
https://doi.org/10.31449/inf.v46ix.xxxx Informatica 46 (2022) 501–505 501

Software Vulnerability Assessment and Classification using

Recurrent Neural Network

Authors: Ali Hussein, Azri Hj Azmi and Hafiza Abas

E-mail: hussein.a@graduate.utm.my

Razak Faculty Of Technology And Informatics, university teknologi (UTM)

Kuala Lumpur , malaysia

Keywords: Bug prediction; ensembles; segmentation; classification; neural network; class imbalance learning; re-

sampling methods; software defect prediction.

Received: April 5/2023

Abstract: The detection of software defects is useful technique for improving the quality of technology and testing

management by providing rapid detection of deficiency simulation models until the actual testing phase starts. These

prediction outcomes help designers of technology to effectively devote their available resources that are more vulnerable

to deficiencies. In this paper, we propose a software bug prediction by using deep learning approach. We define

Recurrent Neural Network for classification of source code including numerous soft computing techniques. Various pre-

processing and data filtration techniques have been carried out for data balancing for normalization. TF-IDF and

relation features extraction techniques have been used to generate Vector Space Model (VSM). The classification has

done using RNN, according to training module for both training and validation dataset. The proposed deep learning

framework consists of various optimization techniques where each has its strengths and limitations. We have evaluated

all techniques and selected the best one. In order to perform the observations and benchmark the proposed method,

various real-time and synthetic accessible databases are evaluated. The results of the assessment indicate that the

proposed framework version is superior to other excellently basic models as well as deep learning classification models.

1. Introduction

Recognition of vulnerabilities in source code or

software has become an emerging field of research. Even

though earlier studies have demonstrated the usefulness of

multiple detection methods, models, and software

vulnerability analysis tools in identifying source code

vulnerabilities, the enhancement of the efficiency of such

detection models and tools remains a major challenge for

researchers. Annually, thousands of security issues are

identified in virtual instruments, which are released

publicly to the general vulnerability database exposed in

obfuscated code. Threats also occur in indirect ways

which are not evident to the concerned code inspectors or

the programmers. It seems necessary to understand the

dynamics of vulnerabilities that can lead to system issues

directly from the raw data, with abundance of publicly

available source code. In this work, we present an

information approach to security technology by way of

using deep learning. Stimulated by the success of similar

researches in the area of recognizing the vulnerabilities in

source code/software, we use a theoretical framework to

examine its feasibility to aid in finding out the said

vulnerabilities. The preliminary results indicate that

within the domain of detecting attacks, the definition is

feasible[1].

To bridge the domains gap, we can propose that each

feature in a program be treated in computer vision as a

neural network because fault detectors may only have to

say whether a feature is insecure and fully explain

vulnerability positions. That is, we want an intelligent

interpretation of fault management programs. On either

hand, one may recommend approaching each piece of

code (i.e., comment, in this study, the two words are used

synonymous) as a vulnerability detection unit. There are

important exceptions to this diagnosis:

(i) most comments in a program may not contain any

uncertainty, indicating that a few samples are susceptible;

(ii) multiple comments are not regarded as a whole that is

semantically linked to each other [2].

Using traditional programming by utilizing k-means

cluster analysis and the generative adversarial model, a

scheme was introduced to check bugs in large amount

random codes. To select the optimal code with an

interactive analysis framework and software code refactor

generation, k-means cluster transformation has been used.

Use of a system, described on object-oriented code

analysis documented in literature; in the instant case. The

model is verified by the tasks of conceptual relationship

analysis based on coding pairs and identification of

sentiments.Moreover, research study, centered on what

form of compilation with communication of massive

source code has helped to recognize errors for

inexperienced developers and suggest the steps needed to

502 Informatica 46 (2022) 501–505 ali

be taken on source code mistakes. The investigation uses

the form of a message previously based on the coding

system and detects specific code snippets' vulnerability

[3].

