encapsulating the 

main findings and proposing avenues for future research. 
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2 Proposed workflow, novelty, and 

main findings 

2.1 Proposed workflow 

The proposed approach aims to enhance the performance 

of OLAP query execution in data warehouses by 

automatically selecting binary join indexes (BJIs) based 

on frequent pattern mining techniques. The workflow of 

the study is structured as follows : 

1. OLAP Query Workload Collection : 

Extraction of historical OLAP queries containing 

join and selection predicates from a simulated decision-

support workload based on the ABP-1 benchmark. 

2. Transaction Dataset Generation: 

Transformation of each query into a transaction 

containing attributes involved in selection and join 

predicates. 

3. Frequent Itemset Mining with 

CFPGrowth++: 

Application of an improved CFPGrowth++ 

algorithm with multiple minimum support thresholds to 

extract frequent attribute combinations from the 

transaction dataset. 

4. Binary Join Index Candidate Generation: 

Mapping of frequent itemsets into candidate BJI 

configurations. 

2.2 Novelty of the study 

This work introduces several novel contributions to the 

domain of OLAP optimization: 

• Integration of a Multi-support 

CFPGrowth++ Algorithm: 

Unlike conventional approaches using single-support 

thresholds, our method applies multiple minimum 

supports to better capture frequent attribute combinations 

of varying significance. 

• Automatic Binary Join Index Selection 

Framework: 

The proposed system automates the identification 

and selection of BJIs from frequent query patterns, 

reducing the manual intervention traditionally required in 

index configuration. 

• Statistically Validated Performance 

Improvement: 

The study not only demonstrates query performance 

gains but also rigorously validates these results through 

statistical analysis, including confidence intervals and 

significance tests. 

• Practical Benchmarking on a Customized 

ABP-1 Environment: 

The experimental setup leverages a workload 

derived from the ABP-1 benchmark, enhanced with real-

world query structures, ensuring realistic and relevant 

performance validation. 

 

 

2.3 Main findings 

Through extensive experimental evaluation: 

• The proposed approach achieved a 

performance improvement between 74.20% 

and 75.96% on OLAP query workloads. 

• Statistical analysis confirmed these 

improvements to be significant (p < 0.001) 

at a 95% confidence level. 

• The approach proved effective across 

various query types, particularly for 

complex multi-join and range aggregation 

queries. 

The comparison of Recent Methods Related to 

OLAP Optimization and Indexing is represented in Table 

1 : 

Table 1 : Summary of recent methods related to OLAP 

optimization and indexing 

Approach Features Limitations 

CFPGrowth++ 

(Proposed) 

Utilizes an 

enhanced frequent 

pattern mining 

algorithm to 

identify frequent 

motifs, supporting 

multiple support 

thresholds for 

flexible 

exploration. Aims 

to reduce query 

execution costs in 

OLAP 

environments. 

Computational 

complexity may 

increase with 

very large 

datasets; 

effectiveness 

depends on the 

quality of 

identified motifs. 

Traditional 

Apriori-based 

methods 

Use classic 

frequent pattern 

mining with 

straightforward 

implementation. 

Suitable for 

smaller datasets 

but can be 

computationally 

intensive. 

Scalability 

issues; limited 

support for 

multiple support 

thresholds; less 

efficient for 

large-scale data. 

FP-Growth 

Efficient pattern 

mining without 

candidate 

generation, faster 

than Apriori. 

Less flexible in 

handling 

multiple support 

thresholds; may 

still face 

challenges with 

very large 

datasets. 

Existing index 

selection 

approaches 

Often rely on 

heuristic or rule-

based methods, 

focusing on 

specific query 

workloads. 

May not adapt 

well to dynamic 

data or varying 

query patterns; 

limited in 

discovering 

complex motif 

structures. 
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This comparison illustrates that our CFPGrowth++ 

approach offers a flexible and efficient method for 

discovering frequent motifs, which can significantly 

improve index selection for OLAP query optimization. 

While it introduces some computational overhead, its 

ability to handle multiple support thresholds and explore 

complex patterns provides a notable advantage over 

traditional methods. 

