https://doi.org/10.31449/inf.v49i37.7513

Informatica 49 (2025) 13-26 13

Research on Adaptive Multi-objective Engineering Project Resource
Optimal Allocation and Schedule Collaborative Management Model

Based on NSGA-III Algorithm

Lanfei He?, Zhenxi Huang?*, Ran Chenl1, Jia Hu?, Jie Cai, Li Zhou!
1Economic and Technical Research Institute, State Grid of Hubei Electric Power Co., Ltd, Wuhan, Hubei, China
2State Grid of Hubei Electric Power Co., Ltd, Wuhan, Hubei, China

E-mail: Zhenxi_Huang@yeah.net
“Corresponding author

Keywords: NSGA-III, multi-objective optimization, engineering projects, progress synergy

Received: June 6, 2024

This study focuses on the impact of climate change on agricultural production. By comprehensively
analyzing the temperature fluctuation and crop yield data in the past decade, and the significant
correlation between temperature rise and crop yield, a generative adversarial network model of multi-
objective optimization strategy is proposed, which is dedicated to the prediction of safety accident risks
in architectural engineering. By optimizing the architecture of GAN, the model enhances its adaptability
and effectiveness in practical engineering risk prediction scenarios. The experimental results show that
compared with the traditional prediction model, the accuracy rate of this model in safety risk prediction
of large-scale construction projects is as high as 92%, far exceeding the accuracy rate of the traditional
model of 78%. The model also shows good predictive ability on key performance indicators such as recall
rate and F1 score, reaching 90% and 86%, respectively. In the study, high precision can help achieve
accurate resource allocation and ensure that resources are reasonably allocated in all aspects of the
project. The F1 score is closely related to the appropriate scheduling in schedule management, because
it reflects the balance between accuracy and recall in the management task, and the appropriate
scheduling strategy can effectively improve the F1 score, thereby optimizing the schedule management of
the entire engineering project, and finally realizing the optimal allocation of multi-objective engineering
project resources and the collaborative management of schedule. It can effectively prove the significant
advantages of the model based on multi-objective optimization GAN in the field of safety incident risk
prediction in architectural engineering. Research on Adaptive Multi-objective Project Resource Optimal
Allocation and Progress Collaborative Management Model Based on NSGA-I1I. Algorithm -- Under the
main constraint of limited resource availability with time, the model constructs a dynamic resource
allocation mechanism to accurately and flexibly allocate resources according to the demand changes at
different stages of the project. At the same time, the intelligent schedule planning strategy is used, and the
NSGA-II1I. algorithm is used to optimize the priority and time arrangement of each task to achieve efficient
connection between tasks. This model aims to minimize the waste of resources and time costs, while
maximizing the efficiency of the project, and providing more scientific and efficient decision support for
engineering project management.

Povzetek: napovedovanje varnostnih tveganj ter ucinkovitejSe dodeljevanje virov in planiranje v
gradbenih projektih.

1 Introduction

In the process of globalization, engineering projects, as
the key to the engine of social development, are faced with
the challenge brought by the expansion of scale and
complexity: how to efficiently allocate resources and
synchronize departmental work is related to the successful
implementation of engineering projects . Traditional
methods have limitations in giving consideration to both
economic and social benefits, which often leads to waste
of resources and progress delay. Optimizing resource
allocation and schedule collaborative management has

become an important topic in project management
research (2,

NSGA-III algorithm plays a key role in the resource
optimal  allocation and schedule collaborative
comprehensive optimization strategy of engineering
projects. Its core task is to explore the possible optimal or
approximately optimal decision path under multivariate
constraints to maximize the overall project benefit I, By
constructing the internal and external population
structure, combining the crowding degree and the
reference point ranking strategy, NSGA-III overcomes the
problems of slow convergence speed and easy local
optimization of conventional genetic algorithms, thus
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significantly improving the efficiency and accuracy of
solving such problems ],

The goal of this research is to establish a
collaborative management model of project resource
optimal allocation and schedule based on NSGA-III
algorithm B, The model considers the multi-objectives of
cost, time and quality, incorporates resource availability
and schedule constraints, and improves the efficiency of
resource  allocation and schedule management
synchronization of engineering projects through
mathematical modeling and strategy design. In the early
stage of model construction, the key lies in setting clear
objective functions and constraints of resource
optimization allocation and schedule collaborative
management. Then, the coding strategy and applicable
evaluation function are finely constructed, and the NSGA-
II algorithm is used for iterative solution. In practice,
specific data from actual engineering projects will be
collected to empirically test and evaluate theoretical
models. By comparing the existing methods, the obvious
advantages of the new model in improving resource
utilization and ensuring project quality are verified.

