
https://doi.org/10.31449/inf.v49i27.7807 Informatica 49 (2025) 365–378 365

Automatic Selection of Bitmap Join Indexes in Data Warehouses

Using CFPGrowth++ Algorithm

Mohammed Yahyaoui*, Noura Aknin, Souad Amjad, Lamia Benameur

Information Technology and Modeling, Systems Research Unit, FS, Abdelmalek Essaadi University, Tetouan,

Morocco

E-mail: myahyaoui@uae.ac.ma, noura.aknin@uae.ac.ma, s.amjad@uae.ac.ma, l.benameur@uae.ac.ma
*Corresponding author

Keywords: data warehouse, OLAP, indexes, bitmap join indexes, frequent itemsets, data mining, CFPGrowth++

algorithm

Received: December 12, 2024

In the context of complex data warehousing, Typically, the analysis and decision-making process for

Data Warehouses schematized in a relational star model is conducted through OLAP (On-Line

Analytical Processing) queries. These queries are generally complex, characterized by several

operations of selections, joins, grouping and aggregations on voluminous tables. Which requires a lot of

computing time and therefore a very high response time. The cost of running OLAP decision queries on

large tables is very high. The reduction of this cost becomes essential to allow decision-makers to

interact within a reasonable time frame. The objective of this study is to enhance system performance by

minimizing the response time of OLAP decision-making queries. The approach proposed in this article

aims to search for frequent patterns for the automatic selection of binary join indexes used for reducing

the execution costs of OLAP decision-making queries. To automatically generate the configuration of

binary join indexes minimizing response time, an implementation of the CFPGrowth++ frequent pattern

matching algorithm was well carried out and then applied to a load of queries on a test Data Warehouse

created using the Analytical Processing Benchmark 1 (ABP-1) test bench, in order to validate our

approach. The results of the experiment indicate that the index configuration produced by the proposed

approach leads to a significant improvement in performance improvement of approximately 75%. We

note that for a large portion of the load, execution time is significantly improved after applying our

approach. The overall query execution time decreased compared to the general context. The overall

execution time for queries decreased from 20,032.57 seconds before the application of our approach to

5,388.49 seconds after applying our approach. The experiments carried out show that the index

configuration generated by the proposed approach allows a very performance gain.

Povzetek: Predlagana metoda samodejne izbire binarnih indeksov za OLAP z algoritmom

CFPGrowth++ zmanjša čas izvajanja poizvedb za približno 75 %.

1 Introduction
In decision-making computing, Data Warehouses have

still experienced a very significant boom today. They are

fed by analytical data supporting a set of analysis

processes coming from different distributed and

heterogeneous sources [1][2][3][4] and their volumes are

destined to increase.

In 1990, Bill Inmon conceptualized the Data

Warehouse as a comprehensive and dynamic data

repository designed to be subject-oriented, integrated,

time-variant, and non-volatile, serving as a valuable

resource for management decision-making [5].

In the data warehouse, information is structured in

the configuration of a multidimensional cube [4].

Here, each dimension acts as an analytical axis, and each

cell encapsulates the analyzed fact [6].

This organization is specifically designed to proficiently

facilitate the operations of online analysis [7], commonly

known as OLAP (online analytical processing) [4].

The ROLAP (Relational On-Line Analytical

Processing) relational model is introduced for physical

storage.

Data warehouses are usually modeled by a star

schema [8]. This schema is characterized by a fact table

very voluminous (Giga or Terra Bytes) linked by foreign

keys to a set of smaller size dimension tables thus

forming a star schema (Figure 1).

https://doi.org/10.31449/inf.v49i27.99
mailto:myahyaoui@uae.ac.ma
mailto:noura.aknin@uae.ac.ma
mailto:s.amjad@uae.ac.ma
mailto:l.benameur@uae.ac.ma

366 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

Figure 1 : The relational model for storing a data

warehouse.

Queries formulated within a star schema exhibit

significant complexity, involving the integration of joins,

selections, and aggregations. Specifically, these joins,

denoted as star joins, traverse the entirety of the fact

table. Selection operations in this context, referred to as

selection predicates, are executed on dimension attributes

identified as selection attributes. Achieving satisfactory

performance in the context of intricate decisional queries

and their extended response times poses a significant

challenge for Data Warehouse administrators [9].

Effectively addressing this challenge requires

administrators to possess a robust understanding of

optimization structures [10] and to apply logical and

physical design methods for selecting the most optimal

design policy.

Within the fact table, attributes comprise both

activity measures and foreign keys leading to dimension

tables [11]. This model's advantage lies in its utilization

of pre-existing database management systems, resulting

in a reduction of implementation costs. However, the

challenge persists, as optimizing the performance of Data

Warehouses remains an increasingly critical concern.

In this study, the concept of optimal performance

specifically refers to the reduction of query execution

costs in OLAP (Online Analytical Processing)

environments, with a particular focus on minimizing

query response time. Since decision-support queries in

data warehouses often involve complex join operations

over large volumes of data, improving response time is

crucial for maintaining system efficiency and user

satisfaction [12].

While other performance aspects such as storage

space, index maintenance overhead, and system

scalability are important considerations in data

warehouse optimization, this paper primarily targets

response time reduction as the key performance metric.

The proposed approach achieves this by selecting

effective binary join indexes based on frequent pattern

discovery, using the CFPGrowth++ algorithm with

multiple support thresholds to enhance query processing

efficiency.

Performance optimization in data warehouses is

primarily concerned with reducing the query response

time for decision-support queries. This allows users to

quickly obtain the information they need, improving the

overall efficiency of analysis and decision-making. In

this work this is achieved by minimizing the query

response time for decision-support (OLAP) through

efficient Selection of binary join indexes.

Indexing is one of the important techniques used in

the physical design phase to optimize OLAP queries [13]

in relational Data Warehouses. In this research paper,

we're using an indexing approach.

The proposed approach is designed to assist Data

Warehouse administrators and system designers in

making informed decisions regarding index selection to

optimize query performance.

Although the solution is partially automated - as it

automatically extracts frequent query patterns and

suggests candidate binary join indexes - human expertise

is still valuable in the final decision-making process.

Administrators need to have a basic understanding of the

data warehouse schema, query workload characteristics,

and index management principles to evaluate the

relevance of the recommended indexes before

implementation.

In practice, this approach serves as a decision-

support tool rather than a fully autonomous system. It

aims to reduce the complexity of index selection by

narrowing down the most relevant candidates based on

query patterns, leaving administrators with clearer, data-

driven recommendations.

Some of these techniques inherit from those

proposed in the context of traditional databases such as B

trees [14][15]. Others are proposed to optimize selections

defined on low cardinality attributes such as binary

indexes.

Binary join indexes have demonstrated their utility in

mitigating the execution costs of decisional OLAP

queries formulated on a relational star schema. [13].

The task of index selection is categorized as an NP-

Complete problem [16] due to its inherent complexity,

stemming from the fact that the number of potential

indexes grows exponentially with the total number of

attributes present in the Data Warehouse [17][18][19].

