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Today, the most widely used visual markers, such as ArUco and AprilTag, rely on square pixel arrays.
While these markers can deliver satisfactory detection and identification outcomes, they remain
vulnerable to corner occlusion despite the incorporation of corrective codes. Conversely, line-based
markers offer increased resilience against occlusions but are typically constrained in terms of
codification capacities. The markers developed in this research leverage linear information to propose a
pyramidal line-based structure that exhibits robustness to corner occlusion while providing enhanced
coding capacities. Moreover, the projective invariance of the constituent lines enables the validation of
a homography-less identification method that considerably reduces computation resources and
processing time. Despite this, the homography transform remains applicable for pose estimation, where
these markers demonstrate superior performance compared to state-of-the-art markers. Developed
markers Generator and ldentificator, as well as an extensive marker Database, are publicly available
for tests at: https://github.com/OlLUproject/OlLUtag[Click here and Enter Abstract]

Povzetek: "[Click here and Enter short Abstract in Slovene language]”

1 Introduction

Visual markers are artificial graphical codes representing
numerical (or textual message) information that can be
associated with objects to be uniquely identified.
Computer vision applications use these tags to simplify
the automatic perception of objects inside a scene and
make their localization more precise. These are widely
used in product labeling and tracking, robotics
localization and mapping [1], camera calibration and
pose estimation [2-3], augmented reality applications [4],
automatic navigation [5] and medical positioning [6].

Today, the most prevalent visual markers, such as April
[7] and ArUco [8] Tags, utilize square pixel arrays.
Although these markers often yield satisfactory detection
and identification results, they remain susceptible to
external corners occlusion despite the inclusion of error
correction codes. In contrast, line-based markers offer

greater resilience against occlusions but are often
constrained in coding capacities [9]. Recently, Chahir et
al. [10] introduced a novel line-based marker called the
OILU marker, addressing codification limitations. This
marker utilizes groups of pyramidal-shaped lines to
create highly distinguishable 2D markers (Figure 1.a).
While offering significant advantages in coding
capabilities, the developed identification method, which
relies on a time-consuming level set technique [11],
slows down processing, particularly in scenarios where
multiple markers are in the camera’s field of view. The
reported average processing time is approximately 40 ms
per marker, making this solution unsuitable for
constraining real-time applications. In addition, the
proposed scheme (marker design and identification
method), does not solve the problem of external corners
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Figure 1 : (a) Classical OILU Marker embedding the decimal number 6789. (b) Improved OILU Marker
identification and pose estimation even under corners occlusion.
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occlusion, for which most square markers remain
ineffective. In fact, if just one corner of these markers is
occulted, the detection fails.

In this paper, a less computational identification method
is developed, based on cumulative histogram analysis
that allowed reducing processing times by almost half
compared with the work of Chahir et al. [10]. However,
as the method relies only on the external marker’s
corners for localization, it also remains vulnerable to
external corners occlusion. Moreover, as the
identification scheme integrates homography transform
in its processing, computation performances decrease as
the number of markers within the camera's field of view
increases.

A revised marker design (Figure 1.b), as well as a
dedicated homography-less identification approach, are
then proposed to remedy these weaknesses. The adopted
identification scheme exploits the marker’s local
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being an efficient visual marker. Sections 4 describe our
primary OILU marker identification scheme, followed in
Section 5 by the presentation of a revised marker design,
as well as its validated homography-less identification
approach. In section 6, extensive tests are conducted on
real images. Finally, section 7 concludes the paper with
interesting perspective views.

2 Related Works

There are many conceptions of visual markers in the
literature (Figure 2). These can be clustered into three
main categories: square-based, line-based, and dot-based
tags. The first category regroups all QR-like tags that
encode binary information in black/white cells arranged
in square grid layouts. ARToolKit [12] is the oldest
fiducial marker proposed for AR applications. It consists

(c) ArUco Tag

(e) Pi-Tag

Figure 2 : Examples of well-known visual markers.

properties to switch from a line-based representation to a
more accurate and relatively fast dot-based one.

Deep tests on real images highlight the performance and
robustness of the proposed solution against challenging
conditions, with a particular focus on corners occlusion.
Despite this, the homography transform remains
applicable for pose estimation, where improved markers
demonstrate superior performances compared to state-of-
the-art markers.

In summary, the main contributions of this paper are :

- The OILU Tag's layout design has been
enhanced to offer more robustness to occlusion
and overlapping objects.

- The proposal introduces a low computational
homography-less identification method. The
average execution time has been considerably
reduced for Dboth desktop and mobile
architectures, making it suitable for constraining
real-time applications.

- A Dedicated OILU Tag Generator as well as a
huge database are made available for
comparative tests with the well-known state-of-
the-art visual Tags.

