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Abstract: The detection of software defects is useful technique for improving the quality of technology and testing
management by providing rapid detection of deficiency simulation models until the actual testing phase starts. These
prediction outcomes help designers of technology to effectively devote their available resources that are more vulnerable
to deficiencies. In this paper, we propose a software bug prediction by using deep learning approach. We define
Recurrent Neural Network for classification of source code including numerous soft computing techniques. Various pre-
processing and data filtration techniques have been carried out for data balancing for normalization. TF-IDF and
relation features extraction techniques have been used to generate Vector Space Model (VSM). The classification has
done using RNN, according to training module for both training and validation dataset. The proposed deep learning
framework consists of various optimization techniques where each has its strengths and limitations. We have evaluated
all techniques and selected the best one. In order to perform the observations and benchmark the proposed method,
various real-time and synthetic accessible databases are evaluated. The results of the assessment indicate that the
proposed framework version is superior to other excellently basic models as well as deep learning classification models.

1. Introduction

Recognition of vulnerabilities in source code or
software has become an emerging field of research. Even
though earlier studies have demonstrated the usefulness of
multiple detection methods, models, and software
vulnerability analysis tools in identifying source code
vulnerabilities, the enhancement of the efficiency of such
detection models and tools remains a major challenge for
researchers. Annually, thousands of security issues are
identified in virtual instruments, which are released
publicly to the general vulnerability database exposed in
obfuscated code. Threats also occur in indirect ways
which are not evident to the concerned code inspectors or
the programmers. It seems necessary to understand the
dynamics of vulnerabilities that can lead to system issues
directly from the raw data, with abundance of publicly
available source code. In this work, we present an
information approach to security technology by way of
using deep learning. Stimulated by the success of similar
researches in the area of recognizing the vulnerabilities in
source code/software, we use a theoretical framework to
examine its feasibility to aid in finding out the said
vulnerabilities. The preliminary results indicate that
within the domain of detecting attacks, the definition is
feasible[1].

To bridge the domains gap, we can propose that each

feature in a program be treated in computer vision as a
neural network because fault detectors may only have to
say whether a feature is insecure and fully explain
vulnerability positions. That is, we want an intelligent
interpretation of fault management programs. On either
hand, one may recommend approaching each piece of
code (i.e., comment, in this study, the two words are used
synonymous) as a vulnerability detection unit. There are
important exceptions to this diagnosis:
(i) most comments in a program may not contain any
uncertainty, indicating that a few samples are susceptible;
(i) multiple comments are not regarded as a whole that is
semantically linked to each other [2].

Using traditional programming by utilizing k-means
cluster analysis and the generative adversarial model, a
scheme was introduced to check bugs in large amount
random codes. To select the optimal code with an
interactive analysis framework and software code refactor
generation, k-means cluster transformation has been used.
Use of a system, described on object-oriented code
analysis documented in literature; in the instant case. The
model is verified by the tasks of conceptual relationship
analysis based on coding pairs and identification of
sentiments.Moreover, research study, centered on what
form of compilation with communication of massive
source code has helped to recognize errors for
inexperienced developers and suggest the steps needed to
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be taken on source code mistakes. The investigation uses
the form of a message previously based on the coding
system and detects specific code snippets' vulnerability
[3].

It is therefore noted that, as classification algorithms
for web application, bug identification and vulnerability
classification, most investigators have used conventional
semi-supervised classifiers, RNNsor CNNs. RNNs are far
better than the standard language models, including such
n-gram, but they have drawbacks in understanding long
sequence data. Based on faults, functional programming
identification, archive code identification, and basic error
detection, almost all of the studies are found to have used
various system software and classification models. On the
other hand, the developed scheme of ours explicitly
defines logic, grammar, and other system software errors.
Additionally, in place of the error spot, the proposed
model is used to predict the correct terms. Overall, in
pursuing unique objectives, our suggested Language
model varies from many other models [4].