Given the aforementioned challenge, our focus lies

in the automatic selection of a set of indexes

(configuration) minimizing the cost of executing OLAP

queries.

By mining frequent itemsets from OLAP query

workloads, we can identify the most commonly accessed

attribute combinations. Creating indexes based on these

patterns ensures that the most relevant data retrieval

paths are optimized, leading to faster query execution,

reduced response times, and more efficient resource

utilization.

In the context of OLAP (Online Analytical

Processing), queries often involve analyzing large

datasets with multiple dimensions and measures. To

make these queries faster, databases use indexes special

data structures that help retrieve data quickly.

Automatic Selection of Bitmap Join Indexes in Data Warehouses… Informatica 49 (2025) 365–378 367

Now, frequent itemsets come from data mining

techniques, especially association rule mining. They

identify combinations of items or attribute values that

appear together often in the data.

Here's how these frequent itemsets can help optimize

OLAP query execution:

Identifying Common Patterns:

By discovering which attribute combinations occur

frequently, the system can prioritize creating indexes on

those combinations. This means that when a query

involves these attributes, the data warehouses can

quickly locate relevant data without scanning the entire

dataset.

Selective Index Creation:

Instead of indexing every possible combination

(which can be costly), the system uses frequent itemsets

to select only the most relevant attribute combinations.

This targeted approach ensures efficient use of storage

and maintenance resources.

Improved Query Performance:

When an OLAP query involves dimensions that

match these frequent itemsets, the pre-existing indexes

allow for rapid data retrieval, significantly reducing

query response times.

Dynamic Optimization:

As data evolves, the system can periodically re-

analyze data to find new frequent itemsets, updating

indexes accordingly. This dynamic approach ensures that

the indexing strategy remains aligned with actual usage

patterns.

Leveraging frequent itemsets helps in smart index

selection by focusing on the most commonly co-

occurring attribute combinations. This targeted indexing

accelerates OLAP queries, making data analysis more

efficient and responsive.

The decision to adopt CFPGrowth++ over alternative

frequent itemset mining algorithms is based on several

key advantages that align with the specific requirements

of OLAP index selection:

Multiple Minimum Support Thresholds:

Unlike classical algorithms such as Apriori, CLOS,

or the original FP-Growth, which operate with a single

global support threshold, CFPGrowth++ introduces the

capability to assign different minimum support

thresholds to individual items. This flexibility is crucial

in OLAP environments, where data distributions are

often skewed and certain attributes or combinations

appear frequently within specific query contexts but

remain infrequent globally. By supporting multiple

thresholds, CFPGrowth++ can identify both globally

frequent and contextually important patterns, leading to a

more relevant and effective set of candidate indexes.

Improved Efficiency and Scalability:

CFPGrowth++ builds upon the FP-Tree structure but

optimizes it by reducing redundant node traversals and

minimizing memory overhead through enhanced pruning

strategies.

This makes it better suited for handling the large, high-

dimensional datasets commonly found in data

warehouses, where conventional algorithms like Apriori

suffer from high computational costs due to repeated data

warehouses scans and exponential candidate generation.

Suitability for Index Selection in Decision-Support

Systems:

Index selection in OLAP systems demands mining

not just frequent patterns, but patterns that contribute

meaningfully to query optimization. CFPGrowth++'s

capacity to uncover rare yet strategically valuable

itemsets thanks to its variable support thresholds enables

the discovery of indexes that specifically target

performance bottlenecks in diverse and heterogeneous

workloads.

Reduced Computational Overhead During Mining:

Compared to algorithms CLOS, CFPGrowth++

demonstrates lower memory consumption and faster

runtime for datasets with varying item frequencies. This

balance between computational efficiency and mining

depth makes it a practical choice for real-time or near-

real-time decision-support applications.

CFPGrowth++ was chosen because it combines high

efficiency, flexibility in support thresholds, scalability,

and the ability to handle large, complex datasets features

that are vital for effective and practical index selection in

OLAP systems. Its advantages over other algorithms

make it particularly well-suited for our goal of reducing

query execution costs through intelligent binary join

index recommendations.

The main contribution of this study is an

implementation of the CFPGrowth++ frequent pattern

matching algorithm To automatically generate the

configuration of binary join indexes minimizing response

time and select the frequent itemsets. Then for the

approach validation to a load of queries applied on a test

Data Warehouse created using ABP-1 test bench [20].

The article is orgnized into five sections. Section 2

poutlines the overall workflow adopted in the study,

emphasizing the integration of frequent itemset mining

using CFPGrowth++ with automatic binary join index

(BJI) selection for OLAP query optimization. Section 3

provides an overview of the primary studies that have

been advanced to tackle the intricacies of binary join

index selection, with a specific emphasis on the data

mining application techniques for resolution. Then,

Section 4 delves into our unique approach to the

selection of frequent itemsets, achieved through the

adaptation of the CFPGrowth++ algorithm. Section 5

details the experimental phase, offering validation for our

proposed binary join index selection methodology.

Section 6 compares the method against traditional

indexing approaches, Furthermore, it acknowledges

practical challenges such as index maintenance,

scalability for high-dimensional schemas, and the

absence of a fully integrated cost model. Lastly, in

Section 7, the article concludes by encapsulating the

main findings and proposing avenues for future research.

368 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

2 Proposed workflow, novelty, and

main findings

2.1 Proposed workflow

The proposed approach aims to enhance the performance

of OLAP query execution in data warehouses by

automatically selecting binary join indexes (BJIs) based

on frequent pattern mining techniques. The workflow of

the study is structured as follows :

1. OLAP Query Workload Collection :

Extraction of historical OLAP queries containing

join and selection predicates from a simulated decision-

support workload based on the ABP-1 benchmark.

2. Transaction Dataset Generation:

Transformation of each query into a transaction

containing attributes involved in selection and join

predicates.

3. Frequent Itemset Mining with

CFPGrowth++:

Application of an improved CFPGrowth++

algorithm with multiple minimum support thresholds to

extract frequent attribute combinations from the

transaction dataset.

4. Binary Join Index Candidate Generation:

Mapping of frequent itemsets into candidate BJI

configurations.

2.2 Novelty of the study

This work introduces several novel contributions to the

domain of OLAP optimization:

• Integration of a Multi-support

CFPGrowth++ Algorithm:

Unlike conventional approaches using single-support

thresholds, our method applies multiple minimum

supports to better capture frequent attribute combinations

of varying significance.

• Automatic Binary Join Index Selection

Framework:

The proposed system automates the identification

and selection of BJIs from frequent query patterns,

reducing the manual intervention traditionally required in

index configuration.

• Statistically Validated Performance

Improvement:

The study not only demonstrates query performance

gains but also rigorously validates these results through

statistical analysis, including confidence intervals and

significance tests.

• Practical Benchmarking on a Customized

ABP-1 Environment:

The experimental setup leverages a workload

derived from the ABP-1 benchmark, enhanced with real-

world query structures, ensuring realistic and relevant

performance validation.

