https://doi.org/10.31449/inf.v49i27.7807

Informatica 49 (2025) 365-378 365

Automatic Selection of Bitmap Join Indexes in Data Warehouses

Using CFPGrowth++ Algorithm

Mohammed Yahyaoui®, Noura Aknin, Souad Amjad, Lamia Benameur
Information Technology and Modeling, Systems Research Unit, FS, Abdelmalek Essaadi University, Tetouan,

Morocco

E-mail: myahyaoui@uae.ac.ma, noura.aknin@uae.ac.ma, s.amjad@uae.ac.ma, l.benameur@uae.ac.ma

“Corresponding author

Keywords: data warehouse, OLAP, indexes, bitmap join indexes, frequent itemsets, data mining, CFPGrowth++

algorithm

Received: December 12, 2024

In the context of complex data warehousing, Typically, the analysis and decision-making process for
Data Warehouses schematized in a relational star model is conducted through OLAP (On-Line
Analytical Processing) queries. These queries are generally complex, characterized by several
operations of selections, joins, grouping and aggregations on voluminous tables. Which requires a lot of
computing time and therefore a very high response time. The cost of running OLAP decision queries on
large tables is very high. The reduction of this cost becomes essential to allow decision-makers to
interact within a reasonable time frame. The objective of this study is to enhance system performance by
minimizing the response time of OLAP decision-making queries. The approach proposed in this article
aims to search for frequent patterns for the automatic selection of binary join indexes used for reducing
the execution costs of OLAP decision-making queries. To automatically generate the configuration of
binary join indexes minimizing response time, an implementation of the CFPGrowth++ frequent pattern
matching algorithm was well carried out and then applied to a load of queries on a test Data Warehouse
created using the Analytical Processing Benchmark 1 (ABP-1) test bench, in order to validate our
approach. The results of the experiment indicate that the index configuration produced by the proposed
approach leads to a significant improvement in performance improvement of approximately 75%. We
note that for a large portion of the load, execution time is significantly improved after applying our
approach. The overall query execution time decreased compared to the general context. The overall
execution time for queries decreased from 20,032.57 seconds before the application of our approach to
5,388.49 seconds after applying our approach. The experiments carried out show that the index
configuration generated by the proposed approach allows a very performance gain.

Povzetek: Predlagana metoda samodejne izbire binarnih indeksov za OLAP 2z algoritmom
CFPGrowth++ zmanjsa cas izvajanja poizvedb za priblizno 75 %.

Introduction
cell encapsulates the analyzed fact

Here, each dimension acts as an analytical axis, and each

In decision-making computing, Data Warehouses have
still experienced a very significant boom today. They are
fed by analytical data supporting a set of analysis
processes coming from different distributed and
heterogeneous sources [1][2][3][4] and their volumes are
destined to increase.

In 1990, Bill Inmon conceptualized the Data
Warehouse as a comprehensive and dynamic data
repository designed to be subject-oriented, integrated,
time-variant, and non-volatile, serving as a valuable
resource for management decision-making [5].

In the data warehouse, information is structured in
the configuration of a multidimensional cube [4].

This organization is specifically designed to proficiently
facilitate the operations of online analysis [7], commonly
known as OLAP (online analytical processing) [4].

The ROLAP (Relational On-Line Analytical
Processing) relational model is introduced for physical
storage.

Data warehouses are usually modeled by a star
schema [8]. This schema is characterized by a fact table
very voluminous (Giga or Terra Bytes) linked by foreign
keys to a set of smaller size dimension tables thus
forming a star schema (Figure 1).

https://doi.org/10.31449/inf.v49i27.99
mailto:myahyaoui@uae.ac.ma
mailto:noura.aknin@uae.ac.ma
mailto:s.amjad@uae.ac.ma
mailto:l.benameur@uae.ac.ma

366 Informatica 49 (2025) 365-378

Code_level

Class_level —_

. Store_level

Group_level Retailer_level

Customer_level -
Product_level
Channel_level
Time_level -
UnitsSold
DollarSales
CHANLEVE DollarCost BT
261.740.160 tuples Year_level
Quarter_level
Month_level
Week_level
Day_level

Family_level
Line_level
Division_level

vy

L.OBO tuples

10.800 tuples

Base_level
All_level

11 tuples 24 tuples

Figure 1 : The relational model for storing a data
warehouse.

Queries formulated within a star schema exhibit
significant complexity, involving the integration of joins,
selections, and aggregations. Specifically, these joins,
denoted as star joins, traverse the entirety of the fact
table. Selection operations in this context, referred to as
selection predicates, are executed on dimension attributes
identified as selection attributes. Achieving satisfactory
performance in the context of intricate decisional queries
and their extended response times poses a significant
challenge for Data Warehouse administrators [9].
Effectively addressing this challenge requires
administrators to possess a robust understanding of
optimization structures [10] and to apply logical and
physical design methods for selecting the most optimal
design policy.

Within the fact table, attributes comprise both
activity measures and foreign keys leading to dimension
tables [11]. This model's advantage lies in its utilization
of pre-existing database management systems, resulting
in a reduction of implementation costs. However, the
challenge persists, as optimizing the performance of Data
Warehouses remains an increasingly critical concern.

In this study, the concept of optimal performance
specifically refers to the reduction of query execution
costs in OLAP (Online Analytical Processing)
environments, with a particular focus on minimizing
query response time. Since decision-support queries in
data warehouses often involve complex join operations
over large volumes of data, improving response time is
crucial for maintaining system efficiency and user
satisfaction [12].

While other performance aspects such as storage
space, index maintenance overhead, and system
scalability are important considerations in data
warehouse optimization, this paper primarily targets
response time reduction as the key performance metric.
The proposed approach achieves this by selecting
effective binary join indexes based on frequent pattern
discovery, using the CFPGrowth++ algorithm with
multiple support thresholds to enhance query processing
efficiency.

M. Yahyaoui et al.

Performance optimization in data warehouses is
primarily concerned with reducing the query response
time for decision-support queries. This allows users to
quickly obtain the information they need, improving the
overall efficiency of analysis and decision-making. In
this work this is achieved by minimizing the query
response time for decision-support (OLAP) through
efficient Selection of binary join indexes.

Indexing is one of the important techniques used in
the physical design phase to optimize OLAP queries [13]
in relational Data Warehouses. In this research paper,
we're using an indexing approach.

The proposed approach is designed to assist Data
Warehouse administrators and system designers in
making informed decisions regarding index selection to
optimize query performance.

Although the solution is partially automated - as it
automatically extracts frequent query patterns and
suggests candidate binary join indexes - human expertise
is still valuable in the final decision-making process.
Administrators need to have a basic understanding of the
data warehouse schema, query workload characteristics,
and index management principles to evaluate the
relevance of the recommended indexes before
implementation.

In practice, this approach serves as a decision-
support tool rather than a fully autonomous system. It
aims to reduce the complexity of index selection by
narrowing down the most relevant candidates based on
query patterns, leaving administrators with clearer, data-
driven recommendations.

Some of these techniques inherit from those
proposed in the context of traditional databases such as B
trees [14][15]. Others are proposed to optimize selections
defined on low cardinality attributes such as binary
indexes.

