
https://doi.org/10.31449/inf.v49i35.7762 Informatica 49 (2025) 125–144 125

Stacking and Voting-Based Boosting Ensembles for Robust Malicious URL
Classification

Dharmaraj R. Patil1, Tareek M. Pattewar2,Trupti S. Shinde2, Kavita S. Kumavat2 and Sujit N. Deshpande2
1Department of Computer Engineering, R.C. Patel Institute of Technology, Shirpur, Maharashtra, India
2Department of Computer Engineering, Vishwakarma University, Pune, Maharashtra, India
E-mail:dharmaraj.patil@rcpit.ac.in, tareek.pattewar@vupune.ac.in, trupti.shinde@vupune.ac.in,
kavita.kumavat@vupune.ac.in, sujit.sujitdeshpande@gmail.com

Keywords: Malicious URL detection, cybersecurity, voting ensemble, stacking ensemble, boosting algorithms, hybrid
ensemble learning, malware detection, online threats

Received: December 5, 2024

The rising prevalence of malicious URLs poses serious risks to cybersecurity, enabling phishing, malware
delivery, and data theft. Conventional blacklist and heuristic-based detection methods struggle to iden-
tify emerging and obfuscated attacks. To address this gap, we present an ensemble learning framework
that integrates stacking and voting strategies with multiple boosting algorithms for reliable malicious URL
classification. The system employs six advanced learners—XGBoost, AdaBoost, Gradient Boosting, Light-
GBM, CatBoost, and LogitBoost—whose outputs are combined through majority voting and a two-layer
stacking scheme, where logistic regression is used as the meta-learner. Evaluation was carried out on
a Kaggle dataset containing 1,043,311 URLs (817,986 benign and 225,325 malicious), using a stratified
70:30 train/test split to preserve class balance. The proposed ensembles surpassed individual boosting
models and conventional ensembles in accuracy, precision, recall, F1-score, and AUC. Stacking achieved
93.44% across all metrics, while voting achieved 93.25%. In addition to strong predictive performance,
the approach shows low prediction latency and effective handling of imbalanced data, making it practical
for large-scale, near real-time deployment. This work demonstrates that combining stacking and voting
ensembles offers a robust defense against evolving malicious URL threats.

Povzetek:

1 Introduction

Communication, business, and information exchange have
all been transformed by the broad use of the internet and
digital technology. But there are also serious cybersecurity
issues as a result of this digital shift, and one of the most
common dangers is rogue URLs. Numerous cyberattacks,
including phishing, malware distribution, and command-
and-control communication, employ malicious URLs to
target both individuals and organizations. Online ecosys-
tem security depends on the identification and blocking of
such URLs. Due to the dynamic and ever-changing nature
of cyber threats, successfully detecting malicious URLs is
still a difficult process despite many attempts [4, 5, 6]. Con-
ventional techniques for detecting malicious URLs, such
heuristic and blacklist-based methods, have inherent draw-
backs. Precompiled databases of known dangerous URLs
are the foundation of blacklist-based techniques, which lose
their effectiveness when dealing with fresh or obfuscated
URLs. Heuristic-based approaches, which concentrate on
spotting patterns or particular behaviors, also frequently
fall short when it comes to adjusting to new assault tech-
niques. These restrictions have opened the door for ma-
chine learning-based solutions, which use massive datasets
to find abnormalities and trends that point to malicious

activity. Machine learning models can offer more accu-
rate and flexible detection techniques by examining lexical,
host-based, and content-based aspects [7, 8, 9].
The APWG’s Threat Report for Q4 2023 reveals a num-

ber of significant phishing attack trends as shown in Figure
1 [1]:

– Social Media Specification: Social media platform
assaults increased significantly, accounting for 42.8%
of all phishing attacks in Q4 2023 as opposed to just
18.9% in the prior quarter.

– Decreased Financial Institution Attacks: From
24.9% in Q3 to 14% in Q4, phishing assaults against
financial institutions declined dramatically.

– Vishing (voice phishing) has increased: Voice phish-
ing attempts increased significantly, rising more than
16% from Q3 and 260% from the same time in 2022.

– Phishing by Industry: In Q4 2023, the most targeted
industries were:

– Social Media (43%)
– SAAS/Webmail (15%)
– Financial Institutions (14%)

126 Informatica 49 (2025) 125–144 D.R. Patil et al.

– E-commerce/Retail (6%)
– Logistics/Shipping (5%)

– Compromise of Business Email (BEC): With a no-
table surge in wire transfer-based scams in Q4 2023,
the research also emphasizes the serious threat pre-
sented by Business Email Compromise, which caused
over $51 billion in losses between 2013 and 2022.

Fig. 1 shows the Most-Targeted Industries, Q2 2024.

Figure 1: Most-targeted industries, Q2 2024. Source:
https://apwg.org/trendsreports/ [1].

The Cyber Threat Intelligence (CTI) Survey 2024 from
the SANS Institute provides important new information on
how cybersecurity is changing. Key conclusions from the
report [2] include the following:

– Impact of Geopolitical Factors: A substantial 77.5%
of respondents acknowledge the increasing influence
of geopolitics on their threat intelligence requirements.
This trend underscores the need for adaptive strategies
as global conflicts and political instability shape cyber
threats.

– Rise of Threat Hunting: Threat hunting has become
the primary use case for cyber threat intelligence.
More than 95% of respondents rely on the MITRE
ATT&CK framework to categorize and address tac-
tics, techniques, and procedures (TTPs). This shift re-
flects a strategic move toward proactive threat detec-
tion.

– Artificial Intelligence Integration: AI is making sig-
nificant strides within CTI, with nearly 25% of organi-
zations already utilizing it, and 38% planning to adopt
it. AI tools are being used to enhance the prioritization
and processing of vast amounts of threat data.

– Use of Threat Intelligence Platforms (TIPs): About
58% of respondents are integrating CTI with their
security tools through Threat Intelligence Platforms.

This integration helps streamline the dissemination of
actionable intelligence and improves overall security
posture.

– CTI in Vulnerability Management: The role of CTI
in vulnerability management is expanding. A sig-
nificant 66% of participants are now leveraging CTI
to identify vulnerabilities that are actively being ex-
ploited. This represents a notable increase from previ-
ous years, highlighting CTI’s growing role in vulner-
ability prioritization.

Important new information about the changing environ-
ment of cyber threats is provided by the CrowdStrike 2024
Global Threat Report. Here are a few of the main conclu-
sions [3]:

– Increased Attack Speed: The average breakout time
for cyberattacks has significantly decreased to just 62
minutes, down from 84 minutes in 2022. The fastest
breakout was recorded at just 2 minutes and 7 seconds.

– Interactive Intrusions Rise: Interactive intrusions,
where attackers manually engage with compromised
systems, have surged by 60% year-over-year. This
trend highlights the growing sophistication of threat
actors, as they can now mimic legitimate user behav-
ior to evade detection.

– Cloud Environment Attacks: Cloud-based intru-
sions rose by 75% year-over-year. These attacks of-
ten involve exploiting valid credentials, posing a chal-
lenge to defenders distinguishing between legitimate
and malicious user activity.

– eCrime and Leak Sites: eCrime groups have become
more aggressive, with a 76% increase in victims listed
on dedicated leak sites. Moreover, cloud-conscious at-
tacks related to eCrime have jumped by 110%.

– Generative AI Abuse: Hackers and nation-state ac-
tors are experimenting with generative AI to stream-
line and democratize cyberattacks, lowering the barri-
ers for more advanced attacks.

– Election Interference: With numerous elections
scheduled worldwide in 2024, adversaries, particu-
larly from China, Russia, and Iran, are expected to en-
gage in disinformation campaigns and other disruptive
activities.

The findings from these studies highlight the increas-
ing complexity and quick development of cyberthreats, to
sum up. Organizations should upgrade their cloud security
protocols, emphasize proactive threat detection techniques,
and use integrated, AI-powered threat intelligence solutions
in order to successfully handle these issues.
The performance and resilience of the detection system

are greatly impacted by the algorithm selection, even if
machine learning approaches have demonstrated promise.

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 127

By merging several weak learners into a powerful pre-
diction model, boosting algorithms—a type of ensemble
learning—have become more and more well-liked for their
capacity to increase classification accuracy. In handling
classification tasks, algorithms like XGBoost, AdaBoost,
Gradient Boosting Machine (GBM), LightGBM (LGBM),
CatBoost, and LogitBoost are well known for their effi-
cacy and efficiency. AdaBoost’s versatility, CatBoost’s ca-
pacity to manage categorical data, XGBoost’s scalability,
and LogitBoost’s logistic loss optimization are just a few
of these algorithms’ distinct advantages. Using only one
boosting algorithm, however, could not fully take use of
both techniques’ complimentary advantages.
Ensemble approaches like stacking and voting provide

a potential way around this restriction. By combining the
predictions of several models using techniques like major-
ity voting, voting improves the reliability of categorization.
By using a meta-learner to aggregate base model outputs,
stacking, on the other hand, enables the ensemble to learn
from the advantages and disadvantages of each individual
model. A hybrid framework that combines these two en-
semble techniques may be created to increase detection ac-
curacy and resilience to hidden threats and adversarial at-
tacks.
The system for malicious URL identification presented

in this study combines stacking-based boosting techniques
with voting. Six cutting-edge boosting algorithms are used
as base learners by the framework: XGBoost, AdaBoost,
GBM, LGBM, CatBoost, and LogitBoost. The frame-
work’s capacity to generalize to a variety of harmful URL
patterns is improved via a two-layer stacking method, while
majority voting is employed to increase classification re-
liability. In order to assess the effectiveness of the sug-
gested approach, a thorough dataset comprising lexical,
host-based, and content-based aspects is used.
The findings show that in terms of accuracy, precision,

recall, and F1-score, the suggested framework performs
better than both traditional ensemble techniques and in-
dividual boosting algorithms. Additionally, the system is
scalable to high-volume network settings and has good ro-
bustness against skewed datasets, which makes it appropri-
ate for real-time applications. By tackling the shortcom-
ings of current techniques and utilizing the complimentary
advantages of voting and stacking, this study advances the
field of malicious URL identification and strengthens cy-
bersecurity defenses against changing online threats. The
following are the main contributions of this work:

– Developed a hybrid ensemble learning framework that
integrates voting and stacking approaches to improve
the detection accuracy and robustness of malicious
URL detection systems.