2.3 Main findings

Through extensive experimental evaluation:

• The proposed approach achieved a

performance improvement between 74.20%

and 75.96% on OLAP query workloads.

• Statistical analysis confirmed these

improvements to be significant (p < 0.001)

at a 95% confidence level.

• The approach proved effective across

various query types, particularly for

complex multi-join and range aggregation

queries.

The comparison of Recent Methods Related to

OLAP Optimization and Indexing is represented in Table

1 :

Table 1 : Summary of recent methods related to OLAP

optimization and indexing

Approach Features Limitations

CFPGrowth++

(Proposed)

Utilizes an

enhanced frequent

pattern mining

algorithm to

identify frequent

motifs, supporting

multiple support

thresholds for

flexible

exploration. Aims

to reduce query

execution costs in

OLAP

environments.

Computational

complexity may

increase with

very large

datasets;

effectiveness

depends on the

quality of

identified motifs.

Traditional

Apriori-based

methods

Use classic

frequent pattern

mining with

straightforward

implementation.

Suitable for

smaller datasets

but can be

computationally

intensive.

Scalability

issues; limited

support for

multiple support

thresholds; less

efficient for

large-scale data.

FP-Growth

Efficient pattern

mining without

candidate

generation, faster

than Apriori.

Less flexible in

handling

multiple support

thresholds; may

still face

challenges with

very large

datasets.

Existing index

selection

approaches

Often rely on

heuristic or rule-

based methods,

focusing on

specific query

workloads.

May not adapt

well to dynamic

data or varying

query patterns;

limited in

discovering

complex motif

structures.

Automatic Selection of Bitmap Join Indexes in Data Warehouses… Informatica 49 (2025) 365–378 369

This comparison illustrates that our CFPGrowth++

approach offers a flexible and efficient method for

discovering frequent motifs, which can significantly

improve index selection for OLAP query optimization.

While it introduces some computational overhead, its

ability to handle multiple support thresholds and explore

complex patterns provides a notable advantage over

traditional methods.

2.4 Benchmark dataset comparison

The ABP-1 test bench was selected as it offers a

balanced schema structure and a set of decision-support

queries typical in OLAP workloads. It also allows for

controlled workload scaling and realistic index selection

scenarios, making it better suited for validating index

optimization approaches compared to standard synthetic

benchmarks. The Benchmark Dataset Comparison is

represented in Table 2 :

Table 2 : Benchmark dataset comparison

Benchmark /

Dataset

Schema

Complexity

Query

Diversity

Realism

for

Decision-

Support

Workloads

Used

in

This

Study

TPC-DS High
Very

High
Moderate No

Star Schema

Benchmark

(SSB)
Moderate

Mediu

m
Low No

ABP-1

(Customized

Version)
Moderate High High Yes

3 Related works

3.1 Binary join index selection problem

The selection of indexes in Data Warehouses is a

difficult problem [21] seen the large number of candidate

attributes of dimension tables participant in the

construction of indexes [22].

The problem consists on building an index

configuration that minimizes the cost of executing a set

of frequent OLAP queries.

To reduce the number of potential attributes in the

construction of indexes, Numerous previous works

proposed a data mining technique [23][24][17][25] in

order to generate frequent itemsets (patterns) which will

constitute the candidate attributes in the indexing

process.

Several research works have shown the usefulness of

automatic index selection [26][22] from a set of

candidate indexes extracted from a query by appealing to

using administrator expertise [10][21][14].In the context

of Data Warehouses, binary join indexes are well suited

to speed up OLAP queries known for their large number

of join operations [13].

Recent approaches [10][6] propose the use of data

mining techniques to generate the set of candidate

indexes to reduce the significant number of potential

candidate attributes for the construction of indexes. They

have exploited in particular the technique of searching

for frequent itemsets for the generation of candidate

indexes [27][28]. The basic idea is inspired by the

frequent itemsets search technique, widely used in data

mining. The more frequently an attribute or group of

attributes is present in the query load, the more valuable

it is considered in the index selection process.

Prior work in the field of index selection, such as the

studies by Aouiche et al. [27] and Bellatreche et al.

[28][29], has laid important groundwork by exploring the

use of frequent pattern mining techniquesspecifically, the

Close algorithm to identify candidate attributes for binary

join index configuration. However, these approaches

have notable limitations. For instance, Aouiche et al.

focus primarily on the frequency of attribute usage

within query workloads, which can lead to the

elimination of potentially beneficial indexes on attributes

from large dimension tables that are infrequently

accessed but still critical for join operations. Bellatreche

et al. address this issue by incorporating additional

parameters, such as table size and system page size, to

refine index selection, but their method still relies on the

traditional Close algorithm, which can generate an

overwhelming number of frequent patterns, impacting

scalability and efficiency.

Our approach explicitly addresses these limitations

by introducing the CFPGrowth++ algorithm, an

enhanced and scalable method for mining frequent

itemsets. Unlike previous algorithms like Apriori or

Close, CFPGrowth++ is designed to be faster, more

efficient, and capable of handling large volumes of data

with multiple support thresholds. This allows for a more

nuanced and precise selection of index candidates,

thereby improving the effectiveness of index

configuration for OLAP query optimization.

The novelty of our approach lies in leveraging

CFPGrowth++ to overcome the scalability and efficiency

challenges faced by prior methods, enabling more

accurate and comprehensive index selection that better

supports complex, large-scale data environments. This

makes our contribution both necessary and timely in

advancing the state of the art in index optimization

techniques.

Here is a synthetic comparison of frequent pattern

discovery algorithms used in previous studies on index

selection techniques.

Table 3 : Synthetic comparison of frequent pattern

discovery algorithms

Benchmarks

used
Apriori

FP-

Growth
CLOSE

CFPGrowth

++

Complexity

High

(multiple

passes)

Modera

te

(fewer

passes)

Modera

te (but

more

filterin

g)

Low

(optimized

)

Memory

High

(candidat

e

generatio

Modera

te (FP-

tree)

Low

(closed

pattern

s)

Low

(partitioni

ng)

370 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

n)

Methodologi

es

Frequent

patterns

Freque

nt

pattern

s

Closed

pattern

s

Frequent

patterns

Ease of

implementat

ion
Simple

Modera

te

Compl

ex
Complex

Performanc

e outcomes
Poor Good Good Very good

3.2 Approaches based on frequent

itemsets

The discovery of frequent itemsets consists in finding

groupings of items appearing together with a significant

frequency. The discovery of these frequent itemsets is the

main step in solving a number of useful knowledge

extraction problems.

Formally, the binary join index selection issue is

formulated as an optimization problem in the following

form: given:

(1) A Data Warehouse modeled by a star schema

formed by a fact table F and D = {D1, ...,Dd} dimension

tables,

(2) A set of most frequent queries Q = {q1, ..., qm}

with their access frequencies f = {f1, ..., f m},

The objective is to select a set of indexes that

reduces the query execution cost.

