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This study focuses on the impact of climate change on agricultural production. By comprehensively 

analyzing the temperature fluctuation and crop yield data in the past decade, and the significant 

correlation between temperature rise and crop yield, a generative adversarial network model of multi-

objective optimization strategy is proposed, which is dedicated to the prediction of safety accident risks 

in architectural engineering. By optimizing the architecture of GAN, the model enhances its adaptability 

and effectiveness in practical engineering risk prediction scenarios. The experimental results show that 

compared with the traditional prediction model, the accuracy rate of this model in safety risk prediction 

of large-scale construction projects is as high as 92%, far exceeding the accuracy rate of the traditional 

model of 78%. The model also shows good predictive ability on key performance indicators such as recall 

rate and F1 score, reaching 90% and 86%, respectively. In the study, high precision can help achieve 

accurate resource allocation and ensure that resources are reasonably allocated in all aspects of the 

project. The F1 score is closely related to the appropriate scheduling in schedule management, because 

it reflects the balance between accuracy and recall in the management task, and the appropriate 

scheduling strategy can effectively improve the F1 score, thereby optimizing the schedule management of 

the entire engineering project, and finally realizing the optimal allocation of multi-objective engineering 

project resources and the collaborative management of schedule. It can effectively prove the significant 

advantages of the model based on multi-objective optimization GAN in the field of safety incident risk 

prediction in architectural engineering. Research on Adaptive Multi-objective Project Resource Optimal 

Allocation and Progress Collaborative Management Model Based on NSGA-III. Algorithm -- Under the 

main constraint of limited resource availability with time, the model constructs a dynamic resource 

allocation mechanism to accurately and flexibly allocate resources according to the demand changes at 

different stages of the project. At the same time, the intelligent schedule planning strategy is used, and the 

NSGA-III. algorithm is used to optimize the priority and time arrangement of each task to achieve efficient 

connection between tasks. This model aims to minimize the waste of resources and time costs, while 

maximizing the efficiency of the project, and providing more scientific and efficient decision support for 

engineering project management. 

Povzetek: napovedovanje varnostnih tveganj ter učinkovitejše dodeljevanje virov in planiranje v 

gradbenih projektih. 

 

1 Introduction 
In the process of globalization, engineering projects, as 

the key to the engine of social development, are faced with 

the challenge brought by the expansion of scale and 

complexity: how to efficiently allocate resources and 

synchronize departmental work is related to the successful 

implementation of engineering projects [1]. Traditional 

methods have limitations in giving consideration to both 

economic and social benefits, which often leads to waste 

of resources and progress delay. Optimizing resource 

allocation and schedule collaborative management has 

become an important topic in project management 

research [2]. 

NSGA-Ⅲ algorithm plays a key role in the resource 

optimal allocation and schedule collaborative 

comprehensive optimization strategy of engineering 

projects. Its core task is to explore the possible optimal or 

approximately optimal decision path under multivariate 

constraints to maximize the overall project benefit [3]. By 

constructing the internal and external population 

structure, combining the crowding degree and the 

reference point ranking strategy, NSGA-Ⅲ overcomes the 

problems of slow convergence speed and easy local 

optimization of conventional genetic algorithms, thus 
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significantly improving the efficiency and accuracy of 

solving such problems [4]. 

The goal of this research is to establish a 

collaborative management model of project resource 

optimal allocation and schedule based on NSGA-Ⅲ 

algorithm [5]. The model considers the multi-objectives of 

cost, time and quality, incorporates resource availability 

and schedule constraints, and improves the efficiency of 

resource allocation and schedule management 

synchronization of engineering projects through 

mathematical modeling and strategy design. In the early 

stage of model construction, the key lies in setting clear 

objective functions and constraints of resource 

optimization allocation and schedule collaborative 

management. Then, the coding strategy and applicable 

evaluation function are finely constructed, and the NSGA-

Ⅲ algorithm is used for iterative solution. In practice, 

specific data from actual engineering projects will be 

collected to empirically test and evaluate theoretical 

models. By comparing the existing methods, the obvious 

advantages of the new model in improving resource 

utilization and ensuring project quality are verified. 

2 Mathematical 

2.1 Objective function 

The shortest objective of the project duration is set as the 

core of the optimization and is defined as the time span 

from the initial task initiation to the end of the final task 

[6]. This is accurately represented in mathematical 

modeling by Equation (1), with D being the total project 

duration. 

i , j i , jmin D max F minS= −  (1) 

 
minC DC IC= +  (2) 

 
The calculation Equation of project funds is 

Equation (2), and the project funds are divided into two 

parts: direct DC and indirect cost IC. Direct expenses 

mainly include manpower, raw materials and equipment 

expenses; Indirect costs are calculated by multiplying the 

indirect rate by the project cycle[7]. 