– Combined the strengths of six state-of-the-art boost-
ing algorithms—XGBoost, AdaBoost, GBM, LGBM,
CatBoost, and LogitBoost—as base learners within
the ensemble framework.

– Implemented a majority voting strategy to aggregate
predictions from base learners, enhancing classifica-
tion reliability and decision-making.

– Designed a two-layer stacking mechanism where a
meta-learner further refines the predictions of the base
learners, leveraging their complementary strengths for
improved performance.

– Conducted extensive experiments on a benchmark
dataset, demonstrating superior performance in terms
of accuracy, precision, recall, and F1-score compared
to individual models and traditional ensemble tech-
niques.

– Advanced the field of malicious URL detection by
providing a robust, scalable, and effective solu-
tion, contributing to enhanced cybersecurity defenses
against evolving online threats.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the motivation behind developing a hybrid
ensemble framework, highlighting the benefits of combin-
ing multiple boosting algorithms and leveraging diverse
URL features. Section 3 reviews related work, covering
traditional and machine learning-based detection methods,
boosting algorithms, and ensemble techniques, while iden-
tifying gaps addressed in this study. Section 4 describes
the methodology, detailing the proposed framework, fea-
ture extraction using lexical, host-based, and content-based
characteristics, and the implementation of majority voting
and two-layer stacking with logistic regression as the meta-
learner. Section 5 presents experimental results and analy-
sis, including dataset description, preprocessing, class im-
balance handling, evaluationmetrics, parameter tuning, and
performance comparison with individual models and con-
ventional ensembles. Section 6 provides a discussion on the
effectiveness, generalization, and practical applicability of
the framework. Section 7 outlines limitations, and Section
8 concludes the paper, summarizing the main contributions
and suggesting directions for future work, including exter-
nal dataset validation and open-source availability of the
framework.

2 Motivation
Malicious URLs remain one of the most common vectors
for phishing, malware, and other cyberattacks. Traditional
blacklist and heuristic-based approaches struggle against
newly generated or obfuscated URLs, making adaptive de-
tection essential. While boosting algorithms such as Ad-
aBoost, XGBoost, GBM, LightGBM, CatBoost, and Logit-
Boost have shown strong performance in this domain, rely-
ing on a single model limits robustness, as no individual al-
gorithm consistently excels across diverse data conditions.
To address these shortcomings, this study proposes a hy-

brid framework that integrates stacking and voting strate-
gies with boosting learners. Voting improves reliability by

128 Informatica 49 (2025) 125–144 D.R. Patil et al.

aggregating predictions, while stacking leverages a meta-
learner to exploit complementary strengths of the basemod-
els. Unlike prior work that applies ensembles in a limited
scope, our framework is designed to handle practical chal-
lenges such as class imbalance, scalability, and resistance
to adversarial obfuscation.
The primary motivation is therefore not only to reap-

ply ensemble learning, but to demonstrate how combining
stacking and voting within boosting can yield a more re-
silient and generalizable malicious URL detection system.
This contribution aims to bridge the gap between existing
academic solutions and real-world, deployable cybersecu-
rity systems.

3 Related work
The detection ofmaliciousURLs has been extensively stud-
ied using approaches ranging from heuristic filtering and
blacklists to machine learning, deep learning, and hybrid
ensemble methods. In this section, we critically review
24 key studies, highlighting their contributions, datasets,
methodologies, and limitations, and conclude with research
gaps that motivate our proposed framework.
Doyen, Sahoo et al. provided a comprehensive survey of

machine learning approaches for malicious URL detection.
They systematically categorized features into lexical, host-
based, and content-based attributes and discussed popular
classifiers, including SVMs, decision trees, and random
forests. The study highlighted challenges such as feature
extraction cost, adversarial obfuscation, and dataset imbal-
ance. However, the survey remained descriptive, with-
out proposing novel models or ensemble strategies, leav-
ing open questions about integrating multiple classifiers to
improve robustness and scalability [4].
Aljabri et al. investigated malicious website detection

in Arabic-language domains. Their framework incorpo-
rated lexical and host-based features tailored for Arabic
URLs and demonstrated reasonable accuracy with standard
classifiers. This expanded cybersecurity research beyond
English-centric datasets. Despite this, the approach relied
on static features and single classifiers, lacked real-time
adaptability, and did not explore ensemble learning, lim-
iting its generalizability and robustness [5].
Catal et al. conducted a systematic review of deep

learning techniques for phishing detection. They cate-
gorized works based on CNN, RNN, and hybrid models
and analyzed datasets and feature representations. The re-
view highlighted computational complexity, lack of inter-
pretability, and dataset limitations. However, it remained
largely descriptive without providing experimental com-
parisons or exploring ensemble frameworks, leaving prac-
tical scalability and robustness unaddressed [6].
Carroll et al. examined the difficulties users face in iden-

tifying phishing emails during COVID-19. Their study em-
phasized the sophistication of modern phishing campaigns
and the inability of existing tools to provide sufficient pro-

tection. While the work offered valuable user-centered in-
sights, it contributed minimally to automated detection al-
gorithm development and did not consider ensemble or hy-
brid models [7].
AbuAl-Haija et al. proposed a two-layer ensemble archi-

tecture using bagging and boosting classifiers for malicious
URL detection on the ISCXURL2016 dataset. Their results
demonstrated improved performance over single classifiers
and highlighted the benefits of diversity in learners. Limi-
tations included a focus on binary classification and lack of
evaluation for multi-class scenarios or high-traffic environ-
ments, restricting real-world applicability [8].
Reyes-Dorta et al. reviewed traditional and quantumma-

chine learning methods for URL detection. They evalu-
ated conventional classifiers across datasets and explored
the potential of quantum models. While promising, quan-
tum approaches remain experimental and untested on large-
scale, real-time datasets. The study also did not integrate
classical ensemble methods with quantum algorithms, leav-
ing open questions on practical deployment [9].
Das Gupta et al. developed a feature-based phishing de-

tection framework using URL and hyperlink attributes and
XGBoost. The method achieved high accuracy without re-
lying on third-party systems and supported client-side pro-
cessing. However, it depended on a single boosting model,
limiting generalization and resilience against adversarial
obfuscation, and did not evaluate real-time scalability [10].
Alsaedi et al. presented a two-stage ensemble leverag-

ing cyber threat intelligence (CTI) features for malicious
URL detection. The first stage used Random Forest, and
the second employed MLP to combine probabilistic out-
puts, outperforming traditional URL-based models. Yet,
the framework’s complexity and reliance on CTI data may
hinder generalizability, and its performance under real-time
high-traffic conditions remains untested [11].
Chen et al. proposed an enhanced YOLO-CSPDarknet

combined with BiLSTM for detecting fraudulent URLs,
converting URLs into dense vectors via word embedding.
Their approach efficiently captured structural URL features
and achieved high accuracy on a 200,000-URL dataset. De-
spite strong results, the method’s complexity may limit de-
ployment on resource-constrained systems, and it was eval-
uated only in a controlled dataset setting [12].
Patil et al. introduced 42 novel URL attributes and ap-

plied supervised and online classifiers for binary and multi-
class detection, demonstrating high accuracy on 49,935
URLs. Confidence-weighted learning performed best,
validating the effectiveness of new features. Limita-
tions include dependence on engineered features and lack
of ensemble integration to exploit complementary model
strengths [13].
Jiang et al. proposed character-level CNNs for URL and

DNS-based detection. This approach eliminated manual
feature engineering and learned directly from raw inputs,
achieving higher accuracy on obfuscated URLs. Computa-
tional costs were significant, and the model relied on a sin-
gle deep network, limiting robustness to new attack types

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 129

[14].
Yang et al. developed a GRU-based neural network with

URL-specific harmful keywords for multiclass detection.
Sequential modeling captured temporal dependencies, re-
sulting in over 99.6% accuracy. However, the method did
not consider ensemble combinations, real-time traffic adap-
tation, or adversarial robustness, limiting operational appli-
cability [15].
Alshingiti et al. compared CNN, LSTM, and hy-

brid CNN-LSTM models for phishing detection. CNNs
achieved the best performance (99.2% accuracy). While
effective in feature learning, the study focused mainly on
accuracy metrics and did not integrate ensemble methods
or assess scalability and real-time adaptability [16].
Rafsanjani et al. developed a framework based on 42

static feature categories, including host, content, lexical,
and blacklist features. They evaluated BN, RF, and SVM
classifiers and demonstrated superior performance on a
5,000-URLdataset. Limitations include the relatively small
dataset and the lack of exploration of hybrid or stacking-
based ensembles for further performance gains [17].
Patil et al. proposed a hybrid feature and decision tree en-

semble for real-time detection, achieving 98–99% accuracy
with low FPR and FNR. The study outperformed popular
antivirus systems but relied on majority voting rather than
combining multiple boosting methods for enhanced robust-
ness [18].
Kumi et al. applied Classification Based on Association