4 Proposed approach

4.1 Search for frequent itemsets for index

selection

We believe that the relevance of an index is strongly

correlated with the frequency of its use in the set of

queries in a load.Data mining is a growing field of

research aimed at extracting knowledge from enormous

amounts of data.In this article, we are interested in the

extraction of frequent itemsets.

The objective is to extract knowledge useful for the

choice of indexes. The search for frequent itemsets is an

appropriate way to account for this correlation and thus

facilitate the choice of indexes to be built.

4.2 Frequent itemsets

The problem of research frequent itemsets can be

formulated as follows :

Let I = {i1, i2, ... im} a set of m distinct symbols

called itemset and B = t1, . , tn a database of n

transactions. Each transaction is composed of a subset of

items I' ⊆ I. A subset I' of size k is called a k-itemset. A

transaction ti contains a pattern I' if and only if I' ⊆ ti.

The support of a pattern I' is the proportion of

transactions in B that contain I'. The support is given by

the following

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼′) =
|{𝑡 ∈ 𝐵, 𝐼′ ⊑ 𝑡}|

|{𝑡 ∈ 𝐵}|

Figure 2 : The support of a pattern.

Support defined as the absolute frequency of an

itemset (or index) in the query workload.

Minimum support will refer to the threshold value

that is applied during the frequent itemset mining phase

to determine the minimum frequency required for an

itemset to be considered frequent.

A pattern whose support is greater than or equal to

the minimum threshold of minsup support, defined by the

user, is called a frequent pattern.

The objective is to select a set of indexes reducing

the cost of query execution.

4.3 CFPGrowth++ algorithm

The CFPGrowth++ algorithm, an extension of

CFPGrowth, is devised for the extraction of frequent

itemsets through the incorporation of multiple minimum

support thresholds [30][31]. Its application involves

inputting a transaction database alongside a list denoting

minimum support threshold, wherein each threshold

corresponds to the requisite minimum support for a

specific item.

A transaction database in this context is

characterized as a compilation of transactions, each

constituting a unique list of items or symbols. For

illustration, contemplate a transaction database

encompassing 5 transactions (T1, T2, ..., T6) and 8 items

(A, B, C, D, E, F, G, H). As an instance, transaction T1

encapsulates the set of items {A, C, D, F}. Notably, the

stipulation that an item cannot recur within the same

transaction is upheld, and items are presumed to be

arranged in lexicographical order within a given

transaction.

The list of minimum support threshold is provided as

input for the algorithm :

Table 4 : Example of transactions

Transaction ID Items

T1 {A, C, D,F}

T2 {A, C, E, F, G}

T3 {A, B, C, F, H}

T4 {B, F, G}

T5 {B, C}

Table 5 : The list of minimum support thresholds

supported to be used for the items

Items
Minimum support

threshold

A 1

B 2

C 3

D 3

E 2

F 3

G 2

H 1

Automatic Selection of Bitmap Join Indexes in Data Warehouses… Informatica 49 (2025) 365–378 371

The support of an itemset is quantified by the count

of transactions that encompass said itemset. An itemset

attains the status of a frequent itemset when its support

equals or exceeds the most conservative minimum

support threshold among the individual thresholds

assigned to its constituent items. For instance, consider

the itemset {A, B, H}, which attains the status of a

frequent itemset as it appears in one transaction (T3).

Crucially, its support surpasses the minimum support

thresholds associated with its individual items: item 1,

item 2, and item 8, with respective minimum support

thresholds of 1, 2, and 1.

In this study, we determine multiple minimum

support thresholds based on the distinct characteristics

and importance of each item within the dataset. Unlike

traditional frequent itemset mining approaches that rely

on a single global minimum support value, our method

assigns a specific minimum support threshold to each

item according to its frequency and relevance in the

context of OLAP query optimization. This approach

ensures that both frequent and less frequent, but

potentially valuable, itemsets can be identified without

being excluded by a uniform threshold.

The multiple thresholds are defined prior to the

frequent pattern mining process by analyzing the

distribution of item frequencies within the transaction

database. Items with higher occurrence rates are assigned

higher minimum support values, while those with lower

frequencies, yet significant in terms of query

performance optimization, are given lower thresholds.

This strategy allows a more flexible and adaptive mining

process.

The CFPGrowth++ algorithm, which we

implemented and enhanced for this work, efficiently

handles these multiple support values by extending the

classical FP-Growth framework. It integrates the

assigned thresholds during the construction of the

conditional FP-trees and throughout the recursive pattern

generation process. This enables the discovery of

frequent itemsets that respect their corresponding

minimum support constraints, ultimately supporting the

identification of relevant binary join indexes for reducing

the execution costs of OLAP decision-support queries.

4.4 Approach for automatic index selection

The proposed approach, whose general principle is

represented in Figure 3, consists of the following steps :

Figure 3 : Proposed approach for constructing Bitmap

Join Indexes.

1) Selection of a load of OLAP decisional queries,

assumed to be representative, of the system activity.

2) Structuring of the indexable attributes contained

in the load in the form of a transactional database where

the queries represent the transactions and the attributes

represent the patterns. This represents our context for

extracting frequent itemsets.

3) Generation of candidate indexes by the

CFPGrowth++ algorithm implemented in Java.

4) Comparison of the response times of the

execution of the OLAP decisional queries without

indexes and then with the indexes generated by the

implementation of CFPGrowth++.

Technical implementation details :

• Detection of candidate attributes :

Candidate attributes are detected by analyzing a

representative workload of OLAP decisional queries.

Specifically, we parse the SQL query statements to

identify attributes involved in WHERE clauses (selection

predicates), GROUP BY clauses, and JOIN conditions.

These attributes are considered indexable since they

directly impact query performance in a decision-support

context.

372 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

• Criteria for attribute selection :

The primary selection criterion is the frequency of an

attribute’s appearance within the query workload.

Attributes that frequently appear together in queries are

treated as potential candidates for binary join indexes.

• Application of the data sheet technique:

The data sheet technique is applied by transforming

the query workload into a transactional format where

each query represents a transaction and the indexable

attributes it contains form the transaction items. This

transactional dataset is then used as input for the

CFPGrowth++ algorithm to extract frequent itemsets.

• Technical details of selecting and

Creating bitmap join indexes :

The frequent itemsets generated by CFPGrowth++

serve as candidate index configurations. Each frequent

itemset represents a combination of attributes that often

co-occur in queries, making them suitable candidates for

indexing. The actual creation of Bitmap Join Indexes is

simulated in our test environment by generating index

creation scripts based on these frequent attribute

combinations. Subsequently, query execution times are

measured before and after applying these indexes to

evaluate their impact on performance.

Detailed Pseudocode for the Adapted CFPGrowth++

Algorithm for Automatic Bitmap Join Index Selection in

OLAP

Context :

This adapted CFPGrowth++ algorithm for automatic

selection of Bitmap Join Indexes aimed at improving

OLAP query performance. The general approach

involves analyzing a representative workload of OLAP

queries to identify frequently co-accessed attributes

(frequent itemsets) using multiple support thresholds.

These frequent attribute combinations are then used to

configure candidate bitmap join indexes.

