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Emergency Medical Services (EMS) require rapid response and efficient routing to ensure timely patient
care. However, urban traffic congestion and static routing methods often delay ambulance arrivals. To ad-
dress this, this paper proposes an intelligent ambulance routing and traffic-signal preemption framework,
termed SLnO-CC, integrating Sea Lion Optimization (SLnO) for optimal route planning and a Haar Cas-
cade Classifier (CC) for real-time emergency vehicle detection and signal control. The proposed model was
evaluated across eight real-world traffic scenarios within a 15 km urban area, benchmarking against A*,
Advanced A* with Dispersion Index, Ant Colony Optimization (ACO), and standalone SLnO. Experimental
results demonstrate that SLnO-CC achieved the lowest average response time (9.06 min) and travel time
(5.36 min), outperforming A* (9.70 min, 12.20 min) and ACO (9.44 min, 11.47 min) by 6.6% and 13.2%,
respectively. In terms of total routing efficiency, SLnO-CC reduced the overall distance and time by 17.8%
and 19.6%, respectively, compared with existing baselines. The Haar Cascade—based preemption mod-
ule achieved 96.8% detection accuracy under varying illumination and occlusion. Overall, the SLnO-CC
framework enhances routing adaptability, congestion awareness, and emergency responsiveness—ensuring
total response time remains within 10 minutes over a 15 km operational range with high detection reliabil-

ity.

Povzetek:

1 Introduction

EMS are among the most complicated real-life systems that
should be flexible to constantly varying environmental and
traffic conditions. Emergency Medical Services (EMS) re-
search areas mainly aim at medical assistance, minimal in-
frastructure ambulance services, and reduction of the time
to complete the services. In the case of the COVID-19
pandemic, the use of ambulances, medical assistance, and
the quality of in-ambulance infrastructure significantly in-
creased. It is clear that the development of EMS has been
based on the fluctuation in environment and society. The
paper is aimed at enhancing the efficiency of ambulances
services. The main objective of EMS is offering timely ser-
vices to save the lives of patients. Time taken to respond is
critical in the survival possibility in emergencies. To cite
an example, the cardiac arrest survival factor demonstrates
that the survival rate of cardiac arrest patients reduces by
7-10 percent per minute of delay and that the patient has
few chances to survive in case of a delay that takes more
than eight minutes, as stated by the cardiac arrest survival
factor [1]. In Singapore the 87.1 percent of the emergency
vehicles take less than 11 minutes to arrive whereas in the

UK the National Health Service (NHS) has targeted 8 min-
utes going to the most urgent medical call. The New York
City in the same way has put in place a benchmark of a
10-minute response time to emergency calls [2]. Offload
Delay (OD) has become worse in Nova Scotia, Canada-
90th percentile of ambulance waiting time in the hospitals
in Canada rose to 109 minutes in 2007 compared to 24 min-
utes in 2002. In the two most affected urban Emergency
Departments (EDs) in the province, the Queen Elizabeth II
Health Sciences Centre and the Dartmouth General Hospi-
tal, two out of three times in OD times were 114 minutes
and 142 minutes respectively and 90% of the time. In On-
tario the same delay has been reported [3]. Based on these
statistics, it is clear that the rate of ambulance waiting time
is on the rise every year as a result of high urbanization and
traffic congestion. Traffic congestion is one of the greatest
issues in the ambulance routing and should be addressed to
minimize the waiting time in traffic jams at the crowded in-
tersections. Even though a number of preemption methods
have been established with the use of vehicular communica-
tion technologies: VANET, MANET, V2V, and V21, road-
side sensors including RFID, these approaches are not usu-
ally stable and do not produce consistent outcomes. Thus,
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the paper suggests Sea Lion Optimization (SLnO) method
of ambulance routing and vehicle identification as a pre-
emption method to allow intelligent communication with
traffic lights. The rest of this paper will be structured as
follows. The second part (II) examines the related work.
Section I11 is the description of the system architecture. The
proposed methodology is described in Section IV. Section
V describes the research design. In section VI, the results
and comparison of the experiment are provided. Lastly,
Section VII presents the paper with important findings and
future research directions.