Binary join indexes have demonstrated their utility in
mitigating the execution costs of decisional OLAP
queries formulated on a relational star schema. [13].

The task of index selection is categorized as an NP-
Complete problem [16] due to its inherent complexity,
stemming from the fact that the number of potential
indexes grows exponentially with the total number of
attributes present in the Data Warehouse [17][18][19].

Given the aforementioned challenge, our focus lies
in the automatic selection of a set of indexes
(configuration) minimizing the cost of executing OLAP
queries.

By mining frequent itemsets from OLAP query
workloads, we can identify the most commonly accessed
attribute combinations. Creating indexes based on these
patterns ensures that the most relevant data retrieval
paths are optimized, leading to faster query execution,
reduced response times, and more efficient resource
utilization.

In the context of OLAP (Online Analytical
Processing), queries often involve analyzing large
datasets with multiple dimensions and measures. To
make these queries faster, databases use indexes special
data structures that help retrieve data quickly.

Automatic Selection of Bitmap Join Indexes in Data Warehouses. ..

Now, frequent itemsets come from data mining
techniques, especially association rule mining. They
identify combinations of items or attribute values that
appear together often in the data.

Here's how these frequent itemsets can help optimize
OLAP query execution:

Identifying Common Patterns:

By discovering which attribute combinations occur
frequently, the system can prioritize creating indexes on
those combinations. This means that when a query
involves these attributes, the data warehouses can
quickly locate relevant data without scanning the entire
dataset.

Selective Index Creation:

Instead of indexing every possible combination
(which can be costly), the system uses frequent itemsets
to select only the most relevant attribute combinations.
This targeted approach ensures efficient use of storage
and maintenance resources.

Improved Query Performance:

When an OLAP query involves dimensions that
match these frequent itemsets, the pre-existing indexes
allow for rapid data retrieval, significantly reducing
guery response times.

Dynamic Optimization:

As data evolves, the system can periodically re-
analyze data to find new frequent itemsets, updating
indexes accordingly. This dynamic approach ensures that
the indexing strategy remains aligned with actual usage
patterns.

Leveraging frequent itemsets helps in smart index
selection by focusing on the most commonly co-
occurring attribute combinations. This targeted indexing
accelerates OLAP queries, making data analysis more
efficient and responsive.

The decision to adopt CFPGrowth++ over alternative
frequent itemset mining algorithms is based on several
key advantages that align with the specific requirements
of OLAP index selection:

Multiple Minimum Support Thresholds:

Unlike classical algorithms such as Apriori, CLOS,
or the original FP-Growth, which operate with a single
global support threshold, CFPGrowth++ introduces the
capability to assign different minimum support
thresholds to individual items. This flexibility is crucial
in OLAP environments, where data distributions are
often skewed and certain attributes or combinations
appear frequently within specific query contexts but
remain infrequent globally. By supporting multiple
thresholds, CFPGrowth++ can identify both globally
frequent and contextually important patterns, leading to a
more relevant and effective set of candidate indexes.

Improved Efficiency and Scalability:

CFPGrowth++ builds upon the FP-Tree structure but
optimizes it by reducing redundant node traversals and
minimizing memory overhead through enhanced pruning
strategies.

Informatica 49 (2025) 365-378 367

This makes it better suited for handling the large, high-
dimensional datasets commonly found in data
warehouses, where conventional algorithms like Apriori
suffer from high computational costs due to repeated data
warehouses scans and exponential candidate generation.

Suitability for Index Selection in Decision-Support
Systems:

Index selection in OLAP systems demands mining
not just frequent patterns, but patterns that contribute
meaningfully to query optimization. CFPGrowth++'s
capacity to uncover rare yet strategically valuable
itemsets thanks to its variable support thresholds enables
the discovery of indexes that specifically target
performance bottlenecks in diverse and heterogeneous
workloads.

Reduced Computational Overhead During Mining:

Compared to algorithms CLOS, CFPGrowth++
demonstrates lower memory consumption and faster
runtime for datasets with varying item frequencies. This
balance between computational efficiency and mining
depth makes it a practical choice for real-time or near-
real-time decision-support applications.

CFPGrowth++ was chosen because it combines high
efficiency, flexibility in support thresholds, scalability,
and the ability to handle large, complex datasets features
that are vital for effective and practical index selection in
OLAP systems. Its advantages over other algorithms
make it particularly well-suited for our goal of reducing
query execution costs through intelligent binary join
index recommendations.

The main contribution of this study is an
implementation of the CFPGrowth++ frequent pattern
matching algorithm To automatically generate the
configuration of binary join indexes minimizing response
time and select the frequent itemsets. Then for the
approach validation to a load of queries applied on a test
Data Warehouse created using ABP-1 test bench [20].

The article is orgnized into five sections. Section 2
poutlines the overall workflow adopted in the study,
emphasizing the integration of frequent itemset mining
using CFPGrowth++ with automatic binary join index
(BJI) selection for OLAP query optimization. Section 3
provides an overview of the primary studies that have
been advanced to tackle the intricacies of binary join
index selection, with a specific emphasis on the data
mining application techniques for resolution. Then,
Section 4 delves into our unique approach to the
selection of frequent itemsets, achieved through the
adaptation of the CFPGrowth++ algorithm. Section 5
details the experimental phase, offering validation for our
proposed binary join index selection methodology.
Section 6 compares the method against traditional
indexing approaches, Furthermore, it acknowledges
practical challenges such as index maintenance,
scalability for high-dimensional schemas, and the
absence of a fully integrated cost model. Lastly, in
Section 7, the article concludes by encapsulating the
main findings and proposing avenues for future research.

368 Informatica 49 (2025) 365-378

2 Proposed workflow, novelty, and
main findings

2.1 Proposed workflow

The proposed approach aims to enhance the performance
of OLAP query execution in data warehouses by
automatically selecting binary join indexes (BJIs) based
on frequent pattern mining techniques. The workflow of
the study is structured as follows :
1. OLAP Query Workload Collection :
Extraction of historical OLAP queries containing
join and selection predicates from a simulated decision-
support workload based on the ABP-1 benchmark.
2. Transaction Dataset Generation:
Transformation of each query into a transaction
containing attributes involved in selection and join
predicates.
3. Frequent Itemset
CFPGrowth++:
Application of an improved CFPGrowth++
algorithm with multiple minimum support thresholds to
extract frequent attribute combinations from the
transaction dataset.
4. Binary Join Index Candidate Generation:
Mapping of frequent itemsets into candidate BJI
configurations.

Mining with

2.2 Novelty of the study

This work introduces several novel contributions to the
domain of OLAP optimization:
e Integration of a
CFPGrowth++ Algorithm:

Unlike conventional approaches using single-support
thresholds, our method applies multiple minimum
supports to better capture frequent attribute combinations
of varying significance.

e Automatic Binary Join
Framework:

The proposed system automates the identification
and selection of BJIs from frequent query patterns,
reducing the manual intervention traditionally required in
index configuration.

e Statistically
Improvement:

The study not only demonstrates query performance
gains but also rigorously validates these results through
statistical analysis, including confidence intervals and
significance tests.

e Practical Benchmarking on a Customized
ABP-1 Environment:

The experimental setup leverages a workload
derived from the ABP-1 benchmark, enhanced with real-
world query structures, ensuring realistic and relevant
performance validation.