Pseudocode: adapted CFPGrowth++ for index

selection :

Table 6 : Pseudocode : automatic binary join index

selection with CFPGrowth++

Input:

 - Q: a representative workload of OLAP

queries

 - MIS: a list of minimum support threshold

per attribute

 - D: relational data warehouse schema

Output:

 - F: set of frequent itemsets (candidate

bitmap join indexes)

Steps:

1. ExtractQueriesFromLogFile(log_file):

 Parse the transaction log to retrieve OLAP

queries.

 Return set of queries Q.

2. IdentifyIndexableAttributes(Q, D):

 For each query in Q:

 Extract attributes involved in

selection, grouping, and join predicates.

 Return the set of indexable attributes A.

3. BuildTransactionDatabase(Q, A):

 Create a transaction for each query:

 Items in a transaction = attributes

accessed by the query.

 Return transaction database T.

4. ApplyCFPGrowthPlusPlus(T, MIS):

 a. Scan T to compute item supports.

 b. Sort items in each transaction in

descending order of support.

 c. Build an initial CFP-tree:

 For each transaction:

 Insert items into the tree

following the sorted order.

 Update item counts along the path.

 d. Recursively mine the CFP-tree:

 For each frequent item i:

 Generate conditional pattern base

for i.

 Construct conditional CFP-tree.

 If conditional tree is not empty:

 Recursively mine conditional

tree.

 Collect frequent itemsets meeting

MIS thresholds.

 e. Return set of frequent itemsets F.

5. ConfigureCandidateBitmapJoinIndexes(F):

 For each frequent itemset f in F:

 Map items in f to attributes in D.

 Propose a bitmap join index

configuration on these attributes.

6. EvaluateIndexImpact(F, Q, D):

 For each index configuration:

 Measure query response time on Q with

and without the index.

 Retain index configurations improving

query performance.

7. Return final selected frequent itemsets F

as candidate bitmap join indexes.

Explanation of Adaptation for Index Selection

Context:

• Transaction Construction:

Each OLAP query from the workload is treated as a

transaction, and the attributes involved in selection,

grouping, and joins are considered as items. This enables

mapping query attribute usage into a transaction database

suitable for frequent pattern mining.

• Multiple Minimum Support Thresholds:

The MIS list allows setting lower thresholds for

attributes representing important query predicates. when

indexed, could significantly optimize query performance.

Automatic Selection of Bitmap Join Indexes in Data Warehouses… Informatica 49 (2025) 365–378 373

• Frequent Itemsets as Candidate Indexes:

Frequent itemsets identified by the algorithm

represent groups of attributes often queried together.

These are directly translated into candidate bitmap join

index configurations.

• Index Evaluation:

Before finalizing the index selection, each

candidate’s impact on query performance is empirically

evaluated. Only those improving execution times are

retained.

Insights into Minimum Support Threshold Selection

and Its Impact.

Selecting appropriate minimum support thresholds is

crucial for balancing mining efficiency and index

relevance. In our approach:

Higher thresholds prioritize frequent patterns shared

across numerous queries, potentially limiting index

diversity but ensuring high-impact optimizations.

Lower thresholds allow the inclusion of less frequent

but strategically valuable patterns, at the cost of

increased computational overhead.

To address this trade-off, we employ differentiated

support thresholds based on workload analysis:

Attributes heavily involved in query predicates

receive lower thresholds.

Less critical attributes maintain higher thresholds to

limit unnecessary pattern mining.

This strategy enhances the algorithm’s behavior by

focusing computational resources on workload-relevant

patterns, leading to a more effective and workload-

tailored index configuration.

5 Experiments and results
To confirm the efficiency of our strategy for selecting

Bitmap join indexes, we employed it in a Data

Warehouse configured with a star relational schema

running on Oracle 11g. The experimentation was

conducted on an Intel Core2Duo machine with a 2GB

main memory.Our experimental study is conducted in the

following steps :

1) Implementation of the CFPGrowth++ algorithm in

Java. Besides its portability, java is chosen for its

automatic memory management. This feature is crucial

because the manipulated data structures are mainly

linked lists and trees. Our implementation is applied to

the selection context.

2) Creating a Data Warehouse using the Analytical

Processing Benchmark 1 ABP-1 business intelligence

workbench [3]. This warehouse is composed of one fact

table Actvars and four dimension tables ProdLevel,

TimeLevel, CustLevel and ChanLevel.

The schema follows the classical star schema model

and is composed of one fact table and several dimension

tables as detailed below:

Fact table:

Actvars

Attributes: Customer_level, Product_level,

Channel_level, Time_level, UnitsSold, DollarSales,

DollarCost

This table records the sales transactions and is linked

to the dimension tables through foreign keys.

Dimension tables:

ProdLevel

Attributes: Code_level, Class_level, Group_level,

Family_level, Line_level, Division_level

TimeLevel

Attributes: Tid, year_level, quarter_level,

month_level, week_level, day_level

ChanLevel

Attributes: Base_level, all_level

CustLevel

Attributes: Store_level, Retailer_level

This structure provides a multidimensional

framework suitable for typical OLAP operations,

including aggregation, drill-down, roll-up, and

slicing/dicing queries.

Query workload specification

The experimental query workload was designed

based on the ABP-1 benchmark’s [20] guidelines and

consisted of a mix of decision-support queries

representing realistic OLAP operations. The workload

includes:

• Aggregation queries:

Queries calculating total sales, costs, or quantities

based on one or more dimensions, such as total

DollarSales per Product_level or per Time_level.

• Drill-down and roll-up queries:

Queries navigating through different granularity

levels within dimensions, for instance, moving from

year_level to month_level in TimeLevel or from

Division_level to Code_level in ProdLevel.

• Slice and dice queries:

Queries selecting specific data subsets based on

certain conditions, like sales for a particular

Retailer_level during a specific quarter_level.

• Multi-dimensional analysis queries:

Complex queries involving multiple dimensions and

aggregate measures, for example, computing average

UnitsSold and total DollarCost for various Channel_level

and Product_level combinations over time.

Table 7 summarizes the characteristics of the tables

forming the warehouse. We considered a load of 60

OLAP decisional queries defined on this Data

Warehouse.

Table 7 : Characteristics of the tables in the data

warehouse used.

Table Number of n-tuples Size (Octet)

ACTVARS 261 740 160 2 142 250 000

PRODLEVEL 10 800 1 048 576

TIMELEVEL 24 65 536

CHANLEVEL 11 65 536

CUSTLEVEL 1 080 65 536

A set of queries using several selection predicates

defined on one or more attributes has been considered to

cover all the attributes of the warehouse. These queries

belong to several categories: queries using aggregation

374 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

functions such as Sum, Min, Max, queries with

dimension attributes in the SELECT clause, count(*)

type queries with and without aggregations. (Table 8)

shows an extract of the load composed of five queries.

