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Today, the most widely used visual markers, such as ArUco and AprilTag, rely on square pixel arrays. 

While these markers can deliver satisfactory detection and identification outcomes, they remain 

vulnerable to corner occlusion despite the incorporation of corrective codes. Conversely, line-based 

markers offer increased resilience against occlusions but are typically constrained in terms of 

codification capacities. The markers developed in this research leverage linear information to propose a 

pyramidal line-based structure that exhibits robustness to corner occlusion while providing enhanced 

coding capacities. Moreover, the projective invariance of the constituent lines enables the validation of 

a homography-less identification method that considerably reduces computation resources and 

processing time. Despite this, the homography transform remains applicable for pose estimation, where 

these markers demonstrate superior performance compared to state-of-the-art markers. Developed 

markers Generator and Identificator, as well as an extensive marker Database, are publicly available 

for tests at: https://github.com/OILUproject/OILUtag[Click here and Enter Abstract]  

Povzetek: "[Click here and Enter short Abstract in Slovene language]"  

 

1 Introduction
Visual markers are artificial graphical codes representing 

numerical (or textual message) information that can be 

associated with objects to be uniquely identified. 

Computer vision applications use these tags to simplify 

the automatic perception of objects inside a scene and 

make their localization more precise. These are widely 

used in product labeling and tracking, robotics 

localization and mapping [1], camera calibration and 

pose estimation [2-3], augmented reality applications [4], 

automatic navigation [5] and medical positioning [6]. 

 Today, the most prevalent visual markers, such as April 

[7] and ArUco [8] Tags, utilize square pixel arrays. 

Although these markers often yield satisfactory detection 

and identification results, they remain susceptible to 

external corners occlusion despite the inclusion of error 

correction codes. In contrast, line-based markers offer 

greater resilience against occlusions but are often 

constrained in coding capacities [9]. Recently, Chahir et 

al. [10] introduced a novel line-based marker called the 

OILU marker, addressing codification limitations. This 

marker utilizes groups of pyramidal-shaped lines to 

create highly distinguishable 2D markers (Figure 1.a). 

While offering significant advantages in coding 

capabilities, the developed identification method, which 

relies on a time-consuming level set technique [11], 

slows down processing, particularly in scenarios where 

multiple markers are in the camera's field of view. The 

reported average processing time is approximately 40 ms 

per marker, making this solution unsuitable for 

constraining real-time applications. In addition, the 

proposed scheme (marker design and identification 

method), does not solve the problem of external corners 

  
(a) (b) 

Figure 1 : (a) Classical OILU Marker embedding the decimal number 6789. (b) Improved OILU Marker 

identification and pose estimation even under corners occlusion. 
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occlusion, for which most square markers remain 

ineffective. In fact, if just one corner of these markers is 

occulted, the detection fails. 

In this paper, a less computational identification method 

is developed, based on cumulative histogram analysis 

that allowed reducing processing times by almost half 

compared with the work of Chahir et al. [10]. However, 

as the method relies only on the external marker’s 

corners for localization, it also remains vulnerable to 

external corners occlusion. Moreover, as the 

identification scheme integrates homography transform 

in its processing, computation performances decrease as 

the number of markers within the camera's field of view 

increases.  

A revised marker design (Figure 1.b), as well as a 

dedicated homography-less identification approach, are 

then proposed to remedy these weaknesses. The adopted 

identification scheme exploits the marker’s local 

properties to switch from a line-based representation to a 

more accurate and relatively fast dot-based one. 

Deep tests on real images highlight the performance and 

robustness of the proposed solution against challenging 

conditions, with a particular focus on corners occlusion. 

Despite this, the homography transform remains 

applicable for pose estimation, where improved markers 

demonstrate superior performances compared to state-of-

the-art markers. 

In summary, the main contributions of this paper are : 

- The OILU Tag's layout design has been 

enhanced to offer more robustness to occlusion 

and overlapping objects. 

- The proposal introduces a low computational 

homography-less identification method. The 

average execution time has been considerably 

reduced for both desktop and mobile 

architectures, making it suitable for constraining 

real-time applications.  

- A Dedicated OILU Tag Generator as well as a 

huge database are made available for 

comparative tests with the well-known state-of-

the-art visual Tags.   

The remainder of this paper is organized as follows: 

Section 2 provides a quick literature review on well-

known fiducial markers. Section 3 briefly presents the 

OILU code basics and highlights its key strengths as 

being an efficient visual marker. Sections 4 describe our 

primary OILU marker identification scheme, followed in 

Section 5 by the presentation of a revised marker design, 

as well as its validated homography-less identification 

approach. In section 6, extensive tests are conducted on 

real images. Finally, section 7 concludes the paper with 

interesting perspective views.  