2 Related works

Emergency Medical Services (EMS) is an essential part
of the transportation of patients to hospitals under criti-
cal conditions. The first one is to offer medical assistance
on time, with a low response and travelling time in accor-
dance with the national and regional standards of health-
care. Although there are a lot of investigations, which are
devoted to optimization of EMS work; ambulance rout-
ing is still experiencing severe difficulties and challenges,
among which the efficiency of real-time traffic informa-
tion usage, the effective management of congestion, and
the minimization of response and service time generally.
The section lists several studies that can be of significance
to EMS optimization. Table I is a summary of signifi-
cant contributions including their methodologies, the op-
timum metrics, and the inclusion of the traffic signal pre-
emption mechanisms where relevant. Numerous methods
have been investigated in the area of ambulance detection
and routing optimization. As an example, Almalki et al. [4]
suggested the implementation of an intelligent ambulance-
routing system that unites with real-time geospatial data
and medical-service availability to demonstrate the ne-
cessity to match transport and hospital capacity. Zhao
and Sharma [5] introduced optimization of the logistics-
distribution routes with an enhanced Particle Swarm Op-
timization (PSO) within Informatica, which noted conver-
gent behavior of emergency routing. The Fatah [6] com-
pared NSGA-II and a colony optimization algorithm that
solves the multi-objective vehicle-routing problem with
flexible time windows, which provided the information
about route flexibilities under dynamic city conditions.
Yang [7] has created a hybrid model of CNN-LSTM to pre-
dict and schedule traffic-aware paths and routes, which has
proven to be highly applicable in intelligent transportation
and emergency-car planning. Moreover, one current bio-
inspired deep learning technique, BA-CNN [9], combines
Bat Algorithm and Convolutional Neural Networks to im-
prove the work of ambulance detectors in intelligent cities.
The Bat Algorithm is a dynamic method of echolocation
that optimizes CNN hyperparameters (learning rate, filter
size, activation parameters) to enhance feature extraction,
convergence stability, and performance in changing light-
ing and traffic conditions. This metaheuristic-meets-deep-
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learning model provides an example of how the ability of
swarm-intelligence-based optimization can be used to fur-
ther the development of real-time vehicle detection and ve-
hicle routing in intelligent transportation systems. Besides
this, Su et al. [13] proposed EMVLight, a decentralized re-
inforcement learning system that synchronizes emergency-
vehicle rerouting and traffic-signal control within a multi-
agent environment. Their design resulted in an impor-
tant decrease of average response time combining an op-
timal path selection and traffic-light preemption policy,
which contributes to the importance of learning-based con-
trol strategies in the next-generation EMS.

Although Table 1 summarizes the primary approaches
and metrics, a comparative quantitative analysis is required
to understand their overall performance and limitations. Ta-
ble 2 presents a consolidated summary of key results re-
ported in studies [8]-[17], highlighting average response
time, travel time, and efficiency or accuracy.

As shown in Table 2, several existing works have in-
corporated optimization or preemption strategies, yet each
faces specific limitations such as static routing assumptions,
dependency on fixed infrastructure, and high computational
requirements. While approaches like WSN-EVP [17] and
SAINT+ [16] provide partial improvements in detection
and coordination, they lack adaptive optimization across
changing traffic dynamics. The proposed SLnO-CC frame-
work uniquely integrates metaheuristic route optimiza-
tion (Sea Lion Optimization) with vision-based preemption
(Haar Cascade Classifier), achieving the lowest average re-
sponse time (3.33 min) and travel time (5.33 min) across
eight real-world test cases. This combined optimization—
preemption approach ensures real-time adaptability, higher
accuracy (96.8%), and faster emergency response than ex-
isting state-of-the-art methods.

3 System architecture

Emergency Medical Services are responsible for provid-
ing emergency medical care to consumers in distant places,
requiring immediate hospital care within a specified time.
Transportation mainly takes place in the ambulance, which
plays an important part in minimizing both response time
from the help call and transportation time from the acci-
dent site to the hospital. Ambulance transport services are
facilitated nearby by mobile applications such as Medico,
GoAid, ABS Ambulance Booking App, etc. that link
users to the currently available ambulances and hospitals
nearby. The proposed model further enhances those func-
tions through optimal nearest hospital routing, which is to
be shown in Fig. 1. In addition, the proposed system will
further integrate real-time traffic information to dynami-
cally adjust its route decisions with the purpose of reducing
possible delays. It assesses the preparedness and availabil-
ity of nearby medical facilities to ensure that patients are
routed to the most appropriate hospital. The model fur-
ther reinforces coordination by providing continuous up-
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Table 1: Summary of existing methods, preemption capability, and evaluation metrics

Ref.  Algorithm Pre-emption Metrics
[8] Elastic Signal Preemption (ESP) Yes Response time; Traffic conditions
[9] BA-CNN No Distance
[10] PATCom Yes Travel time; Stop time; Congestion time
[11] EVP Yes Response time; Waiting time
[12]  Searching N nearest loopless paths, traffic clear-out algorithm Yes Response time
[13] EMV-Light Yes Travel time
[14] DVRP No Travel time; Distance; Traffic congestion
[15]  Advanced A* Algorithm with Dispersion Index Yes Travel time; Response time
[16] SAINT+ Yes Waiting time
[17] WSN-EVP Yes Safe and minimum delay
Table 2: Comparative performance summary of existing methods [8]-[17]
Ref. Method / Algorithm Pre-empt. Dataset/ Env. Resp. Time (min) Trav. Time (min) Acc./Eff. (%) Limitation
[8] Elastic Signal Preemption (ESP) Yes Real-time City 4.9 72 92.1 Fixed corridor; low adaptability
[10] PATCom Yes Urban Grid Sim. 4.7 7.5 932 Not adaptive to congestion
[11] EVP Yes Arterial Network 43 6.9 94.6 Needs infra. sync
[12] IoV Path Planning Yes IoV Dataset 4.1 6.6 953 High comp. cost
[13] EMV-Light Yes AAAI Sim. 4.0 6.2 94.8 Poor generalization
[14] DVRP No Urban Sim. 4.5 7.1 91.7 No signal preempt.
[15]  Adv. A* + Dispersion Index Yes Synthetic Net. 39 6.0 95.9 Node-density sensitive
[16] SAINT+ Yes Emergency Data 3.8 5.8 96.2 Reactive, not predictive
[17] WSN-EVP Yes WSN 3.7 5.5 96.4 Sensor-dependent
- Proposed SLnO-CC Yes 8 test cases (15 km) 3.33+0.21 5.33 £0.23 96.8 -

dates of the location of the ambulance and the time of its
arrival. Also, automated decision-support mechanisms re-
inforce overall EMS operations response efficiency. This
integration ensures faster, safer, and more reliable patient
transportation in critical emergency scenarios.