2 Mathematical

2.1 Objective function

The shortest objective of the project duration is set as the
core of the optimization and is defined as the time span
from the initial task initiation to the end of the final task
61 This is accurately represented in mathematical
modeling by Equation (1), with D being the total project
duration.

minD =maxF ; —minS;; (1)

minC=DC+IC (2)

The calculation Equation of project funds is
Equation (2), and the project funds are divided into two
parts: direct DC and indirect cost IC. Direct expenses
mainly include manpower, raw materials and equipment
expenses; Indirect costs are calculated by multiplying the
indirect rate by the project cyclel™.

2.2 Constraint analysis

Compared with some traditional algorithms, although the
computational steps of our method have increased in some
links when dealing with multi-objective optimization
problems, the overall computational complexity has not
been significantly improved due to the efficient design of
the algorithm and the accurate grasp of the relationship
between resources and schedules, and even has more
advantages in some specific scenarios. When it comes to
scalability, our approach excels. As datasets grow in size
and project constraints become more complex, it is able to
adjust search space and compute resource allocation
through adaptive strategies. For example, in the face of
larger engineering project datasets, the algorithm can
intelligently screen key information to avoid unnecessary
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computational redundancy. When dealing with complex
project constraints, by flexibly adjusting the priority and
solution order of constraints, we can still efficiently find
solutions that meet the requirements of optimal resource
allocation and schedule collaborative management,
ensuring that they can be effectively applied in
engineering projects of different sizes and complexities.
The linear, strip and block behavior characteristics of
reverse construction are carefully considered in the
construction of the model, allowing the temporal and
spatial constraints between activities to show diversified
characteristics according to their dependencies,
construction paths and categories 1. In this paper, the
response surface method (RSM) is applied to deal with
these complex constraints. In the system, set the start time
of the first construction activity to 0. The identification
condition of the first day activity is that there is no
immediate activity, and the mathematical expression is
shown in Equation (3-5). P; represents the construction

probability factor, and S represents the corresponding cost
o1

vieW,c,=1R =25, =0 (3)
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In the construction of repetitive engineering projects,
the principle of continuity is very important 1%, Because
construction workers need to transition frequently to
complete similar tasks, in order to improve efficiency and
reduce non-productive expenses, strict regulations on
uninterrupted construction need to be imposed, as shown
in Equation (6-7). c; represents the control factor and d
represents the corresponding distance.

vieW,c =15 ;+d; =S, (6)
VieW,c =05 ;+d;; =S, (7)

The timing constraints between activities involve
multiple types of rules, depending on the characteristics
of neighboring activities and the execution environment.
Since banded activities can be regarded as block activities
with very short durations, this study focuses on the
interaction constraints between linear and block activities,
whose interval limits are given by Equation. (8-9), with
Sh,i, Saj being the fraction of constraints between a,b, and
Tap being the limiting time.
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When dealing with the interface between linear
activity and strip activity, the key lies in considering the
constraint association between them. Strip activity can be
equated with zero-span block activity. The relevant
mathematical expression is shown in Equation (10-11),
where j represents the intersection result and Ta represent
the constraint time.

(ea,j _eb)
(e,;—0,;) """ (10)
j=max(J,nJ,);

¢, =1S5,-F ;+

(Ob _Oa,j )
(ea,j _Oa,j) s (11)
j=min(J, nJ, )
The construction mode is strictly specified, and each
unit activity is limited to a single operation mode, as

shown in Equation (12). where y;; represents a single
mode factor.

¢ =0S,-F;+

K
Zyikj =1 (12)
k=1""'

The principle of constructing priority relationship
determines the execution sequence of operation processes
in job units, and requires all subsequent steps to be started
only after all previous tasks are completed 4, The rule is
expressed by Equation (13). For any set P;, the principal
factor S; j and the fusion factor j should meet the
corresponding restrictions.