Multi-support

Index Selection

Validated Performance

2.3 Main findings
Through extensive experimental evaluation:

e The

proposed

approach

M. Yahyaoui et al.

achieved a

performance improvement between 74.20%
and 75.96% on OLAP query workloads.

e Statistical

analysis

confirmed

these

improvements to be significant (p < 0.001)

at a 95% confidence level.

e The approach proved effective across

various

query

types,

particularly for

complex multi-join and range aggregation

queries.

The comparison of Recent Methods Related to
OLAP Optimization and Indexing is represented in Table

1:

Table 1 : Summary of recent methods related to OLAP

optimization and indexing

Approach Features Limitations
Utilizes an
enhanced frequent
pattern mining Computational
. alg_orlthm o complexity may
identify frequent - -
. . increase with
motifs, supporting verv large
CFPGrowth++ multiple support daés etg'
(Proposed) thresholds for effectivenéss
fle>_<|ble . depends on the
exploration. Aims quality of
to reduce query | ; yovified motifs.
execution costs in
OLAP
environments.
Use classic
frequent pattern Scalability
mining with issues; limited
- straightforward sunport for
Traditional implementation. PP
Apriori-based table multiple support
methods Suitable for thresholds; less
smaller datasets L
but can be efficient for
: large-scale data.
computationally
intensive.
Less flexible in
Efficient pattern h_andlmg
. . multiple support
mining without thresholds; ma
FP-Growth candidate Still faée y
generation, faster .
I challenges with
than Apriori. very large
datasets.
May not adapt
Often rely on well to dynamic

Existing index
selection
approaches

heuristic or rule-
based methods,
focusing on
specific query
workloads.

data or varying
query patterns;
limited in
discovering
complex motif
structures.

Automatic Selection of Bitmap Join Indexes in Data Warehouses. ..

This comparison illustrates that our CFPGrowth++
approach offers a flexible and efficient method for
discovering frequent motifs, which can significantly
improve index selection for OLAP query optimization.
While it introduces some computational overhead, its
ability to handle multiple support thresholds and explore
complex patterns provides a notable advantage over
traditional methods.

2.4 Benchmark dataset comparison

The ABP-1 test bench was selected as it offers a
balanced schema structure and a set of decision-support
queries typical in OLAP workloads. It also allows for
controlled workload scaling and realistic index selection
scenarios, making it better suited for validating index
optimization approaches compared to standard synthetic
benchmarks. The Benchmark Dataset Comparison is
represented in Table 2 :

Table 2 : Benchmark dataset comparison

Realism

for Used
Benchmark / Schema Query Decision- in
Dataset Complexity Diversity Support This
Workloads Study
. Ver
TPC-DS High Y| Moderate | No
High
Star Schema Medi
|
Benchmark Moderate ediu Low No
(SSB) m
ABP-1
(Customized | Moderate High High Yes
Version)

3 Related works

3.1 Binary join index selection problem

The selection of indexes in Data Warehouses is a
difficult problem [21] seen the large number of candidate
attributes of dimension tables participant in the
construction of indexes [22].

The problem consists on building an index
configuration that minimizes the cost of executing a set
of frequent OLAP queries.

To reduce the number of potential attributes in the
construction of indexes, Numerous previous works
proposed a data mining technique [23][24][17][25] in
order to generate frequent itemsets (patterns) which will
constitute the candidate attributes in the indexing
process.

Several research works have shown the usefulness of
automatic index selection [26][22] from a set of
candidate indexes extracted from a query by appealing to
using administrator expertise [10][21][14].In the context
of Data Warehouses, binary join indexes are well suited
to speed up OLAP queries known for their large number
of join operations [13].

Recent approaches [10][6] propose the use of data
mining techniques to generate the set of candidate
indexes to reduce the significant number of potential

Informatica 49 (2025) 365-378 369

candidate attributes for the construction of indexes. They
have exploited in particular the technique of searching
for frequent itemsets for the generation of candidate
indexes [27][28]. The basic idea is inspired by the
frequent itemsets search technique, widely used in data
mining. The more frequently an attribute or group of
attributes is present in the query load, the more valuable
it is considered in the index selection process.

Prior work in the field of index selection, such as the
studies by Aouiche et al. [27] and Bellatreche et al.
[28][29], has laid important groundwork by exploring the
use of frequent pattern mining techniquesspecifically, the
Close algorithm to identify candidate attributes for binary
join index configuration. However, these approaches
have notable limitations. For instance, Aouiche et al.
focus primarily on the frequency of attribute usage
within query workloads, which can lead to the
elimination of potentially beneficial indexes on attributes
from large dimension tables that are infrequently
accessed but still critical for join operations. Bellatreche
et al. address this issue by incorporating additional
parameters, such as table size and system page size, to
refine index selection, but their method still relies on the
traditional Close algorithm, which can generate an
overwhelming number of frequent patterns, impacting
scalability and efficiency.

Our approach explicitly addresses these limitations
by introducing the CFPGrowth++ algorithm, an
enhanced and scalable method for mining frequent
itemsets. Unlike previous algorithms like Apriori or
Close, CFPGrowth++ is designed to be faster, more
efficient, and capable of handling large volumes of data
with multiple support thresholds. This allows for a more
nuanced and precise selection of index candidates,
thereby improving the effectiveness of index
configuration for OLAP query optimization.

The novelty of our approach lies in leveraging
CFPGrowth++ to overcome the scalability and efficiency
challenges faced by prior methods, enabling more
accurate and comprehensive index selection that better
supports complex, large-scale data environments. This
makes our contribution both necessary and timely in
advancing the state of the art in index optimization
techniques.

Here is a synthetic comparison of frequent pattern
discovery algorithms used in previous studies on index
selection techniques.

Table 3 : Synthetic comparison of frequent pattern
discovery algorithms

Benﬂ;g&arks Apriori Gr":of/_/th CLOSE CFP?:owth
High Modera | Modera Low
(multiple te te (but | (optimized
Complexity | passes) (fewer more)
passes) | filterin
9)
High Modera | Low Low
Memory (candidat | te (FP- | (closed | (partitioni
e tree) pattern ng)
generatio S)

370 Informatica 49 (2025) 365-378

n)
Frequent | Freque | Closed | Frequent
Methodologi | patterns nt pattern patterns
es pattern S
S
Ease of
implementat | Simple Modera | Compl Complex
ion te ex
Performanc
e OUtCOMES Poor Good Good | Very good

3.2 Approaches based on frequent

itemsets

The discovery of frequent itemsets consists in finding
groupings of items appearing together with a significant
frequency. The discovery of these frequent itemsets is the
main step in solving a number of useful knowledge
extraction problems.

Formally, the binary join index selection issue is
formulated as an optimization problem in the following
form: given:

(1) A Data Warehouse modeled by a star schema
formed by a fact table F and D = {Du, ...,Dd} dimension
tables,

(2) A set of most frequent queries Q = {qs, ..., Om}
with their access frequencies f = {f1, ..., fm},

The objective is to select a set of indexes that
reduces the query execution cost.