2.2 Constraint analysis 

Compared with some traditional algorithms, although the 

computational steps of our method have increased in some 

links when dealing with multi-objective optimization 

problems, the overall computational complexity has not 

been significantly improved due to the efficient design of 

the algorithm and the accurate grasp of the relationship 

between resources and schedules, and even has more 

advantages in some specific scenarios. When it comes to 

scalability, our approach excels. As datasets grow in size 

and project constraints become more complex, it is able to 

adjust search space and compute resource allocation 

through adaptive strategies. For example, in the face of 

larger engineering project datasets, the algorithm can 

intelligently screen key information to avoid unnecessary 

computational redundancy. When dealing with complex 

project constraints, by flexibly adjusting the priority and 

solution order of constraints, we can still efficiently find 

solutions that meet the requirements of optimal resource 

allocation and schedule collaborative management, 

ensuring that they can be effectively applied in 

engineering projects of different sizes and complexities. 

The linear, strip and block behavior characteristics of 

reverse construction are carefully considered in the 

construction of the model, allowing the temporal and 

spatial constraints between activities to show diversified 

characteristics according to their dependencies, 

construction paths and categories [8]. In this paper, the 

response surface method (RSM) is applied to deal with 

these complex constraints. In the system, set the start time 

of the first construction activity to 0. The identification 

condition of the first day activity is that there is no 

immediate activity, and the mathematical expression is 

shown in Equation (3-5). Pi represents the construction 

probability factor, and S represents the corresponding cost 

[9]. 

 

1 0
ii i i ,min Ji W ,c ,P ,S ;  = = =  (3) 

 
0 0

ii i i ,max Ji W ,c ,P ,S ;  = = =  (4) 

 

∀𝑖 ∈ 𝐵 𝑜𝑟 𝑖 ∈ 𝐻, 𝑃𝑖 = ∅, 𝑆𝑖 = 0 (5) 
 

In the construction of repetitive engineering projects, 

the principle of continuity is very important [10]. Because 

construction workers need to transition frequently to 

complete similar tasks, in order to improve efficiency and 

reduce non-productive expenses, strict regulations on 

uninterrupted construction need to be imposed, as shown 

in Equation (6-7). ci represents the control factor and d 

represents the corresponding distance. 

 

11i i , j i , j i , ji W ,c ,S d S ; + = + =  (6) 

 

10i i , j i , j i , ji W ,c ,S d S − = + =  (7) 

 
The timing constraints between activities involve 

multiple types of rules, depending on the characteristics 

of neighboring activities and the execution environment. 

Since banded activities can be regarded as block activities 

with very short durations, this study focuses on the 

interaction constraints between linear and block activities, 

whose interval limits are given by Equation. (8-9), with 

Sb,j, Sa,j being the fraction of constraints between a,b, and 

Ta,b being the limiting time. 

 

1 1b, j b b , j a , j a a , j a ,b

a b

S ( c )F S ( c )F T ,

j J J ;

+ − − − −

 

…
 (8) 

 
1 1b b, j b , j a a , j a , j a ,b

a b

( c )S F ( c )S F T ,

j max( J J )

− + − − −

=  。

…
 (9) 
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When dealing with the interface between linear 

activity and strip activity, the key lies in considering the 

constraint association between them. Strip activity can be 

equated with zero-span block activity. The relevant 

mathematical expression is shown in Equation (10-11), 

where j represents the intersection result and Ta,b represent 

the constraint time. 
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a , j b
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a , j a , j

a b

( e e )
c ,S F d T ,

( e o )
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−
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−

= 

…
  (10) 
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b a , j

i b a , j a , j a ,b

a , j a , j

a b

( o o )
c ,S F d T ,

( e o )

j min( J J )

−
= − +

−
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…
 (11) 

The construction mode is strictly specified, and each 

unit activity is limited to a single operation mode, as 

shown in Equation (12). where yi,j represents a single 

mode factor. 

 

1

1
iK

k

i , j
k

y
=

 =  (12) 

 

The principle of constructing priority relationship 

determines the execution sequence of operation processes 

in job units, and requires all subsequent steps to be started 

only after all previous tasks are completed [11]. The rule is 

expressed by Equation (13). For any set Pi, the principal 

factor Si, j and the fusion factor j should meet the 

corresponding restrictions. 

 

i i , j i , j i ii P ,S F , j J J     …  (13) 

3 Algorithm design based on NSGA-

Ⅲ 
For key parameters such as population size, crossover 

probability, and mutation probability, the value of one 

parameter was changed separately each time and other 

parameters were kept constant during the experiment, and 

the performance of the model in the optimal allocation of 

resources and schedule collaborative management was 

observed. For example, increasing the population size can 

make the model search for a wider solution space within 

a certain range to obtain a better solution, but the 

calculation time increases greatly and the performance 

improvement slows down after the threshold is exceeded. 

The results show that within the range of reasonable 

parameter values, the model can maintain relatively stable 

performance, effectively realize resource optimization 

and schedule coordination, and meet the actual needs of 

the project, which indicates that the model has strong 

robustness and can be reliably applied to complex 

engineering project management scenarios, providing a 

strong guarantee for the smooth implementation of the 

project. 