Table 8 : Example of queries extracted from a load

(Q1)

SELECT

 A.Time_level,

 AVG(A.UnitsSold) AS AverageUnitsSold

FROM

 ACTVARS A

JOIN

 TIMELEVEL T ON A.Time_level = T.Tid

WHERE

 T.Quarter_level IN ('Q1', 'Q2')

GROUP BY

 A.Time_level;

(Q2)

SELECT

 P.Division_level,

 COUNT(*) AS RecordCount

FROM

 ACTVARS A

JOIN

 PRODLEVEL P ON A.Product_level =

P.Code_level

WHERE

 P.Group_level = 'RQ'

GROUP BY

 P.Division_level;

(Q3)

SELECT

 A.Retailer_level,

 AVG(A.UnitsSold) AS AverageUnitsSold

FROM

 ACTVARS A

JOIN

 PRODLEVEL P ON A.Product_level =

P.Code_level

JOIN

 Custlevel C ON A.Customer_level =

C.Store_level

WHERE

 P.Division_level = 'UV'

GROUP BY

 A.Retailer_level;

(Q4)

SELECT

 A.Product_level,

 AVG(A.UnitsSold) AS AverageUnitsSold

FROM

 ACTVARS A

JOIN

 TIMELEVEL T ON A.Time_level = T.Tid

WHERE

 T.Year_level = '2025'

GROUP BY

 A.Product_level;

(Q5)

SELECT

 P.Division_level,

 AVG(A.UnitsSold) AS AverageUnitsSold

FROM

 ACTVARS A

JOIN

 TIMELEVEL T ON A.Time_level = T.Tid

JOIN

 PRODLEVEL P ON A.Product_level =

P.Code_level

WHERE

 T.Month_level = '7'

GROUP BY

 P.Division_level;

3) We have created the extraction context after

generating the Data Warehouse. It is a "query-attribute"

matrix where each row designates a query of the load.

The columns define the candidate attributes for the

indexing procedure. The existence of an indexable

attribute in a query is symbolized by 1 and its absence by

0 [To each query Qi and each attribute Aj, we associate a

usage value of the attribute which is equal to 1 if the

query uses the attribute Aj, 0 otherwise]. We illustrate

the construction of this matrix through the following

example. The "query-attribute" matrix obtained after the

syntactic analysis of the load is composed of eleven

columns and five rows (Table 9).

Table 9 : Query-attribute matrix

Tables PRODLEVEL TIMELEVEL

Queries/Attr

ibutes
Code_l

evel

Group_l

evel

Division_

level
Tid

Year_

level

Quarter_

level

Month_

level

Q1 0 0 0 1 0 1 0

Q2 1 1 0 0 0 0 0

Q3 1 0 1 0 0 0 0

Q4 0 0 0 1 1 0 0

Q5 1 0 0 1 0 0 1

Automatic Selection of Bitmap Join Indexes in Data Warehouses… Informatica 49 (2025) 365–378 375

Tables
CUSTLEV

EL
ACTVARS

Queries/Attribu

tes
Store_level

Customer_le

vel

Product_lev

el

Time_lev

el

Q1 0 0 0 1

Q2 0 0 1 0

Q3 1 1 1 0

Q4 0 0 0 1

Q5 0 0 1 1

The "query-attribute" matrix obtained after parsing

the payload is composed of 11 columns and 5 rows

(Figure 5). It is subdivided according to the tables used in

the payload for reasons of clarity and readability. This

matrix is used by the CFPGrowth++ algorithm.

We applied our implementation of the

CFPGrowth++ algorithm to the extraction context in

order to select the most used candidate attributes in the

system history that represent interesting candidates for

the indexing operation.

4) We proceeded in the last step to the execution of

the load of the queries on the generated Data Warehouse

according to two scenarios (1) without creation of the

indexes, (2) after creation of the indexes generated by the

CFPGrowth++ algorithm.

During the execution of the load of queries on the

Data Warehouse generated without creating indexes we

calculated the execution time of each query of the load,

After that we proceeded to calculate the execution time

of each query of the load after creation of the indexes

generated by the CFPGrowth++ algorithm. Figure 4

shows the times taken for the execution of the quests

after the creation of the generated binary join indexes.

Figure 4 : Query execution time without creating indexes

and after creating generated binary join indexes.

Our approach with generating candidate indexes by

the CFPGrowth++ algorithm provides excellent

performance improvements compared to running the

query load without indexing.

Through our experimental study, we notice that the

execution time is significantly improved after creating

the binary join indexes. The Figure 5 illustrates the

overall execution time saving for the entire load of

OLAP decisional queries considered.

Figure 5 : Overall execution time of the load without

creating indexes and after creating the generated binary

join indexes.

As shown in Figure 5, the response time for

decision-support query workloads without indexing was

19748.41 seconds, while the use of Binary Join Indexes

generated with CFPGrowth++ reduced this to 4976.01

seconds, achieving a performance gain of approximately

75%. In contrast:

Apriori-based indexing reduced response time to

12589.68 seconds

Close-based indexing reduced it to 8983.42 seconds

This confirms that CFPGrowth++ outperforms these

alternative frequent itemset mining algorithms in index

selection efficiency for OLAP workloads.

The results obtained confirm the great usefulness of

binary join indexes for the optimization of OLAP

decisional queries. The execution time of these queries is

significantly lower with the use of binary join indexes.

The experiments carried out show that the index

configuration generated by the proposed approach allows

a significant performance gain of around 75%.

To evaluate the effectiveness and robustness of the

proposed approach for frequent pattern-based binary join

index selection in OLAP query optimization, a series of

11 independent performance tests were conducted on

varying OLAP query workloads. The experimental

results demonstrated consistent performance

improvements ranging from 74.20% to 75.96%.

The statistical analysis confirmed the reliability of

these performance gains. The mean improvement across

all tests was 74.58%, with a standard deviation of 0.50,

indicating low variability in the observed results. A one-

sample t-test was performed to determine whether the

observed improvements were statistically significant

compared to a baseline of no performance gain. The test

yielded a t-statistic of 493.72 and a corresponding p-

value of 2.86 × 10⁻²³, which is well below the

conventional significance threshold of 0.001. This

confirms that the observed improvements are statistically

significant at a 95% confidence level.

Moreover, a 95% confidence interval for the mean

performance improvement was calculated as [74.24%,

74.92%], further supporting the consistency and

robustness of the proposed method’s effectiveness under

different query scenarios. These results clearly validate

the practical benefits and generalizability of the

19748,41

4976,01

12589,68

8983,42

0

5000

10000

15000

20000

25000

Without
Indexing

With Binary
Join Indexes -
CFPGrowth++

With Binary
Join Indexes -

Apriori

With Binary
Join Indexes -

Close

R
es

p
o

n
se

 t
im

e
(i

n
 s

ec
o

n
d

s)

Load request

376 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

CFPGrowth++-based approach in optimizing complex

OLAP workloads.

6 Discussion
This study is situated within the context of selecting

optimal indexes to enhance the performance of decision-

making queries, particularly in OLAP environments.