It is therefore noted that, as classification algorithms

for web application, bug identification and vulnerability

classification, most investigators have used conventional

semi-supervised classifiers, RNNsor CNNs. RNNs are far

better than the standard language models, including such

n-gram, but they have drawbacks in understanding long

sequence data. Based on faults, functional programming

identification, archive code identification, and basic error

detection, almost all of the studies are found to have used

various system software and classification models. On the

other hand, the developed scheme of ours explicitly

defines logic, grammar, and other system software errors.

Additionally, in place of the error spot, the proposed

model is used to predict the correct terms. Overall, in

pursuing unique objectives, our suggested Language

model varies from many other models [4].

This paper introduces a novel active tracking on deep

learning to automatically learn features for predicting

runtime environment weaknesses. In source code, where

contingent code components are spread far apart, For

example, combinations of code tokens that are needed to

appear simultaneously due to the configuration of the

computer program (e.g. in Java) or according to the

configuration of API use (e.g. Lock () and activate ()), but

do not accompany each other automatically are effectively

handled. The interpretation of code symbols (semantic

functionality) and the hierarchical structure of source code

are appropriately reflected by the learned features

(syntactic features). Our automated feature learning

strategy removes the need for automated feature selection

in conventional methods, which takes up much effort.

Finally, testing the framework from a huge repository on

many Java programs for the Desktop version reveals that

our methodology is highly accurate in explaining code

vulnerabilities[5].

2. Proposed System Design:

Fig.1: proposed system architecture design

shows a system overview of execution process flow,

and delineates how it works with different algorithms.

2.1 Feature Execution

The function is compiled entire source code or

modules with real statistics; in this method behavior is

analyzed of code for vulnerability detection. During the

analysis, four dynamic analysis methods have been used,

fault infusion, mutation suitable starting, dynamic taint

assessment and dynamic system check to generate the

vector Space Model (VSM) from extracted features [6].

2.2. Pre-processing

A start of a few clone discovery come up to, the source

code is separated as well as the area of the comparison is

first decided. There are three basic types of goals in below

steps.

Eliminate section of code: In this step source code

uninteresting compared phase is removed.

Determine source units: By removing all the

uninteresting code, remaining part of source code is

divided in the arrangement of dissimilar sections known

as source units.

Determine correlation units/granularity:

Source code parts should be auxiliary divided into

smaller parts relying upon the evaluation method utilized

a tool [6].

2.3: Extraction

Extraction changes program to the form that is correct

while support to the real comparison algorithm.

Conditional upon the device, it contains are as following:

Tokenization: If there should be an event of token-

based methodologies, every source code line of the

program is more dividing into tokens as showed by the

lexical regulation of the program design platforms of

importance. Apply different tokens of source code lines or

forms after that frame of token systems to compare. The

Enter short title in File/Properties/Summary Informatica 46 (2022) 501–505 503

entire whitespace and comments between marks are

removal from the token groups.

Parsing: For syntactic methods, the whole source code

is described to prepare a parse tree or (potentially

clarified) abstract syntax tree (AST). The source parts to

be studied are then shown as sub trees of the describe tree

or the AST, and correlation algorithms search for qualified

sub trees to check as clone. Measurements based

methodologies can utilize a parse tree depiction to

discover clones taking into account sizes for sub trees.

Control and Data Flow Analysis: Semantics-related

methodologies products program dependence graphs

(PDGs) as of the source code. The nodes of a Program

Dependence Graphs show the reports and circumstances

of a system, while edges show to control and information

conditions. Source units to be matched are shown as sub

graphs of these PDGs. Different plans then search in favor

of isomorphic sub graphs to discover clones. A few

measurements based methodologies use sub graphs to

compute info with control stream measurements [6].