4 Proposed approach

4.1 Search for frequent itemsets for index

selection

We believe that the relevance of an index is strongly
correlated with the frequency of its use in the set of
queries in a load.Data mining is a growing field of
research aimed at extracting knowledge from enormous
amounts of data.In this article, we are interested in the
extraction of frequent itemsets.

The objective is to extract knowledge useful for the
choice of indexes. The search for frequent itemsets is an
appropriate way to account for this correlation and thus
facilitate the choice of indexes to be built.

4.2 Frequent itemsets

The problem of research frequent itemsets can be
formulated as follows :

Let | = {i1, iz, ... im} a set of m distinct symbols
called itemset and B = t1, . , ta a database of n
transactions. Each transaction is composed of a subset of
items I"' € I. A subset I' of size k is called a k-itemset. A
transaction ti contains a pattern 1" if and only if I' C ti.
The support of a pattern 1" is the proportion of
transactions in B that contain I'. The support is given by
the following
|{t € B,I' c t}|

support(l') = it € B}l

Figure 2 : The support of a pattern.

M. Yahyaoui et al.

Support defined as the absolute frequency of an
itemset (or index) in the query workload.

Minimum support will refer to the threshold value
that is applied during the frequent itemset mining phase
to determine the minimum frequency required for an
itemset to be considered frequent.

A pattern whose support is greater than or equal to
the minimum threshold of minsup support, defined by the
user, is called a frequent pattern.

The objective is to select a set of indexes reducing
the cost of query execution.

4.3 CFPGrowth++ algorithm

The CFPGrowth++ algorithm, an extension of
CFPGrowth, is devised for the extraction of frequent
itemsets through the incorporation of multiple minimum
support thresholds [30][31]. Its application involves
inputting a transaction database alongside a list denoting
minimum support threshold, wherein each threshold
corresponds to the requisite minimum support for a
specific item.

A transaction database in this context is
characterized as a compilation of transactions, each
constituting a unique list of items or symbols. For
illustration, contemplate a transaction database
encompassing 5 transactions (T1, T2, ..., T6) and 8 items
(A, B, C, D, E, F, G, H). As an instance, transaction T1
encapsulates the set of items {A, C, D, F}. Notably, the
stipulation that an item cannot recur within the same
transaction is upheld, and items are presumed to be
arranged in lexicographical order within a given
transaction.

The list of minimum support threshold is provided as
input for the algorithm :

Table 4 : Example of transactions

Transaction ID Items

T1 {A, C,D,F}
T2 {A,C,E, F G}
T3 {A,B,C, F, H}
T4 {B, F, G}

T5 {B, C}

Table 5 : The list of minimum support thresholds
supported to be used for the items

Minimum support
Items threshoI(I.El)p
A 1
B 2
C 3
D 3
E 2
F 3
G 2
H 1

Automatic Selection of Bitmap Join Indexes in Data Warehouses. ..

The support of an itemset is quantified by the count
of transactions that encompass said itemset. An itemset
attains the status of a frequent itemset when its support
equals or exceeds the most conservative minimum
support threshold among the individual thresholds
assigned to its constituent items. For instance, consider
the itemset {A, B, H}, which attains the status of a
frequent itemset as it appears in one transaction (T3).
Crucially, its support surpasses the minimum support
thresholds associated with its individual items: item 1,
item 2, and item 8, with respective minimum support
thresholds of 1, 2, and 1.

In this study, we determine multiple minimum
support thresholds based on the distinct characteristics
and importance of each item within the dataset. Unlike
traditional frequent itemset mining approaches that rely
on a single global minimum support value, our method
assigns a specific minimum support threshold to each
item according to its frequency and relevance in the
context of OLAP query optimization. This approach
ensures that both frequent and less frequent, but
potentially valuable, itemsets can be identified without
being excluded by a uniform threshold.

The multiple thresholds are defined prior to the
frequent pattern mining process by analyzing the
distribution of item frequencies within the transaction
database. Items with higher occurrence rates are assigned
higher minimum support values, while those with lower
frequencies, yet significant in terms of query
performance optimization, are given lower thresholds.
This strategy allows a more flexible and adaptive mining
process.

The CFPGrowth++ algorithm, which we
implemented and enhanced for this work, efficiently
handles these multiple support values by extending the
classical FP-Growth framework. It integrates the
assigned thresholds during the construction of the
conditional FP-trees and throughout the recursive pattern
generation process. This enables the discovery of
frequent itemsets that respect their corresponding
minimum support constraints, ultimately supporting the
identification of relevant binary join indexes for reducing
the execution costs of OLAP decision-support queries.

4.4 Approach for automatic index selection

The proposed approach, whose general principle is
represented in Figure 3, consists of the following steps :

Informatica 49 (2025) 365-378 371

2. A decision load (OLAP decision queries) applied to

|)
—J_lU a Relational Data Warehouse
L | . . -
!. 1. Extraction of the transaction log file .: H
- — : "
Relational Data Wareh 3.E ion of OLAP queries from the 1

log file

4. OLAP query parser

@0

5. Detect candidate attributes l

6. Construction of the query-attribute matrix

7. Application of the data sheet
technique

- ({6 -

8. The implementation of the CFPGrowth++
algorithm

9. Determination of frequent itemsets:
i to be indexed d
of candidate indexes

it

10. Set of frequent itemsets (candidate indexes)

11. Construction of Bitmap Join
Indexes

— NoU

12. Final configuration of Bitmap Join Indexes

s 13. Creation of Bitmap Join Indexes e ﬁ

Figure 3 : Proposed approach for constructing Bitmap
Join Indexes.

1) Selection of a load of OLAP decisional queries,
assumed to be representative, of the system activity.

2) Structuring of the indexable attributes contained
in the load in the form of a transactional database where
the queries represent the transactions and the attributes
represent the patterns. This represents our context for
extracting frequent itemsets.

3) Generation of candidate indexes by the
CFPGrowth++ algorithm implemented in Java.

4) Comparison of the response times of the
execution of the OLAP decisional queries without
indexes and then with the indexes generated by the
implementation of CFPGrowth++.

Technical implementation details :

e Detection of candidate attributes :

Candidate attributes are detected by analyzing a
representative workload of OLAP decisional queries.
Specifically, we parse the SQL query statements to
identify attributes involved in WHERE clauses (selection
predicates), GROUP BY clauses, and JOIN conditions.
These attributes are considered indexable since they
directly impact query performance in a decision-support
context.

372 Informatica 49 (2025) 365-378

e Criteria for attribute selection :

The primary selection criterion is the frequency of an
attribute’s appearance within the query workload.
Attributes that frequently appear together in queries are
treated as potential candidates for binary join indexes.

e Application of the data sheet technique:

The data sheet technique is applied by transforming
the query workload into a transactional format where
each query represents a transaction and the indexable
attributes it contains form the transaction items. This
transactional dataset is then used as input for the
CFPGrowth++ algorithm to extract frequent itemsets.

e Technical details of selecting and
Creating bitmap join indexes :

The frequent itemsets generated by CFPGrowth++
serve as candidate index configurations. Each frequent
itemset represents a combination of attributes that often
co-occur in queries, making them suitable candidates for
indexing. The actual creation of Bitmap Join Indexes is
simulated in our test environment by generating index
creation scripts based on these frequent attribute
combinations. Subsequently, query execution times are
measured before and after applying these indexes to
evaluate their impact on performance.