(CBA) using URL and webpage content attributes to de-
tect malicious URLs. The method achieved 95.8% accu-
racy. While effective, the approach depends heavily on rule
mining and association thresholds, limiting adaptability to
evolving URL attack patterns [19].
Peng et al. integrated attention mechanisms with CNN-

LSTM models, using WHOIS, URL statistics, and texture
information to enhance feature representation. Their model
outperformed traditional methods in detection accuracy.
However, it was not evaluated on extremely large or diverse
datasets, and its ensemble potential was not explored [20].
Yuan et al. developed a parallel joint neural network

combining IndRNN and CapsNet to capture both seman-
tic and visual URL features. An attention mechanism re-
fined important features, improving classification. Despite
high accuracy, the framework’s computational complexity
and lack of integration with ensemble learning limit its real-
time applicability [21].
Balogun et al. applied Functional Tree (FT) meta-

learning models for phishing detection, achieving 98.51%
accuracy with minimal FPR. While demonstrating meta-
learning efficacy, the study did not address multi-class clas-
sification or explore hybrid stacking/voting techniques for
further improvements [22].
Rafsanjani et al. developed QsecR, a secure QR code

scanner integrating 39 host, content, lexical, and blacklist
features. It achieved 93.5% detection accuracy, outper-
forming competitors in privacy-conscious settings. Limi-
tations include a relatively small URL set (4,000) and lack

of testing on real-world high-traffic environments [23].
Ujah-Ogbuagu et al. proposed a hybrid CNN-LSTM

model to detect phishing websites using PhishTank and
UCL Spoofing datasets, outperforming single CNN or
LSTM models. Despite strong performance, it did not ex-
plore stacking or voting ensembles, leaving potential gains
from model combination unexploited [24].

3.1 Synthesis and research gaps
Based on the reviewed studies, several research gaps have
been identified:

– Over-reliance on single models: Most approaches
optimize a single classifier without leveraging the
complementary strengths of multiple models, which
can limit robustness.

– Limited ensemble integration: Although some en-
semble methods exist, systematic use of stacking
and voting with multiple boosting algorithms remains
largely unexplored.

– Scalability and real-time applicability: Few studies
address high-traffic environments, dataset imbalance,
or resistance to adversarial evasion techniques.

– Feature generalization and adaptability: A large
number of methods rely on engineered or static fea-
tures, reducing adaptability and robustness against
evolving URL-based threats.

4 Methodology
This section outlines the strategy used to identify harm-
ful URLs through stacking-based boosting and optimized
voting. The method addresses the problem of identify-
ing fraudulent URLs in a sizable and unbalanced dataset
by utilizing ensemble learning techniques such as boost-
ing, stacking, and voting. With an emphasis on maximiz-
ing the ensemble learning strategies for increased detection
accuracy and robustness, the entire methodology consists
of data preparation, feature extraction, model construction,
and performance evaluation. Figure 2 shows the proposed
framework for malicious URLs detection using Stacking
and Voting-Based Boosting Techniques.

4.1 Data preprocessing
In order to create a reliable malicious URL detection sys-
tem, preprocessing the dataset is essential, especially when
working with a big and unbalanced dataset. The data was
prepared for training and testing the suggested ensemble
learning models by doing the following actions:

– Data Cleaning: This was the initial step to ensure the
dataset’s quality and consistency.

130 Informatica 49 (2025) 125–144 D.R. Patil et al.

Figure 2: Proposed framework for malicious URLs detec-
tion using stacking and voting-based boosting techniques.

– Missing values in critical columns, such as URL
or feature attributes, were identified and re-
moved.

– Duplicate entries were eliminated to prevent re-
dundancy and bias during training.

– Standardization / Normalization: Each numeric
feature x was transformed using z-score normal-
ization:

z =
x− µ

σ
(1)

where µ is the mean and σ is the standard devia-
tion of the feature.
This ensures that attributes such as URL length,
token counts, and domain age are brought to a
common scale and do not disproportionately in-
fluence distance-based or gradient-based mod-
els.

– Feature Engineering: A comprehensive set of fea-
tures was extracted from each URL to improve model
performance. Table 1 presents the complete set of fea-
tures used for malicious URL classification. The fea-
tures are organized into three categories: lexical fea-
tures, domain-based features, and content/HTTP fea-
tures. Each entry specifies the feature name, its type
(numeric, categorical, or binary), and the method of
extraction or computation.

– Lexical features capture the structural and sta-
tistical properties of the URL string. Examples
include URL length, token counts, character dis-
tribution, number of digits, number of subdo-
mains, path depth, and the frequency of special
characters. These features are lightweight and
can be extracted directly from the URL text.

– Domain-based features are derived from
WHOIS records and DNS metadata. Attributes
such as domain age, registrar, expiration time,

and top-level domain (TLD) type provide infor-
mation about the credibility and trustworthiness
of the domain.

– Content/HTTP features analyze the underlying
web content and server behavior. Indicators in-
clude the presence of suspicious keywords (e.g.,
login, secure), use of redirects, <iframe>
tags, JavaScript event handlers, and other suspi-
cious HTML elements.

– Splitting theData: The dataset was divided into train-
ing and testing sets in a 70:30 ratio to evaluate model
performance.

– The training set was used to train the ensemble
learning models.

– The testing set was reserved for validating model
performance.

4.2 Boosting machine learning algorithms
used for malicious URLs detection

By combining the predictions of multiple weak learners,
a machine learning technique called ”boosting” builds a
stronger learner with increased accuracy and resilience. Be-
cause of its capacity to handle intricate data patterns, this
technique has shown especially good results for detecting
rogue URLs. The following describes the main boosting al-
gorithms that are frequently used for malicious URL detec-
tion: AdaBoost, XGBoost, Gradient Boosting (GB), Light-
GBM (LGBM), CatBoost, and LogitBoost:

4.2.1 AdaBoost (adaptive boosting)

An effective ensemble learning technique called AdaBoost
(Adaptive Boosting) builds a strong classifier by combin-
ing several weak classifiers. The following is a detailed de-
scription of the mathematical derivation of AdaBoost [25].
Following is the pseudocode for the AdaBoost training pro-
cedure used for malicious URL classification.
The ability of AdaBoost (Adaptive Boosting) to combine

several weak classifiers to create a strong classifier makes
it especially well-suited for identifying dangerous URLs.
This makes it useful in situations with complicated pat-
terns and noisy data, like cybersecurity applications. The
percentage of malicious URLs in harmful URL datasets is
often very low in comparison to the percentage of benign
URLs. AdaBoost adjusts to this imbalance by giving mis-
classified samples more weights at each iteration. By en-
suring that crucial but uncommon harmful samples receive
more attention, detection performance on minority classes
is improved.

4.2.2 XGBoost (extreme gradient boosting)

XGBoost (Extreme Gradient Boosting) is a sophisticated
boosting algorithm that combines effective computational

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 131

Table 1: Feature set for malicious URL classification

Feature Type Extraction / Computation
URL Length Numeric Total characters in URL
Token Count Numeric Number of tokens (‘/‘, ‘.‘, ‘-‘)
n-gram Numeric Character-level n-grams frequency
Char Distribution Numeric Frequency of letters, digits, special chars
Domain Age Numeric Days since domain creation (WHOIS)
Registrar Categorical Domain registrar from WHOIS
Expiration Numeric Days until domain expiry
Suspicious Keywords Binary Presence of words like login, secure
Redirects Binary Presence of HTTP redirects
Iframe Tags Binary Presence of <iframe> in page
JavaScript Events Binary Detection of JS event handlers
Special Char Count Numeric Count of @, ?, =, -, _
Digit Count Numeric Number of digits in URL
Subdomain Count Numeric Number of subdomains
TLD Type Categorical Top-level domain category
Path Depth Numeric Number of ‘/‘ in URL path

Algorithm 1 AdaBoost Training for Malicious URL clas-
sification
1: Input: Feature set {xi}Ni=1, labels {yi}Ni=1, number of
iterations T

2: Output: Strong classifier H(x) for all URLs
3: Initialize sample weights wi ← 1/N for all URLs
4: for t = 1 to T do
5: Train weak classifier ht(x) using current weightswi

6: Compute weighted error ϵt based on misclassified
URLs

7: Compute classifier weight: αt ← 0.5 ln 1−ϵt
ϵt

8: Update sample weights: increase weights of mis-
classified URLs

9: Normalize weights so that
∑

i wi = 1
10: end for
11: Form final strong classifier:
12: H(x) = sign

(∑T
t=1 αtht(x)

)

approaches with regularization strategies to maximize per-
formance. In this case, we derive the method step-by-step
[26]. Following is the pseudocode for the XGBoost training
procedure used for malicious URL classification.
Because of its iterative methodology, XGBoost is able to

accurately represent intricate relationships, which makes it
ideal for jobs like malicious URL identification. A very
effective and potent machine learning method, XGBoost
(Extreme Gradient Boosting) is especially well-suited for
identifying dangerous URLs in cybersecurity applications.
The sample is extremely unbalanced, with far fewer dan-
gerous URLs than benign ones, which presents a signifi-
cant problem in harmful URL detection. By using strategies
like weighted loss functions, which help concentrate on the
minority class (malicious URLs) while preserving overall
model performance, XGBoost is renowned for its capacity
to manage class imbalance.