The remainder of this paper is organized as follows:
Section 2 provides a quick literature review on well-
known fiducial markers. Section 3 briefly presents the
OILU code basics and highlights its key strengths as

of a black-bordered square inside which is embedded in a
known image as a payload. Its limitation resides in the
matching method that uses image correlation techniques
to detect the embedded pattern. ARToolKitPlus and
ARTag [13-14] are improved versions released to
overcome these limitations. They use binary-coded
patterns to encode the embedded identifier. Furthermore,
the ARTag introduces additional information as an error-
correction payload. Based on ARTag’s idea, many
efficient square markers were proposed, among them
April Tag [7] and ArUco Tag [8] which became
ubiquitous in the AR field. Both allow generating of
user-customized dictionaries using some heuristics to
maximize some criterion such as inter-marker distance
and the number of bit-transitions. Recently, a new
square-like TopoTag was introduced by Yu et al. [15].

It offers a highly customizable marker shape, allowing
for flexibility in marker design. The fundamental
structure of the marker consists of a black frame with
black squares positioned on a white background. One
notable advantage of TopoTag is its variable dictionary
size. The authors claim that generating the dictionary is
significantly faster compared to similar marker systems
like April and ArUco Tags. Based on AprilTag, [16]
proposed ChromaTag by using different colors to
represent the internal bits to make the detection easier
and speed up its decoding.
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OILU Symbol’s components

Decimal Symbols | Segl | Seg2 | Seg3 | Segd
0 o 1 1 1 1
1 | 1 0 0 0
2 L 1 1 0 0]
3 U 1 1 1 0]
4 .| 0] 1 1 0]
5 A 0 1 1 1
6 9 0 0 1 1
7 n 1 0 1 1
] r 1 0 0 1
9 C 1 1 0 1
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Figure 3 : (a) Decimal OILU Symbols representation. (b) Pyramidal OILU representation of the decimal number
1962. (c) OILU Symbols binary codification based on the presence (1)/absence (0) of the composing segments
{Segl, Seg2, Seg3, Seg4}. The whole symbols are incorporated in a square to delimit their area in a real-world

scene.

Table 1. Main markers specifications

Family Shape Scalability Dictionary Size Color

AprilTag Qr-like Square Limited 5329 Black
ArUco Qr-like Square Limited 250 Black
CCTag Bar-like Circular Limited 39 Black
Pi-tag Dot-like Square Limited 300 Black
OILU Tag Bar-like Square Yes 10000 Black

Line-based markers apply some measurements on the
basic forms like line-thicknesses and angles sizes to
encode the elementary information. Usually, markers in
this approach are robust against bad acquiring conditions
such as blurring and variation in lighting. They perform
well in case of occlusion situations. Based on the
classical linear bar code, Calvet et al. [17] proposed a
circular version, called CCTag, in which the lines have
been substituted by circles with different thicknesses.
Dot-based tags [18-19] enable the developing of
projective invariants fiducial marker systems based on
cross ratios computation. Even though these markers
exhibit higher accuracy in camera calibration and pose
estimation, they offer a limited number of distinctively
recognizable patterns [20].

OILU Tag [10] is a distinct type of fiducial marker,
based on the two initial categories. It distinguishes itself
from other fiducial markers in two main aspects: firstly,
both humans and machines can read it. Secondly, it
exclusively employs lines as primary patterns to encode
the elementary information. Table 1 presents well-known
markers along with their features such as shape and
dictionary size.

The decision to use lines as the primary pattern is
supported by several justifications. Lines inherently
possess redundant information, which enhances their
resilience against occlusion and blurring effects when
compared to dots or square cells. Moreover, lines can be
effectively utilized as separators between highly
contrasting regions, thus providing additional advantages
in marker detection and recognition.

3 OILU Markers Basics

OILU markers as described in [10], are based on a set of
four basic symbols {O, I, L, and U}, corresponding
respectively to digits zero, one, two, and three (Figure
3.2). The remaining decimal symbols, related to digits {4,
5, 6, 7, 8, 9}, are obtained by successive counter-
clockwise rotations of the two symbols L and U. The
important feature of these symbols is their ability to be
concatenated in a pyramidal fashion, producing multi-
faceted numbers that can be exploited as visual markers
(Figure 3.b). Each OILU symbol is coded in bi-nary
according to Figure 3.c.

In the following, we will detail our improved
identification approach based on cumulative histograms
analysis. Compared to the level set method, presented in
[10], the adopted approach is relatively simple and
computationally efficient. It operates on classical OILU
markers, and incorporates homography in its processing
[21, 22].