Detailed Pseudocode for the Adapted CFPGrowth++
Algorithm for Automatic Bitmap Join Index Selection in
OLAP

Context :

This adapted CFPGrowth++ algorithm for automatic
selection of Bitmap Join Indexes aimed at improving
OLAP query performance. The general approach
involves analyzing a representative workload of OLAP
queries to identify frequently co-accessed attributes
(frequent itemsets) using multiple support thresholds.
These frequent attribute combinations are then used to
configure candidate bitmap join indexes.

Pseudocode: adapted CFPGrowth++ for index
selection :

Table 6 : Pseudocode : automatic binary join index
selection with CFPGrowth++

M. Yahyaoui et al.

Input:

- Q: a representative workload of OLAP
queries

- MIS: a list of minimum support threshold
per attribute

- D: relational data warehouse schema
Output:

- F: set of frequent itemsets (candidate
bitmap join indexes)

Steps:
1. ExtractQueriesFromLogFile (log file):

Parse the transaction log to retrieve OLAP
queries.

Return set of queries Q.
2. IdentifyIndexableAttributes(Q, D):

For each query in Q:

Extract attributes involved in
selection, grouping, and join predicates.

Return the set of indexable attributes A.
3. BuildTransactionDatabase (Q, A):
Create a transaction for each query:

Items in a transaction = attributes
accessed by the query.

Return transaction database T.
4. ApplyCFPGrowthPlusPlus (T, MIS):
a. Scan T to compute item supports.

b. Sort items in each transaction in
descending order of support.

c. Build an initial CFP-tree:
For each transaction:

Insert items into the tree
following the sorted order.

Update item counts along the path.
d. Recursively mine the CFP-tree:
For each frequent item i:

Generate conditional pattern base

for i.
Construct conditional CFP-tree.
If conditional tree is not empty:
Recursively mine conditional
tree.

Collect frequent itemsets meeting
MIS thresholds.

e. Return set of frequent itemsets F.

5. ConfigureCandidateBitmapJoinIndexes (F) :
For each frequent itemset f in F:

Map items in f to attributes in D.

Propose a bitmap join index
configuration on these attributes.

6. EvaluateIndexImpact(F, Q, D):
For each index configuration:

Measure query response time on Q with
and without the index.

Retain index configurations improving
query performance.

7. Return final selected frequent itemsets F
as candidate bitmap join indexes.

Explanation of Adaptation for Index Selection
Context:

e Transaction Construction:

Each OLAP query from the workload is treated as a
transaction, and the attributes involved in selection,
grouping, and joins are considered as items. This enables
mapping query attribute usage into a transaction database
suitable for frequent pattern mining.

« Multiple Minimum Support Thresholds:

The MIS list allows setting lower thresholds for
attributes representing important query predicates. when
indexed, could significantly optimize query performance.

Automatic Selection of Bitmap Join Indexes in Data Warehouses. ..

« Frequent Itemsets as Candidate Indexes:

Frequent itemsets identified by the algorithm
represent groups of attributes often queried together.
These are directly translated into candidate bitmap join
index configurations.

* Index Evaluation:

Before finalizing the index selection, each
candidate’s impact on query performance is empirically
evaluated. Only those improving execution times are
retained.

Insights into Minimum Support Threshold Selection
and Its Impact.

Selecting appropriate minimum support thresholds is
crucial for balancing mining efficiency and index
relevance. In our approach:

Higher thresholds prioritize frequent patterns shared
across numerous queries, potentially limiting index
diversity but ensuring high-impact optimizations.

Lower thresholds allow the inclusion of less frequent
but strategically valuable patterns, at the cost of
increased computational overhead.

To address this trade-off, we employ differentiated
support thresholds based on workload analysis:

Attributes heavily involved in query predicates
receive lower thresholds.

Less critical attributes maintain higher thresholds to
limit unnecessary pattern mining.

This strategy enhances the algorithm’s behavior by
focusing computational resources on workload-relevant
patterns, leading to a more effective and workload-
tailored index configuration.

5 Experiments and results

To confirm the efficiency of our strategy for selecting
Bitmap join indexes, we employed it in a Data
Warehouse configured with a star relational schema
running on Oracle 11g. The experimentation was
conducted on an Intel Core2Duo machine with a 2GB
main memory.Our experimental study is conducted in the
following steps :

1) Implementation of the CFPGrowth++ algorithm in
Java. Besides its portability, java is chosen for its
automatic memory management. This feature is crucial
because the manipulated data structures are mainly
linked lists and trees. Our implementation is applied to
the selection context.

2) Creating a Data Warehouse using the Analytical
Processing Benchmark 1 ABP-1 business intelligence
workbench [3]. This warehouse is composed of one fact
table Actvars and four dimension tables ProdLevel,
TimeLevel, CustLevel and ChanLevel.

The schema follows the classical star schema model
and is composed of one fact table and several dimension
tables as detailed below:

Fact table:

Actvars

Attributes: Customer_level, Product_level,
Channel_level, Time_level, UnitsSold, DollarSales,
DollarCost

Informatica 49 (2025) 365-378 373

This table records the sales transactions and is linked
to the dimension tables through foreign keys.

Dimension tables:

ProdLevel

Attributes: Code_level, Class_level, Group_level,
Family_level, Line_level, Division_level

TimeLevel

Attributes: Tid, year_level, quarter_level,
month_level, week _level, day_level

ChanLevel

Attributes: Base_level, all_level

CustLevel

Attributes: Store_level, Retailer_level

This structure provides a multidimensional
framework suitable for typical OLAP operations,

including aggregation,
slicing/dicing queries.

Query workload specification

The experimental query workload was designed
based on the ABP-1 benchmark’s [20] guidelines and
consisted of a mix of decision-support queries
representing realistic OLAP operations. The workload
includes:

e Aggregation queries:

Queries calculating total sales, costs, or quantities
based on one or more dimensions, such as total
DollarSales per Product_level or per Time_level.

e Drill-down and roll-up queries:

Queries navigating through different granularity
levels within dimensions, for instance, moving from
year_level to month_level in TimeLevel or from
Division_level to Code_level in ProdLevel.

e Slice and dice queries:

Queries selecting specific data subsets based on
certain conditions, like sales for a particular
Retailer_level during a specific quarter_level.

e Multi-dimensional analysis queries:

Complex queries involving multiple dimensions and
aggregate measures, for example, computing average
UnitsSold and total DollarCost for various Channel_level
and Product_level combinations over time.

Table 7 summarizes the characteristics of the tables
forming the warehouse. We considered a load of 60
OLAP decisional queries defined on this Data
Warehouse.

drill-down, roll-up, and

Table 7 : Characteristics of the tables in the data
warehouse used.

Table Number of n-tuples | Size (Octet)
ACTVARS 261 740 160 2 142 250 000
PRODLEVEL | 10800 1048 576
TIMELEVEL | 24 65 536
CHANLEVEL | 11 65 536
CUSTLEVEL | 1080 65 536

A set of queries using several selection predicates
defined on one or more attributes has been considered to
cover all the attributes of the warehouse. These queries
belong to several categories: queries using aggregation

374 Informatica 49 (2025) 365-378

functions such as Sum, Min, Max, queries with
dimension attributes in the SELECT clause, count(*)
type queries with and without aggregations. (Table 8)
shows an extract of the load composed of five queries.