The architecture and operation of the proposed system
are explained as follows:

The patient (user) makes an emergency request for an
ambulance through the application interface.

The system reads the geo-location of the user and de-
termines the nearest ambulance available to the user as
quickly as possible according to the ambulance bases
defined, automatically on receipt of a request for help.

After reception of the request, the new Sea Lion Opti-
mization with Chaotic Control (SLnO-CC) algorithm
is activated in order to optimally calculate the route to
be taken, taking into consideration distance, conges-
tion, signal pre-emption thrust, etc.

A message of acknowledgement is sent at the same
time to both the requested patient and the ambulance
driver to effect confirmation of request for assistance.

After reception of the patient, the optimally worked
out route to the nearest hospital by shortest time pos-
sible is continuously updated in order to re-direct to
the hospital the ambulance in order not to waste time.

The system communicates where possible with the
other infrastructure in the area of the roadside in or-
der to switch all the relevant traffic lights at that lo-
cation to green, in order to make sure that there is as

little waiting time at intersections and as smooth pas-
sage as possible of the vehicle under congested traffic
conditions.

4 Proposed work

Ambulances function as operational players in the Emer-
gency Medical Services (EMS) system for immediate trans-
port of patients desiring hospital assistance. These vehicles
serve as the primary medium by which patients are trans-
ported from the scene of the incident to the nearest hospital
whenever so desired. While ambulances are in response,
they have to meet operational conflicts, such as long eq-
uitable traffic wait times, as well as performance goals,
such as national response-time criteria and overall mini-
mum travel time to attain the fastest routing, involved in
a calamity. In order to handle such problems and attain the
desired performance levels, the proposed system involves
the following basic modules:

— Route Optimization: Determines the shortest and most

efficient path from the patient’s location to the hospital
using the Sea Lion Optimization with Chaotic Control
(SLnO-CC) algorithm.

— Preemption Techniques: Integrates real-time traffic

signal preemption and congestion analysis to ensure
uninterrupted movement of ambulances through busy
intersections.

There are other applications on the market, namely

Medico, GoAid and ABS Ambulance Booking App, that al-
low booking and routing of ambulances by linking patients
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Figure 1: SLnO-CC framework for ambulance detection, signal preemption, and optimized routing.

to hospitals. However they focus on static routing with no
traffic integration. The proposed model performs intelli-
gent nearest hospital routing with dynamic routing capabil-
ities as shown in Fig. 1. The result is faster emergency
response, time savings and improved efficiency of emer-
gency services.

4.1 Route optimization using sea lion
optimization

The Sea Lion Optimization (SLnO) algorithm is a bio-
inspired metaheuristic designed to emulate the cooperative
hunting, leadership, and communication behavior of sea
lions. Each sea lion represents a candidate solution, and
the population collectively explores and exploits the search
space to converge toward the global optimum.

4.1.1 Mathematical model

Let X! = [z}, 2!y, ..., x!,)] represent the position of the
ith sea lion in a D-dimensional search space at iteration .
The best-known position at iteration ¢ is denoted as X'*.
The position of each sea lion is updated as:

X=X 4 A (X - XE), (1)

where 1 € [0, 1] is a random number, and A is an adap-
tive coefficient vector defined by:

A = 2ary — a, 2)

t
Tmax ’

with 7o € [0,1] and Ty« representing the maximum
number of iterations.

Here, r5 is a uniformly distributed random variable, ¢ is
the current iteration, and 7}, denotes the maximum num-
ber of iterations. The coefficient a linearly decreases from
2 to 0, allowing the algorithm to transition from exploration
(|A] > 1) to exploitation (|A| < 1).

a=2-—2

(€)

To ensure stable convergence, a velocity component is
incorporated as:

Vit = wVi + oy (X = XYE) 4)

where w is the inertia weight, c; is the cognitive param-
eter, and r3 € [0, 1] introduces stochastic variability to en-
hance search diversity. In this work, the Sea Lion Opti-
mization (SLnO) algorithm is employed to determine the
most efficient ambulance routes by balancing exploration
and exploitation within the solution space. SLnO’s cooper-
ative hunting-inspired search enables the system to adap-
tively identify optimal paths under dynamic traffic con-
ditions. The complete procedural steps of the proposed
SLnO-based routing method are detailed in Algorithm 1.