 

2 Related Works 
There are many conceptions of visual markers in the 

literature (Figure 2). These can be clustered into three 

main categories: square-based, line-based, and dot-based 

tags. The first category regroups all QR-like tags that 

encode binary information in black/white cells arranged 

in square grid layouts. ARToolKit [12] is the oldest 

fiducial marker proposed for AR applications. It consists 

of a black-bordered square inside which is embedded in a 

known image as a payload. Its limitation resides in the 

matching method that uses image correlation techniques 

to detect the embedded pattern. ARToolKitPlus and 

ARTag [13-14] are improved versions released to 

overcome these limitations. They use binary-coded 

patterns to encode the embedded identifier. Furthermore, 

the ARTag introduces additional information as an error-

correction payload. Based on ARTag’s idea, many 

efficient square markers were proposed, among them 

April Tag [7] and ArUco Tag [8] which became 

ubiquitous in the AR field. Both allow generating of 

user-customized dictionaries using some heuristics to 

maximize some criterion such as inter-marker distance 

and the number of bit-transitions. Recently, a new 

square-like TopoTag was introduced by Yu et al. [15]. 

 It offers a highly customizable marker shape, allowing 

for flexibility in marker design. The fundamental 

structure of the marker consists of a black frame with 

black squares positioned on a white background. One 

notable advantage of TopoTag is its variable dictionary 

size. The authors claim that generating the dictionary is 

significantly faster compared to similar marker systems 

like April and ArUco Tags. Based on AprilTag, [16] 

proposed ChromaTag by using different colors to 

represent the internal bits to make the detection easier 

and speed up its decoding. 

   

(a) ARToolkitPlus (b) AprilTag (c) ArUco Tag 

 
 

 

(d) CCTag (e) Pi-Tag  
Figure 2 : Examples of well-known visual markers. 
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Line-based markers apply some measurements on the 

basic forms like line-thicknesses and angles sizes to 

encode the elementary information. Usually, markers in 

this approach are robust against bad acquiring conditions 

such as blurring and variation in lighting. They perform 

well in case of occlusion situations. Based on the 

classical linear bar code, Calvet et al. [17] proposed a 

circular version, called CCTag, in which the lines have 

been substituted by circles with different thicknesses. 

Dot-based tags [18-19] enable the developing of 

projective invariants fiducial marker systems based on 

cross ratios computation. Even though these markers 

exhibit higher accuracy in camera calibration and pose 

estimation, they offer a limited number of distinctively 

recognizable patterns [20]. 

OILU Tag [10] is a distinct type of fiducial marker, 

based on the two initial categories. It distinguishes itself 

from other fiducial markers in two main aspects: firstly, 

both humans and machines can read it. Secondly, it 

exclusively employs lines as primary patterns to encode 

the elementary information. Table 1 presents well-known 

markers along with their features such as shape and 

dictionary size. 

The decision to use lines as the primary pattern is 

supported by several justifications. Lines inherently 

possess redundant information, which enhances their 

resilience against occlusion and blurring effects when 

compared to dots or square cells. Moreover, lines can be 

effectively utilized as separators between highly 

contrasting regions, thus providing additional advantages 

in marker detection and recognition. 

3  OILU Markers Basics  
OILU markers as described in [10], are based on a set of 

four basic symbols {O, I, L, and U}, corresponding 

respectively to digits zero, one, two, and three (Figure 

3.a). The remaining decimal symbols, related to digits {4, 

5, 6, 7, 8, 9}, are obtained by successive counter-

clockwise rotations of the two symbols L and U. The 

important feature of these symbols is their ability to be 

concatenated in a pyramidal fashion, producing multi-

faceted numbers that can be exploited as visual markers 

(Figure 3.b). Each OILU symbol is coded in bi-nary 

according to Figure 3.c. 

In the following, we will detail our improved 

identification approach based on cumulative histograms 

analysis. Compared to the level set method, presented in 

[10], the adopted approach is relatively simple and 

computationally efficient. It operates on classical OILU 

markers, and incorporates homography in its processing 

[21, 22]. 

4 Standard OILU Markers 

Detection and Identification  
To ease detection, the visual OILU markers are printed 

with black-outlined segments on a white background (or 

inversely). The identification process follows the 

classical computer vision pipeline, which involves three 

key stages: pre-processing, code detection, and decoding. 

The complete process presented in Figure 4 is as follows: 

 

Figure 3 : (a) Decimal OILU Symbols representation. (b) Pyramidal OILU representation of the decimal number 

1962. (c) OILU Symbols binary codification based on the presence (1)/absence (0) of the composing segments 

{Seg1, Seg2, Seg3, Seg4}. The whole symbols are incorporated in a square to delimit their area in a real-world 

scene. 