2.4 Benchmark dataset comparison 

The ABP-1 test bench was selected as it offers a 

balanced schema structure and a set of decision-support 

queries typical in OLAP workloads. It also allows for 

controlled workload scaling and realistic index selection 

scenarios, making it better suited for validating index 

optimization approaches compared to standard synthetic 

benchmarks. The Benchmark Dataset Comparison is 

represented in Table 2 : 

Table 2 : Benchmark dataset comparison 

Benchmark / 

Dataset 

Schema 

Complexity 

Query 

Diversity 

Realism 

for 

Decision-

Support 

Workloads 

Used 

in 

This 

Study 

TPC-DS High 
Very 

High 
Moderate No 

Star Schema 

Benchmark 

(SSB) 
Moderate 

Mediu

m 
Low No 

ABP-1 

(Customized 

Version) 
Moderate High High Yes 

3 Related works 

3.1 Binary join index selection problem 

The selection of indexes in Data Warehouses is a 

difficult problem [21] seen the large number of candidate 

attributes of dimension tables participant in the 

construction of indexes [22]. 

The problem consists on building an index 

configuration that minimizes the cost of executing a set 

of frequent OLAP queries. 

To reduce the number of potential attributes in the 

construction of indexes, Numerous previous works 

proposed a data mining technique [23][24][17][25] in 

order to generate frequent itemsets (patterns) which will 

constitute the candidate attributes in the indexing 

process. 

Several research works have shown the usefulness of 

automatic index selection [26][22] from a set of 

candidate indexes extracted from a query by appealing to 

using administrator expertise [10][21][14].In the context 

of Data Warehouses, binary join indexes are well suited 

to speed up OLAP queries known for their large number 

of join operations [13]. 

Recent approaches [10][6] propose the use of data 

mining techniques to generate the set of candidate 

indexes to reduce the significant number of potential 

candidate attributes for the construction of indexes. They 

have exploited in particular the technique of searching 

for frequent itemsets for the generation of candidate 

indexes [27][28]. The basic idea is inspired by the 

frequent itemsets search technique, widely used in data 

mining. The more frequently an attribute or group of 

attributes is present in the query load, the more valuable 

it is considered in the index selection process. 

Prior work in the field of index selection, such as the 

studies by Aouiche et al. [27] and Bellatreche et al. 

[28][29], has laid important groundwork by exploring the 

use of frequent pattern mining techniquesspecifically, the 

Close algorithm to identify candidate attributes for binary 

join index configuration. However, these approaches 

have notable limitations. For instance, Aouiche et al. 

focus primarily on the frequency of attribute usage 

within query workloads, which can lead to the 

elimination of potentially beneficial indexes on attributes 

from large dimension tables that are infrequently 

accessed but still critical for join operations. Bellatreche 

et al. address this issue by incorporating additional 

parameters, such as table size and system page size, to 

refine index selection, but their method still relies on the 

traditional Close algorithm, which can generate an 

overwhelming number of frequent patterns, impacting 

scalability and efficiency. 

Our approach explicitly addresses these limitations 

by introducing the CFPGrowth++ algorithm, an 

enhanced and scalable method for mining frequent 

itemsets. Unlike previous algorithms like Apriori or 

Close, CFPGrowth++ is designed to be faster, more 

efficient, and capable of handling large volumes of data 

with multiple support thresholds. This allows for a more 

nuanced and precise selection of index candidates,  

thereby improving the effectiveness of index 

configuration for OLAP query optimization. 

The novelty of our approach lies in leveraging 

CFPGrowth++ to overcome the scalability and efficiency 

challenges faced by prior methods, enabling more 

accurate and comprehensive index selection that better 

supports complex, large-scale data environments. This 

makes our contribution both necessary and timely in 

advancing the state of the art in index optimization 

techniques. 

Here is a synthetic comparison of frequent pattern 

discovery algorithms used in previous studies on index 

selection techniques. 

Table 3 : Synthetic comparison of frequent pattern 

discovery algorithms 

Benchmarks 

used 
Apriori 

FP-

Growth 
CLOSE 

CFPGrowth

++ 

Complexity 

High 

(multiple 

passes) 

Modera

te 

(fewer 

passes) 

Modera

te (but 

more 

filterin

g) 

Low 

(optimized

) 

Memory 

High 

(candidat

e 

generatio

Modera

te (FP-

tree) 

Low 

(closed 

pattern

s) 

Low 

(partitioni

ng) 
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n) 

Methodologi

es 

Frequent 

patterns 

Freque

nt 

pattern

s 

Closed 

pattern

s 

Frequent 

patterns 

Ease of 

implementat

ion  
Simple 

Modera

te 

Compl

ex 
Complex 

Performanc

e outcomes 
Poor Good Good Very good 

3.2  Approaches based on frequent 

itemsets 

The discovery of frequent itemsets consists in finding 

groupings of items appearing together with a significant 

frequency. The discovery of these frequent itemsets is the 

main step in solving a number of useful knowledge 

extraction problems. 