4 Standard OlLU Markers
Detection and Identification

To ease detection, the visual OILU markers are printed
with black-outlined segments on a white background (or
inversely). The identification process follows the
classical computer vision pipeline, which involves three
key stages: pre-processing, code detection, and decoding.
The complete process presented in Figure 4 is as follows:
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4.1 Preprocessing

The primary objective of the pre-processing stage is to
enhance the quality of the captured images for the
subsequent stages. To achieve this, classical image
processing filters can be applied [23], while considering
that modern cameras are capable of capturing high-
resolution images. In real-time applications, a trade-off
must be made between speed and accuracy. Down
sampling the captured images enables quick noise
filtering and reduces the execution time, especially in the
subsequent stages. The output of this stage is an
improved grayscale image (as shown in Figure 4.b).

4.2 Eligible markers detection

Its goal is to localize all possible quadrilaterals eligible to
be square-OILU markers in the grayscale image. The
process comprises three main steps:

4.2.1 Image Thresholding

The first step after obtaining the enhanced grayscale
image is to binarize it, which separates the objects
present in the image from the background. This makes
the extraction of contours possible in the subsequent step.
Several methods can be used for binarization [23]. The
simplest method is direct thresholding, where a global
threshold is applied; however, this method performs
poorly on images with multimodal histograms. The
Canny method can be used, but it is time-consuming for
real-time applications. For better performance, we utilize
a local adaptive thresholding method, which is robust to
varying lighting conditions and does not depend on a
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global threshold choice. Figure 4-c depicts the resulting
binarized image.

4.2.2 Contour extraction

Given the square shape of the OILU Tag, we search for
all potential quadrilateral shapes in the binarized image
that could correspond to an OILU marker. To accomplish
this, we first extract the contours of the image by tracing
the transitions between black and white pixels, as
described in [24]. Next, we approximate the obtained
contours to the nearest polygonal shape using the
Douglas-Peucker algorithm [25] (as shown in Figure 4-
d). We only retain those shapes that are convex and have
four corners (Figure 4-e). Some refinement steps are
necessary to eliminate contours that are too small, too
large, or too close to each other [26].

4.2.3 Candidate markers determination and
perspective adjustment

Although we retain all convex quadrilaterals that have
four corners in the previous step, not all of them are
regular squares. Some may be subject to 2D
transformation  constraints such as rotations or
perspective distortions. To correct these irregularities, a
homography is applied to the sub-image framed by the
quadrilateral. Once corrected, each obtained sub-image is
resampled to a canonical grayscale image of size Wc¢ x
Wc using linear interpolation. The output of this step is a
list of candidate square-shaped marker images (as
depicted in Figure 4-f).

Id 4562 | m— f|
Id :7893 | ¢ IE
(2) )

(e) (d)

Figure 4 : OILU Marker Detection process. (a) Input image acquiring. (b) input image processed and grayscale
converted. (c) Binarized image. (d) Contours extracted. (e) Eligible markers extracted. (f) Perspective correction
using homography. (g) Markers decoded.
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4.3 Marker validation and decoding

Each candidate marker in the obtained list needs to be
processed to confirm its content as an OILU marker and
read its embedded identifier. As previously mentioned,
each digit of the identifier is encoded in a separate layer
using four segments that reflect the OILU symbolic. The
challenging part is to identify the position of each layer,
locate each segment within it, and extract its binary
content, particularly in critical situations such as
occlusions and noise. More formally, let K be an integer
having N decimal digits, and M its corresponding OILU
code. The segment-based binary codification of M is:
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M ={(s§ s{,sé,sé,sﬁ)}?’_l,s} €{01} forj=1..4 (1)
The size of the embedded identifier (N), which
corresponds to the number of layers, is unknown
beforehand. Furthermore, no assumptions are made
regarding the thickness of the segments, whether they are
equal or not. When the segments are of equal width, the
binary square image can be divided into a matrix of the
same width and height as the segment width to isolate the
segments easily. However, designing an OILU marker
with different segment thicknesses and inter-layer space
widths makes it more flexible and robust to a wide range
of distortions, occlusions, and noise. In the subsequent
paragraphs, we will consider this last case, which is more

challenging. The decoding procedure, illustrated in
Figure 5, involves several steps:
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Figure 5 : Decoding process: Each layer in a given OILU marker contains at least one black segment.
Performing a bitwise-or operator on the four triangles (sectors) constituting the OILU -marker results in a
merged template that contains a black segment on each layer. The merged template allows delimiting each

black/white segment in each individual triangle.
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4.3.1 Binarization

Since OILU tags are bimodal histogram images, utilizing
Otsu's thresholding method [27] is the optimal method to
obtain binarized images. This technique determines the
ideal threshold value between the predominantly white
background and the typically black OILU segments. In
the resulting binarized image (Figure 4.c), we assign a
value of '1' to the pixels belonging to the segments (i.e.,
the region of interest or ROI) and a value of '0' to the
remaining pixels.