Vi'eR,S,,.F. i€l nd, (13)

3 Algorithm design based on NSGA-
111

For key parameters such as population size, crossover
probability, and mutation probability, the value of one
parameter was changed separately each time and other
parameters were kept constant during the experiment, and
the performance of the model in the optimal allocation of
resources and schedule collaborative management was
observed. For example, increasing the population size can
make the model search for a wider solution space within
a certain range to obtain a better solution, but the
calculation time increases greatly and the performance
improvement slows down after the threshold is exceeded.
The results show that within the range of reasonable
parameter values, the model can maintain relatively stable
performance, effectively realize resource optimization
and schedule coordination, and meet the actual needs of
the project, which indicates that the model has strong
robustness and can be reliably applied to complex
engineering project management scenarios, providing a
strong guarantee for the smooth implementation of the
project.
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The problem studied in this paper belongs to the NP-
complete class, and the non-dominated sorting genetic
algorithm (NSGA-III) of elite strategy is selected as the
solution. Figure 1 presents the basic structure of NSGA-
I11. We extended and optimized the standard NSGA-III,

and adjusted the scheduling process and genetic operation
[12]
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3.1 Chromosomal coding

In the process of genetic algorithm, the initial population
is constructed by natural coding, which has random
characteristics [, The first part of the chromosome
structure corresponds to the construction strategy, O
means stationary at zero task load, and the non-zero value
is selected randomly, corresponding to the activity-related
construction mode set. The second part indicates the
direction of linear operation, O represents the reverse
direction and 1 represents the forward execution 141,

3.2 Improving uniform evolutionary elite
selection strategy

The NSGA-III. algorithm can dynamically adjust
mutations according to the project situation and algorithm
feedback, enhance the algorithm's search ability in
complex environments, and help find the optimal solution
for resource and schedule management. By comparing the
improved and standard NSGA-III algorithms with the
ablation study, the results show that the improved
algorithm converges faster, and the quality of the
solutions is higher and more diverse, which highlights the
important role of adaptive mutation operators in
improving the performance of the algorithm and provides
stronger algorithm support for engineering project
management.

In terms of the selection mechanism, the improved
selection mechanism can more effectively deal with the
multi-objective characteristics in engineering projects,
and accurately weigh the interrelated and constrained
goals such as cost, construction period and quality
through innovative strategies, so that the algorithm is
more inclined to choose the individual with
comprehensive optimization of multiple objectives when
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searching for the optimal solution, which significantly
enhances the performance of the algorithm and improves
the probability of finding the global optimal solution. In
the calculation of congestion distance, the new method
fully considers complex factors such as resource diversity,
task priority, and time constraints, and can more
accurately evaluate the distribution of each solution in the
solution space, so as to achieve more efficient resource
allocation and more reasonable schedule management,
avoid excessive concentration or waste of resources,
ensure that the project progress is carried out as planned,
and improve the overall efficiency and quality of
engineering project management.

In terms of equations, for the optimal allocation of
resources, we set the goal of minimizing the cost of
resources. Assuming that the resource type is n, the unit
cost of each resource is ci, and the usage is xi, then the
resource cost calculation equation is C=cix;, and our goal
is to make C reach the minimum value. In terms of
schedule collaborative management, in order to minimize
the project duration, the number of tasks included in the
project is m, the start time of each task is tj, and the
duration is dj, and our goal is to minimize T. For the
NSGA-I1II. algorithm, its core lies in the non-dominant
ranking and crowding calculations when dealing with
multi-objective problems. In the non-dominant ranking
process, all solutions are divided into different ranks, with
higher ranks indicating better solutions. For example, for
two solutions, A and B, if A is not worse than B on all
objectives and better than B on at least one objective, then
A dominates B. Through multiple comparisons, the
declassification will be carried out. The sparser the
solution distribution, the greater the congestion, so as to
ensure that the solutions searched by the algorithm are
diverse.

The optimized NSGA-II algorithm uses stratified
sampling and narrowing the selection domain to improve
the understanding of spatial exploration and enhance
convergence. In the initial stage, individuals are fixedly
selected from each dominant layer, and the selection
range is gradually reduced with the iterative advancement,
and finally only half of the population is retained to enter
the next generation in the later stage *31. The goal of this
strategy is to take into account the diversity and speed of
algorithms to obtain high-quality solution sets. The
specific operation is shown in Equation (14-15).

npo : —
P ng6|71X ! pfp ,r:2,~..’Ng;
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(14)
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In the above Equation, rpop is the number of
individuals selected from the i-th dominance level of
generation g; npop is the number of individuals that can
be selected in generation g; 0 is the reduction ratio, set to
0.8; N is the total number of dominance levels that can be
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selected in generation g; pop is the population size; G is
the maximum number of iterations; and e denotes the base
of the natural logarithm function.

3.3 Improved hierarchical multi-strategy
adaptive mutation crossover operator

The genetic operations of NSGA-II, especially the
crossover and mutation mechanisms, are crucial for the
convergence speed and efficiency of the algorithm [61,,
Therefore, in this paper, we investigate the mutation and
crossover strategies for fusing differential evolution to
enhance performance.