2.4 Feature Selection

The various feature selection methods have been used

during module training. The function is compiled entire

source code or modules with real statistics; in this method

behavior is analyzed of code for vulnerability detection. In

a broader dataset, all of the variables are less necessary to

consider; but, the greater the amount of variables, the

greater the difficulty. As a result, it is often preferable to

reduce the number of variables in a dataset and to use

critical variables. We may reduce the parameter and find

the variable's value in a dataset using a Function Selection

technique. During the analysis, four dynamic analysis

methods have been used, fault infusion, mutation suitable

starting, dynamic taint assessment and dynamic system

check. For generate the vector Space Model (VSM) from

extracted features [6].

2.5 Vulnerability Detection

The vulnerability detection has been performed based

on extracted features from the training data set. The vector

space model has been generated according to extracted

features like TF-IDF, relational features, and some bigram

features. The classification has been done with recurrent

neural networks, including long short term memory

algorithm. This detection is also effective for of

prevention of software-as-a-service attacks for web

applications. The vulnerable code finds generate internal

as well as external attacks and grant un-authorized access

to external users. The major objective of detection

vulnerability is automatic detection of exception handling

and buffer overflow attack during the code execution. In

the section proposed algorithm provides better detection

accuracy in the code snippet [16].

3. Algorithm Design:

The algorithms furnished below have been used

during the calculations of TF-IDF and weight score

calculations using RNN.

TF-IDF:

Input: Input test instance that contains numerous

 tokens T[i…n]

Output: TF-IDF weight for all T[i]

Step 1:Data_vector = {Data1, Data 2, Data 3…. Data

n}

Step 2: Words exist in entire dataset

Step 3: D = {cmt1, cmt2, cmt3, cmtn} and comments

available in each document. Calculate the Tf score as

Step 4: tf (t,d) = (t,d)

 t= term

 d= document

Step 5: idf = t sum(d)

Step 6: Return tf *idf

Recurrent neural network:

Input: Training dataset TestDBList [], Train dataset

TrainDBList[] and Threshold th.

Output: Predicted class according to classification

Step 1: Read train data rules using below formula

Train[] = ∑(Attn … … … … Attk)

k

n=1

Step 2: Read test data rules using below formula

Test[] = ∑ (Attm … … … … Attk)

k

m=1

Step 3: Calculate weight between input and hidden

layer

Instance[w]

= ∑(Testn … … … … Testn) ∑ (Trainm … … … … Traink)

k

m=1

k

n=1

Step 4: Generate feedback layer based on threshold

policy

Feed_Layer[] = ∑ (Feed_Layer. optimized ())

k

m=1

Step 5: Return Feed_Layer[0]. class

504 Informatica 46 (2022) 501–505 ali

4. Results and Discussion:

To validate the evaluation of the proposed bug

forecast procedure, we have employed RNN classification

algorithms that are gainfully utilized for fault prediction

including unlabeled datasets. The performance

evaluations of software defect prediction are based on the

confusion matrix, as shown in Table 1, which includes the

measures of precision, recall, as well as F-score.

Table 1: Confusion Matrix Evaluation

True positive (TP):The number of fake entities anticipated

as fake.

False negative (FN): The number of fake entities

anticipated as normal.

False positive (FP): The number of normal entities

anticipated as fake.

True negative (TN): The number of normal entities

anticipated as normal.

In this research, analytical performance procedures are

calculated as follows:

Precision: It shows the proportion of faulty identities

receive adequate as faulty of all desired objects.

Recall: It is the percentage of faulty identities to all entities

that are currently faulty is the proportions of recall.

F-measure: It is the cumulative recall and precision

average, with higher estimated coefficients matching

higher predictive efficiency.

To evaluate the proposed system, we have used machine

learning classifiers like ANN, SVM, Adaboost. Also, we

have used deep learning framework of RNN with LSTM

by using activation functions like Sigmoid, Tanh and

ReLU. The results of classification accuracy with

confusion matrix with 20 folds cross-validation for all

algorithms are shown in Table 2. Measures used to

compare the algorithms are Accuracy, Precision, Recall

and Micro-score. From the observations, it can be

concluded that RNN (ReLU) gives highest performance

among the all.