4.3.2 Layers extraction and black segments

localization

The binary image is first divided into four triangles or
sectors, denoted as T1, T2, T3, and T4. Each triangle Ti
comprises a set of alternating black and white bands that
contain the encoded segments. A black band indicates a
binary one '1', while a white band could represent zero '0'
or multiple consecutive zeros '0' (as illustrated in Figure
5). To locate the segments within the image, we utilize a
useful property of the OILU marker that states "each
layer contains at least one black segment”. Therefore,
combining all the triangles by performing a bitwise-OR
operation between their contents yields a template
triangle T (2) containing the exact number of black
segments equal to the number of digits N in the encoded
identifier (as depicted in Figure 5).

T =T1+ T2+ T3+T4 )

The merged triangle T plays the role of a template guide

Large white bands A
with unknown

segments limits

moha

that allows to delimiting all the black/white segments in
each layer by analyzing its horizontal and vertical
cumulative histograms (respectively HCH and VCH)
(Figure 6). The horizontal histogram HCH is the sum-
projection of pixel values along all rows inside the
triangle T.

HCHj=ZT(j,k);j=1..WC/2 (3)
k=1

It allows localizing the black segments by following the
transitions black-white. Indeed, black segments coincide
with high ridges (peaks) in the HCH, while white ones
constitute low valleys. To handle occlusion situations
and to be robust against noise, a percentage threshold
‘ol =2/3 regarding the whole line is set up on deciding
whether a horizontal-histogram value is black or white.

HCH; = (w, — 2 % j) * w; = T(j) = black line  (4)

It’s worth noting to mention that ol is dependent on the
row position; outer rows correspond to high values of wl
and vice-versa. The VCH is the vertical projection of T
over all columns; it allows detecting the number of black
bands confirming the horizontal histogram analysis
results.
we/2
T(k,j);j =1..W, (%)
k=1

The clustering of many adjacent black (respectively
white) rows in the HCH constitutes a black (respectively
white) segment provided that the number of rows
exceeds a threshold ®2 = 25%. After creating the

Horizontal Cumulative
Histogram (HCH)

Vertical Cumulative Histogram (VCH)

Figure 6 : An OILU triangle and its associated HCH and VCH. The triangle contains three black segments
corresponding to three bits that can be easily delimited using the associated HCH, however, the number of white
segments in the white bands and their locations are unknown. Note the influence of noise/occlusions on both histograms
which will be omitted using the threshold w; .
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merged template and locating its segments, we utilize it
to determine the position of each segment within the four
triangles.

4.3.3 Marker validation

In order to confirm that the embedded data is an OILU
code, we only need to verify that the marker satisfies the
following criteria, which serve as an OILU signature:

e The strict alternation of bands: the merged
triangle T comprises alternating black-white
segments. The most outer (starting) band is
black and the most inner (ending) is white. The
number of all bands is always even.

« Each black band in a triangle must correspond to
a black band in the merged triangle.

» Each segment must be connected (no small
fragments).

4.3.4 Marker decoding

To decode the content of the validated marker, we follow
the reverse process of the encoding procedure (as shown
in Figure 5, decoding step), which involves the following
steps:

We affect the value “1” for each black segment and “0”
for each white one starting from the most outer segment
to the most inner.
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Each triangle (T;) i=1..4 is composed of N+1 segments:
T = {Sg{}l,io’sf € {01} fori=1..4 ©6)

Next, we concatenate the binary values inside each
triangle Ti to form a binary string:

str; = s4S1..Sy_1Sy, fori=1..4

()
After that, we arrange vertically the four binary strings to
form a decoding matrix (Table) starting by the left
triangle and going counter clockwise (that is: left,
bottom, right then upper). Each line of the decoding
matrix represents a digit in the identifier whose decimal
value can be obtained from the OILU codification table
(Figure 3-c). These aforementioned steps are repeated for
all eligible markers, and only the validated markers that
have their IDs and Cartesian coordinates within the
original image are retained after the detection process.