The problem studied in this paper belongs to the NP-

complete class, and the non-dominated sorting genetic 

algorithm (NSGA-Ⅲ) of elite strategy is selected as the 

solution. Figure 1 presents the basic structure of NSGA-

III. We extended and optimized the standard NSGA-Ⅲ, 

and adjusted the scheduling process and genetic operation 

[12]. 

 
Figure 1 NSGA-Ⅲ algorithm model 

3.1 Chromosomal coding 

In the process of genetic algorithm, the initial population 

is constructed by natural coding, which has random 

characteristics [13]. The first part of the chromosome 

structure corresponds to the construction strategy, 0 

means stationary at zero task load, and the non-zero value 

is selected randomly, corresponding to the activity-related 

construction mode set. The second part indicates the 

direction of linear operation, 0 represents the reverse 

direction and 1 represents the forward execution [14]. 

3.2 Improving uniform evolutionary elite 

selection strategy 

The NSGA-III. algorithm can dynamically adjust 

mutations according to the project situation and algorithm 

feedback, enhance the algorithm's search ability in 

complex environments, and help find the optimal solution 

for resource and schedule management. By comparing the 

improved and standard NSGA-III algorithms with the 

ablation study, the results show that the improved 

algorithm converges faster, and the quality of the 

solutions is higher and more diverse, which highlights the 

important role of adaptive mutation operators in 

improving the performance of the algorithm and provides 

stronger algorithm support for engineering project 

management. 

In terms of the selection mechanism, the improved 

selection mechanism can more effectively deal with the 

multi-objective characteristics in engineering projects, 

and accurately weigh the interrelated and constrained 

goals such as cost, construction period and quality 

through innovative strategies, so that the algorithm is 

more inclined to choose the individual with 

comprehensive optimization of multiple objectives when 
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searching for the optimal solution, which significantly 

enhances the performance of the algorithm and improves 

the probability of finding the global optimal solution. In 

the calculation of congestion distance, the new method 

fully considers complex factors such as resource diversity, 

task priority, and time constraints, and can more 

accurately evaluate the distribution of each solution in the 

solution space, so as to achieve more efficient resource 

allocation and more reasonable schedule management, 

avoid excessive concentration or waste of resources, 

ensure that the project progress is carried out as planned, 

and improve the overall efficiency and quality of 

engineering project management. 

In terms of equations, for the optimal allocation of 

resources, we set the goal of minimizing the cost of 

resources. Assuming that the resource type is n, the unit 

cost of each resource is ci, and the usage is xi, then the 

resource cost calculation equation is C=cixi, and our goal 

is to make C reach the minimum value. In terms of 

schedule collaborative management, in order to minimize 

the project duration, the number of tasks included in the 

project is m, the start time of each task is tj, and the 

duration is dj, and our goal is to minimize T. For the 

NSGA-III. algorithm, its core lies in the non-dominant 

ranking and crowding calculations when dealing with 

multi-objective problems. In the non-dominant ranking 

process, all solutions are divided into different ranks, with 

higher ranks indicating better solutions. For example, for 

two solutions, A and B, if A is not worse than B on all 

objectives and better than B on at least one objective, then 

A dominates B. Through multiple comparisons, the 

declassification will be carried out. The sparser the 

solution distribution, the greater the congestion, so as to 

ensure that the solutions searched by the algorithm are 

diverse. 

The optimized NSGA-II algorithm uses stratified 

sampling and narrowing the selection domain to improve 

the understanding of spatial exploration and enhance 

convergence. In the initial stage, individuals are fixedly 

selected from each dominant layer, and the selection 

range is gradually reduced with the iterative advancement, 

and finally only half of the population is retained to enter 

the next generation in the later stage [15]. The goal of this 

strategy is to take into account the diversity and speed of 

algorithms to obtain high-quality solution sets. The 

specific operation is shown in Equation (14-15). 

 

1

pop

npop 1
rpop 2

2 1
Ng ,
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r ,g g,r , ,N ;





− −
  =

−
„  

(14) 
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 
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In the above Equation, rpop is the number of 

individuals selected from the i-th dominance level of 

generation g; npop is the number of individuals that can 

be selected in generation g; 0 is the reduction ratio, set to 

0.8; N is the total number of dominance levels that can be 

selected in generation g; pop is the population size; G is 

the maximum number of iterations; and e denotes the base 

of the natural logarithm function. 

3.3 Improved hierarchical multi-strategy 

adaptive mutation crossover operator 

The genetic operations of NSGA-II, especially the 

crossover and mutation mechanisms, are crucial for the 

convergence speed and efficiency of the algorithm [16].. 

Therefore, in this paper, we investigate the mutation and 

crossover strategies for fusing differential evolution to 

enhance performance. 