Table 8 : Example of queries extracted from a load

M. Yahyaoui et al.

(Q1)
SELECT

A.Time level,

AVG (A.UnitsSold) AS AverageUnitsSold
FROM

ACTVARS A
JOIN

TIMELEVEL T ON A.Time level = T.Tid
WHERE

T.Quarter level IN ('Ql', 'Q2'")
GROUP BY

A.Time level;

A.Product level,

AVG (A.UnitsSold) AS AverageUnitsSold
FROM

ACTVARS A
JOIN

TIMELEVEL T ON A.Time level = T.Tid
WHERE

T.Year level = '2025'
GROUP BY

A.Product level;

(Q2)
SELECT
P.Division level,
COUNT (*) AS RecordCount
FROM
ACTVARS A
JOIN

PRODLEVEL P ON A.Product_level =
P.Code_level

WHERE
P.Group level = 'RQ'
GROUP BY

P.Division level;

(Q5)
SELECT

P.Division level,

AVG (A.UnitsSold) AS AverageUnitsSold
FROM

ACTVARS A
JOIN

TIMELEVEL T ON A.Time level = T.Tid
JOIN

PRODLEVEL P ON A.Product level =
P.Code level

WHERE
T.Month level = '7'
GROUP BY

P.Division level;

(Q3)
SELECT
A.Retailer level,
AVG(A.UnitsSold) AS AverageUnitsSold
FROM
ACTVARS A
JOIN

PRODLEVEL P ON A.Product_level =
P.Code_level

JOIN

Custlevel C ON A.Customer level =
C.Store_level

WHERE
P.Division_ level = 'UV'
GROUP BY

A.Retailer level;

3) We have created the extraction context after
generating the Data Warehouse. It is a "query-attribute”
matrix where each row designates a query of the load.
The columns define the candidate attributes for the
indexing procedure. The existence of an indexable
attribute in a query is symbolized by 1 and its absence by
0 [To each query Qi and each attribute Aj, we associate a
usage value of the attribute which is equal to 1 if the
query uses the attribute Aj, 0 otherwise]. We illustrate
the construction of this matrix through the following
example. The "query-attribute™ matrix obtained after the
syntactic analysis of the load is composed of eleven
columns and five rows (Table 9).

Table 9 : Query-attribute matrix

(Q4)
SELECT

Tables PRODLEVEL TIMELEVEL
Queries/Attr | Code_| | Group_| | Division_ Tig | Year_ | Quarter_ | Month_

N id

ibutes evel evel level level level leve
Q1 0 0 0 1] 0 1 0
Q2 1 1 0 0| o 0 0
Q3 1 0 1 0 0 0 0
Q4 0 0 0 1 1 0 0
Q5 1 0 0 1 0 0 1

Automatic Selection of Bitmap Join Indexes in Data Warehouses. ..

Informatica 49 (2025) 365-378 375

Tables CUS; LLEV ACTVARS
Queries/Attribu Store._level Customer_le | Product_lev | Time_lev
tes vel el el
Q1 0 0 0 1
Q2 0 0 1 0
Q3 1 1 1 0
Q4 0 0 0 1
Q5 0 0 1 1

The "query-attribute™ matrix obtained after parsing
the payload is composed of 11 columns and 5 rows
(Figure 5). It is subdivided according to the tables used in
the payload for reasons of clarity and readability. This
matrix is used by the CFPGrowth++ algorithm.

We applied our implementation of the
CFPGrowth++ algorithm to the extraction context in
order to select the most used candidate attributes in the
system history that represent interesting candidates for
the indexing operation.

4) We proceeded in the last step to the execution of
the load of the queries on the generated Data Warehouse
according to two scenarios (1) without creation of the
indexes, (2) after creation of the indexes generated by the
CFPGrowth++ algorithm.

During the execution of the load of queries on the
Data Warehouse generated without creating indexes we
calculated the execution time of each query of the load,
After that we proceeded to calculate the execution time
of each query of the load after creation of the indexes
generated by the CFPGrowth++ algorithm. Figure 4
shows the times taken for the execution of the quests
after the creation of the generated binary join indexes.

1600

1400

g

® Without Indexing

Runtime(Sec)
-
g

2
8
3

W With Binary Join Indexes

e il TR HLH)[

mmmmmmmmmmmmmmmmmmmmmmmm

OLAP decision queries

Figure 4 : Query execution time without creating indexes
and after creating generated binary join indexes.

Our approach with generating candidate indexes by
the CFPGrowth++ algorithm provides excellent
performance improvements compared to running the
query load without indexing.

Through our experimental study, we notice that the
execution time is significantly improved after creating
the binary join indexes. The Figure 5 illustrates the
overall execution time saving for the entire load of
OLAP decisional queries considered.

25000
19748,41

i

'g 20000

g 15000 12589,68

£ 10000 8983,42

E 4976,01

= 5000 —
2

g o0 - '

g Without ~ With Binary With Binary With Binary

< Indexing Join Indexes - Join Indexes - Join Indexes -

CFPGrowth++ Apriori Close

Load request

Figure 5 : Overall execution time of the load without
creating indexes and after creating the generated binary
join indexes.

As shown in Figure 5, the response time for
decision-support query workloads without indexing was
19748.41 seconds, while the use of Binary Join Indexes
generated with CFPGrowth++ reduced this to 4976.01
seconds, achieving a performance gain of approximately
75%. In contrast:

Apriori-based indexing reduced response time to
12589.68 seconds

Close-based indexing reduced it to 8983.42 seconds

This confirms that CFPGrowth++ outperforms these
alternative frequent itemset mining algorithms in index
selection efficiency for OLAP workloads.

The results obtained confirm the great usefulness of
binary join indexes for the optimization of OLAP
decisional queries. The execution time of these queries is
significantly lower with the use of binary join indexes.

The experiments carried out show that the index
configuration generated by the proposed approach allows
a significant performance gain of around 75%.

To evaluate the effectiveness and robustness of the
proposed approach for frequent pattern-based binary join
index selection in OLAP query optimization, a series of
11 independent performance tests were conducted on
varying OLAP query workloads. The experimental
results demonstrated consistent performance
improvements ranging from 74.20% to 75.96%.

The statistical analysis confirmed the reliability of
these performance gains. The mean improvement across
all tests was 74.58%, with a standard deviation of 0.50,
indicating low variability in the observed results. A one-
sample t-test was performed to determine whether the
observed improvements were statistically significant
compared to a baseline of no performance gain. The test
yielded a t-statistic of 493.72 and a corresponding p-
value of 2.86 x 1022, which is well below the
conventional significance threshold of 0.001. This
confirms that the observed improvements are statistically
significant at a 95% confidence level.

Moreover, a 95% confidence interval for the mean
performance improvement was calculated as [74.24%,
74.92%], further supporting the consistency and
robustness of the proposed method’s effectiveness under
different query scenarios. These results clearly validate
the practical benefits and generalizability of the

376 Informatica 49 (2025) 365-378

CFPGrowth++-based approach in optimizing complex
OLAP workloads.