Formally, the binary join index selection issue  is 

formulated as an optimization problem in the following 

form: given: 

(1) A Data Warehouse modeled by a star schema 

formed by a fact table F and D = {D1, ...,Dd} dimension 

tables, 

(2) A set of most frequent queries Q = {q1, ..., qm} 

with their access frequencies f = {f1, ..., f m},  

The objective is to select a set of indexes that 

reduces the query execution cost. 

4 Proposed approach 

4.1  Search for frequent itemsets for index 

selection 

We believe that the relevance of an index is strongly 

correlated with the frequency of its use in the set of 

queries in a load.Data mining is a growing field of 

research aimed at extracting knowledge from enormous  

amounts of data.In this article, we are interested in the 

extraction of frequent itemsets. 

The objective is to extract knowledge useful for the 

choice of indexes. The search for frequent itemsets is an 

appropriate way to account for this correlation and thus 

facilitate the choice of indexes to be built. 

4.2  Frequent itemsets 

The problem of research frequent itemsets can be 

formulated as follows : 

Let I = {i1, i2, ... im} a set of m distinct symbols 

called itemset and B = t1, . , tn a database of n 

transactions. Each transaction is composed of a subset of 

items I' ⊆ I. A subset I' of size k is called a k-itemset. A 

transaction ti contains a pattern I' if and only if I' ⊆ ti. 

The support of a pattern I' is the proportion of 

transactions in B that contain I'. The support is given by 

the following 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼′) =
|{𝑡 ∈ 𝐵, 𝐼′ ⊑ 𝑡}|

|{𝑡 ∈ 𝐵}|
 

Figure 2 : The support of a pattern. 

Support defined as the absolute frequency of an 

itemset (or index) in the query workload. 

Minimum support will refer to the threshold value 

that is applied during the frequent itemset mining phase 

to determine the minimum frequency required for an 

itemset to be considered frequent. 

A pattern whose support is greater than or equal to 

the minimum threshold of minsup support, defined by the 

user, is called a frequent pattern. 

The objective is to select a set of indexes reducing 

the cost of query execution. 

4.3  CFPGrowth++ algorithm 

The CFPGrowth++ algorithm, an extension of 

CFPGrowth, is devised for the extraction of frequent 

itemsets through the incorporation of multiple minimum 

support thresholds [30][31]. Its application involves 

inputting a transaction database alongside a list denoting 

minimum support threshold, wherein each threshold 

corresponds to the requisite minimum support for a 

specific item. 

A transaction database in this context is 

characterized as a compilation of transactions, each 

constituting a unique list of items or symbols. For 

illustration, contemplate a transaction database 

encompassing 5 transactions (T1, T2, ..., T6) and 8 items 

(A, B, C, D, E, F, G, H). As an instance, transaction T1 

encapsulates the set of items {A, C, D, F}. Notably, the 

stipulation that an item cannot recur within the same 

transaction is upheld, and items are presumed to be 

arranged in lexicographical order within a given 

transaction. 

The list of minimum support threshold is provided as 

input for the algorithm : 

Table 4 : Example of transactions 

Transaction ID Items 

T1 {A, C, D,F} 

T2 {A, C, E, F, G} 

T3 {A, B, C, F, H} 

T4 {B, F, G} 

T5 {B, C} 

Table 5 : The list of minimum support thresholds 

supported to be used for the items 

Items 
Minimum support 

threshold 

A 1 

B 2 

C 3 

D 3 

E 2 

F 3 

G 2 

H 1 
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The support of an itemset is quantified by the count 

of transactions that encompass said itemset. An itemset 

attains the status of a frequent itemset when its support 

equals or exceeds the most conservative minimum 

support threshold among the individual thresholds 

assigned to its constituent items. For instance, consider 

the itemset {A, B, H}, which attains the status of a 

frequent itemset as it appears in one transaction (T3). 

Crucially, its support surpasses the minimum support 

thresholds associated with its individual items: item 1, 

item 2, and item 8, with respective minimum support 

thresholds of 1, 2, and 1. 