Table 1. Main markers specifications 
 Family Shape Scalability Dictionary Size Color 

AprilTag Qr-like Square Limited 5329 Black 

ArUco Qr-like Square Limited 250 Black 

CCTag Bar-like Circular Limited 39 Black 

Pi-tag Dot-like Square Limited 300 Black 

OILU Tag Bar-like Square Yes 10000 Black 
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4.1 Preprocessing  

The primary objective of the pre-processing stage is to 

enhance the quality of the captured images for the 

subsequent stages. To achieve this, classical image 

processing filters can be applied [23], while considering 

that modern cameras are capable of capturing high-

resolution images. In real-time applications, a trade-off 

must be made between speed and accuracy. Down 

sampling the captured images enables quick noise 

filtering and reduces the execution time, especially in the 

subsequent stages. The output of this stage is an 

improved grayscale image (as shown in Figure 4.b). 

4.2 Eligible markers detection  

Its goal is to localize all possible quadrilaterals eligible to 

be square-OILU markers in the grayscale image. The 

process comprises three main steps: 

4.2.1 Image Thresholding  

The first step after obtaining the enhanced grayscale 

image is to binarize it, which separates the objects 

present in the image from the background. This makes 

the extraction of contours possible in the subsequent step. 

Several methods can be used for binarization [23]. The 

simplest method is direct thresholding, where a global 

threshold is applied; however, this method performs 

poorly on images with multimodal histograms. The 

Canny method can be used, but it is time-consuming for 

real-time applications. For better performance, we utilize 

a local adaptive thresholding method, which is robust to 

varying lighting conditions and does not depend on a 

global threshold choice. Figure 4-c depicts the resulting 

binarized image. 

4.2.2 Contour extraction  

Given the square shape of the OILU Tag, we search for 

all potential quadrilateral shapes in the binarized image 

that could correspond to an OILU marker. To accomplish 

this, we first extract the contours of the image by tracing 

the transitions between black and white pixels, as 

described in [24]. Next, we approximate the obtained 

contours to the nearest polygonal shape using the 

Douglas-Peucker algorithm [25] (as shown in Figure 4-

d). We only retain those shapes that are convex and have 

four corners (Figure 4-e). Some refinement steps are 

necessary to eliminate contours that are too small, too 

large, or too close to each other [26]. 

4.2.3 Candidate markers determination and 

perspective adjustment  

Although we retain all convex quadrilaterals that have 

four corners in the previous step, not all of them are 

regular squares. Some may be subject to 2D 

transformation constraints such as rotations or 

perspective distortions. To correct these irregularities, a 

homography is applied to the sub-image framed by the 

quadrilateral. Once corrected, each obtained sub-image is 

resampled to a canonical grayscale image of size Wc × 

Wc using linear interpolation. The output of this step is a 

list of candidate square-shaped marker images (as 

depicted in Figure 4-f). 

Figure 4 : OILU Marker Detection process. (a) Input image acquiring. (b) input image processed and grayscale 

converted. (c) Binarized image. (d) Contours extracted. (e) Eligible markers extracted. (f) Perspective correction 

using homography. (g) Markers decoded. 
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4.3 Marker validation and decoding  

Each candidate marker in the obtained list needs to be 

processed to confirm its content as an OILU marker and 

read its embedded identifier. As previously mentioned, 

each digit of the identifier is encoded in a separate layer 

using four segments that reflect the OILU symbolic. The 

challenging part is to identify the position of each layer, 

locate each segment within it, and extract its binary 

content, particularly in critical situations such as 

occlusions and noise. More formally, let K be an integer 

having N decimal digits, and M its corresponding OILU 

code. The segment-based binary codification of M is: 

𝑀 = {(𝑠0
𝑖 , 𝑠1

𝑖 , 𝑠2
𝑖 , 𝑠3

𝑖 , 𝑠4
𝑖 )}

𝑖=1

𝑁
, 𝑠𝑗

𝑖 ∈ {0,1} 𝑓𝑜𝑟 𝑗 = 1. .4 (1) 

The size of the embedded identifier (N), which 

corresponds to the number of layers, is unknown 

beforehand. Furthermore, no assumptions are made 

regarding the thickness of the segments, whether they are 

equal or not. When the segments are of equal width, the 

binary square image can be divided into a matrix of the 

same width and height as the segment width to isolate the 

segments easily. However, designing an OILU marker 

with different segment thicknesses and inter-layer space 

widths makes it more flexible and robust to a wide range 

of distortions, occlusions, and noise. In the subsequent 

paragraphs, we will consider this last case, which is more 

challenging. The decoding procedure, illustrated in 

Figure 5, involves several steps: 

Figure 5 : Decoding process: Each layer in a given OILU marker contains at least one black segment. 