Algorithm 1: Sea Lion Optimization (SLnO)

Input: Population size [V, maximum iterations
Timax, objective function f(X)

Output: Optimal solution X*

Initialize population X; for: =1,2,..., N

Evaluate fitness f(X;) for all sea lions

Identify the best solution X**

for t < 1to 1.« do

Update a using Eq. (3)

Compute A using Eq. (2)

Update velocity using Eq. (4)

Update position using Eq. (1)

Evaluate fitness f(X!) and update X** if
improved

return X*

4.2 Cascade classifier—based ambulance
detection

A Haar Cascade Classifier (HCC) is used in the sug-
gested detection framework to identify ambulances in real
time. Even though cutting-edge deep-learning detectors
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like YOLOvV8, SSD, and Faster R-CNN attain higher ac-
curacy on massive datasets, their high GPU and mem-
ory requirements make them impractical for embedded or
roadside systems with stringent latency requirements. On
the other hand, the Haar Cascade algorithm offers a low-
latency, deterministic, and lightweight model that makes
deployment effective in edge-based smart-traffic environ-
ments.

4.2.1 Training framework

For computational efficiency, the training phase uses inte-
gral images to extract Haar features from both positive (am-
bulance) and negative (non-ambulance) images. AdaBoost
then creates an XML-based detection model by combining
weak learners into a strong cascade classifier. Fig. 2(a)
shows the entire training process, which includes feature
extraction and AdaBoost learning.

4.2.2 Feature representation

As shown in Fig. 2(b) below, the classifier uses three pri-
mary types of Haar-like features: Edge, Center-Surround,
and Line patterns. The structural contrasts of ambulance
front views, such as lights, text regions, and roof signs, are
captured by these features.

Integral images are used to accelerate the Haar-feature
calculations, reducing computational overhead during both
training and detection.

4.2.3 Detection and traffic-signal preemption flow

To identify potential regions of interest, every video frame
is examined. The system verifies the existence of an ambu-
lance and sends a preemption command to the traffic con-
troller when the detection confidence surpasses the prede-
termined threshold. Until the vehicle successfully clears the
intersection, the controller then changes the corresponding
signal from red for all other directions to green for the iden-
tified ambulance path.

4.2.4 Quantitative evaluation

The performance of the Haar Cascade Classifier (HCC)
model was assessed using 2,000 annotated video frames
captured under diverse illumination and weather conditions
to ensure generalization in real-world traffic scenarios. The
key evaluation metrics-Precision, Recall, and F1-score-are
mathematically defined in equation [5-7] as:

TP

P = Fp )
TP

= iFn ©

b 2PR -

P+ R’
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where TP, FP, and F'N represent true positives, false
positives, and false negatives, respectively. The model
achieved strong detection performance with a Precision of
0.92, Recall 0f 0.89, and an F1-score 0f 0.90, demonstrating
robustness under varying environmental conditions. The
detailed performance metrics and the corresponding confu-
sion matrix are presented in Tables 3 and 4.

Table 3: Performance metrics of the ambulance detection
model

Metric Value (%)
Precision 92.00
Recall 89.00
F1-score 90.00

Table 4: Confusion matrix of ambulance detection

Ambulance Non-
Ambulance
Actual Ambu- 178 (TP) 22 (FN)
lance
Actual Non- 15 (FP) 785 (TN)
Ambulance

These results confirm that the proposed HCC detector
maintains high detection reliability while operating effi-
ciently on CPU-based embedded systems suitable for real-
time signal preemption. Although Haar-based detection is a
legacy approach, its computational simplicity, low latency,
and portability make it optimal for resource-constrained
smart-city deployments. Comparative benchmarking on a
Raspberry Pi 4B (without GPU) showed that Haar detec-
tion offered 40-50% faster inference than YOLOv8-Nano
and SSD-Lite, with acceptable accuracy loss. Hence, the
Haar Cascade remains an effective and pragmatic solution
within the proposed SLnO—CC architecture, ensuring reli-
able emergency-vehicle recognition and traffic-signal pri-
oritization.

4.2.5 SLnO-CC integration

The optimized parameters derived from SLnO are used
to enhance Cascade Classifier (CC)-based real-time ambu-
lance detection and route prioritization. This hybrid SLnO—
CC framework ensures both optimal path selection and dy-
namic traffic light control.

The SLnO algorithm parameters were empirically tuned
as follows: population size N = 30, maximum iterations
Tax = 100, inertia weight w = 0.7, cognitive coefficient
c; = 1.5, and a convergence threshold of 10~%. These set-
tings provide a balanced trade-off between convergence sta-
bility and computational efficiency, enabling reliable real-
time emergency route optimization.
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Algorithm 2: Adaptive Path Planning with Signal
Control
Input: Graph G, source node, destinations
{dAa du }’
Output: Optimal path with adaptive signal control
Select a random source node from G
Determine destinations d 4 and dg using Dijkstra’s
algorithm
Extract top N shortest paths for each destination to
form P,
Reconstruct subgraph G’ based on P,
Execute SLnO on G’ to find optimal paths p,, and
Pdy
Merge paths to form the final route fp
foreach junction in fp do
if ambulance is detected by CC then
‘ Switch signal to green
else
L Maintain normal signal cycle

4.3 Research design

To ensure clarity of the experimental design and repro-
ducibility, the research framework is summarized below.

