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Abstract: The detection of software defects is useful technique for improving the quality of technology and testing 

management by providing rapid detection of deficiency simulation models until the actual testing phase starts. These 

prediction outcomes help designers of technology to effectively devote their available resources that are more vulnerable 

to deficiencies. In this paper, we propose a software bug prediction by using deep learning approach. We define 

Recurrent Neural Network for classification of source code including numerous soft computing techniques. Various pre-

processing and data filtration techniques have been carried out for data balancing for normalization. TF-IDF and 

relation features extraction techniques have been used to generate Vector Space Model (VSM). The classification has 

done using RNN, according to training module for both training and validation dataset. The proposed deep learning 

framework consists of various optimization techniques where each has its strengths and limitations. We have evaluated 

all techniques and selected the best one. In order to perform the observations and benchmark the proposed method, 

various real-time and synthetic accessible databases are evaluated. The results of the assessment indicate that the 

proposed framework version is superior to other excellently basic models as well as deep learning classification models. 

 

 

1. Introduction 

 

 

Recognition of vulnerabilities in source code or 

software has become an emerging field of research. Even 

though earlier studies have demonstrated the usefulness of 

multiple detection methods, models, and software 

vulnerability analysis tools in identifying source code 

vulnerabilities, the enhancement of the efficiency of such 

detection models and tools remains a major challenge for 

researchers. Annually, thousands of security issues are 

identified in virtual instruments, which are released 

publicly to the general vulnerability database exposed in 

obfuscated code. Threats also occur in indirect ways 

which are not evident to the concerned code inspectors or 

the programmers. It seems necessary to understand the 

dynamics of vulnerabilities that can lead to system issues 

directly from the raw data, with abundance of publicly 

available source code. In this work, we present an 

information approach to security technology by way of 

using deep learning. Stimulated by the success of similar 

researches in the area of recognizing the vulnerabilities in 

source code/software, we use a theoretical framework to 

examine its feasibility to aid in finding out the said 

vulnerabilities. The preliminary results indicate that 

within the domain of detecting attacks, the definition is 

feasible[1]. 

To bridge the domains gap, we can propose that each 

feature in a program be treated in computer vision as a 

neural network because fault detectors may only have to 

say whether a feature is insecure and fully explain 

vulnerability positions. That is, we want an intelligent 

interpretation of fault management programs. On either 

hand, one may recommend approaching each piece of 

code (i.e., comment, in this study, the two words are used 

synonymous) as a vulnerability detection unit. There are 

important exceptions to this diagnosis:  

(i) most comments in a program may not contain any      

uncertainty, indicating that a few samples are susceptible;  

(ii) multiple comments are not regarded as a whole that is 

semantically linked to each other [2]. 

Using traditional programming by utilizing k-means 

cluster analysis and the generative adversarial model, a 

scheme was introduced to check bugs in large amount 

random codes. To select the optimal code with an 

interactive analysis framework and software code refactor 

generation, k-means cluster transformation has been used.  

Use of a system, described on object-oriented code 

analysis documented in literature; in the instant case. The 

model is verified by the tasks of conceptual relationship 

analysis based on coding pairs and identification of 

sentiments.Moreover, research study, centered on what 

form of compilation with communication of massive 

source code has helped to recognize errors for 

inexperienced developers and suggest the steps needed to 
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be taken on source code mistakes. The investigation uses 

the form of a message previously based on the coding 

system and detects specific code snippets' vulnerability 

[3].   

It is therefore noted that, as classification algorithms 

for web application, bug identification and vulnerability 

classification, most investigators have used conventional 

semi-supervised classifiers, RNNsor CNNs. RNNs are far 

better than the standard language models, including such 

n-gram, but they have drawbacks in understanding long 

sequence data. Based on faults, functional programming 

identification, archive code identification, and basic error 

detection, almost all of the studies are found to have used 

various system software and classification models. On the 

other hand, the developed scheme of ours explicitly 

defines logic, grammar, and other system software errors. 

Additionally, in place of the error spot, the proposed 

model is used to predict the correct terms. Overall, in 

pursuing unique objectives, our suggested Language 

model varies from many other models [4]. 