Performing a bitwise-or operator on the four triangles (sectors) constituting the OILU -marker results in a 

merged template that contains a black segment on each layer. The merged template allows delimiting each 

black/white segment in each individual triangle. 
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4.3.1 Binarization  

Since OILU tags are bimodal histogram images, utilizing 

Otsu's thresholding method [27] is the optimal method to 

obtain binarized images. This technique determines the 

ideal threshold value between the predominantly white 

background and the typically black OILU segments. In 

the resulting binarized image (Figure 4.c), we assign a 

value of '1' to the pixels belonging to the segments (i.e., 

the region of interest or ROI) and a value of '0' to the 

remaining pixels.  

4.3.2 Layers extraction and black segments 

localization 

The binary image is first divided into four triangles or 

sectors, denoted as T1, T2, T3, and T4. Each triangle Ti 

comprises a set of alternating black and white bands that 

contain the encoded segments. A black band indicates a 

binary one '1', while a white band could represent zero '0' 

or multiple consecutive zeros '0' (as illustrated in Figure 

5). To locate the segments within the image, we utilize a 

useful property of the OILU marker that states "each 

layer contains at least one black segment". Therefore, 

combining all the triangles by performing a bitwise-OR 

operation between their contents yields a template 

triangle T (2) containing the exact number of black 

segments equal to the number of digits N in the encoded 

identifier (as depicted in Figure 5). 

𝑇 =  𝑇1 +  𝑇2 +  𝑇3 + 𝑇4 (2) 

The merged triangle T plays the role of a template guide 

that allows to delimiting all the black/white segments in 

each layer by analyzing its horizontal and vertical 

cumulative histograms (respectively HCH and VCH) 

(Figure 6). The horizontal histogram HCH is the sum-

projection of pixel values along all rows inside the 

triangle T. 

𝐻𝐶𝐻𝑗 = ∑ T(𝑗, 𝑘)

𝑤𝑐

𝑘=1

; 𝑗 = 1. . 𝑊𝑐/2 (3) 

It allows localizing the black segments by following the 

transitions black-white. Indeed, black segments coincide 

with high ridges (peaks) in the HCH, while white ones 

constitute low valleys. To handle occlusion situations 

and to be robust against noise, a percentage threshold 

‘1 =2/3’ regarding the whole line is set up on deciding 

whether a horizontal-histogram value is black or white.  

𝐻𝐶𝐻𝑗 ≥ (w𝑐 − 2 ∗ 𝑗) ∗ 𝜔1 ⇒ 𝑇(𝑗) ≡ 𝑏𝑙𝑎𝑐𝑘 𝑙𝑖𝑛𝑒 (4) 

It’s worth noting to mention that 1 is dependent on the 

row position; outer rows correspond to high values of 1 

and vice-versa. The VCH is the vertical projection of T 

over all columns; it allows detecting the number of black 

bands confirming the horizontal histogram analysis 

results. 

𝑉𝐶𝐻𝑗 = ∑ T(𝑘, j)

𝑤𝑐/2

𝑘=1

; 𝑗 = 1. . 𝑊𝑐 (5) 

The clustering of many adjacent black (respectively 

white) rows in the HCH constitutes a black (respectively 

white) segment provided that the number of rows 

exceeds a threshold 2 = 25%. After creating the 

Figure 6 : An OILU triangle and its associated HCH and VCH. The triangle contains three black segments 

corresponding to three bits that can be easily delimited using the associated HCH, however, the number of white 

segments in the white bands and their locations are unknown. Note the influence of noise/occlusions on both histograms 

which will be omitted using the threshold 𝜔1. 
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merged template and locating its segments, we utilize it 

to determine the position of each segment within the four 

triangles. 

4.3.3 Marker validation 

In order to confirm that the embedded data is an OILU 

code, we only need to verify that the marker satisfies the 

following criteria, which serve as an OILU signature: 

• The strict alternation of bands: the merged 

triangle T comprises alternating black-white 

segments. The most outer (starting) band is 

black and the most inner (ending) is white. The 

number of all bands is always even. 

• Each black band in a triangle must correspond to 

a black band in the merged triangle. 

• Each segment must be connected (no small 

fragments). 

4.3.4 Marker decoding 

To decode the content of the validated marker, we follow 

the reverse process of the encoding procedure (as shown 

in Figure 5, decoding step), which involves the following 

steps: 

We affect the value “1” for each black segment and “0” 

for each white one starting from the most outer segment 

to the most inner.  