4.1 Experiment using Artificial Neural Network:

The figure 2 shows the classification accuracy of the ANN

classification algorithm. Initially, it has been trained using

inbuilt functions from the weka tool. Numerous cross-

validation techniques have been used for classification,

and various parameters has tuned for ANN during the

classification. This approach can classify each validation

according to probability function, that the reason this

algorithm bit high error rate than other supervised

classification algorithms.

Table 2: accuracy and confusion matrix for ANN

ANN Fold 10 Fold 15 Fold 20

Accuracy 85.20 84.20 85.60

Precision 83.60 82.30 84.99

Recall 87.50 85.40 77.72

Micro-Score 85.05 83.35 81.10

The ANN model is easy to build and particularly

useful for very large data classification using supervised

machine learning technique or Artificial Intelligence (AI).

Along with simplicity, ANN is known to outperform even

highly sophisticated classification methods. The proposed

ANN predicts the possibility for individual instance

according to current values.

Figure 2 shows the performance evaluation

calculation of ANN classification with 20-fold

classification. It achieves around 85.60% accuracy for the

given input dataset. We used a multinomial event model,

samples represent the frequencies with which certain

events have been generated by a multinomial probability

of that particular event and based on that probability

system predicts the final class.

Fig. 2: Analysis of bug and vulnerability detection

using ANN with 20-fold data cross validation

4.2 Experiment using Support Vector Machine

(SVM):

The below table 5.3 depicts the classification analysis

with various cross validation, we conclude 20 fold cross-

validation provides the highest 95.2% classification

accuracy for SVM.

table 3: accuracy and confusion matrix for SVM

SVM Fold 10 Fold 15 Fold 20

Accuracy 91.20 91.70 95.20

Precision 91.35 92.10 94.80

Recall 92.30 93.10 96.20

Micro-Score 91.35 92.20 94.75

Actual Predictive

True TP (true positive) FN (false negative)

False FP (false positive) TN (true negative)

FP+TP

TP
=Recall

Precision+Recall

RecallPrecision
=MeasureF




2

FN+TP

TP
=Precision

Enter short title in File/Properties/Summary Informatica 46 (2022) 501–505 505

Fig. 3: Analysis of bug and vulnerability detection

using SVM with 20-fold data cross validation

Figure 3 describes SVM for 20-fold cross-validation.

The labeling circumstances to construct a training set

become moment and expensive in many machine learning;

it is also helpful to find strategies to reduce supervised

classification numbers. By improving performance, the

Kernel-Based algorithm has been used to minimize

occurrences. We classify all in this algorithm as a point in

n-dimensional spaces only with respect of a property

direction being the meaning of each characteristic by

classification technique; we detect clones by finding the

hyper-plane that separates the two groups very well.

4.3 Experiment using Adaboost:

The below table 4 depicts the classification analysis

with various cross validation, we conclude 20 fold cross-

validation provides the highest 81.30% classification

accuracy for Adaboost.

table 4: accuracy and confusion matrix for Adaboost

Adaboost Fold 10 Fold 15 Fold 20

Accuracy 70.60 78.50 81.30

Precision 72.30 73.50 74.50

Recall 69.90 68.50 70.30

Micro -Score 70.60 71.90 72.30

Adaboost is adaptive in that it tweaks future weak

learners in favor of cases misclassified by prior classifiers.

It may be less prone to the over fitting issue than other

learning algorithms in certain situations. Individual

learners may be poor, but as long as their performance is

somewhat better than actual guessing, the overall model

will converge to a powerful learner.

Fig. 4: Analysis of bug and vulnerability detection

using Adaboost with 20-fold data cross validation

The figure 4 describes Adaboost classification for

fake account detection for 20-fold cross-validation.

AdaBoost is a specific training technique for boosted

classifiers.

A boost classifier is a kind of classifier.

Each Ft is a weak learner that accepts an object x as

input and returns a value that indicates the object's class.