This paper introduces a novel active tracking on deep 

learning to automatically learn features for predicting 

runtime environment weaknesses. In source code, where 

contingent code components are spread far apart, For 

example, combinations of code tokens that are needed to 

appear simultaneously due to the configuration of the 

computer program (e.g. in Java) or according to the 

configuration of API use (e.g. Lock () and activate ()), but 

do not accompany each other automatically are effectively 

handled. The interpretation of code symbols (semantic 

functionality) and the hierarchical structure of source code 

are appropriately reflected by the learned features 

(syntactic features). Our automated feature learning 

strategy removes the need for automated feature selection 

in conventional methods, which takes up much effort. 

Finally, testing the framework from a huge repository on 

many Java programs for the Desktop version reveals that 

our methodology is highly accurate in explaining code 

vulnerabilities[5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Proposed System Design: 

 

 
 

 

Fig.1: proposed system architecture design 

shows a system overview of execution process flow, 

and delineates how it works with different algorithms. 

 

2.1 Feature Execution  

The function is compiled entire source code or 

modules with real statistics; in this method behavior is 

analyzed of code for vulnerability detection. During the 

analysis, four dynamic analysis methods have been used, 

fault infusion, mutation suitable starting, dynamic taint 

assessment and dynamic system check to generate the 

vector Space Model (VSM) from extracted features [6]. 

 

2.2. Pre-processing  

A start of a few clone discovery come up to, the source 

code is separated as well as the area of the comparison is 

first decided. There are three basic types of goals in below 

steps.  

Eliminate section of code: In this step source code 

uninteresting compared phase is removed.  

Determine source units: By removing all the 

uninteresting code, remaining part of source code is 

divided in the arrangement of dissimilar sections known 

as source units.  

Determine correlation units/granularity: 

Source code parts should be auxiliary divided into 

smaller parts relying upon the evaluation method utilized 

a tool [6]. 

2.3:  Extraction  

Extraction changes program to the form that is correct 

while support to the real comparison algorithm. 

Conditional upon the device, it contains are as following: 

Tokenization: If there should be an event of token-

based methodologies, every source code line of the 

program is more dividing into tokens as showed by the 

lexical regulation of the program design platforms of 

importance. Apply different tokens of source code lines or 

forms after that frame of token systems to compare. The 
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entire whitespace and comments between marks are 

removal from the token groups. 

Parsing: For syntactic methods, the whole source code 

is described to prepare a parse tree or (potentially 

clarified) abstract syntax tree (AST). The source parts to 

be studied are then shown as sub trees of the describe tree 

or the AST, and correlation algorithms search for qualified 

sub trees to check as clone. Measurements based 

methodologies can utilize a parse tree depiction to 

discover clones taking into account sizes for sub trees.  

Control and Data Flow Analysis: Semantics-related 

methodologies products program dependence graphs 

(PDGs) as of the source code. The nodes of a Program 

Dependence Graphs show the reports and circumstances 

of a system, while edges show to control and information 

conditions. Source units to be matched are shown as sub 

graphs of these PDGs. Different plans then search in favor 

of isomorphic sub graphs to discover clones. A few 

measurements based methodologies use sub graphs to 

compute info with control stream measurements [6].  

2.4 Feature Selection 

The various feature selection methods have been used 

during module training. The function is compiled entire 

source code or modules with real statistics; in this method 

behavior is analyzed of code for vulnerability detection. In 

a broader dataset, all of the variables are less necessary to 

consider; but, the greater the amount of variables, the 

greater the difficulty. As a result, it is often preferable to 

reduce the number of variables in a dataset and to use 

critical variables. We may reduce the parameter and find 

the variable's value in a dataset using a Function Selection 

technique. During the analysis, four dynamic analysis 

methods have been used, fault infusion, mutation suitable 

starting, dynamic taint assessment and dynamic system 

check. For generate the vector Space Model (VSM) from 

extracted features [6]. 

2.5 Vulnerability Detection 

The vulnerability detection has been performed based 

on extracted features from the training data set. The vector 

space model has been generated according to extracted 

features like TF-IDF, relational features, and some bigram 

features.  The classification has been done with recurrent 

neural networks, including long short term memory 

algorithm. This detection is also effective for of 

prevention of software-as-a-service attacks for web 

applications. The vulnerable code finds generate internal 

as well as external attacks and grant un-authorized access 

to external users. The major objective of detection 

vulnerability is automatic detection of exception handling 

and buffer overflow attack during the code execution. In 

the section proposed algorithm provides better detection 

accuracy in the code snippet [16]. 