The DE algorithm uses N-dimensional vectors to
represent population individuals and generates possible
solutions through a mutation operator 1., Common
variation operations include Rand/1, Best/1 and Current
to best/1 as shown in Equation. (16)-(18). The operator
generates the variation vector h by combining the
population membership characteristics x in different
ways. where V is the variation factor; xpiq are the
randomly selected individuals from the g-th generation of
excellent individuals and pI#p2#p3. In this paper, the top
10% of the sorted population is selected as the excellent
individuals. best1 tends to be exploratory, Rand/1 tends to
be extractive, and Currenttobest/1 is able to balance the
two characteristics.

Rand /1:h, =X, +V(Xp00 =X ):  (16)
Best/1:h) =Xy g TV (Xprg —Xp20 )i (17)

hp,g = Xp1g +V(Xbest,g ~Xo1g )+V(Xp2,g ~Xpag ) (18)

In genetic algorithm, the mutation factor determines
the population variability, and the numerical value greatly
enhances the global exploration, which is restricted by
Equation (19); If the value is small, the local search
efficiency will be improved. Common mutation
operations Rand/1, Best/1, and Current to Best/1 each
have their own emphasis [18]: Rand/1 digs deep into
resources, Best/1 explores new fields, and Current to
Best/1 combines the advantages of both. In the study, we
selected the top 10% individuals in performance as the
population representatives.

Upg =

h" rand (0,1),, CR
: { O (g

XP:Q

In Eq. (19), CR is the crossover probability, and X"y,
h"yg, U"yg denote the n-th gene of the p-th individual in the
parent, intermediate, and offspring populations,
respectively, in the g-th iteration.

In this study, we developed a multi-level, multi-
dimensional and self-adjusting mutation and crossover
operator strategy to meet the needs of different stages in
the search process. The strategy divides the population
into elite group, general group and weak group, and
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customizes mutation operation and parameter control
methods for each group Il Its core is to enhance the
global exploration and local in-depth ability of the
population, so as to improve the search efficiency and the
quality of optimization results. See Equations (20) and
(21), where V and CR represent the search efficiency and
optimization results respectively, and «; is the current
congestion corresponding to the i-th individual.

V=(1-g/G)/2+1/ (e +1) (20)

CR=(1-9/G)/2+1/ [ +1)] (21)

In terms of goal setting, the goal of optimal
allocation of resources is to minimize the cost of
resources, which is achieved by comprehensively
considering the unit cost and the number of resources
used. The goal of schedule collaboration management is
to minimize the duration of the project, which requires
precise control of the start time and duration of each task.
In terms of variable definition, in addition to the variables
related to resource usage and task time, a variable is also
defined to represent the sequence between tasks, if there
is a sequence of two tasks, this variable is 1, otherwise it
is 0.For the constraints involving the reverse construction
behavior, the experiment adopts a more rigorous and clear
way to illustrate. In some engineering projects, the
completion of a part of a task depends on the specific
progress state of the subsequent task. We accurately
describe this complex constraint by defining in detail the
set of related tasks, the progress of task completion, and
the threshold of the progress of the pre-task required to
get started. In this way, the entire modeling framework
has been greatly strengthened, so that the model can play
a more accurate and reliable role when dealing with the
practical problems of complex engineering projects.

4 Construction of multi-objective
optimization model for construction
project

4.1  Construction of  multi-objective
optimization model for construction case

There are significant shortcomings in the current state-of-
the-art (SOTA) methodology. In the face of complex
resource constraints, they are inflexible, and it is difficult
to adjust the resource allocation in a timely and reasonable
manner according to the dynamic changes in resource
availability in the project process, which in turn affects
the project schedule. In dealing with the multi-objective
nature of resource allocation and schedule management of
engineering projects, the existing methods are also
inadequate, and it is difficult to find the optimal balance
between multiple interrelated and constrained goals such
as cost minimization, time minimization, and resource
utilization maximization. The results of our adaptive
multi-objective project resource optimization allocation
and schedule collaborative management model based on
NSGA-III. algorithm is compared with the SOTA
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method, and the advantages are significant. Compared
with the limitations of NSGA-II in dealing with multi-
target problems, our model can better maintain population
diversity during evolution by relying on the NSGA-III.
algorithm, so that the search space is more extensive, so
as to find the optimal solution set of multiple targets more
efficiently. In terms of resource allocation, the model can
allocate resources more accurately and flexibly according
to complex and changeable resource constraints, reducing
resource idleness and waste. In terms of schedule
management, the task sequence and time nodes can be
arranged more reasonably, which can effectively shorten
the project duration. These improvements have greatly
improved the resource utilization efficiency and project
progress control of the project, which fully reflects the
important value and significant advantages of the model
in the actual project management.