Algorithm 2 XGBoost Training for Malicious URL classi-
fication
1: Input: Feature set {xi}Ni=1, labels {yi}Ni=1, number of
trees T , regularization λ, γ

2: Output: Strong classifier ŷi for all URLs
3: Initialize predictions: ŷi ← 0 for all i
4: for t = 1 to T do
5: Compute gradients gi and second-order gradients hi

from current predictions
6: Build regression tree ft(x):
7: Evaluate possible splits by maximizing gain using

gradients of left/right nodes
8: Assign optimal leaf weightsw∗

j = −Gj/(Hj+λ)

9: Update predictions for all URLs: ŷi ← ŷi + ft(xi)
10: end for
11: Return final predictions ŷi for all URLs (malicious or

benign)

4.2.3 GBM (gradient boosting machine)

An ensemble machine learning method called Gradient
Boosting Machine (GBM) creates a model step-by-step.
Every new model is educated to fix the mistakes of its pre-
decessor. A mathematical derivation outlining the funda-
mental ideas of GBM can be found below [27]. Follow-
ing is the pseudocode for the Gradient Boosting Machine
(GBM) training procedure used for malicious URL classi-
fication.
The fundamental concept of GBM is to use the gradi-

ent of the loss function to successively add models to fix
mistakes made by earlier models. GBM creates a power-
ful model with the ability to minimize errors and achieve
high accuracy by integrating weak learners, usually deci-
sion trees. For a variety of prediction tasks, including cy-
bersecurity malicious URL detection, this gradient-based,
iterative method works incredibly well.

132 Informatica 49 (2025) 125–144 D.R. Patil et al.

Algorithm 3 GBM Training for Malicious URL classifica-
tion
1: Input: Feature set {xi}Ni=1, labels {yi}Ni=1, number of
iterations T , learning rate α

2: Output: Strong classifier FT (x) for all URLs
3: Initialize model: F0(x) ←
constant value minimizing initial loss

4: for t = 1 to T do
5: Compute gradient (residuals) g(t−1)

i of the loss with
respect to current predictions

6: Train weak learner ht(x) (decision tree) to fit the
gradients

7: Update model predictions: Ft(x) ← Ft−1(x) +
αht(x)

8: end for
9: Return final predictions FT (x) for all URLs (mali-
cious or benign)

4.2.4 LightGBM (Light gradient boosting machine)

The gradient boosting framework LightGBM (Light Gra-
dient Boosting Machine) employs a cutting-edge method
for both gradient boosting and decision tree learning. By
increasing scalability and efficiency, it surpasses conven-
tional gradient boosting techniques [28]. Following is the
pseudocode for the LightGBM training procedure used for
malicious URL classification.

Algorithm 4 LightGBM Training for Malicious URL clas-
sification
1: Input: Feature set {xi}Ni=1, labels {yi}Ni=1, number of
iterations T , learning rate α

2: Output: Strong classifier FT (x) for all URLs
3: Initialize model: F0(x) ←
constant value minimizing initial loss

4: for t = 1 to T do
5: Compute negative gradient g(t−1)

i of loss with re-
spect to current predictions

6: Train a new decision tree ht(x) using leaf-wise
growth to fit g(t−1)

i

7: Update model predictions: Ft(x) ← Ft−1(x) +
αht(x)

8: end for
9: Apply L1/L2 regularization during tree growth to con-
trol overfitting

10: Return final predictions FT (x) for all URLs (mali-
cious or benign)

Through the use of a leaf-wise tree growth technique,
LightGBM provides enhancements over conventional gra-
dient boosting algorithms, resulting in improved model ac-
curacy and faster training. It also incorporates a number of
optimizations, including regularization to avoid overfitting
and decision tree learning based on histograms. Because of
these features, LightGBM is ideal for complicated jobs like
malicious URL identification and large-scale datasets.

4.2.5 CatBoost

Using regularization approaches, CatBoost, a sophisticated
gradient boosting algorithm, effectively manages category
information and minimizes overfitting. It enhances the
conventional gradient boosting framework by presenting a
permutation-driven method for categorical feature encod-
ing [29, 30]. Following is the pseudocode for the CatBoost
training procedure used for malicious URL classification.

Algorithm 5 CatBoost Training for Malicious URL classi-
fication
1: Input: Feature set {xi}Ni=1, labels {yi}Ni=1, number of
trees T , learning rate α

2: Output: Strong classifier FT (x) for all URLs
3: Initialize model: F0(x) ←
constant value minimizing initial loss

4: for t = 1 to T do
5: Compute negative gradient g(t−1)

i of the loss with
respect to current predictions

6: Apply ordered target statistics for categorical fea-
tures

7: Train a new symmetric decision tree ft(x) to fit
g
(t−1)
i

8: Update model predictions: Ft(x) ← Ft−1(x) +
α ft(x)

9: end for
10: Apply L2 regularization during tree growth to control

overfitting
11: Return final predictions FT (x) for all URLs (mali-

cious or benign)

For large datasets with intricate feature sets, especially
thosewith a large number of category features, CatBoost of-
fers a number of optimizations that make it extremely suc-
cessful. CatBoost’s ability to handle categorical features
using ordered target statistics, symmetric tree structures,
and regularization techniques are its main features. These
elements all help the algorithm perform well in tasks like
malicious URL detection, where feature interactions can be
varied and complex.

4.2.6 LogitBoost

An effective boosting method for binary classification ap-
plications is the LogitBoost algorithm. This adaptive boost-
ing technique replaces decision trees or other models com-
monly employed in gradient boosting with logistic regres-
sion as the weak classifier in each iteration.LogitBoost has
been mathematically deduced here [31]. Following is the
pseudocode for the LogitBoost training procedure used for
malicious URL classification.
With logistic regression as the weak learner, LogitBoost

is a gradient boosting technique created especially for bi-
nary classification. It increases the accuracy of the model
in classification tasks by iteratively updating it with weak
classifiers. Because LogitBoost learns from residuals, im-

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 133

Algorithm 6 LogitBoost Training for Malicious URL clas-
sification
1: Input: Feature set {xi}Ni=1, labels {yi}Ni=1, number of
iterations T , step size η

2: Output: Strong classifier fT (x) for all URLs
3: Initialize model: f0(x)← 0
4: for t = 1 to T do
5: Compute negative gradient g(t−1)

i = σ(ft−1(xi))−
yi

6: Fit logistic regression weak learner ht(x) to g
(t−1)
i

7: Update model predictions: ft(x) ← ft−1(x) +
η ht(x)

8: end for
9: Apply regularization to weak learners to prevent over-
fitting

10: Return final predicted probabilities: P (yi = 1|xi) =
σ(fT (xi)) for all URLs

proves its predictions over time, and effectively handles
class imbalances, it can detect malicious URLs with high
efficiency.

4.3 Stacking-based approach for malicious
URLs detection

The malicious URL detection stacking-based strategy is an
ensemble learning method that enhances predictive perfor-
mance by combining many base models. The process of
stacking entails training many classifiers and merging their
outputs using a higher-level model, often known as the
meta-learner, which determines the optimal way to com-
bine the base models’ predictions[32, 33, 34]. Stacking-
based techniques can be very successful in the identification
of harmful URLs because they combine the advantages of
many classifiers, each of which can identify distinct pat-
terns or characteristics of bad URLs. This is an example
of how to use the stacking-based technique. Stacking, also
known as stacked generalization, is an ensemble learning
strategy that builds a meta-model for improved prediction
performance by combining several base models. Figure 3
illustrates the stacking-based method for detecting fraudu-
lent URLs.
For the stacking ensemble a single-layer stacking strat-

egy was used. The meta-learner is logistic regression, and
it receives as input the predicted class probabilities from
each base learner obtained on the validation fold (out-of-
fold predictions). Base learners were trained on the training
folds, and their out-of-fold predictions were used to con-
struct the meta-feature matrix for training the meta-learner,
ensuring that no data leakage occurs. Finally, the complete
stacking ensemble was evaluated on the independent test
set.
Following is the pseudocode for the Stacking ensemble

training procedure used for malicious URL classification.
Thus, the final decision ismade by combining the outputs

of the base models via the meta-learner.

Figure 3: Stacking-based Approach for Malicious URLs
Detection

4.4 Voting-based approach for malicious
URLs detection

Voting-based ensemble approaches leverage the variety of
the base models to improve overall performance by com-
bining predictions from several models to reach a final de-
cision [35, 36, 37, 38, 39]. Figure 4 illustrates how a voting-
based method is used to detect fraudulent URLs.
For the voting ensemble, we employed soft voting (prob-

ability averaging). Each base learner outputs class proba-
bilities, which are averaged across all classifiers, and the
class with the highest average probability is selected as the
final prediction. This approach accounts for the confidence
of individual classifiers rather than relying solely on major-
ity votes.

Figure 4: Voting-based approach for malicious URLs de-
tection

Following is the pseudocode for the Voting Ensemble
training procedure used for malicious URL classification.
This approach benefits from the probabilistic output of

classifiers like logistic regression or neural networks, where
themodel doesn’t just output a label but rather a distribution

134 Informatica 49 (2025) 125–144 D.R. Patil et al.

Algorithm 7 Stacking Ensemble Based Malicious URL
classification
1: Input: Dataset D = {(xi, yi)}Ni=1

2: Base learners: XGBoost, AdaBoost, GBM, Light-
GBM, CatBoost, LogitBoost

3: Meta-learner: Logistic Regression
4: Output: Final predictions ŷ
5: Stratified split: D → Dtrain(70%), Dtest(30%)
6: Stratified split: Dtrain → Dtrain_base(70%), Dval(30%)
7: for each base learner f ∈ {XGBoost, AdaBoost, GBM,
LightGBM, CatBoost, LogitBoost} do

8: Train f on Dtrain_base
9: Compute probability predictions pf (x) for all x ∈

Dval
10: Store pf (x) as one column of meta-features forDval
11: end for
12: Build meta-dataset Z = {(pi, yi)} where pi =

[pf1(xi), . . . , pf6(xi)], xi ∈ Dval
13: Train logistic regression g on Z
14: Inference: for each x ∈ Dtest
15: Obtain base probabilities pf (x) from each trained

base learner
16: Form px = [pf1(x), . . . , pf6(x)]
17: Predict final output ŷ = g(px)
18: Evaluate ŷ on Dtest using chosen metrics (e.g., preci-

sion, recall, F1, AUC)

over possible classes.
The predictions from several base models are success-

fully combined via the ensemble voting method. This
method makes use of weighted, majority, or soft voting to
improve prediction performance by utilizing the variety of
base models. It enhances the accuracy and generalization
capacity of the entire system and is especially helpful when
base models show disparate strengths.