3. Algorithm Design: 

The algorithms furnished below have been used 

during the calculations of TF-IDF and weight score 

calculations using RNN.  

TF-IDF: 

Input: Input test instance that contains numerous   

          tokens T[i…n] 

Output: TF-IDF weight for all T[i] 

Step 1:Data_vector = {Data1, Data 2, Data 3…. Data 

n} 

Step 2: Words exist in entire dataset 

Step 3: D = {cmt1, cmt2, cmt3, cmtn} and comments 

available in each document. Calculate the Tf score as  

Step 4: tf (t,d) = (t,d)  

           t= term 

 d= document 

Step 5: idf = t      sum(d) 

Step 6: Return tf *idf 

 

Recurrent neural network: 

Input: Training dataset TestDBList [], Train dataset 

TrainDBList[]  and Threshold th. 

Output: Predicted class according to classification 

Step 1: Read train data rules using below formula 

Train[] = ∑(Attn … … … … Attk)

k

n=1

 

 

 

 

Step 2: Read test data rules using below formula 

 

 

Test[] = ∑ (Attm … … … … Attk)

k

m=1

 

 

Step 3: Calculate weight between input and hidden 

layer 

 

Instance[w]

= ∑(Testn … … … … Testn) ∑ (Trainm … … … … Traink)

k

m=1

k

n=1

 

 

Step 4: Generate feedback layer based on threshold 

policy 

Feed_Layer[] = ∑ (Feed_Layer. optimized ())

k

m=1

 

 

Step 5: Return  Feed_Layer[0]. class 
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4. Results and Discussion: 

To validate the evaluation of the proposed bug 

forecast procedure, we have employed RNN classification 

algorithms that are gainfully utilized for fault prediction 

including unlabeled datasets. The performance 

evaluations of software defect prediction are based on the 

confusion matrix, as shown in Table 1, which includes the 

measures of precision, recall, as well as F-score.  

Table 1: Confusion Matrix Evaluation 

 

True positive (TP):The number of fake entities anticipated 

as fake.  

False negative (FN): The number of fake entities 

anticipated as normal.  

False positive (FP): The number of normal entities 

anticipated as fake.  

True negative (TN): The number of normal entities 

anticipated as normal.  

In this research, analytical performance procedures are 

calculated as follows: 

Precision: It shows the proportion of faulty identities 

receive adequate as faulty of all desired objects. 

Recall: It is the percentage of faulty identities to all entities 

that are currently faulty is the proportions of recall. 

F-measure: It is the cumulative recall and precision 

average, with higher estimated coefficients matching 

higher predictive efficiency. 

 

 
 

 

 

To evaluate the proposed system, we have used machine 

learning classifiers like ANN, SVM, Adaboost. Also, we 

have used deep learning framework of RNN with LSTM 

by using activation functions like Sigmoid, Tanh and 

ReLU. The results of classification accuracy with 

confusion matrix with 20 folds cross-validation for all 

algorithms are shown in Table 2. Measures used to 

compare the algorithms are Accuracy, Precision, Recall 

and Micro-score. From the observations, it can be 

concluded that RNN (ReLU) gives highest performance 

among the all. 

4.1 Experiment using Artificial Neural Network: 

The figure 2 shows the classification accuracy of the ANN 

classification algorithm. Initially, it has been trained using 

inbuilt functions from the weka tool. Numerous cross-

validation techniques have been used for classification, 

and various parameters has tuned for ANN during the 

classification. This approach can classify each validation 

according to probability function, that the reason this 

algorithm bit high error rate than other supervised 

classification algorithms. 

 

 

 

 

 

Table 2: accuracy and confusion matrix for ANN 

 

ANN Fold 10 Fold 15 Fold 20 

Accuracy 85.20 84.20 85.60 

Precision 83.60 82.30 84.99 

Recall 87.50 85.40 77.72 

Micro-Score 85.05 83.35 81.10 

 

The ANN model is easy to build and particularly 

useful for very large data classification using supervised 

machine learning technique or Artificial Intelligence (AI). 

Along with simplicity, ANN is known to outperform even 

highly sophisticated classification methods.  The proposed 

ANN predicts the possibility for individual instance 

according to current values. 