In this study, we determine multiple minimum 

support thresholds based on the distinct characteristics 

and importance of each item within the dataset. Unlike 

traditional frequent itemset mining approaches that rely 

on a single global minimum support value, our method 

assigns a specific minimum support threshold to each 

item according to its frequency and relevance in the 

context of OLAP query optimization. This approach 

ensures that both frequent and less frequent, but 

potentially valuable, itemsets can be identified without 

being excluded by a uniform threshold. 

The multiple thresholds are defined prior to the 

frequent pattern mining process by analyzing the 

distribution of item frequencies within the transaction 

database. Items with higher occurrence rates are assigned 

higher minimum support values, while those with lower 

frequencies, yet significant in terms of query 

performance optimization, are given lower thresholds. 

This strategy allows a more flexible and adaptive mining 

process. 

The CFPGrowth++ algorithm, which we 

implemented and enhanced for this work, efficiently 

handles these multiple support values by extending the 

classical FP-Growth framework. It integrates the 

assigned thresholds during the construction of the 

conditional FP-trees and throughout the recursive pattern 

generation process. This enables the discovery of 

frequent itemsets that respect their corresponding 

minimum support constraints, ultimately supporting the 

identification of relevant binary join indexes for reducing 

the execution costs of OLAP decision-support queries. 

4.4 Approach for automatic index selection 

The proposed approach, whose general principle is 

represented in Figure 3, consists of the following steps : 

 

Figure 3 : Proposed approach for constructing Bitmap 

Join Indexes. 

1) Selection of a load of OLAP decisional queries, 

assumed to be representative, of the system activity. 

2) Structuring of the indexable attributes contained 

in the load in the form of a transactional database where 

the queries represent the transactions and the attributes 

represent the patterns. This represents our context for 

extracting frequent itemsets. 

3) Generation of candidate indexes by the 

CFPGrowth++ algorithm implemented in Java. 

4) Comparison of the response times of the 

execution of the OLAP decisional queries without 

indexes and then with the indexes generated by the 

implementation of CFPGrowth++. 

Technical implementation details : 

• Detection of candidate attributes : 

Candidate attributes are detected by analyzing a 

representative workload of OLAP decisional queries. 

Specifically, we parse the SQL query statements to 

identify attributes involved in WHERE clauses (selection 

predicates), GROUP BY clauses, and JOIN conditions. 

These attributes are considered indexable since they 

directly impact query performance in a decision-support 

context. 
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• Criteria for attribute selection : 

The primary selection criterion is the frequency of an 

attribute’s appearance within the query workload. 

Attributes that frequently appear together in queries are 

treated as potential candidates for binary join indexes. 

• Application of the data sheet technique: 

The data sheet technique is applied by transforming 

the query workload into a transactional format where 

each query represents a transaction and the indexable 

attributes it contains form the transaction items. This 

transactional dataset is then used as input for the 

CFPGrowth++ algorithm to extract frequent itemsets. 

• Technical details of selecting and 

Creating bitmap join indexes : 

The frequent itemsets generated by CFPGrowth++ 

serve as candidate index configurations. Each frequent 

itemset represents a combination of attributes that often 

co-occur in queries, making them suitable candidates for 

indexing. The actual creation of Bitmap Join Indexes is 

simulated in our test environment by generating index 

creation scripts based on these frequent attribute 

combinations. Subsequently, query execution times are 

measured before and after applying these indexes to 

evaluate their impact on performance. 

Detailed Pseudocode for the Adapted CFPGrowth++ 

Algorithm for Automatic Bitmap Join Index Selection in 

OLAP 

Context : 

This adapted CFPGrowth++ algorithm for automatic 

selection of Bitmap Join Indexes aimed at improving 

OLAP query performance. The general approach 

involves analyzing a representative workload of OLAP 

queries to identify frequently co-accessed attributes 

(frequent itemsets) using multiple support thresholds. 

These frequent attribute combinations are then used to 

configure candidate bitmap join indexes. 

Pseudocode: adapted CFPGrowth++ for index 

selection : 

Table 6 : Pseudocode : automatic binary join index 

selection with CFPGrowth++ 

Input: 

  - Q: a representative workload of OLAP 

queries 

  - MIS: a list of minimum support threshold 

per attribute 

  - D: relational data warehouse schema 

Output: 

  - F: set of frequent itemsets (candidate 

bitmap join indexes) 

Steps: 

1. ExtractQueriesFromLogFile(log_file): 

    Parse the transaction log to retrieve OLAP 

queries. 