5 Experimental results and analysis
The experiments conducted to assess the effectiveness of
the suggestedmalicious URL detectionmodel are presented
in this section. The purpose of the studies was to evaluate
the model’s performance in terms of training time, testing
time, accuracy, precision, recall, F1-score, false positive
rate, and false negative rate. To give a thorough grasp of the
model’s capabilities, the evaluation procedure was carried
out using a benchmark dataset and contrasted with current
state-of-the-art models.

5.1 Dataset description
The study employed a dataset from Kaggle that included a
significant number of URLs classified as harmful or benign
[40]. Out of the 1,043,311 URLs in it, 225,325 are mali-
cious and 817,986 are benign. The collection includes lex-
ical, host-based, and content-based attributes, among many

Algorithm 8Voting Ensemble BasedMalicious URL Clas-
sification
1: Input: Dataset D = {(xi, yi)}Ni=1

2: Base learners: XGBoost, AdaBoost, GBM, Light-
GBM, CatBoost, LogitBoost

3: Strategy: Soft voting (probability averaging)
4: Output: Final predictions ŷ
5: Split D into training set Dtrain and test set Dtest
6: for each base learner f ∈ {XGBoost, AdaBoost, GBM,
LightGBM, CatBoost, LogitBoost} do

7: Train f on Dtrain
8: For each x ∈ Dtest, obtain class probability pf (c|x)
9: end for
10: For each instance x ∈ Dtest:
11: Compute aggregated probability for class c:

P (c|x) =
6∑

f=1

pf (c|x)

12: Assign predicted label:

ŷ = arg max
c∈{0,1}

P (c|x)

13: Evaluate ŷ using performance metrics (Accuracy, Pre-
cision, Recall, F1, AUC)

other variables related to the URLs. A significant problem
in cybersecurity jobs is the imbalance between dangerous
and benign URLs; sophisticated resampling techniques are
used to address this obstacle. Furthermore, strong ensemble
learning models are used to guarantee both classes’ good
detection performance. Figure 5 displays the dataset’s dis-
tribution of malicious (1) and benign (0) URLs.

5.2 Experimental setup and validation
strategy

The dataset was split into training and testing subsets us-
ing a stratified 70:30 split to preserve the class distribution
(malicious vs. benign).
Base learners were trained on the 70% portion of the

training set, and their predictions on the 30% internal vali-
dation set were used to form the meta-feature matrix. The
meta-learner was trained solely on these out-of-sample pre-
dictions, preventing data leakage. Finally, the complete en-
semble was evaluated on the independent 30% test set.
This two-stage stratified splitting strategy ensures repro-

ducibility, preserves class balance, and provides an unbi-
ased evaluation of model performance.

5.3 Reproducibility and experimental setup
To ensure reproducibility, we provide the details of random
seeds, computing environment, and library versions used in
this study.

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 135

Figure 5: Dataset distribution for benign and malicious
URLs

Random Seeds: All experiments were conducted with
fixed random seeds set to 42 across Python, NumPy, and
scikit-learn to ensure consistent results.
Computing Environment: The experiments were exe-

cuted on Kaggle Notebooks, which provide a standardized
environment. The specifications are as follows:

– Operating System: Ubuntu 20.04.6 LTS (default Kag-
gle environment)

– CPU: Intel(R) Xeon(R) @ 2.20GHz (2 vCPUs)

– RAM: 16 GB

– Disk: 73 GB

– Python Version: 3.10.12

Libraries Used: The following Python libraries and ver-
sions were employed:

– numpy 1.26.4

– pandas 2.2.2

– scikit-learn 1.5.2 (for preprocessing, evaluation
metrics, AdaBoost, Gradient Boosting, and Logit-
Boost)

– xgboost 2.1.1

– lightgbm 4.5.0

– catboost 1.2.5

– matplotlib 3.9.2, seaborn 0.13.2 (for visualization)

Reproducibility Note: Kaggle provides a consistent ex-
ecution environment with fixed CPU, memory, and pre-
installed libraries, ensuring that the experimental results
can be reproduced across multiple runs.

5.4 Measures used for performance
evaluation of learning classifiers on
malicious URLs dataset

Performance evaluation is a crucial component in evaluat-
ing the efficacy of various models when employing ma-
chine learning classifiers to detect harmful URLs. Clas-
sifiers such as AdaBoost, XGBoost, GBM, LGBM, Cat-
Boost, LogitBoost, Stacking, and Voting are evaluated us-
ing a variety of measures while accounting for the difficul-
ties presented by unbalanced datasets. A thorough exam-
ination of the classifiers’ advantages and disadvantages is
made possible by these measures. Using specific notations
to assure correctness and clarity, the following are the main
assessment metrics [41].

5.4.1 Confusion matrix

A table called a confusion matrix is used to explain how
well a classificationmodel performs. It displays the number
of false positives, false negatives, true positives, and true
negatives. This matrix offers a comprehensive perspective
of potential model failures, especially when dealing with
unbalanced classes such as harmful and benign URLs. One
way to visualize the confusion matrix is as follows:[

CTP CFP

CFN CTN

]
(2)

Where:

– CTP = True Positives

– CFP = False Positives

– CFN = False Negatives

– CTN = True Negatives

5.4.2 Accuracy

Accuracy is a basic but essential metric, which quantifies
the proportion of correct predictions made by the model out
of the total number of predictions. It is defined as the ratio
of the total number of correct predictions to the total number
of predictions. The accuracy can be expressed as:

Accuracy =
CTP + CTN

CTotal
(3)

Where:

– CTP = True Positives (correctly classified malicious
URLs)

– CTN = True Negatives (correctly classified benign
URLs)

– CTotal = Total number of instances in the dataset

136 Informatica 49 (2025) 125–144 D.R. Patil et al.

5.4.3 Precision

Precision, or Positive Predictive Value (PPV), is the propor-
tion of true positive predictions to all predicted positive in-
stances. For malicious URL detection, precision indicates
how many of the URLs identified as malicious are indeed
malicious, helping minimize false positives. Precision is
given by:

Precision =
CTP

CTP + CFP
(4)

Where:

– CFP = False Positives (benign URLs incorrectly clas-
sified as malicious)

5.4.4 Recall

Recall, also known as Sensitivity or True Positive Rate
(TPR), measures the proportion of actual positives that are
correctly identified by the model. In the case of malicious
URL detection, recall shows how well the classifier identi-
fies all actual malicious URLs. Recall is defined as:

Recall =
CTP

CTP + CFN
(5)

Where:

– CFN = False Negatives (malicious URLs incorrectly
classified as benign)

5.4.5 F1-score

The F1-score provides a harmonic mean between preci-
sion and recall, offering a balanced measure of a model’s
performance. This is particularly valuable for imbalanced
datasets where both false positives and false negatives are
costly. The F1-score can be calculated as:

F1-Score = 2× Precision× Recall
Precision+ Recall

(6)

The F1-score is particularly useful when we need to bal-
ance the trade-off between precision and recall in malicious
URL detection.

5.4.6 False positive rate (FPR)

The False Positive Rate (FPR) measures the proportion of
benign URLs that are incorrectly classified as malicious.
This metric helps evaluate how many false alarms the clas-
sifier generates. The FPR is defined as:

FPR =
CFP

CFP + CTN
(7)

Where:

– CFP = False Positives

– CTN = True Negatives

5.4.7 False negative rate (FNR)

The False Negative Rate (FNR) represents the proportion
of actual malicious URLs that are incorrectly classified as
benign. This metric indicates the model’s ability to identify
all malicious URLs without overlooking them. The FNR is
given by:

FNR =
CFN

CFN + CTP
(8)

Where:

– CFN = False Negatives

– CTP = True Positives

5.4.8 Area under the receiver operating
characteristic curve (AUC-ROC)

The AUC-ROC curve plots the True Positive Rate (recall)
against the False Positive Rate (FPR). The area under this
curve (AUC) provides a summary of the model’s ability to
distinguish between malicious and benign URLs across dif-
ferent classification thresholds. A higher AUC indicates
better model performance. The AUC is given by:

AUC =

∫ 1

0

TPR(FPR) d(FPR) (9)

Where:

– TPR(FPR) is the True Positive Rate at a given False
Positive Rate.

5.4.9 Execution time

Execution time measures the time taken by a model to train
and make predictions on a given dataset. This metric is
important for real-time malicious URL detection systems,
where quick decision-making is crucial. Faster models are
generally preferred in scenarios requiring immediate re-
sponse. The execution time is simply given by:

Execution Time = Train Time + Pred. Time (10)

These evaluation metrics offer a well-rounded approach
to measuring the performance of different machine learn-
ing classifiers, such as AdaBoost, XGBoost, GBM, LGBM,
CatBoost, LogitBoost, Stacking, and Voting, on the task
of malicious URL detection. In particular, precision, re-
call, and F1-score are vital for imbalanced datasets like
the malicious URL dataset, as they highlight how well the
models can identify the minority class (malicious URLs)
without generating excessive false positives. Meanwhile,
AUC-ROC, accuracy, and confusion matrices help assess
the overall robustness and reliability of the classifiers.
By utilizing these metrics, we can ensure that the cho-

sen classifiers are not only efficient in detecting malicious
URLs but also suitable for practical deployment in real-
world cybersecurity applications.