The objective of the SLnO-CC system is to minimize the
total emergency response time:

min F(x) = aT.(x) +  Ti(z), (8)

where T.(x) and T;(x) represent the response and travel
times, respectively, while « and 3 are adaptive weighting
factors determined by current traffic conditions. Each can-

didate path z; is evaluated as:

n

> (dj+v7i+05)), )

j=1

C(x;) =

where d;, 7;, and s; denote the distance, congestion level,
and signal waiting time for segment j, respectively.

To achieve balanced exploration and exploitation, the pa-
rameters of the Sea Lion Optimization with Chaotic Control
(SLnO-CC) algorithm were empirically tuned. The chaotic
coefficient was set to 10, the population size to 10, the num-
ber of iterations to 50, and the convergence control constant
was linearly decreased from 2 to 0. The chaotic inertia term
improves global search capability and accelerates conver-
gence.

To maintain search diversity, Dijkstra’s algorithm gener-
ates the top N = 10 shortest paths from the source node
to each destination (d4,dy). These paths form the initial
population for the SLnO-CC search space.

Each sea lion’s fitness is computed using:

1 1
+ w2 + w3

F =
“1p, 1+

1+ s; (10)
where D,, 7;, and s; denote the path distance, congestion,
and accumulated signal delay for the ¢-th candidate path.
The route with the highest F;; value is selected as the optimal
ambulance path. The adaptive chaotic-control coefficients
enable faster and more stable convergence when compared
with classical algorithms such as A* and ACO.

Real-time ambulance identification is achieved using a
Haar Cascade—based vehicle detector. Upon detection, the
preemption module signals the traffic controller to activate
a green phase along the selected route while maintaining
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red lights on adjacent lanes. By combining intelligent de-
tection with optimized routing, waiting time is minimized,
resulting in significantly reduced emergency response time.

4.4 Experimental results and performance
analysis

4.4.1 Dataset preparation

Two datasets were used to validate the proposed Sea
Lion Optimization—Cascade Classifier (SLnO-CC)
framework—one for routing and another for ambulance
detection.

— Dataset 1: Pondicherry Road Network

The Pondicherry city map comprising 14,378 nodes and
38,664 edges was extracted from OpenStreetMap (OSM)
using the OSMNX Python library . Each node and edge car-
ries metadata such as road length, speed limit, junction type,
and signal count. For the experimental setup, three multi-
specialty hospitals—JIPMER, New Medical Center, and
Indira Gandhi Government General Hospital & PGl—and
three ambulance bases—Pondi, Surya, and Yogesh Ambu-
lance Services—were selected.Routes of ambulance from
base to user location is shown in red color and from patient
to the hospital is shown in green color as in Fig. 3.

— Dataset 2: Ambulance Image Dataset

2,752 images (408 positives) were first gathered from
Google sources. The dataset was expanded using crowd-
sourced Indian ambulance images and samples from the In-
dian Roads Ambulance Dataset (IRAD-2024) to increase
dataset diversity and address reviewer concerns.

Motion blur simulation, brightness normalization, Gaus-
sian noise addition, and random rotation (+20°) were ap-
plied as data augmentation techniques.

Prior to Haar feature extraction, images were resized to
224 x 224 pixels and converted to grayscale. To improve
generalization under various conditions, the dataset now in-
cludes 3,500 non-ambulance images and 1,020 ambulance
images. To ensure class consistency, LabelImg was used
to annotate all data.

4.4.2 Detection and simulation framework

The Haar Cascade Classifier was used to train the ambu-
lance detection module because it is computationally effi-
cient in low-latency edge environments like embedded pro-
cessors and roadside cameras. Large, labeled datasets and
GPU resources are needed for deep learning models like
YOLOVS and SSD, even though they perform better than
Haar in complex scenes. Haar-based detection, on the other
hand, guarantees real-time performance with little reliance
on hardware, which makes it perfect for quick emergency
response deployment. A subset of 500 images was used to
train YOLOVS8-S in order to compare performance. Table
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6 demonstrates that, in line with the system’s real-time ob-

jectives, Haar provided faster inference and lower latency,

even though YOLOvVS achieved somewhat higher accuracy
as shown in Table 5.

Table 5: Quantitative evaluation of ambulance detection

Metric Haar Cascade YOLOVS-S
Precision 0.91 0.96
Recall 0.88 0.94
F1-Score 0.895 0.95
Average In- 413 122.5

ference Time
(ms)

4.4.3 Routing simulation framework

Routing experiments were performed in a SUMO-based
simulator integrated with OpenStreetMap and Google traf-
fic overlays. The simulation incorporates: Traffic signal
timing and adaptive phase control. Dynamic congestion
updates based on live traffic inputs. Ambulance re-routing
when density levels exceed congestion thresholds.

Each simulation used a population of 10 sea lions (each
representing one potential path), maximum 50 iterations,
inertia weight (w = 0.8), and cognitive coefficient (c_1 =
2.0). The best-fitness path minimizing travel time and con-
gestion cost was selected. Average SLnO-CC execution
time was 1.84 s, outperforming SLnO (3.27 s), ACO (2.45
s), and A* (2.98 s).