This paper introduces a novel active tracking on deep
learning to automatically learn features for predicting
runtime environment weaknesses. In source code, where
contingent code components are spread far apart, For
example, combinations of code tokens that are needed to
appear simultaneously due to the configuration of the
computer program (e.g. in Java) or according to the
configuration of API use (e.g. Lock () and activate ()), but
do not accompany each other automatically are effectively
handled. The interpretation of code symbols (semantic
functionality) and the hierarchical structure of source code
are appropriately reflected by the learned features
(syntactic features). Our automated feature learning
strategy removes the need for automated feature selection
in conventional methods, which takes up much effort.
Finally, testing the framework from a huge repository on
many Java programs for the Desktop version reveals that
our methodology is highly accurate in explaining code
vulnerabilities[5].
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Fig.1: proposed system architecture design
shows a system overview of execution process flow,
and delineates how it works with different algorithms.

2.1 Feature Execution

The function is compiled entire source code or
modules with real statistics; in this method behavior is
analyzed of code for vulnerability detection. During the
analysis, four dynamic analysis methods have been used,
fault infusion, mutation suitable starting, dynamic taint
assessment and dynamic system check to generate the
vector Space Model (VSM) from extracted features [6].

2.2. Pre-processing

A start of a few clone discovery come up to, the source
code is separated as well as the area of the comparison is
first decided. There are three basic types of goals in below
steps.

Eliminate section of code: In this step source code
uninteresting compared phase is removed.

Determine source units: By removing all the
uninteresting code, remaining part of source code is
divided in the arrangement of dissimilar sections known
as source units.

Determine correlation units/granularity:

Source code parts should be auxiliary divided into
smaller parts relying upon the evaluation method utilized
a tool [6].

2.3: Extraction

Extraction changes program to the form that is correct
while support to the real comparison algorithm.
Conditional upon the device, it contains are as following:

Tokenization: If there should be an event of token-
based methodologies, every source code line of the
program is more dividing into tokens as showed by the
lexical regulation of the program design platforms of
importance. Apply different tokens of source code lines or
forms after that frame of token systems to compare. The
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entire whitespace and comments between marks are
removal from the token groups.

Parsing: For syntactic methods, the whole source code
is described to prepare a parse tree or (potentially
clarified) abstract syntax tree (AST). The source parts to
be studied are then shown as sub trees of the describe tree
or the AST, and correlation algorithms search for qualified
sub trees to check as clone. Measurements based
methodologies can utilize a parse tree depiction to
discover clones taking into account sizes for sub trees.

Control and Data Flow Analysis: Semantics-related
methodologies products program dependence graphs
(PDGs) as of the source code. The nodes of a Program
Dependence Graphs show the reports and circumstances
of a system, while edges show to control and information
conditions. Source units to be matched are shown as sub
graphs of these PDGs. Different plans then search in favor
of isomorphic sub graphs to discover clones. A few
measurements based methodologies use sub graphs to
compute info with control stream measurements [6].

2.4 Feature Selection

The various feature selection methods have been used
during module training. The function is compiled entire
source code or modules with real statistics; in this method
behavior is analyzed of code for vulnerability detection. In
a broader dataset, all of the variables are less necessary to
consider; but, the greater the amount of variables, the
greater the difficulty. As a result, it is often preferable to
reduce the number of variables in a dataset and to use
critical variables. We may reduce the parameter and find
the variable's value in a dataset using a Function Selection
technique. During the analysis, four dynamic analysis
methods have been used, fault infusion, mutation suitable
starting, dynamic taint assessment and dynamic system
check. For generate the vector Space Model (VSM) from
extracted features [6].

2.5 Vulnerability Detection

The vulnerability detection has been performed based
on extracted features from the training data set. The vector
space model has been generated according to extracted
features like TF-IDF, relational features, and some bigram
features. The classification has been done with recurrent
neural networks, including long short term memory
algorithm. This detection is also effective for of
prevention of software-as-a-service attacks for web
applications. The vulnerable code finds generate internal
as well as external attacks and grant un-authorized access
to external users. The major objective of detection
vulnerability is automatic detection of exception handling
and buffer overflow attack during the code execution. In
the section proposed algorithm provides better detection
accuracy in the code snippet [16].

3. Algorithm Design:

The algorithms furnished below have been used
during the calculations of TF-IDF and weight score
calculations using RNN.