The DE algorithm uses N-dimensional vectors to 

represent population individuals and generates possible 

solutions through a mutation operator [17].. Common 

variation operations include Rand/1, Best/1 and Current 

to best/1 as shown in Equation. (16)-(18). The operator 

generates the variation vector h by combining the 

population membership characteristics x in different 

ways. where V is the variation factor; xp1,g are the 

randomly selected individuals from the g-th generation of 

excellent individuals and p1≠p2≠p3. In this paper, the top 

10% of the sorted population is selected as the excellent 

individuals. best1 tends to be exploratory, Rand/1 tends to 

be extractive, and Currenttobest/1 is able to balance the 

two characteristics. 

 

1 2 3Rand 1 p,g p ,g p ,g p ,g/ : h x V( x x );= + −  (16) 

 

best 1 2Best 1 p,g ,g p ,g p ,g/ : h x V( x x );= + −  (17) 

 

1 best 1 2 3p,g p ,g ,g p ,g p ,g p ,gh x V( x x ) V( x x )= + − + −  (18) 

 
In genetic algorithm, the mutation factor determines 

the population variability, and the numerical value greatly 

enhances the global exploration, which is restricted by 

Equation (19); If the value is small, the local search 

efficiency will be improved. Common mutation 

operations Rand/1, Best/1, and Current to Best/1 each 

have their own emphasis [18]: Rand/1 digs deep into 

resources, Best/1 explores new fields, and Current to 

Best/1 combines the advantages of both. In the study, we 

selected the top 10% individuals in performance as the 

population representatives. 

 

0 1n

p,g nn

p,g n

p,g

h ,rand ( , ) CR
u

x


= 


„
 (19) 

 
In Eq. (19), CR is the crossover probability, and xn

pg, 

hn
pg, un

pg denote the n-th gene of the p-th individual in the 

parent, intermediate, and offspring populations, 

respectively, in the g-th iteration. 

In this study, we developed a multi-level, multi-

dimensional and self-adjusting mutation and crossover 

operator strategy to meet the needs of different stages in 

the search process. The strategy divides the population 

into elite group, general group and weak group, and 
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customizes mutation operation and parameter control 

methods for each group [19]. Its core is to enhance the 

global exploration and local in-depth ability of the 

population, so as to improve the search efficiency and the 

quality of optimization results. See Equations (20) and 

(21), where V and CR represent the search efficiency and 

optimization results respectively, and 𝛼𝑖  is the current 

congestion corresponding to the i-th individual. 

 

1 2 1 1iV ( g / G ) / / ( )= − + +  (20) 

 
1 2 1 2 1iCR ( g / G ) / / [ ( )]= − + +  (21) 

In terms of goal setting, the goal of optimal 

allocation of resources is to minimize the cost of 

resources, which is achieved by comprehensively 

considering the unit cost and the number of resources 

used. The goal of schedule collaboration management is 

to minimize the duration of the project, which requires 

precise control of the start time and duration of each task. 

In terms of variable definition, in addition to the variables 

related to resource usage and task time, a variable is also 

defined to represent the sequence between tasks, if there 

is a sequence of two tasks, this variable is 1, otherwise it 

is 0.For the constraints involving the reverse construction 

behavior, the experiment adopts a more rigorous and clear 

way to illustrate. In some engineering projects, the 

completion of a part of a task depends on the specific 

progress state of the subsequent task. We accurately 

describe this complex constraint by defining in detail the 

set of related tasks, the progress of task completion, and 

the threshold of the progress of the pre-task required to 

get started. In this way, the entire modeling framework 

has been greatly strengthened, so that the model can play 

a more accurate and reliable role when dealing with the 

practical problems of complex engineering projects. 

4 Construction of multi-objective 

optimization model for construction 

project 

4.1 Construction of multi-objective 

optimization model for construction case 

There are significant shortcomings in the current state-of-

the-art (SOTA) methodology. In the face of complex 

resource constraints, they are inflexible, and it is difficult 

to adjust the resource allocation in a timely and reasonable 

manner according to the dynamic changes in resource 

availability in the project process, which in turn affects 

the project schedule. In dealing with the multi-objective 

nature of resource allocation and schedule management of 

engineering projects, the existing methods are also 

inadequate, and it is difficult to find the optimal balance 

between multiple interrelated and constrained goals such 

as cost minimization, time minimization, and resource 

utilization maximization. The results of our adaptive 

multi-objective project resource optimization allocation 

and schedule collaborative management model based on 

NSGA-III. algorithm is compared with the SOTA 

method, and the advantages are significant. Compared 

with the limitations of NSGA-II in dealing with multi-

target problems, our model can better maintain population 

diversity during evolution by relying on the NSGA-III. 

algorithm, so that the search space is more extensive, so 

as to find the optimal solution set of multiple targets more 

efficiently. In terms of resource allocation, the model can 

allocate resources more accurately and flexibly according 

to complex and changeable resource constraints, reducing 

resource idleness and waste. In terms of schedule 

management, the task sequence and time nodes can be 

arranged more reasonably, which can effectively shorten 

the project duration. These improvements have greatly 

improved the resource utilization efficiency and project 

progress control of the project, which fully reflects the 

important value and significant advantages of the model 

in the actual project management. 