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 137

5.5 Performance evaluation of boosting,
voting and stacking learning classifiers
on malicious URLs dataset

The Table 2 shows the performance evaluation of vari-
ous classifiers on the malicious URLs dataset reveals dis-
tinct trade-offs in accuracy, precision, recall, and compu-
tational efficiency. Stacking achieves the highest accuracy
(93.44%), precision, recall, and F-Measure, with a minimal
false negative rate (FNR of 0.22), but it requires the longest
training (905.62 seconds) and testing times (17.7 seconds).
Voting closely follows with an accuracy of 93.25% and the
lowest false positive rate (FPR of 0.017), offering slightly
faster training than Stacking. CatBoost provides an excel-
lent balance between performance and efficiency, achiev-
ing 93.38% accuracy, very low FPR (0.018), and the fastest
testing time (0.135 seconds). LGBM is also highly accu-
rate (93.02%) with efficient training (8.547 seconds), but
slower than CatBoost during testing. On the other hand,
XGBoost and GBM deliver reasonable accuracies (91.6%
and 91.45%, respectively) but are overshadowed by LGBM
and CatBoost in both performance and computational effi-
ciency. LogitBoost performs comparably to LGBM in ac-
curacy (92.98%) but requires significantly more time for
training and testing. AdaBoost exhibits the weakest per-
formance, with the lowest accuracy (89.89%), precision
(89.56%), and the highest FNR (0.349). In conclusion,
Stacking is the most effective for high-stakes tasks requir-
ing maximum accuracy, while CatBoost is ideal when com-
putational efficiency and strong performance are equally
important. AdaBoost is the least suitable for this dataset.
Figure 6, 7 and 8 illustrate the ROC curves depicting the
performance evaluation of various machine learning clas-
sifiers. Figure 9 and 10 illustrate the confusion matrix for
CatBoost and Stacking machine learning classifiers.

Figure 6: ROC curve for the performance evaluation of
boosting machine learning classifiers

Figure 7: ROC Curve for the performance evaluation of
stacking classifier

5.5.1 Real-time performance analysis

Although the total test times for Stacking and Voting clas-
sifiers appear high (17 s), these times correspond to eval-
uating the entire test set (30% stratified split). Calculat-
ing per-sample latency yields 56 µs per URL for Stacking
and 54 µs per URL for Voting, with throughput exceeding
17,000 URLs/sec. Therefore, the system meets real-time
processing requirements for URL classification.

5.6 Comparative performance evaluation of
proposed voting and stacking-based
boosting approach on malcious URLs
dataset with available approaches

The Table 3 provides a comparative performance analysis
of various malicious URL detection methods based on ac-
curacy, precision, recall, and F-measure. The approach by
S. Abad et al. reports strong precision (93.19%), recall
(91.19%), and F-measure (92.18%), but does not provide
an accuracy value. X. Do, C. Hoa et al.’s method achieves
an accuracy of 90.70% with high precision (93.43%) but
a lower recall (88.45%), though F-measure data is un-
available. T. Swetha et al.’s approach shows lower over-
all performance, with accuracy (85%), precision (83%),
recall (82%), and F-measure (83%), indicating a less ef-
fective detection capability compared to others. In con-
trast, the proposed stacking-based approach excels, achiev-
ing a perfect balance with 93.44% for accuracy, precision,
recall, and F-measure, demonstrating its superior perfor-
mance. The voting-based approach also performs well,
with results slightly lower than the stacking approach, at
93.25% across all metrics. Overall, the proposed stacking
and voting-based methods significantly outperform exist-
ing approaches in the dataset.

138 Informatica 49 (2025) 125–144 D.R. Patil et al.

Table 2: Performance evaluation of boosting, voting and stacking learning classifiers on malicious URLs dataset

Classifier Accuracy (%) Precision (%) Recall (%) F-Measure (%) FPR FNR Train(s) Test(s)
XGBoost 91.6 91.47 91.6 91.2 0.023 0.306 6.013 0.172
AdaBoost 89.89 89.56 89.89 89.39 0.033 0.349 96.538 3.331
GBM 91.45 91.3 91.45 91.04 0.023 0.31 350.2 0.98
LGBM 93.02 92.92 93.02 92.77 0.0208 0.248 8.547 2.573
CatBoost 93.38 93.3 93.38 93.14 0.018 0.24 12.9 0.135
LogitBoost 92.98 92.89 92.98 92.71 0.019 0.254 444.68 9.579
Stacking 93.44 93.44 93.44 93.44 0.018 0.22 905.62 17.7
Voting 93.25 93.25 93.25 93.25 0.017 0.24 859.95 17.02

Table 3: Comparative performance evaluation of proposed voting and stacking-based boosting approach on malicious
URLs dataset with available approaches

Approach Accuracy (%) Precision (%) Recall (%) F-Measure (%)
S. Abad et al.[42] – 93.19 91.19 92.18
X. Do, C. Hoa et al. [43] 90.70 93.43 88.45 –
T. Swetha et al. [44] 85 83 82 83
Our Stacking-based Approach 93.44 93.44 93.44 93.44
Our Voting-based Approach 93.25 93.25 93.25 93.25

Figure 8: ROC curve for the performance evaluation of vot-
ing classifier

It is evident from Table 3 that some prior works do not re-
port all standard performance metrics, making direct com-
parisons challenging. To ensure transparency, we report
accuracy, precision, recall, and F1-score for our proposed
methods. The results show that both stacking- and voting-
based ensembles consistently achieve higher accuracy and
F1-score than previously reported approaches, while main-
taining a balance between precision and recall. Although
additional baselines such as logistic regression or neural
architectures (e.g., CNN, RNN) were not included in this
study, they represent an important direction for future work
to further strengthen comparative evaluation.

Figure 9: Confusion matrix for CatBoost classifier

6 Discussion

The experimental results presented in Table 2 demonstrate
the effectiveness of various boosting, stacking, and voting
classifiers on the malicious URLs dataset. Among the indi-
vidual boosting algorithms, CatBoost achieved the highest
accuracy of 93.38%, followed closely by LGBM (93.02%)
and LogitBoost (92.98%). XGBoost and GBM also per-
formed competitively, with accuracies exceeding 91%. Ad-

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 139

Figure 10: Confusion matrix for stacking classifier

aBoost, while simpler and faster to implement, recorded
slightly lower performance (89.89%), indicating that the
choice of boosting algorithm has a significant impact on
detection accuracy. The false positive rate (FPR) and false
negative rate (FNR) metrics further confirm that CatBoost
and LGBM provide better discrimination between mali-
cious and benign URLs, minimizing misclassification er-
rors. Training and testing times varied across classifiers,
with GBM and LogitBoost requiring substantially longer
training durations, highlighting a trade-off between com-
putational efficiency and classification accuracy.
The proposed ensemble approaches—stacking and

voting—demonstrated superior performance compared
to individual classifiers. Stacking achieved the highest
overall accuracy of 93.44%, with identical precision, recall,
and F-measure values, indicating balanced performance
across all evaluation metrics. Voting-based aggregation
also performed strongly, achieving 93.25% accuracy with
low FPR and FNR. These results confirm that combining
multiple base learners leverages their complementary
strengths, resulting in improved robustness and general-
ization. Although the training time for stacking and voting
was higher compared to single classifiers, the observed
performance gains justify the additional computational
cost, particularly in scenarios where accurate detection of
malicious URLs is critical.
Table 3 presents a comparative evaluation of the pro-

posed methods against recent studies in the literature. Our
stacking-based approach outperforms the methods reported
by S. Abad et al. [42], X. Do, C. Hoa et al. [43], and
T. Swetha et al. [44] in terms of accuracy, precision, re-
call, and F-measure. Specifically, our stacking framework
achieved a 1.0–8.44% improvement in accuracy compared
to prior work, demonstrating its superiority for both binary
and multi-class URL classification tasks. Similarly, the
voting-based approachmaintains competitive performance,
validating that ensemble learning not only enhances detec-
tion accuracy but also reduces misclassification risks rela-
tive to conventional models.

The improved performance of the proposed ensemble
approaches can be attributed to several factors. First, the
integration of multiple boosting algorithms ensures that
weaknesses of individual classifiers are compensated by the
strengths of others, leading to more reliable predictions.
Second, stacking employs a meta-learner to optimize the
combination of base learners’ outputs, enhancing the sys-
tem’s adaptability to diverse URL patterns, including ob-
fuscated or newly generated URLs. Third, voting provides
a straightforward yet effective method for aggregating clas-
sifier decisions, improving overall stability without exten-
sive parameter tuning. These mechanisms collectively ad-
dress the limitations of prior studies, which primarily relied
on single classifiers or shallow models without systematic
ensemble integration.
Furthermore, the results highlight the practical relevance

of the proposed framework for real-world cybersecurity ap-
plications. Low false positive and false negative rates imply
that the system can effectively reduce the risk of both un-
detected malicious URLs and unnecessary alerts for benign
URLs. While the training time for stacking is higher, test-
ing times remain reasonable, making the framework suit-
able for deployment in near real-time detection systems.
Overall, the proposed approaches advance the state-of-the-
art in malicious URL detection by providing quantitative
evidence of performance gains, superior robustness, and
enhanced generalization capabilities compared to existing
methods in the literature.
While the current study focuses on end-to-end evalua-

tion of stacking and voting ensembles, ablation studies such
as removing individual base learners, restricting feature
groups, or analyzing imbalance-handling strategies were
not performed. These directions will be explored in future
work to better quantify the contribution of each component
to ensemble performance.
In addition to the reported results, it is important to con-

sider the generalization capability and adversarial resilience
of the proposed models. Although our current evaluation
is based on the Kaggle dataset, the methodology can be

140 Informatica 49 (2025) 125–144 D.R. Patil et al.

extended to external benchmark datasets such as Phish-
Tank and URLhaus to further validate robustness across di-
verse sources of malicious URLs. Moreover, adversarial
factors such as URL obfuscation techniques and domain
generation algorithms (DGAs) remain critical challenges
in real-world scenarios. Preliminary experiments indicate
that our ensemble-based approach maintains stable perfor-
mance under moderate levels of URL manipulation, sug-
gesting encouraging resilience trends. A more comprehen-
sive set of external validation and adversarial robustness
tests will be pursued in future work to strengthen the prac-
tical applicability of the proposed framework.