4.4  Processing time required for standard
OILU markers identification
The identification scheme described in section 4 has been

implemented and tested on a typical Laptop equipped
with a 2.4 GHz Intel Core i7 processor with 16 GB

Table 2 : OILU decoding matrix. Each column corresponds to one triangle in which each segment is coded in binary
(s;:l means the segment is detected as being black)

T1 T2 T3 T4 Lookup table 1
s$ s¢ s3 Sq digity (must equal 1111)
st s? s3 st digit;
SN-1 Sf-1 Sh-1 SN-1 digit n-1
Sy sz s3 sy digit
Table 3 : Average processing time.
Proposed method (Chahir et al., 2021)
) method
Architecture Step - -
Average time per step Total time Total time /candidate
Image (640x480) /candidate
1 17.33 ms
Typical laptop 2 1.24 ms 19 ms 40 ms
3 0.43 ms
Tvoical Android 1 22.08 ms
ypical Androl 2 1.87 ms 25.06 ms Not reported
smartphone
3 1.10 ms

Step 1 : Finding Marker Candidate — Step 2 : Perspective corrections — Step 3 : Marker validation
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RAM, running Windows 10. The processing time can be
divided into three main steps: (1) finding marker
candidates (including image processing, contours
extraction and eligible squares determination), (2)
perspective correction of all candidates, and (3) markers
validation. The execution of the first step can be affected
by the size S of the input image and the complexity of its
texture in terms of contained contours; while the
processing of the second and the third steps are only
dependent on the marker canonical-size w, X w,. Table 3
resumes the average execution time of each step taken
for multiple input-images of size S = 640 x 480 and
canonical-size of 256 x 256 pixels.

resolution, the detection time increases to reach the
second.

Despite reducing processing times by almost half
compared with the work of Chahir et al. [10], the adopted
scheme relies also on external marker’s corners for
localization, making it by the way, vulnerable to corners
occlusion. Moreover, as the identification scheme
integrates homography transform in its processing,
computation performances decrease with an increase in
the image resolution as well as in the number of markers

1000
900
800
700
600
500
400
300
200
100

Average Extraction time (ms)

4 5 6 7

—&— Average Execution Time
Average Execution Time -Poly Fit

y =3,4579x? + 1,1287x + 17,367

8
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In the following, an improved OILU marker system
design is proposed. It involves enclosing the embedded
identifier within two nested square-like quadrilaterals,
enabling efficient marker detection even when the
external marker’s corners are occluded (Figure 8). The
developed identification method considers OILU
numbers as groups of locally parallel segments, treating
them separately without the need for a homography
transform, thereby reducing computation resources and
minimizing processing time.

5 Improved OILU Markers System

Design

Common, well-known problems with state-of-the-art
markers include detection failures when their corners are
occluded, as well as a lack of size adaptation to the
camera's field of view (FOV), especially when the
camera is in motion. This is evident, for example, when
an autonomous drone attempts a landing based on its

9 10 11 12 13 14 15 16 17

Input image size (Mega pixel)

Figure 7 : Evolution of the average detection time of the OILU code in function of the input-image size with its
polynomial distribution fit.

Figure 8 : Groups of locally parallel segments
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(a) (b)
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Figure 9 : Example of OILU markers with fixed inner and outer squares embedding different
identifiers. (a) 1d1=0000. (b) 1d2= 6819. (c) 1d3= 2372. Embedded symbols are drawn with
disconnected segments (without corners) to distinguish them from the inner/outer quadrilaterals.

on-board camera. These issues have been addressed in
various works [2-28-29]. An interesting approach
presented in [2] involves designing fractal markers
composed of imbricated quadrilaterals. In addition, being
multi-scale markers, the latter are robust to partial
occlusions. This inherent structure is characteristic of
OILU markers, which are made up of nested square
symbols, allowing their structure to be customized to
overcome the above-mentioned problems. Hence, the
adopted structure (Figure 9) is as follows:

- Two imbricated inner/outer square

quadrilaterals as marker delimiters.
- A group of disconnected segments to embed the
marker identifier

Such a disposition facilitates marker detection even
within a complex background. Thus, the detection task
involves searching for imbricated similar square-like
quadrilaterals within a filmed scene. This selective
pattern eases OILU marker detection while eliminating
non-OILU quadrilaterals. On the other hand, this
arrangement enhances the resilience of the markers to
partial occlusion affecting generally the outer
quadrilateral. Since these imbricated quadrilaterals
exhibit a similar structure, any partial occlusion on the
outer quadrilateral can be approxmately reconstructed

like —

R= round(ds/d»)

@

through uniform rescaling from the inner quadrilateral.
This noteworthy feature is thoroughly exploited in the
experiment section to strengthen markers detection and
pose estimation even under occlusion.

5.1 Candidate marker’s location

As mentioned before, OILU markers are principally
composed of two imbricated square-like quadrilaterals.
Such composition eases markers’ location task even
within a complex background (Figure 10). For more
selectivity, the fixed inner/outer quadrilateral’s surface
ratio is used to eliminate surrounding non-OILU
quadrilaterals.