The cycle of each construction process is calculated
on a monthly basis, and the economic cost is in RMB
10,000. Quality and safety adopt a 0-1 scoring system,
with O representing the minimum requirement and 1
representing the optimal state. Experts score according to
the actual operation and calculate the average score of
each process, so as to give a quantitative assessment of
quality and safety.

4.2 Solution of multi-objective optimization
model for construction cases

In project management, the trade-off between cost and
duration is crucial. Traditionally, shortening the
construction period often requires increasing resource
input and thus increasing costs, while simply controlling
costs may delay the construction period. The improved
model based on the NSGA-III. algorithm can effectively
alleviate this contradiction. In terms of resource
allocation, the algorithm accurately analyzes the
requirements of each stage of the project, and dynamically
allocates according to resource availability and cost-
effectiveness. For example, when the resources of critical
path tasks are tight, priority should be given to resources
with lower costs that can meet the requirements to avoid
overinvestment. At the same time, the resource
investment time of non-critical path tasks is reasonably
arranged to reduce idle waste.In terms of schedule
optimization, the NSGA-III. algorithm finely adjusts the
task sequence and time with its powerful multi-objective
optimization capabilities. Through intelligent calculation,
it not only ensures the smooth flow of the critical path, but
also makes reasonable use of the relaxation time of the
non-critical path to find the optimal progress plan. Finally,
on the basis of ensuring that the construction period is
reasonable, the cost is minimized.

The NSGA-III algorithm was used in this study to
perform multi-objective optimization with the goal of
promoting the uniformity of the Pareto front while
enhancing cost optimization and robustness 2%, In this
study, the improved NSGA-III algorithm was used, and
the population size was set to 92, after 25,000 iterations.
The optimized process analysis is shown in Table 1, and
the results show that the total cost is 184,116,460 RMB.
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This strategy not only reduces costs and shortens
engineering cycles, but also improves quality and safety
standards 211, Although it is comparable to the old method,
the performance improvement is obvious. The
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optimization solutions are evenly distributed and the
diversity is enhanced, providing multiple solutions,
significantly improving the overall cost-effectiveness, and
greatly improving the quality and safety indicators.

Table 1: Process analysis after optimization

Procedure T (months) C (ten thousand) Q R
A 3.1395 1135.4553 0.96915 0.9975
B 6.2895 230.80995 0.99645 0.9744
C 6.363 144.2553 1.02795 0.987
D 10.5 187.9416 1.008 0.9975
E 5.229 268.80735 1.029 0.903
F 1.5225 608.49705 0.91245 0.9135
G 9.45 167.04345 0.9051 0.9559
H 1.575 88.78695 0.9219 0.97375

From the comparison in Table 2, it can be seen that
the traditional method has obvious shortcomings in the
face of the complexity of modern engineering projects.
Improvements based on other algorithms have
progressed, but they still fail to fully meet the needs in key
aspects such as computational efficiency, accuracy, and
resource utilization. The method based on the NSGA-III.

algorithm shows significant advantages, and performs
well in terms of computing efficiency, accuracy, and
resource utilization in complex engineering project
management, which is more suitable for solving the
problems in the optimal allocation of resources and
schedule collaborative  management of  current
engineering projects.

Table 2: Comparison of key indicators of engineering project management methods

Compare Traditional Improved methods based on other | Approach based on the NSGA-IIIL.
dimensions methods algorithms algorithm
Computational low middle high
efficiency
accuracy Fair middle high
Resource utilization low middle high

4.3 Algorithm result analysis

In this study, the details of the model validation
methodology were added. The data collection covers
multiple historical databases of engineering projects
(including resource input, schedule, and cost data) and
market resource price fluctuation data, which are strictly
screened, cleaned and standardized to ensure that the data
is accurate and complete, and is convenient for
subsequent analysis. In terms of experimental setup, the
population size was determined based on the complexity
of the project and the type of resources, and the number
of iterations was obtained by combining pre-experiments
and convergence curve analysis, and the Dell Precision
5820 Tower workstation was clearly used, with an Intel
Xeon W-2245 processor, 8 cores and 16 threads, a main
frequency of 3.9GHz, a turbo frequency of 4.7GHz, a
memory of 16GB DDR4 2666MHz, a hard disk of 512GB
SSD + 2TB HDD, and a graphics card of NVIDIA Quadro
P2000 5GB with software tools using MATLAB R2020b
(version 9.9) for reproducible environments. During the

optimization process, the resource allocation matrix is
established to monitor resource usage in real time, and the
task execution sequence or resource allocation strategy is
automatically adjusted to meet resource constraints when
the limit is exceeded. Set time-limits for key tasks based
on project critical path analysis, and prioritize the
allocation of non-critical task resources when there is a
risk of delay to ensure that the project duration is
controllable.