Several approaches have been proposed previously,

notably those by Aouiche et al. [27], who employed

closed frequent pattern mining using the Close algorithm

to prune the search space, primarily based on attribute

usage frequency. However, this method can lead to the

elimination of potentially relevant indexes, especially for

attributes belonging to large dimension tables, where

usage frequency alone does not guarantee effective

optimization.

On the other hand, Bellatreche et al. [28][29][32]

emphasized that access frequency alone is not a

sufficient criterion for effective index selection. Their

approach incorporates additional parameters, such as

table sizes and page characteristics, to better balance the

relevance of indexes. Nevertheless, this increased

complexity can result in higher computational costs

during pattern generation.

Our approach, utilizing the CFPGrowth++

algorithm, offers a significant advancement over these

methods. Indeed, CFPGrowth++ enables faster and more

scalable extraction of frequent patterns. Its ability to

handle multiple support thresholds allows for a more

refined exploration of itemsets, which contributes to

better adaptation to large data volumes and performance

requirements.

Regarding performance, the improvements offered

by CFPGrowth++ can be attributed to its optimized

structure, which reduces processing time and memory

consumption compared to traditional algorithms like

Apriori or Close. It also better manages the trade-offs

between computational cost and effectiveness. However,

this increased efficiency may come with some storage

overhead, especially if a large number of frequent

patterns are generated, necessitating careful management

to avoid memory overload.

In our proposed approach, CFPGrowth++ was

chosen for its efficiency in mining frequent patterns

through a compact tree-based structure and its flexibility

in handling multiple support thresholds. However, we

recognize that as the number of attributes and queries

increases in real-world data warehouses, the size of the

pattern base and the computational overhead can grow

significantly.

To manage this, several strategies can be applied,

such as:

Adjusting support thresholds dynamically to limit

the number of frequent itemsets generated in dense

workloads.

The evaluation with applying a constraint on the

total storage space consumed by the generated indexes.

Partitioning the workload or focusing on query

subsets that target the most resource-intensive operations.

Parallelizing the mining process across distributed

computing environments to improve processing times

and scalability.

CFPGrowth++ stands out for its speed, scalability,

and accuracy, making it a promising solution for index

selection in contexts where efficient management of

large data volumes is critical. It represents a notable

improvement over previous techniques, while also

requiring attention to potential storage and computational

costs.

7 Conclusion
Within the realm of Data Warehouses schematized in a

star relational model carried out via OLAP decision-

making queries, very high response time remain more

than ever a crucial issue.The goal of this work is to

improve the Data Warehouse performance.The proposed

approach for optimizing system performance by

minimizing response time is based on finding frequent

patterns for automatic selection of binary join indexes in

relational Data Warehouses modeled by a star schema

through generation of a configuration of binary join

indexes based on the implementation of the

CFPGrowth++ algorithm.The results show the particular

performance of the binary join indexes recommended by

the CFPGrowth++ algorithm implemented for relational

Data Warehouses. Our study demonstrates that applying

data mining techniques for the automatic selection of

binary join indexes in relational Data Warehouses is a

promising strategy, offering encouraging results and

opening up several opportunities for future research and

optimization. Other possible improvement is to consider

multiple parameters to generate the final index

configuration. In future work it important to consider in

particular of the selectivity factors and the cardinalities

of the attributes or the sizes of the dimension tables.

References
[1] A. Vaisman, E. Zimányi, ‘Data Warehouse Systems

- Design and Implementation’. Data-Centric

Systems and Applications. Springer, 2014.

https://doi.org/10.1007/978-3-642-54655-6

[2] I. Kovacic, G. Christoph Schuetz, B. Neumayr, M.

Schrefl, ‘OLAP Patterns: A pattern-based approach

to multidimensional data analysis’, Data &

Knowledge Engineering, Volume 138, 2022.

https://doi.org/10.1016/j.datak.2021.101948

[3] S. Chaudhuri, U. Dayal, Narasayya, V., ‘An

overview of business intelligence technology’.

Commun. ACM 54(8), 88–98, 2011.

https://doi.org/10.1145/1978542.1978562

[4] A. Cuzzocrea, ’Evolving OLAP and BI towards

Complex, High-Performance BigOLAP-Data-Cube-

Processing Analytics Frameworks: How to

 Speed-Up Large-Scale, High-Dimensional Queries

over Clouds’, Procedia Computer Science 246

4169–4175, 2024.

https://doi.org/10.1016/j.procs.2024.09.256

https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1016/j.datak.2021.101948
https://doi.org/10.1145/1978542.1978562
https://doi.org/10.1016/j.procs.2024.09.256

Automatic Selection of Bitmap Join Indexes in Data Warehouses… Informatica 49 (2025) 365–378 377

[5] H. Inmon, ‘Building the data warehouse’. John

Wiley & sons, 2005.

https://books.google.co.ma/books?id=QFKTmh5IF

S4C&printsec=frontcover&hl=fr&source=gbs_ge_s

ummary_r&cad=0#v=onepage&q&f=false

[6] R. Kimball, M. Ross, ‘The Kimball Group Reader:

Relentlessly Practical Tools for Data Warehousing

and Business Intelligence’, John Wiley & Sons,

2010. https://doi.org/10.1002/9781119228912

[7] D. M. Mosquera, R. Navarrete, S. L. Mora, L.

Recalde, A. A. Cabrera, ’Integrating OLAP with

NoSQL Databases in Big Data Environments:

Systematic Mapping’, Big Data and Cognitive

Computing, 8, 64, 2024.

https://doi.org/10.3390/bdcc8060064

[8] N. Dedic, C. Stanier, ‘An evaluation of the

challenges of multilingualismin data warehouse

development’. In ICEIS 2016, Proceedings of the

18th International Conference on Enterprise

Information Systems, Vol. 1, Rome, Italy, 196–206,

2016. https://doi.org/10.5220/0005858401960206

[9] S. Roy, S. Raj, T. Chakraborty, A. Chakrabarty, A.

Cortesi, S. Sen, ’Efficient OLAP query processing

across cuboids in distributed data warehousing

environment’, Expert Systems with Applications

Volume 239, 2024.

https://doi.org/10.1016/j.eswa.2023.122481

[10] S. Chaudhuri, V. Narasayya, ‘Self-tuning database

systems: A decade of progress’. In Proceedings of

the International Conference on Very Large

Databases, 3–14, 2007.

https://dl.acm.org/doi/10.5555/1325851.1325856

[11] R. Kimball, M. Ross, ‘The Data Warehouse

Toolkit: The Definitive Guide to Dimensional

Modeling’, John Wiley & Sons , 2013.

https://dl.acm.org/doi/10.5555/2543973

[12] H. Necir, H. Drias. 2015. A distributed maximal

frequent itemset mining with multi agents system

on bitmap join indexes selection. Int. J. Inf.

Technol. Manage. 14, 2/3, April 2015.

https://doi.org/10.1504/IJITM.2015.068470

[13] M. Yahyaoui, S. Amjad, L. Benameur. I. Jellouli,

‘Efficient of bitmap join indexes for optimising star

join queries in relational data warehouses’, Int.