 

Figure 2 shows the performance evaluation 

calculation of ANN classification with 20-fold 

classification. It achieves around 85.60% accuracy for the 

given input dataset. We used a multinomial event model, 

samples represent the frequencies with which certain 

events have been generated by a multinomial probability 

of that particular event and based on that probability 

system predicts the final class. 

 

 
 

Fig. 2: Analysis of bug and vulnerability detection 

using ANN with 20-fold data cross validation 

 

4.2 Experiment using Support Vector Machine 

(SVM): 

The below table 5.3 depicts the classification analysis 

with various cross validation, we conclude 20 fold cross-

validation provides the highest 95.2% classification 

accuracy for SVM. 

 

table 3: accuracy and confusion matrix for SVM  

  

SVM Fold 10 Fold 15 Fold 20 

Accuracy 91.20 91.70 95.20 

Precision 91.35 92.10 94.80 

Recall 92.30 93.10 96.20 

Micro-Score 91.35 92.20 94.75 

 

Actual Predictive 

True TP (true positive) FN (false negative) 

False FP (false positive) TN (true negative) 

FP+TP

TP
=Recall

Precision+Recall

RecallPrecision
=MeasureF




2

FN+TP

TP
=Precision
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Fig. 3: Analysis of bug and vulnerability detection 

using SVM with 20-fold data cross validation 

 

Figure 3 describes SVM for 20-fold cross-validation. 

The labeling circumstances to construct a training set 

become moment and expensive in many machine learning; 

it is also helpful to find strategies to reduce supervised 

classification numbers. By improving performance, the 

Kernel-Based algorithm has been used to minimize 

occurrences. We classify all in this algorithm as a point in 

n-dimensional spaces only with respect of a property 

direction being the meaning of each characteristic by 

classification technique; we detect clones by finding the 

hyper-plane that separates the two groups very well. 

 

4.3 Experiment using Adaboost: 

The below table 4 depicts the classification analysis 

with various cross validation, we conclude 20 fold cross-

validation provides the highest 81.30% classification 

accuracy for Adaboost. 

 

table 4: accuracy and confusion matrix for Adaboost   

Adaboost Fold 10 Fold 15 Fold 20 

Accuracy 70.60 78.50 81.30 

Precision 72.30 73.50 74.50 

Recall 69.90 68.50 70.30 

Micro -Score 70.60 71.90 72.30 

 

Adaboost is adaptive in that it tweaks future weak 

learners in favor of cases misclassified by prior classifiers. 

It may be less prone to the over fitting issue than other 

learning algorithms in certain situations. Individual 

learners may be poor, but as long as their performance is 

somewhat better than actual guessing, the overall model 

will converge to a powerful learner. 

 

 

 
 

Fig. 4: Analysis of bug and vulnerability detection 

using Adaboost with 20-fold data cross validation 

 

The figure 4 describes Adaboost classification for 

fake account detection for 20-fold cross-validation. 

AdaBoost is a specific training technique for boosted 

classifiers. 

 

 

 

 

 

 

A boost classifier is a kind of classifier. 

Each Ft is a weak learner that accepts an object x as 

input and returns a value that indicates the object's class. 

The sign of the weak learner output, for example, specifies 

the predicted object class in the two-class issue, whereas 

the absolute value indicates the confidence in that 

classification. Similarly, if the sample belongs to a 

positive class, the Tth classifier is positive; otherwise, it is 

negative. 

4.4 Experiment using Recurrent Neural Network 

(Sigmoid): 

we demonstrate classification accuracy of RNN 

(Sigmoid) using synthetic dataset, the similar experiments 

has done with various cross validation and results has 

illustrated in table 5. According to this analysis we 

conclude 20 fold cross validation provides highest 96.10% 

classification accuracy using RNN with Sigmoid function. 

table 5: accuracy and confusion matrix for RNN 

(Sigmoid) 

 

RNN (Sigmoid) Fold 10 Fold 15 Fold 20 

Accuracy 95.60 95.90 96.10 

Precision 95.80 96.10 97.00 

Recall 95.80 96.00 96.30 

Micro-Score 94.70 95.90 96.05 
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Fig. 5: Detection of accuracy using RNN (Sigmoid) 

with 20-fold data cross validation 

 

The 20-fold cross validation also achieves 96.10% 

with RNN with sigmoid function, have been explained in 

Figure 5, this RNN functions achieve around higher 

accuracy over the traditional machine learning algorithms 

during module testing.   