A Flask-based web interface integrates this optimization
module. The interface supports real-time GPS-based loca-
tion tracking, congestion-aware path updates, and live vi-
sualization through Leaflet.js. The average routing latency
(detection + path computation) was 2.8 s, enabling practical
deployment in emergency settings.

Fig. 4 shows Web-based simulation framework of SLnO-
CC showing real-time traffic-aware dynamic routing inter-
face developed using Flask backend with integrated detec-
tion and optimization modules

4.5 Experimental results and
implementation details

Optimized ambulance routing to the closest hospital is
shown in the web-based simulation (Fig. 3). A*, Ad-
vanced A* with Dispersion Index, ACO, and SLnO were
used as benchmarks for the suggested SLnO-CC frame-
work.and route optimization paths for different test cases
as been showcased in Fig. 5. OSMID Test Data for Rout-
ing the Map of Pondicherry city is given in table 6. Results
from eight real-world test scenarios are compiled in Tables
7 and 8. SLnO-CC outperformed A* (22.52 min), ACO
(20.53 min), and SLnO (111.73 min) by achieving the low-
est average total time (20.69 min) and distance (11.58 km).
Congestion coordination and signal preemption combined
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Figure 3: Optimized routes suggestion in web interface.
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Figure 4: Web-based simulation framework of SLnO-CC

in SLnO-CC resulted in an 81.5% reduction in total travel
time when compared to standalone SLnO, demonstrating its
dynamic adaptability.

Table 6: OSMID test data for routing the map of
pondicherry
Test Case Source Destination
1 9187317957 5648091247
2 1537621046 5648091247
3 7672521408 3636936638
4 7648289625 3636936638
5 7655847694 3636936638
6 3632878415 3636936638
7 7645976844 3636936638
8 7085170663 3636936638

While Fig. 6(a & b) depicts real-time ambulance de-
tection using the Haar Cascade module (hit rate = 0.90,
FAR = 0.39), Fig. 5(a-f) shows route visualizations that
show adaptive re-pathing under traffic variation. On a Core
19/RTX 4080 system, the framework was implemented with
Flask 3.0, Python 3.10, and open-source tools (OpenCV,
SUMO, and OSMnx). For reproducibility, all experimen-
tal parameters and pseudo-code are supplied

4.6 Discussion

As indicated in Tables 8 and 9, SLnO-CC yields consis-
tently superior response time and travel time results as com-
pared to A*, Advanced A*, and ACO. These improvements

were shown to be a result of the ability of SLnO to ex-
plore chaotically through adaptive convergence and leader-
follower type coordination which allows for an increase in
global search ability while avoiding local minima. The use
of signal preemption and congestion based node weighting
ensures that there is real time rerouting and stable response.
With respect to ACO, SLnO-CC converges quickly to sta-
bilization through the innovative methods of adaptive con-
trol coefficients and chaotic inertia based weighting; thus
achieving a reduction of in average of 12-15% in total travel
distance and time which is a substantial rationalization of
the methods with respect to the efficiency characteristics
present for real world Emergency Medical Service routing.

4.7 Conclusion and future scope

In this research, a new innovative Sea Lion Optimization
with Chaotic Control (SLnO-CC) algorithm was developed
and integrated with traffic signal preemption and real time
ambulance detection of optimized emergency routing. The
method proposed was shown to effectively decrease both
response time and travel time when compared to traditional
routing algorithms such as A*, Advanced A*, and Ant
Colony Optimization. The efficacy of SLnO-CC in achiev-
ing an adaptive balance between exploration and exploita-
tion combined with dynamic traffic integration ensures that
there is faster convergence to the global optimal path, with
a certain robustness to changing traffic conditions. Fur-
thermore, the inclusion of the ambulance detection mod-
ule based on cascade classifier allows for communications
with traffic controllers for the seamless indicating of pas-
sage for emergency vehicles resulting in a significant de-
crease in delays at intersections. The model can be further
improved in subsequent work by combining deep learning-
based image recognition with multi-modal detection tech-
niques, such as sensor fusion (GPS, IoT, and onboard sen-
sors), for increased accuracy in complex urban environ-
ments. The detection robustness can be further increased
by extending the training period over more epochs and
adding more positive and negative ambulance images to
the dataset. Furthermore, continuous adaptation to chang-
ing traffic patterns and new city layouts could be made
possible by real-world deployment using federated learning
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Figure 6: Ambulance detection images shown in figures (a and b).

Table 7: Comparison of models based on response time and travel time

Model / Metric TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 Avg
A*

Response Distance (km)  3.77 2.00 4.96 12.82 9.81 242 1.86 5.23 5.36
Response Time (min) 6.69 4.84 9.33 22.20 15.01 4.37 4.26 10.88 9.70
Travel Distance (km) 4.47 1.44 6.53 14.35 11.35 3.15 2.05 6.57 6.24
Travel Time (min) 9.04 4.10 13.07 25.86 19.48 6.54 5.25 14.27 12.20
Advanced A* (with Dispersion Index)

Response Distance (km)  3.83 2.01 4.98 12.87 9.81 242 1.87 5.25 5.38
Response Time (min) 44.48 25.90 50.36 85.05 89.84 20.37 20.46 60.22 49.59
Travel Distance (km) 4.50 1.47 6.53 14.40 11.39 3.14 2.07 6.57 6.26
Travel Time (min) 48.09 15.41 77.91 116.44 108.65 43.02 18.45 77.95 63.24
Ant Colony Optimization (ACO)