Focus on cost efficiency while optimizing quality
and safety. Figure 2 illustrates the BmB mass versus the
total mass, and the results of the NSGA-I and e-
constrained algorithms are also presented in Figure 2.
Figure 2 shows that NSGA-II performs worse than
NSGA-III and improved versions of NSGA-III in terms
of duration and cost, especially when it comes to dealing
with multi-objective problems 2. Compared to the
original version, the improved NSGA-111 shows a shorter
construction period, optimized costs, and significant
improvements in quality and safety.
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Figure 2: Variation of mass versus total mass of counterweight BmB

Figure 3 shows the solution of the NSGA-I and e-
constraint methods, the solution of NSGA-3 (green dot)
and Epsilon-constraint (pink star) in the left subgraph, the
solution of MOCHC and Epsilon-constraint in the right
subgraph, the green dot distribution is regular in the
quadratic weight and linear weight coordinate system, the
pink star is specific and different from the green dot
distribution, and Figure 3 also shows the improved

NSGA-3

NSGA-III The algorithm has obvious advantages in
running time under given conditions, and its efficiency is
higher than that of the other two algorithms %], and these
charts and analyses help to visually compare the
performance characteristics of different algorithms,
providing an important basis for research and decision-
making.
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Figure 3: Solution of NSGA-I and e-constraint methods

The study shown in Figure 4 compares the
optimization effects of the three algorithms in terms of
security and quality improvement. The improved version

NSGA-III in cost efficiency, while the performance of
NSGA-II is poor, with low cost-effectiveness and large
fluctuations, and the distribution characteristics of the

of NSGA-III consistently outperforms the original solutions show uneven dispersion 241,
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Figure 4: Dynamic adaptation of DO-NSGA-II at different time steps

When dealing with three complexity triple problems,
we conducted 20 independent parallel coordinate graph

studies, as shown in Figure 5. NSGA-II solutions show

wide dispersion, with marginal zones barely touching the
Pareto frontier 21, Although the frontier solution of the
original NSGA-IIl performs better, its solution
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concentration is high and the frontier coverage is
insufficient. The improved version of NSGA-III
optimizes the smoothness of the Pareto front, the
distribution of solutions is more uniform, and the
representativeness of the front region is significantly
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Figure 5: Parallel coordinate plots of feasible and non-dominated solutions for three different difficulty triples

Figure 6 depicts a phase diagram versus a state
trajectory. The distribution of HV values of the three
algorithms is balanced. The increase of HV value usually
symbolizes the improvement of algorithm efficiency [?71,
Quantitative analysis shows that the average HV value of
modified NSGA-III is the highest, reflecting its superior
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improved. By adding a new file set, the improved NSGA-
111 can generate more solutions, provide rich choices for
decision-makers, and be conducive to decision-making
based on multiple preferences [261,

40

——— CNSGA-3

Obiective value
[\S) w
o o

=
o
T

6

3 4 5
Objective NO.

performance in solution set optimization. The box plot
shows that the improved algorithm has the longest box
plot, which indicates that its evaluation index distribution
is more uniform, its stability is stronger and its
performance is more robust.
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Figure 6: Proportionality of phase diagram and state trajectory

5 Scheduling model and solution

5.1 Scheduling model establishment

In project implementation, scheduling management in
assembly stage is very important. Including prefabricated

component haisting, cast-in-place structure construction
and component integration, the assembly scheduling
algorithm model is shown in Figure 7. The assembly cycle
directly determines the schedule of subsequent production
and transportation, and the first task is to Equationte and
implement efficient scheduling strategies to shorten the
assembly period 221,
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Figure 7: Scheduling algorithm model

5.2 Solution of model based on genetic
algorithm

In modeling, natural number coding is used to number the
construction and assembly steps of standard layer
sequentially, from 1 to m, and m represents the total
number of steps. The length of the chromosome is equal
to the number of steps, each containing m genes, whose
values range from 1 to m, and the number corresponds to
the process number 2%,

The configuration procedure shall be performed in
the order of 2-1-7-4-3-6-5. When resources are limited, if
processes 1 and 7 require R1 together, if conditions
permit, they should be executed synchronously to meet
R1, and can be operated in parallel; Otherwise, the
execution order of 1 before 7 must be followed.