Each triangle (Ti) i=1..4 is composed of N+1 segments: 

Ti = {𝑠𝑖
𝑘}

𝑘=0

𝑁
, 𝑠𝑖

𝑘 ∈ {0,1} 𝑓𝑜𝑟 𝑖 = 1. .4 
(6) 

Next, we concatenate the binary values inside each 

triangle Ti to form a binary string: 

𝑠𝑡𝑟𝑖 = 𝑠0
𝑖 𝑠1

𝑖 . . 𝑠𝑁−1
𝑖 𝑠𝑁

𝑖 , 𝑓𝑜𝑟 𝑖 = 1. .4 (7) 

After that, we arrange vertically the four binary strings to 

form a decoding matrix (Table) starting by the left 

triangle and going counter clockwise (that is: left, 

bottom, right then upper). Each line of the decoding 

matrix represents a digit in the identifier whose decimal 

value can be obtained from the OILU codification table 

(Figure 3-c). These aforementioned steps are repeated for 

all eligible markers, and only the validated markers that 

have their IDs and Cartesian coordinates within the 

original image are retained after the detection process. 

4.4 Processing time required for standard 

OILU markers identification  

The identification scheme described in section 4 has been 

implemented and tested on a typical Laptop equipped 

with a 2.4 GHz Intel Core i7 processor with 16 GB

Table 2 : OILU decoding matrix. Each column corresponds to one triangle in which each segment is coded in binary 

(si
j
=1 means the segment is detected as being black) 

T1 T2 T3 T4 Lookup table 1 

𝑠0
1 𝑠0

2 𝑠0
3 𝑠0

4 digit0 (must equal 1111) 

𝑠1
1 𝑠1

2 𝑠1
3 𝑠1

4 digit1 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑠𝑁−1
1  𝑠𝑁−1

2  𝑠𝑁−1
3  𝑠𝑁−1

4  digit N-1 

𝑠𝑁
1  𝑠𝑁

2  𝑠𝑁
3  𝑠𝑁

4  digit N 

Table 3 : Average processing time. 

Architecture Step 

Proposed method 
(Chahir et al., 2021) 

method 

Average time per step 

Image (640x480) 

Total time 

/candidate 
Total time /candidate 

Typical laptop 

1 17.33 ms 

19 ms 40 ms 2 1.24 ms  

3 0.43 ms  

Typical Android 

smartphone 

1 22.08 ms 

25.06 ms Not reported 2 1.87 ms 

3 1.10 ms 

Step 1 : Finding Marker Candidate – Step 2 : Perspective corrections – Step 3 : Marker validation 
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RAM, running Windows 10. The processing time can be 

divided into three main steps: (1) finding marker 

candidates (including image processing, contours 

extraction and eligible squares determination), (2) 

perspective correction of all candidates, and (3) markers 

validation. The execution of the first step can be affected 

by the size S of the input image and the complexity of its 

texture in terms of contained contours; while the 

processing of the second and the third steps are only 

dependent on the marker canonical-size 𝑤𝑐 × 𝑤𝑐. Table 3 

resumes the average execution time of each step taken 

for multiple input-images of size 𝑆 =  640 × 480 and 

canonical-size of 256 × 256 pixels. 

resolution, the detection time increases to reach the 

second.  
Despite reducing processing times by almost half 

compared with the work of Chahir et al. [10], the adopted 

scheme relies also on external marker’s corners for 

localization, making it by the way, vulnerable to corners 

occlusion. Moreover, as the identification scheme 

integrates homography transform in its processing, 

computation performances decrease with an increase in 

the image resolution as well as in the number of markers

In the following, an improved OILU marker system 

design is proposed. It involves enclosing the embedded 

identifier within two nested square-like quadrilaterals, 

enabling efficient marker detection even when the 

external marker’s corners are occluded (Figure 8). The 

developed identification method considers OILU 

numbers as groups of locally parallel segments, treating 

them separately without the need for a homography 

transform, thereby reducing computation resources and 

minimizing processing time. 

5 Improved OILU Markers System 

Design 

Common, well-known problems with state-of-the-art 

markers include detection failures when their corners are 

occluded, as well as a lack of size adaptation to the 

camera's field of view (FOV), especially when the 

camera is in motion. This is evident, for example, when 

an autonomous drone attempts a landing based on its  

Figure 7 : Evolution of the average detection time of the OILU code in function of the input-image size with its 

polynomial distribution fit. 

Figure 8 : Groups of locally parallel segments 
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on-board camera. These issues have been addressed in 

various works [2-28-29]. An interesting approach 

presented in [2] involves designing fractal markers 

composed of imbricated quadrilaterals. In addition, being 

multi-scale markers, the latter are robust to partial 

occlusions. This inherent structure is characteristic of 

OILU markers, which are made up of nested square 

symbols, allowing their structure to be customized to 

overcome the above-mentioned problems. Hence, the 

adopted structure (Figure 9) is as follows:  

- Two imbricated inner/outer square like –

quadrilaterals as marker delimiters. 