5.2 Marker identification

A deep evaluation of the perspective distortion levels
within the adopted markers shows that these are more
significant between the different groups of parallel
segments (Gpl, Gp2, Gp3 and Gp4) than within the same
group (figure 8). Indeed, parallel lines in the same group
remain locally parallel, even if the marker is acquired in
perspective. In another way, each group of lines can be
considered as rallway ties (Flgure 11.a) for which

(®)

Figure 11 : (a) Computed railway interline ratios. (b) Real OILU markers identification
based on cross ratios computation.
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computed Euclidean length ratios remain invariant to
perspective changes [30]. The challenge here is to exploit
such ratios to generate the related embedded sub-codes
without using homography.

The adopted approach involves crossing the composing
groups of lines (Gpi) with a virtual line centered on the
middle of the marker (Figure 11.b). Crossed lines
sections are then used to locate the corresponding cross
points and generate associated sub-codes. The quantity of
retained cross-point sets within each group can range
from one to multiple, depending on the desired level of
resilience against distortions, particularly occlusion. For
example, when markers are fully visible, a single set per
group is adequate for marker identification. However, in
scenarios where parts of the marker are obscured,
multiple sets from various regions are required to
confirm the most common ones. It is noteworthy that in

(a)
(b)

(c)

A

(d)

R:=1 Ri=2

Inner boundary !

cross point '

R:=3 R;:
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case of significant occlusion, identification may fail
even with multiple selected regions. Deep tests in the
experimental section will show the accuracy and limits of
this approach. Globally, the adopted OILU marker code
generation process is as follows:
First, for each group Gpi (i= 1 to 4) the following metrics
are computed:
Group’s metrics computation
- the number (N) of cross points,
- the (N -1) inter-dots Euclidian distances {d;, j=1 to N
-1},
- the group band width W; = Y7 d; ,
- the average dots spacing A; = W; /S, with S the
number of code symbols,
- the ratios R; = round (d;/A;).
Cross points positions are estimated according to their
computed ratios Rj and marker’s format (number of

Symbol dot

0000

I
-

Outer boundary

cross point

Varlation ranges (*)

Figure 12 : Cross points position estimation, (*) Colored bands delimit the
cross-point variation intervals.

embedded symbols). In case of a four symbols marker,
the possible configurations to be tested are as follows:

Cross Points Position Estimation
R; = round (d/A;) // with Ai, the average cross
points spacing of Gp;

if Rj = 1 the -corresponding points are
adjacent /I case (a)
else if R; =2 related points are separated by one

empty space /I case (b)
else if R; =3 related points are separated by two
empty spaces // case (C)

else related points are separated by three empty
spaces /I case (d)
end

The basic example (Figure 12) illustrates the case where
the number of cross points within a group is equal to
three (two inner/outer boundary points and one symbol
cross point). The number of inter-cross points Euclidean
distances is equal to two (d,, d,). Computed metrics are:
W; = d, +d,; Ai = W;/4; R, = round (d,/4;).
Therefore, the presented red symbol cross point will be
in one of the four cases {(a), (b), (c) or (d)}, according
to R, value, equal to 1, 2, 3 or 4.

A second illustrative example (Figure 13) shows three
different views of a real marker (embedding the decimal
number 0389). Developed identification method,
calculates for each group of segments the corresponding
cross points coordinates and metrics. It is worth
mentioning that, since processing is carried out
separately on each group of cross points, perspective
distortions have no impact on the computed ratios and,
consequently on the related embedded codes, making
homography transformation unnecessary for the marker
identification. In the following, deep tests on real OILU
markers are performed to evaluate the correctness and
robustness of this approach against leading.
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Gp; Gpi Gp; Gp, Gps Gpa
% Gp: (4 dots) | (5 dots) (6 dots) (5 dots)
/ ds 71.67 19.91 22.98 21.32
d> 23.93 19.93 23.52 43.49
ds 24.70 39.50 23.19 22.58
— ds - 20.07 23.65 22.67
Gps ;// ds - - 24.18 -
P Ai 24.06 19.88 23.51 22.01
Code | 1100 | 12011 | 1111 | 1101
Gpi Gp1 Gp2 Gps Gps
' , L= (4 dots) (5 dots) (6 dots) (5 dots)
e — ds 68.55 17.93 22.59 19.89
d; 23.12 17.87 23.14 40.21
”’ I ds 22.99 35.63 22.91 20.38
S v ds - 17.59 23.19 20.78
‘ ‘ e ds - - 23.17 -
—— Ai 22.93 17.81 23.00 20.25
Code | 1100 | 1011 | 1111 | 1101
Gpi Gp1 Gp2 Gps Gps
(4 dots) (5 dots) (6 dots) (5 dots)
\\ ds 71.02 20.17 24.19 22.31
// \ d; 23.84 20.03 24.55 44.60
ds 23.76 40.18 24.28 22.50
\\/ da - 19.61 24.75 23.04
ds - - 24.61 -
A 24.27 22.65 24.48 25.30
Code | 1100 | 1011 | 1111 | 1101
6 Experiments 6.1 Marker to camera distance impact