7 Limitations
While the optimized voting and stacking-based boosting
approaches for malicious URL detection on large imbal-
anced datasets demonstrate strong performance, there are
following several limitations.

– Computational Complexity: The proposed meth-
ods, particularly stacking, require substantial compu-
tational resources for both training and testing. The in-
clusion of multiple base learners and the meta-learner
increases the training time, which may not be ideal
for real-time applications or environments with lim-
ited computational capacity.

– Scalability to Extremely Large Datasets: Although
the methods were evaluated on large datasets, the scal-
ability to extremely large or continuously growing
datasets could pose challenges. The training process
might become increasingly resource-intensive, poten-
tially leading to delays in updating models when new
data arrives.

– Handling Class Imbalance: Despite employing tech-
niques to address class imbalance, such as weighting
and boosting, the models may still exhibit some bias
toward the majority class, particularly in cases of ex-
treme imbalance. This can affect the detection of rare
malicious URLs, which are critical for maintaining se-
curity.

– Dependency on Feature Quality: The performance
of these approaches heavily depends on the quality and
relevance of the input features. If the feature extrac-
tion process does not adequately capture the charac-
teristics of malicious URLs, the models’ performance
may degrade significantly.

– Real-Time Detection Limitations: While the pro-
posed methods achieve high accuracy, the testing time
for some approaches, such as stacking and voting, re-
mains relatively high. This may limit their application
in scenarios requiring real-time or near-real-time ma-
licious URL detection.

– Generalization Across Datasets: The approaches
were evaluated on a specific dataset, and their general-
izability to other datasets with different distributions,
feature sets, or malicious URL types remains uncer-
tain. Additional experiments on diverse datasets are
needed to confirm their robustness.

– Overfitting Risks: The complexity of stacking and
voting models increases the risk of overfitting, espe-
cially when the training dataset is not diverse enough.
Careful hyperparameter tuning and validation are nec-
essary to mitigate this risk, but achieving the optimal
balance can be challenging.

– Interpretability: The ensemble approaches, particu-
larly stacking, can be less interpretable compared to
simpler models. This lack of transparency may hinder
understanding of how predictions are made, which is
crucial in high-stakes applications like cybersecurity.

– Dependency on Ensemble Components: The per-
formance of the ensemble models is influenced by the
choice of base learners and meta-learners. Poor selec-
tion or tuning of these components can significantly
impact the overall effectiveness of the approach.

– Potential for Adversarial Attacks: Like many ma-
chine learning models, the proposed approaches may
be vulnerable to adversarial attacks. Sophisticated
attackers could exploit weaknesses in the models to
evade detection, highlighting the need for additional
defenses.

– A limitation of the present study is that results were
reported from a single stratified split, which prevents
the computation of confidence intervals or statistical
significance tests. In future work, we plan to ex-
tend the evaluation with repeated stratified splits or
k-fold cross-validation to quantify robustness and en-
able paired statistical testing (e.g., t-tests or bootstrap
analysis) when comparing stacking, voting, and single
boosting models.

8 Conclusions
Threats including phishing, virus dissemination, and data
breaches are made possible by the growing frequency of
dangerous URLs, which poses a serious cybersecurity chal-
lenge. Novel and obfuscated threats are frequently diffi-
cult to detect using conventional detection techniques, such
as heuristic and blacklist-based approaches. In order to
overcome these limitations, this study presented a hybrid
ensemble learning architecture that enhances the precision
and resilience of malicious URL identification by com-
bining voting and stacking-based boosting strategies. Six
sophisticated boosting algorithms—XGBoost, AdaBoost,
Gradient Boosting Machine (GBM), LightGBM (LGBM),
CatBoost, and LogitBoost—are integrated into this frame-
work as base learners. A two-layer stacking technique

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 141

uses a meta-learner to further improve prediction accuracy,
while a majority voting mechanism combines the outputs
from these algorithms to guarantee accurate predictions.
The system was evaluated on a large dataset of 1,043,311
URLs with lexical, host-based, and content-based features
that were obtained from Kaggle. Of them, 225,325 were
malevolent and 817,986were benign, reflecting imbalances
in the real world. Experiments showed that the suggested
framework performed better in terms of precision, recall,
F1-score, and total accuracy than both individual boost-
ing models and traditional ensemble approaches. With an
accuracy of 93.44%, the stacking-based method was the
most accurate, followed by the voting method at 93.25%.
The outcomes also demonstrate the framework’s capacity
to manage unbalanced data and successfully adjust to a va-
riety of harmful URL patterns. It is also appropriate for
real-time applications in busy settings due to its scalability
and processing efficiency.
This study offers a reliable and effective method for de-

tectingmalicious URLs, although there are still a number of
areas that might be investigated further. Initially, the frame-
work’s performance can be assessed on other publically ac-
cessible datasets to guarantee generalizability across dif-
ferent URL properties and data distributions. Using so-
phisticated feature engineering methods, like representa-
tion learning based on deep learning, could also improve
detection accuracy. Third, investigating how resilient the
framework is to adversarial attacks will be essential to com-
prehending how resilient it is to increasingly complex threat
models. The appropriateness of stacking models for large-
scale, real-time deployments may also be enhanced by op-
timizing their computing requirements. By tackling these
future areas, the suggested strategy can be improved even
more to better counter the changing cybersecurity threats.

References
[1] Anti-Phishing Working Group, ”APWG’s Threat Re-

port for Q4 2023,” Anti-Phishing Working Group,
2023. [Online]. Available: https://www.apwg.
org/reports. [Accessed: Dec. 2, 2024].

[2] The SANS Institute, ”Cyber Threat Intelligence
(CTI) Survey 2024,” The SANS Institute, 2024.
[Online]. Available: https://www.sans.org. [Ac-
cessed: Dec. 2, 2024].

[3] CrowdStrike, ”2024 Global Threat Report,” Crowd-
Strike, 2024. [Online]. Available: https://www.
crowdstrike.com. [Accessed: Dec. 2, 2024].

[4] D. Sahoo, “Malicious URL detection using
machine learning: a survey,” arXiv preprint
arXiv:1701.01234v3, 2019. [Online]. Available:
https://arxiv.org/abs/1701.01234v3. [Ac-
cessed: Dec. 2, 2024].

[5] M. Aljabri, H. S. Altamimi, S. A. Albelali, M. Al-
Harbi, H. T. Alhuraib, N. K. Alotaibi, A. A. Alah-
madi, F. Alhaidari, R. M. A. Mohammad, and K.

Salah, ”Detecting malicious URLs using machine
learning techniques: review and research directions,”
IEEE Access, vol. 10, pp. 121395–121417, 2022, doi:
10.1109/ACCESS.2022.3225741.

[6] Ç. Catal, G. Giray, B. Tekinerdogan, S. Kumar, and S.
Shukla, ”Applications of deep learning for phishing
detection: a systematic literature review,” Knowledge
and Information Systems, vol. 64, no. 6, pp. 1457–
1500, 2022, doi: 10.1007/s10115-022-01693-3.

[7] F. Carroll, J. A. Adejobi, and R. Montasari, ”How
good are we at detecting a phishing attack? In-
vestigating the evolving phishing attack email and
why it continues to successfully deceive society,” SN
Computer Science, vol. 3, no. 2, p. 170, 2022, doi:
10.1007/s42979-022-01003-0.

[8] Q. Abu Al-Haija and M. Al-Fayoumi, ”An intelligent
identification and classification system for malicious
uniform resource locators (URLs),” Neural Comput-
ing and Applications, vol. 35, no. 23, pp. 16995–
17011, 2023.

[9] N. Reyes-Dorta, P. Caballero-Gil, and C. Rosa-
Remedios, ”Detection of malicious URLs using ma-
chine learning,”Wireless Networks, 2024, pp. 1–18.

[10] Das Guptta, Sumitra, Khandaker Tayef Shahriar,
Hamed Alqahtani, Dheyaaldin Alsalman, and Iqbal
H. Sarker, ”Modeling hybrid feature-based phish-
ing websites detection using machine learning tech-
niques,” Annals of Data Science, vol. 11, no. 1, pp.
217–242, 2024.

[11] Alsaedi, Mohammed, Fuad A. Ghaleb, Faisal Saeed,
Jawad Ahmad, and Mohammed Alasli, ”Cyber threat
intelligence-based malicious URL detection model
using ensemble learning,” Sensors, vol. 22, no. 9, p.
3373, 2022.

[12] Zuguo, Chen, Liu Yanglong, Chen Chaoyang, Lu
Ming, and Zhang Xuzhuo, ”Malicious URL Detec-
tion Based on Improved Multilayer Recurrent Convo-
lutional Neural Network Model,” Security and Com-
munication Networks, 2021.

[13] D. R. Patil and J. B. Patil, ”Feature-based Malicious
URL and Attack Type Detection Using Multi-class
Classification,” ISeCure, vol. 10, no. 2, 2018.

[14] Jiang, Jianguo, Jiuming Chen, Kim-Kwang Raymond
Choo, Chao Liu, Kunying Liu, Min Yu, and Yongjian
Wang, ”A deep learning based online malicious URL
and DNS detection scheme,” in Security and Pri-
vacy in Communication Networks: 13th International
Conference, SecureComm 2017, Niagara Falls, ON,
Canada, pp. 438–448, Springer, 2018.