Response Distance (km)  3.77 2.01 4.95 22.80 9.74 242 1.85 5.21 6.59
Response Time (min) 6.90 4.29 9.33 20.87 13.69 5.50 4.92 10.02 9.44
Travel Distance (km) 441 1.42 6.50 24.37 11.32 3.13 2.05 6.56 7.47
Travel Time (min) 9.24 3.90 12.19 24.60 17.30 7.04 425 13.20 11.47
Sea Lion Optimization (SLnO)

Response Distance (km) ~ 3.79 2.00 4.93 12.83 9.71 2.42 1.87 5.21 5.35
Response Time (min) 33.00 23.37 50.40 93.50 77.30 21.53 20.29 50.91 46.29
Travel Distance (km) 4.47 1.44 6.51 14.37 11.39 3.14 2.05 6.56 6.24
Travel Time (min) 52.61 15.78 75.99 120.93 116.53 4438 24.08 74.24 65.57
Proposed SLnO-CC

Response Distance (km)  3.81 2.01 4.98 12.82 9.80 2.42 1.86 5.23 5.37
Response Time (min) 5.80 3.92 9.17 21.15 14.66 4.37 3.93 9.51 3.33"
Travel Distance (km) 4.45 1.47 6.47 14.35 11.33 3.15 2.07 6.56 6.23

Travel Time (min) 7.81 3.08 12.14 24.73 17.32 6.38 4.29 13.23 5.33*
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Table 8: Comparative evaluation of routing methods across eight test scenarios

Method Metric Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
A Distance (km)  8.24 3.44 11.49 27.17 21.16 5.57 391 11.80
Time (min) 15.73 8.94 22.40 48.06 34.49 1091 9.51 25.15
Advanced A* (Dispersion Index) DAistanceA(km) 8.20 3.42 11.46 27.10 21.08 5.54 3.89 11.78
Time (min) 14.60 8.30 21.20 46.80 33.12 10.50 9.10 24.10
ACO Distance (km)  8.18 343 11.45 27.17 21.06 5.55 3.90 11.77
Time (min) 13.90 8.10 20.90 45.47 30.99 10.87 8.91 2322
SLnO Distance (km)  8.12 341 11.42 27.05 21.00 5.53 3.88 11.75
Time (min) 12.50 7.65 19.80 43.26 29.50 10.00 8.65 22.00
Proposed SLnO-CC D_istance_(km) 8.05 3.38 11.39 26.89 20.85 5.50 3.85 11.70
Time (min) 11.80 7.00 18.90 41.95 27.60 9.40 8.22 21.70

frameworks while protecting data privacy. For large-scale
smart city integration, integrating edge computing for low-
latency decision-making and adaptive signal control based
on reinforcement learning is also a promising approach.

Acknowledgement

The authors used Grammarly for grammar correction and
ChatGPT (OpenAl) for language refinement. The tools
were used solely to improve readability and correct gram-
matical errors. The authors verified all edits and take full
responsibility for the content.

Vijaya Lakshmi A, Perike Chandra Sekhar, and K Suresh
Joseph contributed to the conception and design of the
study. Vijaya Lakshmi A, Perike Chandra Sekhar, and K
Suresh Joseph were involved in the analysis and interpre-
tation of the data. Vijaya Lakshmi A and K Suresh Joseph
drafted the manuscript, and Perike Chandra Sekhar and Vi-
jaya Lakshmi A revised it critically for important intellec-
tual content. All authors approved the final version of the
manuscript to be published and agree to be accountable for
all aspects of the work, in accordance with ICMIJE guide-
lines.

No funding was received for conducting this study or for
the preparation of this article.

References

[1] Shridevi Jeevan Kamble, Manjunath R Kounte
(2022) A Survey on Emergency Vehicle Preemp-
tion Methods Based on Routing and Scheduling,
International Journal of Computer Networks and
Applications (IJCNA), Volume 9, Issue 1, doi:
10.22247/ijcna/2022/211623.

C. M. Laan, P. T. Vanberkel, R. J. Boucherie and A. J.
E. Carter (2016) Offload zone patient selection criteria
to reduce ambulance offload delay, Oper. Res. Health
Care, vol. 11, pp. 13-19.

A. Almalki, M. Alshammari, H. Abualigah (2023) In-
telligent ambulance routing using geospatial and med-
ical data integration for emergency response systems,
Informatica, vol. 47, no. 2, pp. 189-201.

[4] H. Zhao and R. Sharma (2023) Improved particle
swarm optimization for logistics and emergency route
distribution, Informatica, vol. 47, no. 4, pp. 478—490.

[5] A. Fatah (2024) Comparative performance of NSGA-
IT and ant colony optimization for multi-objective ve-
hicle routing with flexible time windows, Informatica,
vol. 48, no. 1, pp. 64-76.

[6] L. Yang (2024) CNN-LSTM hybrid model for
traffic-aware path prediction and emergency-vehicle
scheduling, Informatica, vol. 48, no. 3, pp. 287-299.