TF-IDF:

Input: Input test instance that contains numerous

tokens TTi...n]

Output: TF-IDF weight for all T[i]
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Step 1:Data vector = {Datal, Data 2, Data 3.... Data
n}

Step 2: Words exist in entire dataset

Step 3: D = {cmtl, cmt2, cmt3, cmtn} and comments
available in each document. Calculate the Tf score as

Step 4: tf (t,d) = (t,d)

t=term

d= document

Step 5:idf=t  sum(d)

Step 6: Return tf *idf

Recurrent neural network:

Input: Training dataset TestDBList [], Train dataset
TrainDBList[] and Threshold th.

Output: Predicted class according to classification

Step 1: Read train data rules using below formula

k
Train[] = Z:(Attn RN \a s
n=1

Step 2: Read test data rules using below formula

k
Test[] = Z (Atty, oo von e Aty
m=1

Step 3: Calculate weight between input and hidden
layer

Instance[w]
k

K
= (Testy ...... ... ... Test,) Z (Train, ... ... ... ... Trainy)
m=1
n=1

Step 4: Generate feedback layer based on threshold
policy

K
Feed_Layer[] = Z (Feed_Layer. optimized ())

m=1

Step 5: Return Feed_Layer[0]. class
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4. Results and Discussion:

To validate the evaluation of the proposed bug
forecast procedure, we have employed RNN classification
algorithms that are gainfully utilized for fault prediction
including unlabeled datasets. The performance
evaluations of software defect prediction are based on the
confusion matrix, as shown in Table 1, which includes the
measures of precision, recall, as well as F-score.

Actual Predictive
True | TP (true positive) | FN (false negative)
False | FP (false positive) | TN (true negative)

Table 1: Confusion Matrix Evaluation

True positive (TP): The number of fake entities anticipated
as fake.

False negative (FN): The number of fake entities
anticipated as normal.

False positive (FP): The number of normal entities
anticipated as fake.

True negative (TN): The number of normal entities
anticipated as normal.

In this research, analytical performance procedures are
calculated as follows:

Precision: It shows the proportion of faulty identities
receive adequate as faulty of all desired objects.

Recall: It is the percentage of faulty identities to all entities
that are currently faulty is the proportions of recall.
F-measure: It is the cumulative recall and precision
average, with higher estimated coefficients matching
higher predictive efficiency.

2 * Precision * Recall

F — Measure = —
Recall + Precision
Precision = % Recall = TP
TP+ FP

To evaluate the proposed system, we have used machine
learning classifiers like ANN, SVM, Adaboost. Also, we
have used deep learning framework of RNN with LSTM
by using activation functions like Sigmoid, Tanh and
ReLU. The results of classification accuracy with
confusion matrix with 20 folds cross-validation for all
algorithms are shown in Table 2. Measures used to
compare the algorithms are Accuracy, Precision, Recall
and Micro-score. From the observations, it can be
concluded that RNN (ReLU) gives highest performance
among the all.

4.1 Experiment using Artificial Neural Network:

The figure 2 shows the classification accuracy of the ANN
classification algorithm. Initially, it has been trained using
inbuilt functions from the weka tool. Numerous cross-
validation techniques have been used for classification,
and various parameters has tuned for ANN during the
classification. This approach can classify each validation
according to probability function, that the reason this
algorithm bit high error rate than other supervised
classification algorithms.
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Table 2: accuracy and confusion matrix for ANN

ANN Fold 10 | Fold 15 | Fold 20
Accuracy 85.20 84.20 85.60
Precision 83.60 82.30 84.99

Recall 87.50 85.40 77.72

Micro-Score | 85.05 83.35 81.10

The ANN model is easy to build and particularly
useful for very large data classification using supervised
machine learning technique or Artificial Intelligence (Al).
Along with simplicity, ANN is known to outperform even
highly sophisticated classification methods. The proposed
ANN predicts the possibility for individual instance
according to current values.