- A group of disconnected segments to embed the 

marker identifier 

Such a disposition facilitates marker detection even 

within a complex background. Thus, the detection task 

involves searching for imbricated similar square-like 

quadrilaterals within a filmed scene. This selective 

pattern eases OILU marker detection while eliminating 

non-OILU quadrilaterals. On the other hand, this 

arrangement enhances the resilience of the markers to 

partial occlusion affecting generally the outer 

quadrilateral. Since these imbricated quadrilaterals 

exhibit a similar structure, any partial occlusion on the 

outer quadrilateral can be approximately reconstructed 

through uniform rescaling from the inner quadrilateral. 

This noteworthy feature is thoroughly exploited in the 

experiment section to strengthen markers detection and 

pose estimation even under occlusion. 

5.1  Candidate marker’s location 

As mentioned before, OILU markers are principally 

composed of two imbricated square-like quadrilaterals.  

Such composition eases markers’ location task even 

within a complex background (Figure 10). For more 

selectivity, the fixed inner/outer quadrilateral’s surface 

ratio is used to eliminate surrounding non-OILU 

quadrilaterals.  

5.2 Marker identification 

A deep evaluation of the perspective distortion levels 

within the adopted markers shows that these are more 

significant between the different groups of parallel 

segments (Gp1, Gp2, Gp3 and Gp4) than within the same 

group (figure 8). Indeed, parallel lines in the same group 

remain locally parallel, even if the marker is acquired in 

perspective. In another way, each group of lines can be 

considered as railway ties (Figure 11.a) for which 

Figure 9 : Example of OILU markers with fixed inner and outer squares embedding different 

identifiers. (a) Id1=0000. (b) Id2= 6819. (c) Id3= 2372. Embedded symbols are drawn with 

disconnected segments (without corners) to distinguish them from the inner/outer quadrilaterals. 

Figure 11 : (a) Computed railway interline ratios. (b) Real OILU markers identification 

based on cross ratios computation. 

Figure 10 : OILU markers detection within complex backgrounds. 
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computed Euclidean length ratios remain invariant to 

perspective changes [30]. The challenge here is to exploit 

such ratios to generate the related embedded sub-codes 

without using homography. 

The adopted approach involves crossing the composing 

groups of lines (Gpi) with a virtual line centered on the 

middle of the marker (Figure 11.b). Crossed lines 

sections are then used to locate the corresponding cross 

points and generate associated sub-codes. The quantity of 

retained cross-point sets within each group can range 

from one to multiple, depending on the desired level of 

resilience against distortions, particularly occlusion. For 

example, when markers are fully visible, a single set per 

group is adequate for marker identification. However, in 

scenarios where parts of the marker are obscured, 

multiple sets from various regions are required to 

confirm the most common ones. It is noteworthy that in

 case of significant occlusion, identification may fail 

even with multiple selected regions. Deep tests in the 

experimental section will show the accuracy and limits of 

this approach. Globally, the adopted OILU marker code 

generation process is as follows:  

First, for each group Gpi (i= 1 to 4) the following metrics 

are computed: 

Group’s metrics computation                                 
- the number (N) of cross points,  
- the (N -1) inter-dots Euclidian distances {dj, j=1 to N 

-1},  

- the group band width Wi =  ∑ 𝑑𝑗
𝑁−1
𝑗=1  , 

- the average dots spacing Ai = Wi /S, with S the 
number of code symbols, 

- the ratios Rj = round (dj /Ai). 
Cross points positions are estimated according to their 

computed ratios Rj and marker’s format (number of

embedded symbols). In case of a four symbols marker, 

the possible configurations to be tested are as follows: 

Cross Points Position Estimation 
Rj = round (dj/Ai)   // with Ai, the average cross 

points spacing of Gpi 
if Rj = 1 the corresponding points are 

adjacent                                        // case (a) 
  else if  Rj = 2  related points are separated by one 

empty space        // case (b) 
     else if  Rj = 3  related points are separated by two 

empty spaces   // case (c) 
  else  related points are separated by three empty 

spaces                  // case (d) 
end  

The basic example (Figure 12) illustrates the case where 

the number of cross points within a group is equal to 

three (two inner/outer boundary points and one symbol 

cross point). The number of inter-cross points Euclidean 

distances is equal to two (𝑑1, 𝑑2). Computed metrics are: 

𝑊𝑖 =  𝑑1 + 𝑑2;  𝐴𝑖 = 𝑊𝑖/4; 𝑅1 =  𝑟𝑜𝑢𝑛𝑑 (𝑑1/𝐴𝑖). 
Therefore, the presented red symbol cross point will be 

in one of the four cases {(𝑎), (𝑏), (𝑐) 𝑜𝑟 (𝑑)}, according 

to 𝑅1 value, equal to 1, 2, 3 or 4. 