The cycle of each construction process is calculated 

on a monthly basis, and the economic cost is in RMB 

10,000. Quality and safety adopt a 0-1 scoring system, 

with 0 representing the minimum requirement and 1 

representing the optimal state. Experts score according to 

the actual operation and calculate the average score of 

each process, so as to give a quantitative assessment of 

quality and safety. 

4.2 Solution of multi-objective optimization 

model for construction cases 

In project management, the trade-off between cost and 

duration is crucial. Traditionally, shortening the 

construction period often requires increasing resource 

input and thus increasing costs, while simply controlling 

costs may delay the construction period. The improved 

model based on the NSGA-III. algorithm can effectively 

alleviate this contradiction. In terms of resource 

allocation, the algorithm accurately analyzes the 

requirements of each stage of the project, and dynamically 

allocates according to resource availability and cost-

effectiveness. For example, when the resources of critical 

path tasks are tight, priority should be given to resources 

with lower costs that can meet the requirements to avoid 

overinvestment. At the same time, the resource 

investment time of non-critical path tasks is reasonably 

arranged to reduce idle waste.In terms of schedule 

optimization, the NSGA-III. algorithm finely adjusts the 

task sequence and time with its powerful multi-objective 

optimization capabilities. Through intelligent calculation, 

it not only ensures the smooth flow of the critical path, but 

also makes reasonable use of the relaxation time of the 

non-critical path to find the optimal progress plan. Finally, 

on the basis of ensuring that the construction period is 

reasonable, the cost is minimized. 

The NSGA-III algorithm was used in this study to 

perform multi-objective optimization with the goal of 

promoting the uniformity of the Pareto front while 

enhancing cost optimization and robustness [20]. In this 

study, the improved NSGA-III algorithm was used, and 

the population size was set to 92, after 25,000 iterations. 

The optimized process analysis is shown in Table 1, and 

the results show that the total cost is 184,116,460 RMB. 
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This strategy not only reduces costs and shortens 

engineering cycles, but also improves quality and safety 

standards [21]. Although it is comparable to the old method, 

the performance improvement is obvious. The 

optimization solutions are evenly distributed and the 

diversity is enhanced, providing multiple solutions, 

significantly improving the overall cost-effectiveness, and 

greatly improving the quality and safety indicators. 

 

Table 1: Process analysis after optimization 

Procedure T (months) C (ten thousand) Q R 

A 3.1395 1135.4553 0.96915 0.9975 

B 6.2895 230.80995 0.99645 0.9744 

C 6.363 144.2553 1.02795 0.987 

D 10.5 187.9416 1.008 0.9975 

E 5.229 268.80735 1.029 0.903 

F 1.5225 608.49705 0.91245 0.9135 

G 9.45 167.04345 0.9051 0.9559 

H 1.575 88.78695 0.9219 0.97375 

 

From the comparison in Table 2, it can be seen that 

the traditional method has obvious shortcomings in the 

face of the complexity of modern engineering projects. 

Improvements based on other algorithms have 

progressed, but they still fail to fully meet the needs in key 

aspects such as computational efficiency, accuracy, and 

resource utilization. The method based on the NSGA-III. 

algorithm shows significant advantages, and performs 

well in terms of computing efficiency, accuracy, and 

resource utilization in complex engineering project 

management, which is more suitable for solving the 

problems in the optimal allocation of resources and 

schedule collaborative management of current 

engineering projects. 

 

Table 2: Comparison of key indicators of engineering project management methods 

Compare 

dimensions 

Traditional 

methods 

Improved methods based on other 

algorithms 

Approach based on the NSGA-III. 

algorithm 

Computational 

efficiency 
low middle high 

accuracy Fair middle high 

Resource utilization low middle high 

4.3 Algorithm result analysis 

In this study, the details of the model validation 

methodology were added. The data collection covers 

multiple historical databases of engineering projects 

(including resource input, schedule, and cost data) and 

market resource price fluctuation data, which are strictly 

screened, cleaned and standardized to ensure that the data 

is accurate and complete, and is convenient for 

subsequent analysis. In terms of experimental setup, the 

population size was determined based on the complexity 

of the project and the type of resources, and the number 

of iterations was obtained by combining pre-experiments 

and convergence curve analysis, and the Dell Precision 

5820 Tower workstation was clearly used, with an Intel 

Xeon W-2245 processor, 8 cores and 16 threads, a main 

frequency of 3.9GHz, a turbo frequency of 4.7GHz, a 

memory of 16GB DDR4 2666MHz, a hard disk of 512GB 

SSD + 2TB HDD, and a graphics card of NVIDIA Quadro 

P2000 5GB with software tools using MATLAB R2020b 

(version 9.9) for reproducible environments. During the 

optimization process, the resource allocation matrix is 

established to monitor resource usage in real time, and the 

task execution sequence or resource allocation strategy is 

automatically adjusted to meet resource constraints when 

the limit is exceeded. Set time-limits for key tasks based 

on project critical path analysis, and prioritize the 

allocation of non-critical task resources when there is a 

risk of delay to ensure that the project duration is 

controllable. 