J.Computational Intelligence Studies, Vol. 9, No. 3,

pp.220–233, 2020.

https://doi.org/10.1504/ijcistudies.2020.109604

[14] R. Strohm, ‘Oracle Database Concepts, 11g Release

1 (11.1)’ B28318-03, Octobre 2007.

https://www.appservgrid.com/documentation111/do

cs/rdbms11gr1/server.111/b28318/memory.htm

[15] D. Zhang, ‘B Trees’, Chapter 15 of Handbook of

Data Structures and Applications, D. P. Mehta, S.

Sahni (editors), Chapman & Hall/CRC, 2004.

https://doi.org/10.1201/9781420035179

[16] S. Chaudhuri, M. Datar, V. Narasayya. Index

Selection for Databases: A Hardness Study and a

Principled Heuristic Solution. IEEE Trans. Knowl.

Data Eng. 26, 1313–1323, 2004.

https://doi.org/10.1109/TKDE.2004.75

[17] R. Kain, D. Manerba, R. Tadei ‘The index selection

problem with configurations and memory

limitation: A scatter search approach’, Computers &

Operations Research, Volume 133, 2021.

https://doi.org/10.1016/j.cor.2021.105385

[18] D. Comer, ‘The difficulty of optimum index

selection’. ACM Transactions on Database

Systems, 3 (4), 440–445, 1978.

https://doi.org/10.1145/320289.320296

[19] K. Stockinger, K. Wu, ‘Bitmap Indices for Data

Warehouses, Data Warehouses and OLAP’, R.

Wrembel and C. Koncilia, eds., IRM Press, 157-

178, 2006.

https://escholarship.org/uc/item/8zv9t143

[20] Olap Council.: ABP-1 Benchmark,

http://www.olapcouncil.org/

[21] S. Chaudhuri, M. Datar, V. Narasayya. (2004).

‘Index selection for databases: a hardness study and

a principled heuristic solution’. IEEE Transactions

Knowledge on Data Engineering, Volume 16, Issue

11, Novombre 2004.

https://doi.org/10.1109/TKDE.2004.75

[22] B. Ziani, A. Benmlouka, Y. Ouinten. Improving

Index Selection Accuracy for Star Join Queries

Processing: An Association Rules Based Approach.

Management Intelligent Systems. Advances in

Intelligent Systems and Computing, vol 220.

Springer, Heidelberg, 2013.

https://doi.org/10.1007/978-3-319-00569-0_9

[23] A. Rakesh, S. Ramakrishnan, ‘Fast Algorithms for

Mining Association Rules’, International

Conference on Very Large Databases, pp. 487-499,

September 1994.

https://dl.acm.org/doi/10.5555/645920.672836

[24] A. Netz, S. Chaudhuri, J. Bernhardt, U. Fayyad,

‘Integration of Data Mining and Relational

Databases’, International Conference on Very Large

Data Bases, pp. 719-722, September 2000.

https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/integration-of-data-

mining.pdf

[25] N. Bruno, S. Chaudhuri, Automatic physical

database tuning: a relaxation-based approach.

Proceedings of the SIGMOD Conference, 2005.

https://doi.org/10.1145/1066157.1066184

[26] M. Golfarelli, S. Rizzi, E. Saltarelli, ‘Index

selection for data warehousing. Proceeding’s 4th

International Workshop on Design and

Management of Data Warehouses (DMDW'2002),

Toronto, Canada, pp. 33-42, 2002. https://ceur-

ws.org/Vol-58/RIZZI.pdf

[27] K. Aouiche, J. Darmont. Data Mining-based

Materialized View and Index Selection in Data

Warehouses. Journal of Intelligent Information

Systems 33(1), 65–93, 2009.

https://doi.org/10.1007/s10844-009-0080-0

[28] L. Bellatreche, R. Missaoui, H. Necir, H. Drias,

Selection and pruning algorithms for bitmap index

selection problem using data mining. LNCS, vol.

4654, pp. 221–230. Springer, Heidelberg, 2007.

https://doi.org/10.1007/978-3-540-74553-2_20

https://books.google.co.ma/books?id=QFKTmh5IFS4C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.co.ma/books?id=QFKTmh5IFS4C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.co.ma/books?id=QFKTmh5IFS4C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://doi.org/10.1002/9781119228912
https://doi.org/10.3390/bdcc8060064
https://doi.org/10.5220/0005858401960206
https://doi.org/10.1016/j.eswa.2023.122481
https://dl.acm.org/doi/10.5555/1325851.1325856
https://dl.acm.org/doi/10.5555/2543973
https://doi.org/10.1504/IJITM.2015.068470
https://doi.org/10.1504/ijcistudies.2020.109604
https://www.appservgrid.com/documentation111/docs/rdbms11gr1/server.111/b28318/memory.htm
https://www.appservgrid.com/documentation111/docs/rdbms11gr1/server.111/b28318/memory.htm
https://doi.org/10.1201/9781420035179
https://doi.org/10.1109/TKDE.2004.75
https://doi.org/10.1016/j.cor.2021.105385
https://doi.org/10.1145/320289.320296
https://escholarship.org/uc/item/8zv9t143
http://www.olapcouncil.org/
https://doi.org/10.1109/TKDE.2004.75
https://doi.org/10.1007/978-3-319-00569-0_9
https://dl.acm.org/doi/10.5555/645920.672836
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/integration-of-data-mining.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/integration-of-data-mining.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/integration-of-data-mining.pdf
https://doi.org/10.1145/1066157.1066184
https://ceur-ws.org/Vol-58/RIZZI.pdf
https://ceur-ws.org/Vol-58/RIZZI.pdf
https://doi.org/10.1007/s10844-009-0080-0
https://doi.org/10.1007/978-3-540-74553-2_20

378 Informatica 49 (2025) 365–378 M. Yahyaoui et al.

[29] L. Bellatreche, Techniques d’optimisation des

requêtes dans les data warehouses. In Sixth

International Symposium on Programming and

Systems, 2003. https://hal.science/hal-03759388v1

[30] R.U. Kiran, P.K. Reddy, ‘Novel Techniques to

Reduce Search Space in Multiple Minimum

Supports-Based Frequent Pattern Mining

Algorithms’, EDBT/ICDT '11, 21 March 2011.

https://doi.org/10.1145/1951365.1951370

[31] H. Ya-Han, C. Yen-Liang, ’Mining association

rules with multiple minimum supports: a new

mining algorithm and a support tuning mechanism’,

Decision Support Systems, Volume 42, Issue 1,

2006. https://doi.org/10.1016/j.dss.2004.09.007

[32] L. Bellatreche, R. Missaoui, H. Necir, H. Drias. ‘A

Data Mining Approach for Selecting Bitmap Join

Indices’. JCSE.2007.1.2.177, December 2007.

https://doi.org/10.5626/JCSE.2007.1.2.177

https://hal.science/hal-03759388v1
https://doi.org/10.1145/1951365.1951370
https://doi.org/10.1016/j.dss.2004.09.007
https://doi.org/10.5626/JCSE.2007.1.2.177