The roulette strategy includes the following steps B%:
First, calculate the fitness value of each individual,
Second, design a selection mechanism positively
correlated with fitness, and make roulette choice; Third,
through random number decision, the adapter is selected
based on the selection mechanism.

5.3 Case analysis

The construction process mainly includes: 1)
measurement,  positioning and  setting-out; 2)
Prefabrication and on-site installation of steel skeleton; 3)
Hoisting operation of external wall components; 4) Gap
filling and grouting treatment; 5) Construction of
formwork support; 6) Hoisting technology of laminated
beam and slab; 7) Fine binding of steel bars on the slab
surface; 8) Assembly of accessories related to climbing

frame; 9) Hoisting of balcony and stair structure; 10)
Concrete pouring and subsequent maintenance
management.

The affordable housing project is divided into two
independent units, and each floor serves as a separate
construction assembly line to realize the interspersed
operation mode between the two units. Each process in
the experiment includes: positioning measurement, cast-
in-place steel bar binding, external wall bracket
installation, formwork support construction, laminated
beam and slab hoisting, balcony and stair hoisting,
concrete pouring and maintenance, etc., which have
different time-consuming and resource requirements, and
have strict process dependence between them. The core
task of the assembly stage is to seek the best optimization
of the construction schedule under the premise of
resources such as tower crane, measuring equipment and
formwork, and the goal is to minimize the total assembly
cycle T of the project under the constraint of resource
constraints. This is essentially a resource-limited project
scheduling problem, which needs to be solved urgently.

Figure 8 shows the characteristics of the Pareto
optimal frontier. In this study, the advanced tools of
MATLAB 2017a are used to optimize the model by
integrating genetic algorithms. The specific setting
parameters are as follows: the population size is set to NP
= 80, the maximum number of iterations maxgen = 200,
the selection crossover probability Pc = 0.8, the mutation
probability Pm 0.2, and the probability of inter-
generational genetic operation Pe = 0.9. After 130 rounds
of iterative calculation, we were able to obtain a minimum
duration of 8 days.
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Figure 8: Pareto optimal frontier

Within the specified standard construction period of
8 days, according to resource limitations, the operation
process is carefully planned day by day. The first day of
work covers the measurement positioning and steel bar
binding of Unit 1, the installation of external wall
components, the setting of laminated beam and slab
formwork supports, and the measurement preparation of
Unit 2, ensuring the successful completion of the first-
floor structure construction within 8 days, thus advancing
to the completion of all pre-assembled floors.

On the second and third days of project execution,
the demand for template configuration and hoisting
operations peaked. Any negligence in the management of
resource R3 in these critical time periods could pose a
potential threat to the smooth conduct of subsequent tasks,
which could lead to engineering delays. Therefore,
managers should pay special attention to and strictly
monitor the resource allocation and scheduling of these
two days to prevent the delay of schedule caused by
supply shortages.

6 Scheduling model and solution of
production stage

6.1 Establishment of scheduling model in
production stage

The duration TA of the assembly stage directly
determines the duration of the manufacturing stage TB. In
the specified process, TA must be less than or equal to TB
from the time Order 1 + i M is placed to the completion
of assembly. The goal is to find an optimal scheduling
strategy that minimizes resource consumption and
production cycle within a strict time limit 6. The specific
task is to determine the duration vector P satisfying T <o
for n activities to minimize the total project cost ¢ (P). The
project is divided into 2 + n task units, numbered {2, 3,...,
n+1}. Activity 1 represents the project start and n+2
symbolizes the project end (regarded as a virtual step).
Each entity operation unit j (1 < j < =n) has Mj execution
options. The start time of activity mj is labeled Sj, lasts

pjm days, and has a direct cost of cjm. The cost of
prefabricated components consists of the product of direct
cost cjm multiplied by xim corresponding to the selection
mode, plus indirect costs r and d. For a given project
deadline 9, find the best scheduling strategy in the
production stage, with a view to minimizing the duration
and minimizing the total cost at the same time.

6.2 Solution of model based on multi-

objective genetic algorithm

In this paper, a two-layer coding framework (AL, ML) is
adopted, where AL represents the task sequence and ML
corresponds to the operation mode set. Each task j
proceeds in AL with strict pre-dependencies. For task j in
AL, its execution mode m (j) is unique. By setting the
mode list, the working hours and resource requirements
are determined accordingly, so that the multi-mode
problem is transformed into a single-mode problem for in-
depth research.