The sign of the weak learner output, for example, specifies

the predicted object class in the two-class issue, whereas

the absolute value indicates the confidence in that

classification. Similarly, if the sample belongs to a

positive class, the Tth classifier is positive; otherwise, it is

negative.

4.4 Experiment using Recurrent Neural Network

(Sigmoid):

we demonstrate classification accuracy of RNN

(Sigmoid) using synthetic dataset, the similar experiments

has done with various cross validation and results has

illustrated in table 5. According to this analysis we

conclude 20 fold cross validation provides highest 96.10%

classification accuracy using RNN with Sigmoid function.

table 5: accuracy and confusion matrix for RNN

(Sigmoid)

RNN (Sigmoid) Fold 10 Fold 15 Fold 20

Accuracy 95.60 95.90 96.10

Precision 95.80 96.10 97.00

Recall 95.80 96.00 96.30

Micro-Score 94.70 95.90 96.05

506 Informatica 46 (2022) 501–505 ali

Fig. 5: Detection of accuracy using RNN (Sigmoid)

with 20-fold data cross validation

The 20-fold cross validation also achieves 96.10%

with RNN with sigmoid function, have been explained in

Figure 5, this RNN functions achieve around higher

accuracy over the traditional machine learning algorithms

during module testing.

4.5 Experiment using Recurrent Neural Network

(Tanh):

The figure 6 shows classification accuracy of RNN,

the similar experiments has done with various cross

validation and results are illustrated in table 6. According

to this analysis we conclude that 20 fold cross validation

provides highest 97.25% classification accuracy for RNN

using Tanh.

Table 6: Classification accuracy with confusion

matrix for RNN (Tanh)

RNN (Tanh) Fold 10 Fold 15 Fold 20

Accuracy 96.90 97.50 97.25

Precision 97.00 97.40 97.60

Recall 97.30 97.50 97.30

Micro-Score 96.80 96.70 96.90

Fig. 6: Detection of accuracy using RNN (Tanh) with

20-fold data cross validation

4.6 EXPERIMENT USING RECURRENT

NEURAL NETWORK (ReLU):

In this experiment we analyse the classification

accuracy of ReLU using synthetic dataset, the similar

experiments has done with various cross validation and

results has illustrated in table 7. According to this analysis

we conclude system provides highest 97.5% accuracy for

20-fold cross validation classification accuracy for RNN.

Table 7: Classification accuracy with confusion

matrix for RNN (ReLU)

RNN (ReLU) Fold 10 Fold 15 Fold 20

Accuracy 97.20 97.90 97.50

Precision 97.40 96.90 97.60

Recall 95.60 97.20 97.90

Micro-Score 96.20 95.80 97.20

Fig. 7: Detection of accuracy using RNN (ReLU) with

20-fold data cross validation

Above experiments describes a proposed deep

learning classification algorithm with a machine learning

algorithm. This figure describes the result with and

without cross-validation. We have used a minimum of

three hidden layers for the detection of code clone. Using

this experiment, we conclude RNN with sigmoid provides

better detection accuracy than the other two activation

functions as well as random forest machine learning

algorithm.

In table 8, we have compared all the results of above

experiments.

Metho

d

/

Measur

e

AN

N

SV

M

Adabo

ost

RNN

(Sigmo

id)

RNN

(Tan

h)

RNN

(ReL

U)

Accura

cy

85.6

0
95.2 81.30 96.10 97.25 97.50

Precisi

on

84.9

9

94.8

0
74.50 97.00 97.60 97.60

Recall

77.7

2
96.2 70.30 96.30 97.30 97.90

Micro-

Score

81.1

0

94.7

5
72.30 96.05 96.90 97.20

Enter short title in File/Properties/Summary Informatica 46 (2022) 501–505 507

Fig. 8: Classification accuracy with 20-fold cross-

validation for all methods

the proposed method obtains the best predictive

performance. The suggested solution can be further tested

when used in actual software applications. The three data

splitting mechanism has use as 10, 15 and 20 fold cross-

validation.

table 9: Dataset description of source code extracted

from android APK files

Total Size 2500

Training Samples 2000

Testing Samples 500

System describes four evaluations between this

research results and the some existing systems results has

calculated on the similar as well as multiple dataset.