A second illustrative example (Figure 13) shows three 

different views of a real marker (embedding the decimal 

number 0389). Developed identification method, 

calculates for each group of segments the corresponding 

cross points coordinates and metrics. It is worth 

mentioning that, since processing is carried out 

separately on each group of cross points, perspective 

distortions have no impact on the computed ratios and, 

consequently on the related embedded codes, making 

homography transformation unnecessary for the marker 

identification. In the following, deep tests on real OILU 

markers are performed to evaluate the correctness and 

robustness of this approach against leading. 

Figure 12 : Cross points position estimation, (*) Colored bands delimit the  

cross-point variation intervals. 
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6 Experiments 
Tests are carried out on a huge database of synthetic and 

real markers, with nearly 5000 markers, available in 

three groups of different sizes: small (5 𝑐𝑚 × 5 𝑐𝑚), 

medium (10 𝑐𝑚 × 10 𝑐𝑚), and large (15 𝑐𝑚 × 15 𝑐𝑚). 

Printed markers are placed on a rotating support, using 

different types of cameras. Specifically, we employ a 

high-resolution Logitech camera (Figure 14.a), and a 

smartphone camera (Figure 14.b). Deeper tests with a 

large number of markers, displayed on a Surface Pro X 

tablet are also performed to assess the performance of 

our method under various distortion conditions (Figure 

14.c). In our tests, we compared the performance of our 

developed marker with two well-known markers, ArUco 

and AprilTag. We gathered data for each tag family, 

36h12 and 16h3 for ArUco and 25h9, and 36h10 for 

AprilTag. 

Codes for the developed marker (generation/detection) as 

well as the OILU database (images and videos) are 

publicly available for download at the link: 

https://github.com/OILUproject/OILUtag. 

6.1 Marker to camera distance impact 

Initially, we evaluate the impact of the marker-to-camera 

distance on the performances of markers detection. The 

camera was positioned in front of the marker at different 

distances d, ranging from 0.2m to 4 m. Obtained 

identification results are presented in Table 4.  Compared 

with the ArUco and April Tags results, the proposed 

marker performs less well when using a fixed-focus 

camera (Logitech in our case). As distance increases, 

adjacent parallel lines expand, forming a uniform area 

that prevents accurate identification. This problem can be 

solved by using an autofocus camera, such as that on a 

smartphone. Note that after a certain distance (superior 

than 4,5m), markers identification became dependent on 

the camera resolution. The higher the resolution, the 

better the identification and vice versa. 

https://github.com/oiluproject/oilutag
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6.2 Robustness to viewing angle 

The second tests concerned robustness to viewing angle 

‘β’. Markers were placed 1m away from the camera and 

acquired with varying viewing angles β ∈ [10°: 90°]. The 

obtained results show that all the codes examined are 

indeed detected at angles greater than 15° (Figure 15). 

Beyond this angle, the proximity of neighboring parallel 

lines increases forming a homogeneous region that 

prevents accurate identification. 

6.3 Robustness to occlusion 

In these tests, we use a set of 50 unique OILU markers, 

each marked by a varying number of opaque circles 

ranging from 1 to 9 (Figure 16). By adjusting the size of  

these circles across seven different sizes, we generated a 

total of 3150 test images. The same process is adopted 

with the well-known April and ArUco Tags. Generated 

database, is evaluated using dedicated exploitation codes. 

Obtained comparative tests (presented in Table 5) 

confirm well that the suggested marker, characterized by 

its consistent line-based pyramidal structure, outperforms 

standard markers in handling difficult occlusion 

distortions. Identification fails if the occlusion rate 

exceeds 70% or if both inner and outer quadrilaterals are 

partially occluded. Examples of snapshots from an 

available live video (Figure 17), show occulted markers 

identification cases in perspective view. 

 

Table 4 : Robustness to distance. 

Cameras Distance (m) 
ArUco April OILU 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Logitech 

Camera 

2          

3       X   

4 X   X   X X  

Smartphone 

Camera 

2          

3          

4          

Figure 15 : Snapshots of a live video showing different perspective views of a real marker embedding the value 

2758 (a) Failing identification case (β =10). (b) Successful marker identification (β = 20). (c) Successful marker 

identification (β =40). 

Figure 14 : The experiment setup involves a rotating plate with embedded markers, which is controlled by a 

stepper motor to accurately capture the markers in a perspective view. (a) A high-resolution front camera is 

used to record video sequences at various distances ranging from 0.2 to 6 meters. (b) Acquisition based on a 

smartphone camera. (c) A Surface Pro X tablet serves as a display platform to validate the identification scheme 

across a large database of markers. 
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Table 5 : Robustness to occlusion. 