Figure 2 shows the performance evaluation
calculation of ANN classification with 20-fold
classification. It achieves around 85.60% accuracy for the
given input dataset. We used a multinomial event model,
samples represent the frequencies with which certain
events have been generated by a multinomial probability
of that particular event and based on that probability
system predicts the final class.
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Fig. 2: Analysis of bug and vulnerability detection
using ANN with 20-fold data cross validation

4.2 Experiment using Support Vector Machine
(SVM):

The below table 5.3 depicts the classification analysis
with various cross validation, we conclude 20 fold cross-
validation provides the highest 95.2% classification
accuracy for SVM.

table 3: accuracy and confusion matrix for SVM

SVM Fold 10 | Fold 15 | Fold 20
Accuracy 91.20 91.70 95.20
Precision 91.35 92.10 94.80

Recall 92.30 93.10 96.20

Micro-Score | 91.35 92.20 94.75
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Fig. 3: Analysis of bug and vulnerability detection
using SVM with 20-fold data cross validation

Figure 3 describes SVM for 20-fold cross-validation.
The labeling circumstances to construct a training set
become moment and expensive in many machine learning;
it is also helpful to find strategies to reduce supervised
classification numbers. By improving performance, the
Kernel-Based algorithm has been used to minimize
occurrences. We classify all in this algorithm as a point in
n-dimensional spaces only with respect of a property
direction being the meaning of each characteristic by
classification technique; we detect clones by finding the
hyper-plane that separates the two groups very well.

4.3 Experiment using Adaboost:

The below table 4 depicts the classification analysis
with various cross validation, we conclude 20 fold cross-
validation provides the highest 81.30% classification
accuracy for Adaboost.

table 4: accuracy and confusion matrix for Adaboost

Adaboost Fold 10 | Fold 15 | Fold 20
Accuracy 70.60 78.50 81.30
Precision 72.30 73.50 74.50
Recall 69.90 68.50 70.30
Micro -Score | 70.60 71.90 72.30

Adaboost is adaptive in that it tweaks future weak
learners in favor of cases misclassified by prior classifiers.
It may be less prone to the over fitting issue than other
learning algorithms in certain situations. Individual
learners may be poor, but as long as their performance is
somewhat better than actual guessing, the overall model
will converge to a powerful learner.
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Fig. 4: Analysis of bug and vulnerability detection
using Adaboost with 20-fold data cross validation

The figure 4 describes Adaboost classification for
fake account detection for 20-fold cross-validation.
AdaBoost is a specific training technique for boosted
classifiers.

T
Pr(z) = > fi()
t=1

A boost classifier is a kind of classifier.

Each Ft is a weak learner that accepts an object x as
input and returns a value that indicates the object's class.
The sign of the weak learner output, for example, specifies
the predicted object class in the two-class issue, whereas
the absolute value indicates the confidence in that
classification. Similarly, if the sample belongs to a
positive class, the Tth classifier is positive; otherwise, it is
negative.

4.4 Experiment using Recurrent Neural Network
(Sigmoid):

we demonstrate classification accuracy of RNN
(Sigmoid) using synthetic dataset, the similar experiments
has done with various cross validation and results has
illustrated in table 5. According to this analysis we
conclude 20 fold cross validation provides highest 96.10%
classification accuracy using RNN with Sigmoid function.

table 5: accuracy and confusion matrix for RNN
(Sigmoid)

RNN (Sigmoid) | Fold 10 | Fold 15| Fold 20
Accuracy 95.60 95.90 96.10
Precision 95.80 96.10 97.00
Recall 95.80 96.00 96.30
Micro-Score 94.70 95.90 96.05
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Fig. 5: Detection of accuracy using RNN (Sigmoid)
with 20-fold data cross validation

The 20-fold cross validation also achieves 96.10%
with RNN with sigmoid function, have been explained in
Figure 5, this RNN functions achieve around higher
accuracy over the traditional machine learning algorithms
during module testing.

4.5 Experiment using Recurrent Neural Network
(Tanh):

The figure 6 shows classification accuracy of RNN,
the similar experiments has done with various cross
validation and results are illustrated in table 6. According
to this analysis we conclude that 20 fold cross validation
provides highest 97.25% classification accuracy for RNN
using Tanh.

Table 6: Classification accuracy with confusion
matrix for RNN (Tanh)

RNN (Tanh) | Fold 10| Fold 15| Fold 20
Accuracy 96.90 97.50 97.25
Precision 97.00 97.40 97.60
Recall 97.30 97.50 97.30
Micro-Score | 96.80 96.70 96.90
98
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Fig. 6: Detection of accuracy using RNN (Tanh) with
20-fold data cross validation

46 EXPERIMENT USING RECURRENT
NEURAL NETWORK (ReLU):

In this experiment we analyse the classification
accuracy of ReLU using synthetic dataset, the similar
experiments has done with various cross validation and
results has illustrated in table 7. According to this analysis

ali
we conclude system provides highest 97.5% accuracy for
20-fold cross validation classification accuracy for RNN.