Tests are carried out on a huge database of synthetic and
real markers, with nearly 5000 markers, available in
three groups of different sizes: small (5c¢m x5 cm),
medium (10 cm X 10 cm), and large (15 c¢cm x 15 cm).
Printed markers are placed on a rotating support, using
different types of cameras. Specifically, we employ a
high-resolution Logitech camera (Figure 14.a), and a
smartphone camera (Figure 14.b). Deeper tests with a
large number of markers, displayed on a Surface Pro X
tablet are also performed to assess the performance of
our method under various distortion conditions (Figure
14.c). In our tests, we compared the performance of our
developed marker with two well-known markers, ArUco
and AprilTag. We gathered data for each tag family,
36h12 and 16h3 for ArUco and 25h9, and 36h10 for
AprilTag.

Codes for the developed marker (generation/detection) as
well as the OILU database (images and videos) are
publicly available for download at the link:
https://github.com/OILUproject/OILUtag.

Initially, we evaluate the impact of the marker-to-camera
distance on the performances of markers detection. The
camera was positioned in front of the marker at different
distances d, ranging from 0.2m to 4 m. Obtained
identification results are presented in Table 4. Compared
with the ArUco and April Tags results, the proposed
marker performs less well when using a fixed-focus
camera (Logitech in our case). As distance increases,
adjacent parallel lines expand, forming a uniform area
that prevents accurate identification. This problem can be
solved by using an autofocus camera, such as that on a
smartphone. Note that after a certain distance (superior
than 4,5m), markers identification became dependent on
the camera resolution. The higher the resolution, the
better the identification and vice versa.


https://github.com/oiluproject/oilutag
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(b)

Figure 14 : The experiment setup involves a rotating plate with embedded markers, which is controlled by a
stepper motor to accurately capture the markers in a perspective view. (a) A high-resolution front camera is
used to record video sequences at various distances ranging from 0.2 to 6 meters. (b) Acquisition based on a
smartphone camera. (c) A Surface Pro X tablet serves as a display platform to validate the identification scheme
across a large database of markers.

Table 4 : Robustness to distance.

. ArUco April OlILU
Cameras Distance (m)
T1 T2 T3 T1 T2 T3 Tl T2 T3
Logitech 2
Camera 3 X
4 X X X X

Smartphone g

Camera 4

(a) (b)

Figure 15 : Snapshots of a live video showing different perspective views of a real marker embedding the value
2758 (a) Failing identification case (B =10). (b) Successful marker identification (B = 20). (c) Successful marker
identification (§ =40).

ranging from 1 to 9 (Figure 16). By adjusting the size of
6.2 Robustness to viewing angle these circles across seven different sizes, we generated a
total of 3150 test images. The same process is adopted
with the well-known April and ArUco Tags. Generated
database, is evaluated using dedicated exploitation codes.
Obtained comparative tests (presented in Table 5)
confirm well that the suggested marker, characterized by
its consistent line-based pyramidal structure, outperforms
standard markers in handling difficult occlusion
distortions. Identification fails if the occlusion rate
exceeds 70% or if both inner and outer quadrilaterals are
partially occluded. Examples of snapshots from an
) available live video (Figure 17), show occulted markers
6.3 Robustness to occlusion identification cases in perspective view.
In these tests, we use a set of 50 unique OILU markers,
each marked by a varying number of opaque circles

The second tests concerned robustness to viewing angle
‘B’. Markers were placed 1m away from the camera and
acquired with varying viewing angles 3 € [10°: 90°]. The
obtained results show that all the codes examined are
indeed detected at angles greater than 15° (Figure 15).
Beyond this angle, the proximity of neighboring parallel
lines increases forming a homogeneous region that
prevents accurate identification.
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(b) (c)
(e) (D
Figure 16 : Occlusion tests using a set of 3150 synthetic markers. Opaque variable size circles are used for

occlusion. (a) 10% of the surface is occluded. (b) 20% occluded. (c) 30% occluded. (d) 40% occluded. (e) 55%
occluded. (f) 65% occluded.

Table 5 : Robustness to occlusion.