6 Discussion

This study is situated within the context of selecting
optimal indexes to enhance the performance of decision-
making queries, particularly in OLAP environments.
Several approaches have been proposed previously,
notably those by Aouiche et al. [27], who employed
closed frequent pattern mining using the Close algorithm
to prune the search space, primarily based on attribute
usage frequency. However, this method can lead to the
elimination of potentially relevant indexes, especially for
attributes belonging to large dimension tables, where
usage frequency alone does not guarantee effective
optimization.

On the other hand, Bellatreche et al. [28][29][32]
emphasized that access frequency alone is not a
sufficient criterion for effective index selection. Their
approach incorporates additional parameters, such as
table sizes and page characteristics, to better balance the
relevance of indexes. Nevertheless, this increased
complexity can result in higher computational costs
during pattern generation.

Our approach, utilizing the CFPGrowth++
algorithm, offers a significant advancement over these
methods. Indeed, CFPGrowth++ enables faster and more
scalable extraction of frequent patterns. Its ability to
handle multiple support thresholds allows for a more
refined exploration of itemsets, which contributes to
better adaptation to large data volumes and performance
requirements.

Regarding performance, the improvements offered
by CFPGrowth++ can be attributed to its optimized
structure, which reduces processing time and memory
consumption compared to traditional algorithms like
Apriori or Close. It also better manages the trade-offs
between computational cost and effectiveness. However,
this increased efficiency may come with some storage
overhead, especially if a large number of frequent
patterns are generated, necessitating careful management
to avoid memory overload.

In our proposed approach, CFPGrowth++ was
chosen for its efficiency in mining frequent patterns
through a compact tree-based structure and its flexibility
in handling multiple support thresholds. However, we
recognize that as the number of attributes and queries
increases in real-world data warehouses, the size of the
pattern base and the computational overhead can grow
significantly.

To manage this, several strategies can be applied,
such as:

Adjusting support thresholds dynamically to limit
the number of frequent itemsets generated in dense
workloads.

The evaluation with applying a constraint on the
total storage space consumed by the generated indexes.

Partitioning the workload or focusing on query
subsets that target the most resource-intensive operations.

M. Yahyaoui et al.

Parallelizing the mining process across distributed
computing environments to improve processing times
and scalability.

CFPGrowth++ stands out for its speed, scalability,
and accuracy, making it a promising solution for index
selection in contexts where efficient management of
large data volumes is critical. It represents a notable
improvement over previous techniques, while also
requiring attention to potential storage and computational
costs.

7 Conclusion

Within the realm of Data Warehouses schematized in a
star relational model carried out via OLAP decision-
making queries, very high response time remain more
than ever a crucial issue.The goal of this work is to
improve the Data Warehouse performance.The proposed
approach for optimizing system performance by
minimizing response time is based on finding frequent
patterns for automatic selection of binary join indexes in
relational Data Warehouses modeled by a star schema
through generation of a configuration of binary join
indexes based on the implementation of the
CFPGrowth++ algorithm.The results show the particular
performance of the binary join indexes recommended by
the CFPGrowth++ algorithm implemented for relational
Data Warehouses. Our study demonstrates that applying
data mining techniques for the automatic selection of
binary join indexes in relational Data Warehouses is a
promising strategy, offering encouraging results and
opening up several opportunities for future research and
optimization. Other possible improvement is to consider
multiple parameters to generate the final index
configuration. In future work it important to consider in
particular of the selectivity factors and the cardinalities
of the attributes or the sizes of the dimension tables.

References

[1] A. Vaisman, E. Zimanyi, ‘Data Warehouse Systems
- Design and Implementation’. Data-Centric
Systems and Applications. Springer, 2014,
https://doi.org/10.1007/978-3-642-54655-6

[2] I. Kovacic, G. Christoph Schuetz, B. Neumayr, M.
Schrefl, ‘OLAP Patterns: A pattern-based approach
to multidimensional data analysis’, Data &
Knowledge Engineering, Volume 138, 2022.
https://doi.org/10.1016/j.datak.2021.101948

[3] S. Chaudhuri, U. Dayal, Narasayya, V., ‘An
overview of business intelligence technology’.
Commun. ACM 54(8), 88-98, 2011.
https://doi.org/10.1145/1978542.1978562

[4] A. Cuzzocrea, ’Evolving OLAP and BI towards
Complex, High-Performance BigOLAP-Data-Cube-
Processing Analytics Frameworks: How to
Speed-Up Large-Scale, High-Dimensional Queries
over Clouds’, Procedia Computer Science 246
41694175, 2024,
https://doi.org/10.1016/j.procs.2024.09.256

https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1016/j.datak.2021.101948
https://doi.org/10.1145/1978542.1978562
https://doi.org/10.1016/j.procs.2024.09.256

Automatic Selection of Bitmap Join Indexes in Data Warehouses. ..

(5]

(6]

(7]

(8]

[0l

[10]

[11]

[12]

[13]

[14]

(18]

[16]

H. Inmon, ‘Building the data warehouse’. John
Wiley & sons, 2005.
https://books.google.co.ma/books?id=QFKTmh5IF
S4C&printsec=frontcover&hl=fr&source=gbs_ge_s
ummary_r&cad=0#v=onepage&q&f=false

R. Kimball, M. Ross, ‘The Kimball Group Reader:
Relentlessly Practical Tools for Data Warehousing
and Business Intelligence’, John Wiley & Sons,
2010. https://doi.org/10.1002/9781119228912

D. M. Mosquera, R. Navarrete, S. L. Mora, L.
Recalde, A. A. Cabrera, ’Integrating OLAP with
NoSQL Databases in Big Data Environments:
Systematic Mapping’, Big Data and Cognitive
Computing, 8, 64, 2024.
https://doi.org/10.3390/bdcc8060064

N. Dedic, C. Stanier, ‘An evaluation of the
challenges of multilingualismin data warehouse
development’. In ICEIS 2016, Proceedings of the
18th International Conference on Enterprise
Information Systems, Vol. 1, Rome, Italy, 196-206,
2016. https://doi.org/10.5220/0005858401960206
S. Roy, S. Raj, T. Chakraborty, A. Chakrabarty, A.
Cortesi, S. Sen, ’Efficient OLAP query processing
across cuboids in distributed data warehousing
environment’, Expert Systems with Applications
Volume 239, 2024,
https://doi.org/10.1016/j.eswa.2023.122481

S. Chaudhuri, V. Narasayya, ‘Self-tuning database
systems: A decade of progress’. In Proceedings of
the International Conference on Very Large
Databases, 3-14, 2007.
https://dl.acm.org/doi/10.5555/1325851.1325856
R. Kimball, M. Ross, ‘The Data Warehouse
Toolkit: The Definitive Guide to Dimensional
Modeling’, John Wiley & Sons , 2013.
https://dl.acm.org/doi/10.5555/2543973

H. Necir, H. Drias. 2015. A distributed maximal
frequent itemset mining with multi agents system
on bitmap join indexes selection. Int. J. Inf.
Technol. Manage. 14, 2/3, April 2015.
https://doi.org/10.1504/1J1TM.2015.068470