 

 

 

 

 

4.5 Experiment using Recurrent Neural Network 

(Tanh): 

The figure 6 shows classification accuracy of RNN, 

the similar experiments has done with various cross 

validation and results are illustrated in table 6. According 

to this analysis we conclude that 20 fold cross validation 

provides highest 97.25% classification accuracy for RNN 

using Tanh.  

 

Table 6: Classification accuracy with confusion 

matrix for RNN (Tanh)   

 

RNN (Tanh) Fold 10 Fold 15 Fold 20 

Accuracy 96.90 97.50 97.25 

Precision 97.00 97.40 97.60 

Recall 97.30 97.50 97.30 

Micro-Score 96.80 96.70 96.90 

 

 
 

Fig. 6: Detection of accuracy using RNN (Tanh) with 

20-fold data cross validation  

 

4.6 EXPERIMENT USING RECURRENT 

NEURAL NETWORK (ReLU): 

In this experiment we analyse the classification 

accuracy of ReLU using synthetic dataset, the similar 

experiments has done with various cross validation and 

results has illustrated in table 7. According to this analysis 

we conclude system provides highest 97.5% accuracy for 

20-fold cross validation classification accuracy for RNN. 

 

Table 7: Classification accuracy with confusion 

matrix for RNN (ReLU) 

RNN (ReLU) Fold 10 Fold 15 Fold 20 

Accuracy 97.20 97.90 97.50 

Precision 97.40 96.90 97.60 

Recall 95.60 97.20 97.90 

Micro-Score 96.20 95.80 97.20 

 

 
Fig. 7: Detection of accuracy using RNN (ReLU) with 

20-fold data cross validation  

 

Above experiments describes a proposed deep 

learning classification algorithm with a machine learning 

algorithm. This figure describes the result with and 

without cross-validation. We have used a minimum of 

three hidden layers for the detection of code clone. Using 

this experiment, we conclude RNN with sigmoid provides 

better detection accuracy than the other two activation 

functions as well as random forest machine learning 

algorithm. 

In table 8, we have compared all the results of above 

experiments. 
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Fig. 8: Classification accuracy with 20-fold cross-

validation for all methods 

 

the proposed method obtains the best predictive 

performance.  The suggested solution can be further tested 

when used in actual software applications. The three data 

splitting mechanism has use as 10, 15 and 20 fold cross-

validation. 

 

table 9: Dataset description of source code extracted 

from android APK files 

 

Total Size 2500 

Training Samples 2000 

Testing Samples 500 

 

 

System describes four evaluations between this 

research results and the some existing systems results has 

calculated on the similar as well as multiple dataset. 

 

 
 

Fig. 9: Comparative analysis of proposed vs. existing 

classification for vulnerability detection shows two 

machine learning algorithms used.  This figure depicts the 

proposed RNN provides better detection accuracy over 

machine learning algorithms.  

A classification model is generated using this 

arrangement or learning set to organize the input courses 

into corresponding template files or labels. Then a test set 

is used by gleaning the class labels of orthonormal courses 

to validate the model. A variety of neural networks are 

used to identify reviews, such as ANN and Support Vector 

Machines (SVM) and Adaboost. 

 

 

 

 

 

 

 

5. Conclusion and Future Work: 

 

The vulnerability detection is very tedious work for 

imbalance source codes; vulnerable code allows 

generating software attack to remote user. Sometimes, 

during execution the vulnerable code also generates 

internal attacks like 

buffer overflow, session hijack, bypass authentication 

etc. In literature, many problems are detected in software 

every year. Vulnerabilities mostly does not appear in 

hidden the forms which the software testers can identify. 

This 

system describes the method of finding drawbacks by 

utilizing deep learning. 

In this paper, we have developed a RNN including 

LSTM for constructing code vulnerability detection and 

bug triage on various platforms. Numerous tools are not 

able to support a web-based application to find code 

vulnerability. The proposed system works on different 

datasets for feature extraction and is able to detect the 

vulnerability. RNN provides a better result over traditional 

machine learning classifiers. 

In future, developers needed to detect the code triage 

for runtime mobile-based application programs, because 

the existing tools do not support mobile application 

programs. Another need in software engineering is code 

clone management. Good quality of design can be 

achieved with the help of bugs free code clone in 

developing software. 
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