    Return set of queries Q. 

2. IdentifyIndexableAttributes(Q, D): 

    For each query in Q: 

        Extract attributes involved in 

selection, grouping, and join predicates. 

    Return the set of indexable attributes A. 

3. BuildTransactionDatabase(Q, A): 

    Create a transaction for each query: 

        Items in a transaction = attributes 

accessed by the query. 

    Return transaction database T. 

4. ApplyCFPGrowthPlusPlus(T, MIS): 

    a. Scan T to compute item supports. 

    b. Sort items in each transaction in 

descending order of support. 

    c. Build an initial CFP-tree: 

        For each transaction: 

            Insert items into the tree 

following the sorted order. 

            Update item counts along the path. 

    d. Recursively mine the CFP-tree: 

        For each frequent item i: 

            Generate conditional pattern base 

for i. 

            Construct conditional CFP-tree. 

            If conditional tree is not empty: 

                Recursively mine conditional 

tree. 

            Collect frequent itemsets meeting 

MIS thresholds. 

    e. Return set of frequent itemsets F. 

5. ConfigureCandidateBitmapJoinIndexes(F): 

    For each frequent itemset f in F: 

        Map items in f to attributes in D. 

        Propose a bitmap join index 

configuration on these attributes. 

6. EvaluateIndexImpact(F, Q, D): 

    For each index configuration: 

        Measure query response time on Q with 

and without the index. 

    Retain index configurations improving 

query performance. 

7. Return final selected frequent itemsets F 

as candidate bitmap join indexes. 

 

Explanation of Adaptation for Index Selection 

Context: 

• Transaction Construction: 

Each OLAP query from the workload is treated as a 

transaction, and the attributes involved in selection, 

grouping, and joins are considered as items. This enables 

mapping query attribute usage into a transaction database 

suitable for frequent pattern mining. 

• Multiple Minimum Support Thresholds: 

The MIS list allows setting lower thresholds for 

attributes representing important query predicates. when 

indexed, could significantly optimize query performance. 
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• Frequent Itemsets as Candidate Indexes: 

Frequent itemsets identified by the algorithm 

represent groups of attributes often queried together. 

These are directly translated into candidate bitmap join 

index configurations. 

• Index Evaluation: 

Before finalizing the index selection, each 

candidate’s impact on query performance is empirically 

evaluated. Only those improving execution times are 

retained. 

Insights into Minimum Support Threshold Selection 

and Its Impact. 

Selecting appropriate minimum support thresholds is 

crucial for balancing mining efficiency and index 

relevance. In our approach: 

Higher thresholds prioritize frequent patterns shared 

across numerous queries, potentially limiting index 

diversity but ensuring high-impact optimizations. 

Lower thresholds allow the inclusion of less frequent 

but strategically valuable patterns, at the cost of 

increased computational overhead. 

To address this trade-off, we employ differentiated 

support thresholds based on workload analysis: 

Attributes heavily involved in query predicates 

receive lower thresholds. 

Less critical attributes maintain higher thresholds to 

limit unnecessary pattern mining. 

This strategy enhances the algorithm’s behavior by 

focusing computational resources on workload-relevant 

patterns, leading to a more effective and workload-

tailored index configuration. 

5 Experiments and results 
To confirm the efficiency of our strategy for selecting 

Bitmap join indexes, we employed it in a Data 

Warehouse configured with a star relational schema 

running on Oracle 11g. The experimentation was 

conducted on an Intel Core2Duo machine with a 2GB 

main memory.Our experimental study is conducted in the 

following steps : 

1) Implementation of the CFPGrowth++ algorithm in 

Java. Besides its portability, java is chosen for its 

automatic memory management. This feature is crucial 

because the manipulated data structures are mainly 

linked lists and trees. Our implementation is applied to 

the selection context. 

2) Creating a Data Warehouse using the Analytical 

Processing Benchmark 1 ABP-1 business intelligence 

workbench [3]. This warehouse is composed of one fact 

table Actvars and four dimension tables ProdLevel, 

TimeLevel, CustLevel and ChanLevel. 

The schema follows the classical star schema model 

and is composed of one fact table and several dimension 

tables as detailed below: 

Fact table: 

Actvars 

Attributes: Customer_level, Product_level, 

Channel_level, Time_level, UnitsSold, DollarSales, 

DollarCost 

This table records the sales transactions and is linked 

to the dimension tables through foreign keys. 