Table 7: Classification accuracy with confusion
matrix for RNN (RelLU)

RNN (ReLU) | Fold 10| Fold 15| Fold 20
Accuracy 97.20 97.90 97.50
Precision 97.40 96.90 97.60

Recall 95.60 97.20 97.90

Micro-Score | 96.20 95.80 97.20

98 o

. 978 v 97.9

Fois N &

£ 974 v 97.6

fo72 97.5 Y o2

a 97
96.8

Accuracy Precision Recall Micro-Score
Measure

Fig. 7: Detection of accuracy using RNN (ReLU) with
20-fold data cross validation

Above experiments describes a proposed deep
learning classification algorithm with a machine learning
algorithm. This figure describes the result with and
without cross-validation. We have used a minimum of
three hidden layers for the detection of code clone. Using
this experiment, we conclude RNN with sigmoid provides
better detection accuracy than the other two activation
functions as well as random forest machine learning
algorithm.

In table 8, we have compared all the results of above
experiments.

Metho RNN [ RNN| RNN
d (Sigmo | (Tan| (ReL
/ id | h) | V)

Measur| AN | SV | Adabo
e N M ost

Acc‘;”a %8| 95.2| 8130 | 96.10 | 97.25 97.50

Precisi | 84.9| 94.8 7450 | 97.00 | 97.60| 97.60
on 9 0

777
96.2| 70.30 | 96.30 | 97.30( 97.90

Recall | 2

Micro-| 8L.1) 94.71 7530 | 96.05 | 96.90| 97.20
Score | 0 5




Enter short title in File/Properties/Summary

96.05
1004 475 972

80 4 %9 == A cruracy

=H=Precision
Reaill

PR

e \ficro-Score

ANN SVM Adaboost  Sigmoid Tanh RelU

Fig. 8: Classification accuracy with 20-fold cross-
validation for all methods

the proposed method obtains the best predictive
performance. The suggested solution can be further tested
when used in actual software applications. The three data
splitting mechanism has use as 10, 15 and 20 fold cross-
validation.

table 9: Dataset description of source code extracted
from android APK files

Total Size 2500
Training Samples 2000
Testing Samples 500

System describes four evaluations between this
research results and the some existing systems results has
calculated on the similar as well as multiple dataset.

5 150
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g 50
< 0 300
ANN Adaboost SVM RNN 1500
Method

Fig. 9: Comparative analysis of proposed vs. existing
classification for wvulnerability detection shows two
machine learning algorithms used. This figure depicts the
proposed RNN provides better detection accuracy over
machine learning algorithms.

A classification model is generated using this
arrangement or learning set to organize the input courses
into corresponding template files or labels. Then a test set
is used by gleaning the class labels of orthonormal courses
to validate the model. A variety of neural networks are
used to identify reviews, such as ANN and Support Vector
Machines (SVM) and Adaboost.
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5. Conclusion and Future Work:

The vulnerability detection is very tedious work for
imbalance source codes; wvulnerable code allows
generating software attack to remote user. Sometimes,
during execution the vulnerable code also generates
internal attacks like

buffer overflow, session hijack, bypass authentication
etc. In literature, many problems are detected in software
every year. Vulnerabilities mostly does not appear in
hidden the forms which the software testers can identify.
This

system describes the method of finding drawbacks by
utilizing deep learning.

In this paper, we have developed a RNN including
LSTM for constructing code vulnerability detection and
bug triage on various platforms. Numerous tools are not
able to support a web-based application to find code
vulnerability. The proposed system works on different
datasets for feature extraction and is able to detect the
vulnerability. RNN provides a better result over traditional
machine learning classifiers.

In future, developers needed to detect the code triage
for runtime mobile-based application programs, because
the existing tools do not support mobile application
programs. Another need in software engineering is code
clone management. Good quality of design can be
achieved with the help of bugs free code clone in
developing software.
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