[15] W. Yang, W. Zuo, and B. Cui, ”Detecting mali-
cious URLs via a keyword-based convolutional gated-
recurrent-unit neural network,” IEEE Access, vol. 7,
pp. 29891–29900, 2019.

[16] Alshingiti, Zainab, Rabeah Alaqel, Jalal Al-Muhtadi,
Qazi Emad Ul Haq, Kashif Saleem, and Muhammad

https://www.apwg.org/reports
https://www.apwg.org/reports
https://www.sans.org
https://www.crowdstrike.com
https://www.crowdstrike.com
https://arxiv.org/abs/1701.01234v3

142 Informatica 49 (2025) 125–144 D.R. Patil et al.

Hamza Faheem, ”A deep learning-based phishing de-
tection system using CNN, LSTM, and LSTM-CNN,”
Electronics, vol. 12, no. 1, p. 232, 2023.

[17] Rafsanjani, Ahmad Sahban, Norshaliza Binti Ka-
maruddin, Mehran Behjati, Saad Aslam, Aaliya Sar-
faraz, and Angela Amphawan, ”Enhancing Malicious
URLDetection: A Novel Framework Leveraging Pri-
ority Coefficient and Feature Evaluation,” IEEE Ac-
cess, 2024.

[18] D. R. Patil and J. B. Patil, ”Malicious URLs detec-
tion using decision tree classifiers and majority voting
technique,” Cybernetics and Information Technolo-
gies, vol. 18, no. 1, pp. 11–29, 2018.

[19] S. Kumi, C. Lim, and S. G. Lee, ”Malicious URL de-
tection based on associative classification,” Entropy,
vol. 23, no. 2, p. 182, 2021.

[20] Peng, Yongfang, Shengwei Tian, LongYu, Yalong Lv,
and Ruijin Wang, ”Malicious URL recognition and
detection using attention-based CNN-LSTM,” KSII
Transactions on Internet and Information Systems
(TIIS), vol. 13, no. 11, pp. 5580–5593, 2019.

[21] Yuan, Jianting, Guanxin Chen, Shengwei Tian, and
Xinjun Pei, ”Malicious URL detection based on a par-
allel neural joint model,” IEEE Access, vol. 9, pp.
9464–9472, 2021.

[22] Balogun, Abdullateef O., Kayode S. Adewole, Muiz
O. Raheem, Oluwatobi N. Akande, Fatima E. Usman-
Hamza, Modinat A. Mabayoje, Abimbola G. Akin-
tola, ”Improving the phishing website detection using
empirical analysis of Function Tree and its variants,”
Heliyon, vol. 7, no. 7, 2021.

[23] Rafsanjani, Ahmad Sahban, Norshaliza Binti Ka-
maruddin, Hazlifah Mohd Rusli, and Mohammad
Dabbagh, ”Qsecr: Secure QR code scanner accord-
ing to a novel malicious URL detection framework,”
IEEE Access, 2023.

[24] B. C. Ujah-Ogbuagu, O. N. Akande, and E. Ogbuju,
”A hybrid deep learning technique for spoofing web-
site URL detection in real-time applications,” Jour-
nal of Electrical Systems and Information Technology,
vol. 11, no. 1, p. 7, 2024.

[25] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application
to boosting,” in Proceedings of the Second European
Conference on Computational Learning Theory, pp.
23–37, Springer, 1995.

[26] T. Chen and C. Guestrin, “XGBoost: A scalable tree
boosting system,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 785–794, ACM,
2016.

[27] J. H. Friedman, “Greedy function approximation: A
gradient boosting machine,” The Annals of Statistics,
vol. 29, no. 5, pp. 1189–1232, 2001.

[28] Ke, G., Meng, Q., Finley, T., Wang, T., and Yang,
W. , “LightGBM: A highly efficient gradient boost-
ing decision tree,” in Proceedings of the 31st Confer-
ence on Neural Information Processing Systems, pp.
3146–3154, 2017.

[29] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost:
A high-performance gradient boosting library,” in
Proceedings of the 2018 Data Mining and Knowledge
Discovery Conference, pp. 1–10, 2018.

[30] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V.
Dorogush, and A. Gulin, “CatBoost: Unbiased boost-
ing with categorical features,” in Advances in Neural
Information Processing Systems (NIPS), vol. 31,
2018. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2018/file/
f5f8590cd58a54e94377e6ae2eded4d9-Paper.
pdf.

[31] J. Friedman, T. Hastie, and R. Tibshirani, “Additive
logistic regression: A statistical view of boosting,”
The Annals of Statistics, vol. 28, no. 2, pp. 337–407,
2000. DOI: 10.1214/aos/1016218223.

[32] D. H. Wolpert, “Stacked generalization,” Neu-
ral Networks, vol. 5, no. 2, pp. 241–259, 1992.
[Online]. Available: https://doi.org/10.1016/
S0893-6080(05)80023-1

[33] A. K. Seewald, “How to make stacking better and
faster while also taking care of an unknown weak-
ness,” in Proceedings of the 19th International Con-
ference on Machine Learning (ICML), 2002, pp. 554–
561.

[34] J. Sill, G. Takacs, L. Mackey, and D. Lin, “Feature-
weighted linear stacking,” in Advances in Neural In-
formation Processing Systems (NIPS), vol. 22, 2009.

[35] E. Bauer and R. Kohavi, “An empirical comparison of
voting classification algorithms: Bagging, boosting,
and variants,” Machine Learning, vol. 36, no. 1, pp.
105–139, 1999. [Online]. Available: https://doi.
org/10.1023/A:1007515423169

[36] L. Breiman, “Bagging predictors,” Machine Learn-
ing, vol. 24, no. 2, pp. 123–140, 1996.

[37] L. I. Kuncheva, Combining Pattern Classifiers:
Methods and Algorithms. John Wiley & Sons, 2004.

[38] T. G. Dietterich, “Ensemble methods in machine
learning,” in International Workshop on Multiple
Classifier Systems (MCS). Springer, 2000, pp. 1–15.
[Online]. Available: https://doi.org/10.1007/
3-540-45014-9_1

[39] Z.-H. Zhou, Ensemble Methods: Foundations and Al-
gorithms. Chapman & Hall/CRC, 2012.

[40] P. Piñeiro, “Tabular dataset ready for ma-
licious URL detection,” Kaggle, 2024.
[Online]. Available: https://www.
kaggle.com/datasets/pilarpieiro/
tabular-dataset-ready-for-malicious-\
url-detection. [Accessed: Dec. 2, 2024].

https://proceedings.neurips.cc/paper_files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1023/A:1007515423169
https://doi.org/10.1023/A:1007515423169
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://www.kaggle.com/datasets/pilarpieiro/tabular-dataset-ready-for-malicious-\url-detection
https://www.kaggle.com/datasets/pilarpieiro/tabular-dataset-ready-for-malicious-\url-detection
https://www.kaggle.com/datasets/pilarpieiro/tabular-dataset-ready-for-malicious-\url-detection
https://www.kaggle.com/datasets/pilarpieiro/tabular-dataset-ready-for-malicious-\url-detection

Stacking and Voting-Based Boosting Ensembles for Robust… Informatica 49 (2025) 125–144 143

[41] M. Sokolova and G. Lapalme, “A systematic analy-
sis of performance measures for classification tasks,”
Information Processing & Management, vol. 45, no.
4, pp. 427–437, Jul. 2009. DOI: https://doi.org/
10.1016/j.ipm.2009.03.002.

[42] S. Abad, H. Gholamy, and M. Aslani, “Classifi-
cation of Malicious URLs Using Machine Learn-
ing,” Sensors, vol. 23, no. 18, pp. 7760, 2023. DOI:
10.3390/s23187760.

[43] X. Do, C. Hoa Dinh Nguyen, and V. N. Tisenko, “Ma-
licious URL Detection Based on Machine Learning,”
International Journal of Advanced Computer Science
and Applications, vol. 11, no. 1, pp. 1–6, 2020.

[44] T. Swetha, M. Seshaiah, K. L. Hemalatha,
S. V. N. Murthy, and M. Kumar, “Hybrid Ma-
chine Learning Approach for Real-Time Malicious
URL Detection Using SOM-RMO and RBFN with
Tabu Search,” International Journal of Advanced
Computer Science and Applications, vol. 15, no. 8,
pp. 1–10, 2024.

https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002

144 Informatica 49 (2025) 125–144 D.R. Patil et al.

	Introduction
	Motivation
	Related work
	Synthesis and research gaps

	Methodology
	Data preprocessing
	Boosting machine learning algorithms used for malicious URLs detection
	AdaBoost (adaptive boosting)
	XGBoost (extreme gradient boosting)
	GBM (gradient boosting machine)
	LightGBM (Light gradient boosting machine)
	CatBoost
	LogitBoost

	Stacking-based approach for malicious URLs detection
	Voting-based approach for malicious URLs detection

	Experimental results and analysis
	Dataset description
	Experimental setup and validation strategy
	Reproducibility and experimental setup
	Measures used for performance evaluation of learning classifiers on malicious URLs dataset
	Confusion matrix
	Accuracy
	Precision
	Recall
	F1-score
	False positive rate (FPR)
	False negative rate (FNR)
	Area under the receiver operating characteristic curve (AUC-ROC)
	Execution time

	Performance evaluation of boosting, voting and stacking learning classifiers on malicious URLs dataset
	Real-time performance analysis

	Comparative performance evaluation of proposed voting and stacking-based boosting approach on malcious URLs dataset with available approaches

	Discussion
	Limitations
	Conclusions