Dimension tables: 

ProdLevel 

Attributes: Code_level, Class_level, Group_level, 

Family_level, Line_level, Division_level 

TimeLevel 

Attributes: Tid, year_level, quarter_level, 

month_level, week_level, day_level 

ChanLevel 

Attributes: Base_level, all_level 

CustLevel 

Attributes: Store_level, Retailer_level 

This structure provides a multidimensional 

framework suitable for typical OLAP operations, 

including aggregation, drill-down, roll-up, and 

slicing/dicing queries. 

Query workload specification 

The experimental query workload was designed 

based on the ABP-1 benchmark’s [20] guidelines and 

consisted of a mix of decision-support queries 

representing realistic OLAP operations. The workload 

includes: 

• Aggregation queries: 

Queries calculating total sales, costs, or quantities 

based on one or more dimensions, such as total 

DollarSales per Product_level or per Time_level. 

• Drill-down and roll-up queries: 

Queries navigating through different granularity 

levels within dimensions, for instance, moving from 

year_level to month_level in TimeLevel or from 

Division_level to Code_level in ProdLevel. 

• Slice and dice queries: 

Queries selecting specific data subsets based on 

certain conditions, like sales for a particular 

Retailer_level during a specific quarter_level. 

• Multi-dimensional analysis queries: 

Complex queries involving multiple dimensions and 

aggregate measures, for example, computing average 

UnitsSold and total DollarCost for various Channel_level 

and Product_level combinations over time. 

Table 7 summarizes the characteristics of the tables 

forming the warehouse. We considered a load of 60 

OLAP decisional queries defined on this Data 

Warehouse. 

Table 7 : Characteristics of the tables in the data 

warehouse used. 

Table Number of n-tuples Size (Octet) 

ACTVARS 261 740 160 2 142 250 000 

PRODLEVEL 10 800 1 048 576 

TIMELEVEL 24 65 536 

CHANLEVEL 11 65 536 

CUSTLEVEL 1 080 65 536 

 

A set of queries using several selection predicates 

defined on one or more attributes has been considered to 

cover all the attributes of the warehouse. These queries 

belong to several categories: queries using aggregation 
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functions such as Sum, Min, Max, queries with 

dimension attributes in the SELECT clause, count(*) 

type queries with and without aggregations. (Table 8) 

shows an extract of the load composed of five queries. 

Table 8 : Example of queries extracted from a load 

(Q1)  

SELECT 

    A.Time_level, 

    AVG(A.UnitsSold) AS AverageUnitsSold 

FROM 

    ACTVARS A 

JOIN    

    TIMELEVEL T ON A.Time_level = T.Tid 

WHERE 

    T.Quarter_level IN ('Q1', 'Q2') 

GROUP BY 

    A.Time_level; 

(Q2)  

SELECT 

    P.Division_level, 

    COUNT(*) AS RecordCount 

FROM 

    ACTVARS A 

JOIN 

    PRODLEVEL P ON A.Product_level = 

P.Code_level 

WHERE 

    P.Group_level = 'RQ' 

GROUP BY 

    P.Division_level; 

(Q3)  

SELECT 

    A.Retailer_level, 

    AVG(A.UnitsSold) AS AverageUnitsSold 

FROM 

    ACTVARS A 

JOIN 

    PRODLEVEL P ON A.Product_level = 

P.Code_level 

JOIN 

    Custlevel C ON A.Customer_level = 

C.Store_level 

WHERE 

    P.Division_level = 'UV' 

GROUP BY 

    A.Retailer_level; 

(Q4)  

SELECT 

    A.Product_level, 

    AVG(A.UnitsSold) AS AverageUnitsSold 

FROM 

    ACTVARS A 

JOIN 

    TIMELEVEL T ON A.Time_level = T.Tid 

WHERE 

    T.Year_level = '2025' 

GROUP BY 

    A.Product_level; 

(Q5)  

SELECT  

    P.Division_level,  

    AVG(A.UnitsSold) AS AverageUnitsSold 

FROM  

    ACTVARS A 

JOIN  

    TIMELEVEL T ON A.Time_level = T.Tid 

JOIN  

    PRODLEVEL P ON A.Product_level = 

P.Code_level 

WHERE  

    T.Month_level = '7' 

GROUP BY  

    P.Division_level; 

 

3) We have created the extraction context after 

generating the Data Warehouse. It is a "query-attribute" 

matrix where each row designates a query of the load. 