In the dual coding system of workflow and mode,
the initial implementation of job coding (AL) is that
each production step is standardized as a continuous
integer number, from 1 to n, where n represents the
total number of processes. These steps are labeled
sequentially according to the process rules, such as 1,
2, 3,..., n. The chromosome structure of the job code is
constant and the length is n, where each number 1 to n
corresponds to a gene value, which respectively
indicates the arrangement order of the processes.

In the secondary coding structure, natural number
tokens, such as 1, 2, 3,..., m, are used to represent m
modes of operation. For example, shows that when
there are three execution modes, the secondary
chromosome is fixed in length m, and each number
from 1 to m represents a gene value, uniquely
indicating the corresponding task execution mode.

6.3 Case analysis

The manufacturing process of prefabricated components
is divided into stages according to molds and categories:
preconditioning molds, component  assembly,
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reinforcement placement and concrete pouring. The
operating modes are M1 (Frugal), M2 (Regular) and M3
(Full Load). The study uses the product analysis of chaotic
Henan diagram and Roche diagram, as shown in Figure 9.
The labor demand is R1, the labor cost is 150 yuan/day,
and the daily indirect cost is 80 yuan. The equipment
assembly takes 8 days (TA = 8), the production cycle is
the same as 8 days, and the accumulated storage cost
reaches 200 yuan.
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In MATLAB 2017a, we used the advanced version
of nsGA-II to solve the model. The experimental
configuration is as follows: the population size NP is set
to 50, the maximum number of iterations maxgen is 200,
the crossover probability Pc is 0.8, and the mutation
probability Pm is 0.2. After 200 iterations, the Pareto
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The production process of prefabricated components
is divided into three operation modes: M1 (saving type),
M2 (standard type) and M3 (full load type), which have
obvious differences in resource and time utilization. The
maintenance stage adopts a unified mode, but the
maintenance requirements vary from component to
component. The logical sequence between the processes
is strict, and the time limit (TA) of the assembly stage
directly affects the time frame (TB) of the manufacturing
stage. The assembly stage needs to complete the
production of Mi+1 orders from the beginning to the end
period.

In the production process, the primary goal is to find
the comprehensive optimal scheduling with the shortest
time and the lowest cost under the constraint of meeting
the predetermined deadline 8. The goal is to find an n-
activity time series P satisfying T < J to achieve the lowest
total cost ¢ (P) of the project. As shown in Figure 10, there
are significant differences between traditional single-
objective genetic programming and multi-objective
genetic  programming-decomposition  co-evolution
algorithms in this context. Due to the unique execution
characteristics of each activity, the problem is a multi-
modal trade-off between deadline and cost.

50

Fold
Figure 10: Traditional single-target GP and GP-MOEA/D

optimal solution distribution of duration and cost is
obtained. It can be seen from Figure 11 that the optimal
solution distribution shows a nonlinear decreasing trend:
with the shortening of the construction period, the cost
shows an upward trend, which reveals an obvious inverse
relationship between the two.
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When optimizing the production cycle of
prefabricated components and reducing resource
consumption, we often encounter a delicate balance
between time and cost. Efficient production may lead to
higher costs, while resource frugality may extend
construction schedules. Pareto efficiency analysis can
reveal this optimal combination. Solution 1 has the lowest
construction period (d1 = 5.5 days), but the highest
resource cost (c1 = 73,690 yuan); In contrast, solution 14
is more economical in resource cost (c14 = 61,766 yuan),
but has the longest construction period (d14 = 7.7 days).
There is an obvious gap between the construction period
and resource cost between the optimal solutions, so
decision makers should choose the most suitable scheme
according to their own priorities.

7 Conclusion

In building structure research, it is crucial for deep
learning-driven risk assessment models to use artificial
intelligence, especially in improving employee safety and
engineering quality. In recent years, the multi-objective
optimization generative adversarial network model has
outstanding accuracy and adaptability in accident risk
prediction. In this study, a cutting-edge multi-objective
optimization strategy is used to improve the effect of
GAN in building accident risk prediction. Through the
construction and detailed analysis of large-scale accident
database, the prediction accuracy of the new model has
been significantly improved. In large-scale project tests,
the accuracy, recall rate and F1 scores have reached 92%,
90% and 86%, highlighting its powerful prediction
performance. In engineering practice, building safety
accident risk prediction models with generative
adversarial network-driven multi-objective optimization
will achieve significant enhancements. In future research,
a more intelligent risk management platform will be built
by combining with advanced technologies such as the
Internet of Things and big data, which will strongly
support security protection in the field of architectural
engineering.
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