Focus on cost efficiency while optimizing quality 

and safety. Figure 2 illustrates the BmB mass versus the 

total mass, and the results of the NSGA-I and ε-

constrained algorithms are also presented in Figure 2. 

Figure 2 shows that NSGA-II performs worse than 

NSGA-III and improved versions of NSGA-III in terms 

of duration and cost, especially when it comes to dealing 

with multi-objective problems [22]. Compared to the 

original version, the improved NSGA-III shows a shorter 

construction period, optimized costs, and significant 

improvements in quality and safety. 
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Figure 2: Variation of mass versus total mass of counterweight BmB 

 

Figure 3 shows the solution of the NSGA-I and ε-

constraint methods, the solution of NSGA-3 (green dot) 

and Epsilon-constraint (pink star) in the left subgraph, the 

solution of MOCHC and Epsilon-constraint in the right 

subgraph, the green dot distribution is regular in the 

quadratic weight and linear weight coordinate system, the 

pink star is specific and different from the green dot 

distribution, and Figure 3 also shows the improved 

NSGA-III The algorithm has obvious advantages in 

running time under given conditions, and its efficiency is 

higher than that of the other two algorithms [23], and these 

charts and analyses help to visually compare the 

performance characteristics of different algorithms, 

providing an important basis for research and decision-

making. 

 

 
Figure 3: Solution of NSGA-I and ε-constraint methods 

 

The study shown in Figure 4 compares the 

optimization effects of the three algorithms in terms of 

security and quality improvement. The improved version 

of NSGA-III consistently outperforms the original 

NSGA-III in cost efficiency, while the performance of 

NSGA-II is poor, with low cost-effectiveness and large 

fluctuations, and the distribution characteristics of the 

solutions show uneven dispersion [24]. 

 

 
Figure 4: Dynamic adaptation of DO-NSGA-II at different time steps 

 

When dealing with three complexity triple problems, 

we conducted 20 independent parallel coordinate graph 

studies, as shown in Figure 5. NSGA-II solutions show 

wide dispersion, with marginal zones barely touching the 

Pareto frontier [25]. Although the frontier solution of the 

original NSGA-III performs better, its solution 
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concentration is high and the frontier coverage is 

insufficient. The improved version of NSGA-III 

optimizes the smoothness of the Pareto front, the 

distribution of solutions is more uniform, and the 

representativeness of the front region is significantly 

improved. By adding a new file set, the improved NSGA-

III can generate more solutions, provide rich choices for 

decision-makers, and be conducive to decision-making 

based on multiple preferences [26]. 

 
Figure 5: Parallel coordinate plots of feasible and non-dominated solutions for three different difficulty triples 

 

Figure 6 depicts a phase diagram versus a state 

trajectory. The distribution of HV values of the three 

algorithms is balanced. The increase of HV value usually 

symbolizes the improvement of algorithm efficiency [27]. 

Quantitative analysis shows that the average HV value of 

modified NSGA-III is the highest, reflecting its superior 

performance in solution set optimization. The box plot 

shows that the improved algorithm has the longest box 

plot, which indicates that its evaluation index distribution 

is more uniform, its stability is stronger and its 

performance is more robust. 

 

 
Figure 6: Proportionality of phase diagram and state trajectory 

 

5 Scheduling model and solution 

5.1 Scheduling model establishment 

In project implementation, scheduling management in 

assembly stage is very important. Including prefabricated 

component hoisting, cast-in-place structure construction 

and component integration, the assembly scheduling 

algorithm model is shown in Figure 7. The assembly cycle 

directly determines the schedule of subsequent production 

and transportation, and the first task is to Equationte and 

implement efficient scheduling strategies to shorten the 

assembly period [28]. 

4 52 31 6 7 8
0

30

40

10

20

C-MOEA/DO

Objective NO. 

O
b
ie

ct
iv

e
 v

a
lu

e

4 52 31 6 7 8
0

30

40

10

20

CNSGA-3

O
b
ie

ct
iv

e
 v

a
lu

e

Objective NO. 

105 110100 115 12095

1

2

-1

0

-3

-2

3

T (days)

X

105 110100 115 12095

1

2

-1

0

-3

-2

3

T (days)

Z



https://doi.org/10.31449/inf.v49i37.7513 Informatica 49 (2025) 21–26 21 

 

 

 

 
 

Figure 7: Scheduling algorithm model 

 

5.2 Solution of model based on genetic 

algorithm 

In modeling, natural number coding is used to number the 

construction and assembly steps of standard layer 

sequentially, from 1 to m, and m represents the total 

number of steps. The length of the chromosome is equal 

to the number of steps, each containing m genes, whose 

values range from 1 to m, and the number corresponds to 

the process number [29]. 