The columns define the candidate attributes for the 

indexing procedure. The existence of an indexable 

attribute in a query is symbolized by 1 and its absence by 

0 [To each query Qi and each attribute Aj, we associate a 

usage value of the attribute which is equal to 1 if the 

query uses the attribute Aj, 0 otherwise]. We illustrate 

the construction of this matrix through the following 

example. The "query-attribute" matrix obtained after the 

syntactic analysis of the load is composed of eleven 

columns and five rows (Table 9). 

Table 9 : Query-attribute matrix 

Tables PRODLEVEL TIMELEVEL 

Queries/Attr

ibutes 
Code_l

evel 

Group_l

evel 

Division_

level 
Tid 

Year_

level 

Quarter_

level 

Month_

level 

Q1 0 0 0 1 0 1 0 

Q2 1 1 0 0 0 0 0 

Q3 1 0 1 0 0 0 0 

Q4 0 0 0 1 1 0 0 

Q5 1 0 0 1 0 0 1 
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Tables 
CUSTLEV

EL 
ACTVARS 

Queries/Attribu

tes 
Store_level 

Customer_le

vel 

Product_lev

el 

Time_lev

el 

Q1 0 0 0 1 

Q2 0 0 1 0 

Q3 1 1 1 0 

Q4 0 0 0 1 

Q5 0 0 1 1 

 

The "query-attribute" matrix obtained after parsing 

the payload is composed of 11 columns and 5 rows 

(Figure 5). It is subdivided according to the tables used in 

the payload for reasons of clarity and readability. This 

matrix is used by the CFPGrowth++ algorithm. 

We applied our implementation of the 

CFPGrowth++ algorithm to the extraction context in 

order to select the most used candidate attributes in the 

system history that represent interesting candidates for 

the indexing operation. 

4) We proceeded in the last step to the execution of 

the load of the queries on the generated Data Warehouse 

according to two scenarios (1) without creation of the 

indexes, (2) after creation of the indexes generated by the 

CFPGrowth++ algorithm. 

During the execution of the load of queries on the 

Data Warehouse generated without creating indexes we 

calculated the execution time of each query of the load, 

After that we proceeded to calculate the execution time 

of each query of the load after creation of the indexes 

generated by the CFPGrowth++ algorithm.  Figure 4 

shows the times taken for the execution of the quests 

after the creation of the generated binary join indexes. 

 

 

Figure 4 : Query execution time without creating indexes 

and after creating generated binary join indexes. 

Our approach with generating candidate indexes by 

the CFPGrowth++ algorithm provides excellent 

performance improvements compared to running the 

query load without indexing. 

Through our experimental study, we notice that the 

execution time is significantly improved after creating 

the binary join indexes. The Figure 5 illustrates the 

overall execution time saving for the entire load of 

OLAP decisional queries considered. 

 

 

Figure 5 : Overall execution time of the load without 

creating indexes and after creating the generated binary 

join indexes. 

As shown in Figure 5, the response time for 

decision-support query workloads without indexing was 

19748.41 seconds, while the use of Binary Join Indexes 

generated with CFPGrowth++ reduced this to 4976.01 

seconds, achieving a performance gain of approximately 

75%. In contrast: 

Apriori-based indexing reduced response time to 

12589.68 seconds 

Close-based indexing reduced it to 8983.42 seconds 

This confirms that CFPGrowth++ outperforms these 

alternative frequent itemset mining algorithms in index 

selection efficiency for OLAP workloads. 

The results obtained confirm the great usefulness of 

binary join indexes for the optimization of OLAP 

decisional queries. The execution time of these queries is 

significantly lower with the use of binary join indexes. 

The experiments carried out show that the index 

configuration generated by the proposed approach allows 

a significant performance gain of around 75%. 

To evaluate the effectiveness and robustness of the 

proposed approach for frequent pattern-based binary join 

index selection in OLAP query optimization, a series of 

11 independent performance tests were conducted on 

varying OLAP query workloads. The experimental 

results demonstrated consistent performance 

improvements ranging from 74.20% to 75.96%. 