M. Yahyaoui, S. Amjad, L. Benameur. |. Jellouli,
‘Efficient of bitmap join indexes for optimising star
join queries in relational data warehouses’, Int.
J.Computational Intelligence Studies, Vol. 9, No. 3,
pp.220-233, 2020.
https://doi.org/10.1504/ijcistudies.2020.109604

R. Strohm, ‘Oracle Database Concepts, 11g Release
1 (11.1y B28318-03, Octobre 2007.
https://www.appservgrid.com/documentation111/do
cs/rdbms11grl/server.111/b28318/memory.htm

D. Zhang, ‘B Trees’, Chapter 15 of Handbook of
Data Structures and Applications, D. P. Mehta, S.
Sahni (editors), Chapman & Hall/CRC, 2004.
https://doi.org/10.1201/9781420035179

S. Chaudhuri, M. Datar, V. Narasayya. Index
Selection for Databases: A Hardness Study and a
Principled Heuristic Solution. IEEE Trans. Knowl.
Data Eng. 26, 1313-1323, 2004.
https://doi.org/10.1109/TKDE.2004.75

Informatica 49 (2025) 365-378 377

[17] R. Kain, D. Manerba, R. Tadei ‘The index selection

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

problem with configurations and memory
limitation: A scatter search approach’, Computers &
Operations Research, Volume 133, 2021
https://doi.org/10.1016/j.cor.2021.105385

D. Comer, ‘The difficulty of optimum index
selection’. ACM Transactions on Database
Systems, 3 (4), 440-445, 1978.

https://doi.org/10.1145/320289.320296

K. Stockinger, K. Wu, ‘Bitmap Indices for Data
Warehouses, Data Warehouses and OLAP’, R.
Wrembel and C. Koncilia, eds., IRM Press, 157-

178, 2006.
https://escholarship.org/uc/item/8zv9t143
Olap Council.: ABP-1 Benchmark,

http://www.olapcouncil.org/

S. Chaudhuri, M. Datar, V. Narasayya. (2004).
‘Index selection for databases: a hardness study and
a principled heuristic solution’. IEEE Transactions
Knowledge on Data Engineering, Volume 16, Issue
11, Novombre 2004.
https://doi.org/10.1109/TKDE.2004.75

B. Ziani, A. Benmlouka, Y. Ouinten. Improving
Index Selection Accuracy for Star Join Queries
Processing: An Association Rules Based Approach.

Management Intelligent Systems. Advances in
Intelligent Systems and Computing, vol 220.
Springer, Heidelberg, 2013.

https://doi.org/10.1007/978-3-319-00569-0_9
A. Rakesh, S. Ramakrishnan, ‘Fast Algorithms for

Mining Association Rules’, International
Conference on Very Large Databases, pp. 487-499,
September 1994,

https://dl.acm.org/doi/10.5555/645920.672836

A. Netz, S. Chaudhuri, J. Bernhardt, U. Fayyad,
‘Integration of Data Mining and Relational
Databases’, International Conference on Very Large
Data Bases, pp. 719-722, September 2000.
https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/integration-of-data-
mining.pdf

N. Bruno, S. Chaudhuri, Automatic physical
database tuning: a relaxation-based approach.
Proceedings of the SIGMOD Conference, 2005.
https://doi.org/10.1145/1066157.1066184

M. Golfarelli, S. Rizzi, E. Saltarelli, ‘Index
selection for data warehousing. Proceeding’s 4th
International Workshop on Design and
Management of Data Warehouses (DMDW'2002),
Toronto, Canada, pp. 33-42, 2002. https://ceur-
ws.org/Vol-58/RIZZI.pdf

K. Aouiche, J. Darmont. Data Mining-based
Materialized View and Index Selection in Data
Warehouses. Journal of Intelligent Information
Systems 33(2), 65-93, 2009.
https://doi.org/10.1007/s10844-009-0080-0

L. Bellatreche, R. Missaoui, H. Necir, H. Drias,
Selection and pruning algorithms for bitmap index
selection problem using data mining. LNCS, vol.
4654, pp. 221-230. Springer, Heidelberg, 2007.
https://doi.org/10.1007/978-3-540-74553-2_20

https://books.google.co.ma/books?id=QFKTmh5IFS4C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.co.ma/books?id=QFKTmh5IFS4C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.co.ma/books?id=QFKTmh5IFS4C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://doi.org/10.1002/9781119228912
https://doi.org/10.3390/bdcc8060064
https://doi.org/10.5220/0005858401960206
https://doi.org/10.1016/j.eswa.2023.122481
https://dl.acm.org/doi/10.5555/1325851.1325856
https://dl.acm.org/doi/10.5555/2543973
https://doi.org/10.1504/IJITM.2015.068470
https://doi.org/10.1504/ijcistudies.2020.109604
https://www.appservgrid.com/documentation111/docs/rdbms11gr1/server.111/b28318/memory.htm
https://www.appservgrid.com/documentation111/docs/rdbms11gr1/server.111/b28318/memory.htm
https://doi.org/10.1201/9781420035179
https://doi.org/10.1109/TKDE.2004.75
https://doi.org/10.1016/j.cor.2021.105385
https://doi.org/10.1145/320289.320296
https://escholarship.org/uc/item/8zv9t143
http://www.olapcouncil.org/
https://doi.org/10.1109/TKDE.2004.75
https://doi.org/10.1007/978-3-319-00569-0_9
https://dl.acm.org/doi/10.5555/645920.672836
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/integration-of-data-mining.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/integration-of-data-mining.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/integration-of-data-mining.pdf
https://doi.org/10.1145/1066157.1066184
https://ceur-ws.org/Vol-58/RIZZI.pdf
https://ceur-ws.org/Vol-58/RIZZI.pdf
https://doi.org/10.1007/s10844-009-0080-0
https://doi.org/10.1007/978-3-540-74553-2_20

378

[29]

[30]

[31]

(32]

Informatica 49 (2025) 365-378

L. Bellatreche, Techniques d’optimisation des
requétes dans les data warehouses. In Sixth
International Symposium on Programming and
Systems, 2003. https://hal.science/hal-03759388v1
R.U. Kiran, P.K. Reddy, ‘Novel Techniques to
Reduce Search Space in Multiple Minimum
Supports-Based Frequent Pattern Mining
Algorithms’, EDBT/ICDT '11, 21 March 2011.
https://doi.org/10.1145/1951365.1951370

H. Ya-Han, C. Yen-Liang, ’Mining association
rules with multiple minimum supports; a new
mining algorithm and a support tuning mechanism’,
Decision Support Systems, Volume 42, Issue 1,
2006. https://doi.org/10.1016/j.dss.2004.09.007

L. Bellatreche, R. Missaoui, H. Necir, H. Drias. ‘A
Data Mining Approach for Selecting Bitmap Join
Indices’. JCSE.2007.1.2.177, December 2007.
https://doi.org/10.5626/JCSE.2007.1.2.177

M. Yahyaoui et al.

https://hal.science/hal-03759388v1
https://doi.org/10.1145/1951365.1951370
https://doi.org/10.1016/j.dss.2004.09.007
https://doi.org/10.5626/JCSE.2007.1.2.177