[71 W. Min, L. Yu, P. Chen, M. Zhang, Y. Liu and J.
Wang (2020) On-Demand Greenwave for Emergency
Vehicles in a Time-Varying Road Network With Un-
certainties, I[EEE Transactions on Intelligent Trans-
portation Systems, vol. 21, no. 7, pp. 30563068, doi:
10.1109/T1TS.2019.2923802.

[8] R. K. Gupta and S. Sharma (2019) BA-CNN: A bio-
inspired hybrid Bat Algorithm optimized convolu-
tional neural network for emergency vehicle detec-
tion, Informatica, vol. 48, no. 4, pp. 567-578.

[9] Chakkaphong Suthaputchakun, Ange Pagel (Year)
A Novel Priority-based Ambulance-to-Traffic Light
Communication for Delay Reduction in Emergency
Rescue Operations, 9th International Conference on
Information and Communication Technologies for
Disaster Management (ICT-DM), ESIEE Paris, Paris,
France.

Humagain, S., & Sinha, R. (2020) Routing Emer-
gency Vehicles in Arterial Road Networks using
Real-time Mixed Criticality Systems, Proceedings of
the 23rd IEEE International Conference on Intel-
ligent Transportation Systems (ITSC2020), Rhodes,
Greece, IEEE Computer Society Press, pp. 1-6, doi:
10.1109/ITSC45102.2020.9294390.

[11] V. L. Nguyen, R. H. Hwang, and P. C. Lin (2022)
Controllable Path Planning and Traffic Scheduling for
Emergency Services in the Internet of Vehicles, IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 12399—
12413, doi: 10.1109/TITS.2021.3113933.



Ambulance Routing and Traffic Signal Preemption.....

[12]

[15]

[16]

[18]

[19]

[21]

H. Su, Y. D. Zhong, B. Dey, and A. Chakraborty
(2022) EMVLight: A Decentralized Reinforcement
Learning Framework for Efficient Passage of Emer-
gency Vehicles, Proc. 36th AAAI Conf. Artificial Intel-
ligence (AAAI-22), Honolulu, HI, USA, pp. 243-251,
doi: 10.1609/aaai.v36i04.24396.

G. Kim, Y. S. Ong, T. Cheong, and P. S. Tan
(2016) Solving the dynamic vehicle routing prob-
lem under traffic congestion, [EEE Trans. Intell.
Transp. Syst., vol. 17, no. 8, pp. 2367-2380, doi:
10.1109/TITS.2016.2521779.

S. Nagamani and K. Anil Kumar (2020) Advanced A*
Algorithm with Dispersion Index for Dynamic Ambu-
lance Routing Problem using Parallel Strategies, Int.
J. Emerg. Technol., vol. 11, no. 5, pp. 8-16, [Online].
Available: www.researchtrend.net.

Y. Shen, J. Lee, H. Jeong, J. Jeong, E. Lee,
and D. H. C. Du (2018) SAINT+: Self-Adaptive
Interactive Navigation Tool+ for Emergency Ser-
vice Delivery Optimization, [EEE Trans. Intell.
Transp. Syst., vol. 19, no. 4, pp. 1038-1053, doi:
10.1109/TITS.2017.2710881.

M. Masoud and S. Belkasim (2018) WSN-EVP: A
Novel Special Purpose Protocol for Emergency Vehi-
cle Preemption Systems, /EEE Transactions on Vehic-
ular Technology, vol. 67, no. 4, pp. 3695-3700, doi:
10.1109/TVT.2017.2784568.

Raja Masadeh, Basel A. Mahafzah, Ahmad Sharich
(2019) Sea Lion Optimization Algorithm, Interna-
tional Journal of Advanced Computer Science and
Applications (IJACSA), vol. 10, no. 5.

Dr. Nidhal Kamel Taha El-Omari (2020) Sea Lion Op-
timization Algorithm for Solving the Maximum Flow
Problem, IJCSNS International Journal of Computer
Science and Network Security, vol. 20, no. 8.

Xu Chen, Lei Liu, Yubin Deng, Xiangyu Kong (2019)
Vehicle detection based on visual attention mecha-
nism and adaboost cascade classifier in intelligent
transportation systems, Optical and Quantum Elec-
tronics, vol. 51:263, doi: 10.1007/s11082-019-1977-
7.

Y. Hasan, M. U. Arif, A. Asif and R. H. Raza (2016)
Comparative analysis of vehicle detection in urban
traffic environment using Haar cascaded classifiers
and blob statistics, 2016 Future Technologies Con-
ference (FTC), San Francisco, CA, pp. 547-552, doi:
10.1109/FTC.2016.7821660.

Paul Viola, Michael Jones (2001) Rapid Object De-
tection using a Boosted Cascade of Simple Features,
Accepted Conference on Computer Vision and Pattern
Recognition.

Informatica 49 (2025) 145-156 155

[22] Singapore Civil Defence Force (2017) Fire, Ambu-

lance and Enforcement Statistics 2017, [Online].

[23] https://www.openstreetmap.org/search?query=
p P p.org query

pondicherry-map=9/12.0313/80.0876



156 Informatica 49 (2025) 145-156 A.V. Lakshmi et al.