The configuration procedure shall be performed in 

the order of 2-1-7-4-3-6-5. When resources are limited, if 

processes 1 and 7 require R1 together, if conditions 

permit, they should be executed synchronously to meet 

R1, and can be operated in parallel; Otherwise, the 

execution order of 1 before 7 must be followed. 

The roulette strategy includes the following steps [30]: 

First, calculate the fitness value of each individual; 

Second, design a selection mechanism positively 

correlated with fitness, and make roulette choice; Third, 

through random number decision, the adapter is selected 

based on the selection mechanism. 

5.3 Case analysis 

The construction process mainly includes: 1) 

measurement, positioning and setting-out; 2) 

Prefabrication and on-site installation of steel skeleton; 3) 

Hoisting operation of external wall components; 4) Gap 

filling and grouting treatment; 5) Construction of 

formwork support; 6) Hoisting technology of laminated 

beam and slab; 7) Fine binding of steel bars on the slab 

surface; 8) Assembly of accessories related to climbing 

frame; 9) Hoisting of balcony and stair structure; 10) 

Concrete pouring and subsequent maintenance 

management. 

The affordable housing project is divided into two 

independent units, and each floor serves as a separate 

construction assembly line to realize the interspersed 

operation mode between the two units. Each process in 

the experiment includes: positioning measurement, cast-

in-place steel bar binding, external wall bracket 

installation, formwork support construction, laminated 

beam and slab hoisting, balcony and stair hoisting, 

concrete pouring and maintenance, etc., which have 

different time-consuming and resource requirements, and 

have strict process dependence between them. The core 

task of the assembly stage is to seek the best optimization 

of the construction schedule under the premise of 

resources such as tower crane, measuring equipment and 

formwork, and the goal is to minimize the total assembly 

cycle T of the project under the constraint of resource 

constraints. This is essentially a resource-limited project 

scheduling problem, which needs to be solved urgently. 

Figure 8 shows the characteristics of the Pareto 

optimal frontier. In this study, the advanced tools of 

MATLAB 2017a are used to optimize the model by 

integrating genetic algorithms. The specific setting 

parameters are as follows: the population size is set to NP 

= 80, the maximum number of iterations maxgen = 200, 

the selection crossover probability Pc = 0.8, the mutation 

probability Pm = 0.2, and the probability of inter-

generational genetic operation Pe = 0.9. After 130 rounds 

of iterative calculation, we were able to obtain a minimum 

duration of 8 days. 
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Figure 8: Pareto optimal frontier 

 

Within the specified standard construction period of 

8 days, according to resource limitations, the operation 

process is carefully planned day by day. The first day of 

work covers the measurement positioning and steel bar 

binding of Unit 1, the installation of external wall 

components, the setting of laminated beam and slab 

formwork supports, and the measurement preparation of 

Unit 2, ensuring the successful completion of the first-

floor structure construction within 8 days, thus advancing 

to the completion of all pre-assembled floors. 

On the second and third days of project execution, 

the demand for template configuration and hoisting 

operations peaked. Any negligence in the management of 

resource R3 in these critical time periods could pose a 

potential threat to the smooth conduct of subsequent tasks, 

which could lead to engineering delays. Therefore, 

managers should pay special attention to and strictly 

monitor the resource allocation and scheduling of these 

two days to prevent the delay of schedule caused by 

supply shortages. 

6 Scheduling model and solution of 

production stage 

6.1 Establishment of scheduling model in 

production stage 

The duration TA of the assembly stage directly 

determines the duration of the manufacturing stage TB. In 

the specified process, TA must be less than or equal to TB 

from the time Order 1 + i M is placed to the completion 

of assembly. The goal is to find an optimal scheduling 

strategy that minimizes resource consumption and 

production cycle within a strict time limit δ. The specific 

task is to determine the duration vector P satisfying T ≤ δ 

for n activities to minimize the total project cost c (P). The 

project is divided into 2 + n task units, numbered {2, 3,..., 

n+1}. Activity 1 represents the project start and n+2 

symbolizes the project end (regarded as a virtual step). 

Each entity operation unit j (1 < j < = n) has Mj execution 

options. The start time of activity mj is labeled Sj, lasts 

pjm days, and has a direct cost of cjm. The cost of 

prefabricated components consists of the product of direct 

cost cjm multiplied by xim corresponding to the selection 

mode, plus indirect costs r and d. For a given project 

deadline δ, find the best scheduling strategy in the 

production stage, with a view to minimizing the duration 

and minimizing the total cost at the same time. 

6.2 Solution of model based on multi-

objective genetic algorithm 

In this paper, a two-layer coding framework (AL, ML) is 

adopted, where AL represents the task sequence and ML 

corresponds to the operation mode set. Each task j 

proceeds in AL with strict pre-dependencies. For task j in 

AL, its execution mode m (j) is unique. By setting the 

mode list, the working hours and resource requirements 

are determined accordingly, so that the multi-mode 

problem is transformed into a single-mode problem for in-

depth research. 