Occlusion 

(%) 

Accuracy of the identification (in %) 

OILU             

(3 symbols) 
ArUco (36h12) ArUco (16h3) April (25h9) 

April 

(36h10) 

10% 100 % 31.18 % 88.14 % 56.18 % 50.70 % 

20% 100 % 01.14 % 28.50 % 1.17% 0.33 % 

30% 100 % 00 % 4.76 % 00 % 00 % 

40% 100 % 00 % 2.80 % 00 % 00 % 

50% 100 % 00 % 00 % 00 % 00 % 

60% 100 % 00 % 00 % 00 % 00 % 

Figure 16 : Occlusion tests using a set of 3150 synthetic markers. Opaque variable size circles are used for 

occlusion. (a) 10% of the surface is occluded. (b) 20% occluded. (c) 30% occluded. (d) 40% occluded. (e) 55% 

occluded. (f) 65% occluded.  

Figure 17 : Snapshots of live demo showing occlusion tests with real markers acquired in perspective view. 

(a) 15% corner occlusion. (b) 30% corners occlusion. (c) 40% corners occlusion. (d) 50% corners occlusion. 

(e) 40% middle segments occlusion. (f) 50% middle segments occlusion. 
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The illustrated test in Figure 18 shows the advantages of 

the OILU structure over the most commonly used 

markers, namely ArUco and AprilTag when estimating 

their pose. While this task may seem straightforward in 

the absence of any occlusion (Figure 18.a), any partial 

occlusion presents a significant challenge that OILU 

markers successfully overcome (see Figures 18.b, c and 

d). In fact, if the outer quadrilateral is partially occluded, 

the pose can still be estimated in relation to the inner 

quadrilateral. Limits of course, appear when both inner 

and outer quadrilaterals are occluded simultaneously, 

which corresponds to a severe occlusion. Even in these 

cases, it is possible to improve the chances of identifying 

the marker by interpolating the existing lines to generate  

the missing quadrilateral corners. These improvements 

are currently being developed. 

6.4 Execution time performances 

evaluation 

The described identification method presented in Section 

5.2 has been implemented and compared with the 

available ArUco [7] and April [8] tools using a Laptop 

equipped with a 2.4 GHz Intel Core i7 processor with 16 

GB RAM, running on Linux. Reported processing times 

(Table 6), show that the proposed OILU system requires 

less processing time than the ArUco and April systems, 

at all processed image resolutions. The gap between the 

different approaches is more important when dealing 

with multiple markers within the camera front of view 

(see figure 19).  

Figure 18 : Pose estimation using ArUco, April, and OILU markers. (a) Successful pose estimation for the 

three markers. (b) Occluded ArUco marker pose estimation failure. (c) Occluded April marker pose 

estimation failure. (d) OILU Marker identification and pose estimation is possible even under occlusion. 

Figure 19 : Processing time based on the number of markers within the camera front of view.  

Image resolution (1920×1080) and markers size (5cm×5cm). 
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Such results confirm well that the improved OILU 

solution outperforms state-of-the-art solutions in terms of 

rapidity of identification. The remaining challenge is the 

development of a fully hardware solution embedding the 

entire OILU markers identification process within a 

single System-on-Chip (SoC) device [31], ensuring thus 

fluid identification for highly constrained SLAM 

applications. 

7 Conclusion 
An improved OILU marker system design is proposed 

for accurate detection and identification scheme. Two 

approaches have been validated. The first one (based on 

cumulative histogram analysis), includes homography to 

process standard OILU markers. To further improve 

marker detection and identification performances, a 

second homography-less identification scheme is 

proposed. The last involves enclosing the embedded 

identifier within two nested square-like quadrilaterals, 

allowing robust marker detection and identification even 

under challenging occlusion distortions. 

Compared with the main state-of-the-art markers, the 

proposed approach presents approximately similar 

detection and identification results, but with less 

computational resources and consequently less 

processing time. The suggested marker design, 

characterized by its consistent line-based pyramidal 

structure, surpasses standard markers in handling 

difficult occlusion distortions. Particular attention is paid 

to the possibility of identifying and estimating the pose 

of these markers, even if the external marker’s corners 

are occluded. 

At this stage, the developed marker does not integrate a 

corrector code within it. An improved OILU marker 

design including a CRC code is under development. It 

allows retaining or rejecting marker identifiers without 

affecting considerably the marker’s codification 

capacities.      

Overall, the primary aim of this work is to underscore the 

potential benefits of employing uniform line-based 2D 

markers as a viable alternative to established state-of-the-

art markers. Future work will extend the application of 

OILU markers to visual simultaneous localization and 

mapping (SLAM) projects, where markers are used to 

embed various environmental and orientation 

information, exploited by unmanned aerial vehicle 

(UAV) for accurate navigation and landing. 
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