. Accuracy of the identification (in %)
Occlusion

(%) OILU . April

(3 symhols) ArUco (36h12) | ArUco (16h3) | April (25h9) (36h10)
10% 100 % 31.18% 88.14 % 56.18 % 50.70 %
20% 100 % 01.14 % 28.50 % 1.17% 0.33 %
30% 100 % 00 % 4.76 % 00 % 00 %
40% 100 % 00 % 2.80 % 00 % 00 %
50% 100 % 00 % 00 % 00 % 00 %
60% 100 % 00 % 00 % 00 % 00 %
| - 25l < ]

S —— S — O ——y
(a) ()

| ’ (b)
| « / S

|- .
(d) (e) (H

Figure 17 : Snapshots of live demo showing occlusion tests with real markers acquired in perspective view.
(a) 15% corner occlusion. (b) 30% corners occlusion. (c) 40% corners occlusion. (d) 50% corners occlusion.
(e) 40% middle segments occlusion. (f) 50% middle segments occlusion.
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(d)

Figure 18 : Pose estimation using ArUco, April, and OILU markers. (a) Successful pose estimation for the
three markers. (b) Occluded ArUco marker pose estimation failure. (c) Occluded April marker pose
estimation failure. (d) OILU Marker identification and pose estimation is possible even under occlusion.

Time Processing (ms)
S

1 2 3 4

5 6 7 8 9

Number of Markers

==\ pril

=l Aruco ==@==0LU

Figure 19 : Processing time based on the number of markers within the camera front of view.
Image resolution (1920x1080) and markers size (5cmx5cm).

The illustrated test in Figure 18 shows the advantages of
the OILU structure over the most commonly used
markers, namely ArUco and AprilTag when estimating
their pose. While this task may seem straightforward in
the absence of any occlusion (Figure 18.a), any partial
occlusion presents a significant challenge that OILU
markers successfully overcome (see Figures 18.b, ¢ and
d). In fact, if the outer quadrilateral is partially occluded,
the pose can still be estimated in relation to the inner
quadrilateral. Limits of course, appear when both inner
and outer quadrilaterals are occluded simultaneously,
which corresponds to a severe occlusion. Even in these
cases, it is possible to improve the chances of identifying
the marker by interpolating the existing lines to generate
the missing quadrilateral corners. These improvements
are currently being developed.

6.4 Execution time performances
evaluation

The described identification method presented in Section
5.2 has been implemented and compared with the
available ArUco [7] and April [8] tools using a Laptop
equipped with a 2.4 GHz Intel Core i7 processor with 16
GB RAM, running on Linux. Reported processing times
(Table 6), show that the proposed OILU system requires
less processing time than the ArUco and April systems,
at all processed image resolutions. The gap between the
different approaches is more important when dealing
with multiple markers within the camera front of view
(see figure 19).
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Table 6 : Processing times with one marker (ms).

Image Resolution oILU ('g‘égfg) é%;g; (?é’t:g) ( 3%?3('))

Loz\édl?oejzgé';ion 0.6 7.2 6.9 5.6 8.5
Medi(lgrgosgggl)ution 0.8 85 63 57 o3

Hi(%g;)isf(;géi)on 24 12.8 10.2 9.3 11

Such results confirm well that the improved OILU
solution outperforms state-of-the-art solutions in terms of
rapidity of identification. The remaining challenge is the
development of a fully hardware solution embedding the
entire OILU markers identification process within a
single System-on-Chip (SoC) device [31], ensuring thus
fluid identification for highly constrained SLAM
applications.

7 Conclusion

An improved OILU marker system design is proposed
for accurate detection and identification scheme. Two
approaches have been validated. The first one (based on
cumulative histogram analysis), includes homography to
process standard OILU markers. To further improve
marker detection and identification performances, a
second homography-less identification scheme is
proposed. The last involves enclosing the embedded
identifier within two nested square-like quadrilaterals,
allowing robust marker detection and identification even
under challenging occlusion distortions.

Compared with the main state-of-the-art markers, the
proposed approach presents approximately similar
detection and identification results, but with less
computational  resources and consequently less
processing time. The suggested marker design,
characterized by its consistent line-based pyramidal
structure, surpasses standard markers in handling
difficult occlusion distortions. Particular attention is paid
to the possibility of identifying and estimating the pose
of these markers, even if the external marker’s corners
are occluded.

At this stage, the developed marker does not integrate a
corrector code within it. An improved OILU marker
design including a CRC code is under development. It
allows retaining or rejecting marker identifiers without
affecting considerably the marker’s codification
capacities.

Overall, the primary aim of this work is to underscore the
potential benefits of employing uniform line-based 2D
markers as a viable alternative to established state-of-the-
art markers. Future work will extend the application of
OILU markers to visual simultaneous localization and
mapping (SLAM) projects, where markers are used to
embed various environmental and  orientation
information, exploited by unmanned aerial vehicle
(UAV) for accurate navigation and landing.
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