In the dual coding system of workflow and mode, 

the initial implementation of job coding (AL) is that 

each production step is standardized as a continuous 

integer number, from 1 to n, where n represents the 

total number of processes. These steps are labeled 

sequentially according to the process rules, such as 1, 

2, 3,..., n. The chromosome structure of the job code is 

constant and the length is n, where each number 1 to n 

corresponds to a gene value, which respectively 

indicates the arrangement order of the processes. 

In the secondary coding structure, natural number 

tokens, such as 1, 2, 3,..., m, are used to represent m 

modes of operation. For example, shows that when 

there are three execution modes, the secondary 

chromosome is fixed in length m, and each number 

from 1 to m represents a gene value, uniquely 

indicating the corresponding task execution mode. 

6.3 Case analysis 

The manufacturing process of prefabricated components 

is divided into stages according to molds and categories: 

preconditioning molds, component assembly, 
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reinforcement placement and concrete pouring. The 

operating modes are M1 (Frugal), M2 (Regular) and M3 

(Full Load). The study uses the product analysis of chaotic 

Henan diagram and Roche diagram, as shown in Figure 9. 

The labor demand is R1, the labor cost is 150 yuan/day, 

and the daily indirect cost is 80 yuan. The equipment 

assembly takes 8 days (TA = 8), the production cycle is 

the same as 8 days, and the accumulated storage cost 

reaches 200 yuan. 

 

 
Figure 9: Multiplication of chaotic Henan River diagram 

and Loch diagram 

 

The production process of prefabricated components 

is divided into three operation modes: M1 (saving type), 

M2 (standard type) and M3 (full load type), which have 

obvious differences in resource and time utilization. The 

maintenance stage adopts a unified mode, but the 

maintenance requirements vary from component to 

component. The logical sequence between the processes 

is strict, and the time limit (TA) of the assembly stage 

directly affects the time frame (TB) of the manufacturing 

stage. The assembly stage needs to complete the 

production of Mi+1 orders from the beginning to the end 

period. 

In the production process, the primary goal is to find 

the comprehensive optimal scheduling with the shortest 

time and the lowest cost under the constraint of meeting 

the predetermined deadline δ. The goal is to find an n-

activity time series P satisfying T ≤ δ to achieve the lowest 

total cost c (P) of the project. As shown in Figure 10, there 

are significant differences between traditional single-

objective genetic programming and multi-objective 

genetic programming-decomposition co-evolution 

algorithms in this context. Due to the unique execution 

characteristics of each activity, the problem is a multi-

modal trade-off between deadline and cost. 

 

 
Figure 10: Traditional single-target GP and GP-MOEA/D 

 

In MATLAB 2017a, we used the advanced version 

of nsGA-Ⅱ to solve the model. The experimental 

configuration is as follows: the population size NP is set 

to 50, the maximum number of iterations maxgen is 200, 

the crossover probability Pc is 0.8, and the mutation 

probability Pm is 0.2. After 200 iterations, the Pareto 

optimal solution distribution of duration and cost is 

obtained. It can be seen from Figure 11 that the optimal 

solution distribution shows a nonlinear decreasing trend: 

with the shortening of the construction period, the cost 

shows an upward trend, which reveals an obvious inverse 

relationship between the two. 

 

 
Figure 11: Optimal solution trend analysis 
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When optimizing the production cycle of 

prefabricated components and reducing resource 

consumption, we often encounter a delicate balance 

between time and cost. Efficient production may lead to 

higher costs, while resource frugality may extend 

construction schedules. Pareto efficiency analysis can 

reveal this optimal combination. Solution 1 has the lowest 

construction period (d1 = 5.5 days), but the highest 

resource cost (c1 = 73,690 yuan); In contrast, solution 14 

is more economical in resource cost (c14 = 61,766 yuan), 

but has the longest construction period (d14 = 7.7 days). 

There is an obvious gap between the construction period 

and resource cost between the optimal solutions, so 

decision makers should choose the most suitable scheme 

according to their own priorities. 

7 Conclusion 
In building structure research, it is crucial for deep 

learning-driven risk assessment models to use artificial 

intelligence, especially in improving employee safety and 

engineering quality. In recent years, the multi-objective 

optimization generative adversarial network model has 

outstanding accuracy and adaptability in accident risk 

prediction. In this study, a cutting-edge multi-objective 

optimization strategy is used to improve the effect of 

GAN in building accident risk prediction. Through the 

construction and detailed analysis of large-scale accident 

database, the prediction accuracy of the new model has 

been significantly improved. In large-scale project tests, 

the accuracy, recall rate and F1 scores have reached 92%, 

90% and 86%, highlighting its powerful prediction 

performance. In engineering practice, building safety 

accident risk prediction models with generative 

adversarial network-driven multi-objective optimization 

will achieve significant enhancements. In future research, 

a more intelligent risk management platform will be built 

by combining with advanced technologies such as the 

Internet of Things and big data, which will strongly 

support security protection in the field of architectural 

engineering. 
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