The statistical analysis confirmed the reliability of 

these performance gains. The mean improvement across 

all tests was 74.58%, with a standard deviation of 0.50, 

indicating low variability in the observed results. A one-

sample t-test was performed to determine whether the 

observed improvements were statistically significant 

compared to a baseline of no performance gain. The test 

yielded a t-statistic of 493.72 and a corresponding p-

value of 2.86 × 10⁻²³, which is well below the 

conventional significance threshold of 0.001. This 

confirms that the observed improvements are statistically 

significant at a 95% confidence level. 

Moreover, a 95% confidence interval for the mean 

performance improvement was calculated as [74.24%, 

74.92%], further supporting the consistency and 

robustness of the proposed method’s effectiveness under 

different query scenarios. These results clearly validate 

the practical benefits and generalizability of the 
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CFPGrowth++-based approach in optimizing complex 

OLAP workloads. 

6 Discussion 
This study is situated within the context of selecting 

optimal indexes to enhance the performance of decision-

making queries, particularly in OLAP environments. 

Several approaches have been proposed previously, 

notably those by Aouiche et al. [27], who employed 

closed frequent pattern mining using the Close algorithm 

to prune the search space, primarily based on attribute 

usage frequency. However, this method can lead to the 

elimination of potentially relevant indexes, especially for 

attributes belonging to large dimension tables, where 

usage frequency alone does not guarantee effective 

optimization. 

On the other hand, Bellatreche et al. [28][29][32] 

emphasized that access frequency alone is not a 

sufficient criterion for effective index selection. Their 

approach incorporates additional parameters, such as 

table sizes and page characteristics, to better balance the 

relevance of indexes. Nevertheless, this increased 

complexity can result in higher computational costs 

during pattern generation. 

Our approach, utilizing the CFPGrowth++ 

algorithm, offers a significant advancement over these 

methods. Indeed, CFPGrowth++ enables faster and more 

scalable extraction of frequent patterns. Its ability to 

handle multiple support thresholds allows for a more 

refined exploration of itemsets, which contributes to 

better adaptation to large data volumes and performance 

requirements. 

Regarding performance, the improvements offered 

by CFPGrowth++ can be attributed to its optimized 

structure, which reduces processing time and memory 

consumption compared to traditional algorithms like 

Apriori or Close. It also better manages the trade-offs 

between computational cost and effectiveness. However, 

this increased efficiency may come with some storage 

overhead, especially if a large number of frequent 

patterns are generated, necessitating careful management 

to avoid memory overload. 

In our proposed approach, CFPGrowth++ was 

chosen for its efficiency in mining frequent patterns 

through a compact tree-based structure and its flexibility 

in handling multiple support thresholds. However, we 

recognize that as the number of attributes and queries 

increases in real-world data warehouses, the size of the 

pattern base and the computational overhead can grow 

significantly. 

To manage this, several strategies can be applied, 

such as: 

Adjusting support thresholds dynamically to limit 

the number of frequent itemsets generated in dense 

workloads. 

The evaluation with applying a constraint on the 

total storage space consumed by the generated indexes. 

Partitioning the workload or focusing on query 

subsets that target the most resource-intensive operations. 

Parallelizing the mining process across distributed 

computing environments to improve processing times 

and scalability. 

CFPGrowth++ stands out for its speed, scalability, 

and accuracy, making it a promising solution for index 

selection in contexts where efficient management of 

large data volumes is critical. It represents a notable 

improvement over previous techniques, while also 

requiring attention to potential storage and computational 

costs. 

7 Conclusion 
Within the realm of Data Warehouses schematized in a 

star relational model carried out via OLAP decision-

making queries, very high response time remain more 

than ever a crucial issue.The goal of this work is to 

improve the Data Warehouse performance.The proposed 

approach for optimizing system performance by 

minimizing response time is based on finding frequent 

patterns for automatic selection of binary join indexes in 

relational Data Warehouses modeled by a star schema 

through generation of a configuration of binary join 

indexes based on the implementation of the 

CFPGrowth++ algorithm.The results show the particular 

performance of the binary join indexes recommended by 

the CFPGrowth++ algorithm implemented for relational 

Data Warehouses. Our study demonstrates that applying 

data mining techniques for the automatic selection of 

binary join indexes in relational Data Warehouses is a 

promising strategy, offering encouraging results and 

opening up several opportunities for future research and 

optimization. Other possible improvement is to consider 

multiple parameters to generate the final index 

configuration. In  future work it important to consider in 

particular of the selectivity factors and the cardinalities 

of the attributes or the sizes of the dimension tables. 
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