Fig. 9: Comparative analysis of proposed vs. existing

classification for vulnerability detection shows two

machine learning algorithms used. This figure depicts the

proposed RNN provides better detection accuracy over

machine learning algorithms.

A classification model is generated using this

arrangement or learning set to organize the input courses

into corresponding template files or labels. Then a test set

is used by gleaning the class labels of orthonormal courses

to validate the model. A variety of neural networks are

used to identify reviews, such as ANN and Support Vector

Machines (SVM) and Adaboost.

5. Conclusion and Future Work:

The vulnerability detection is very tedious work for

imbalance source codes; vulnerable code allows

generating software attack to remote user. Sometimes,

during execution the vulnerable code also generates

internal attacks like

buffer overflow, session hijack, bypass authentication

etc. In literature, many problems are detected in software

every year. Vulnerabilities mostly does not appear in

hidden the forms which the software testers can identify.

This

system describes the method of finding drawbacks by

utilizing deep learning.

In this paper, we have developed a RNN including

LSTM for constructing code vulnerability detection and

bug triage on various platforms. Numerous tools are not

able to support a web-based application to find code

vulnerability. The proposed system works on different

datasets for feature extraction and is able to detect the

vulnerability. RNN provides a better result over traditional

machine learning classifiers.

In future, developers needed to detect the code triage

for runtime mobile-based application programs, because

the existing tools do not support mobile application

programs. Another need in software engineering is code

clone management. Good quality of design can be

achieved with the help of bugs free code clone in

developing software.

References:

1- Terada, K.; Watanobe, Y., "Automatic Generation

of Fill-in-the-Blank Programming Problems", In

Proceedings of the 2019 IEEE 13th International

Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSoC), Singapore, 1–4 October 2019; pp.

187–193.

2- Tai, K.S.; Socher, R.; Manning, C.D., "Improved

semantic representations from tree-structured long short-

term memory networks", In Proceedings of the 53rd

Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on

Natural Language Processing, Beijing, China, 26–31 July

2015; pp. 1556–1566.

3- Pedroni, M.; Meyer, B., "Compiler error messages:

What can help novices?", In Proceedings of the 39th

SIGCSE Technical Symposium on Computer Science

Education, Portland, OR, USA, 12–15 March 2008; pp.

168–172.

4- Saito, T.; Watanobe, Y., "Learning Path

Recommendation System for Programming Education

based on Neural Networks", Int. J. Distance Educ.

Technol. (Ijdet) 2019, 18, 36–64.

5-Teshima, Y.; Watanobe, Y., "Bug detection based

on LSTM networks and solution codes", In Proceedings of

the 2018 IEEE International Conference on Systems, Man,

508 Informatica 46 (2022) 501–505 ali

and Cybernetics (SMC), Miyazaki, Japan, 7–10 October

2018; pp. 3541–3546.

6- Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L.,

"Software Defect Prediction via Attention-Based

Recurrent Neural Network", Sci. Program. 2019, 2019,

6230953.

7- Ohashi, H.; Watanobe, Y., "Convolutional Neural

Network for Classification of Source Codes", In

Proceedings of the 2019 IEEE 13th International

Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSoC), Singapore, Singapore, 1–4 October

2019; pp. 194–200.

8- Zhou, Y.; Tong, Y.; Gu, R.; Gall, H., "Combining

text mining and data mining for bug report classification",

J. Softw. Evol. Process 2016, 28, 150–176.

9- Jin, K.; Dashbalbar, A.; Yang, G.; Lee, J.-W.; Lee,

B., "Bug severity prediction by classifying normal bugs

with text and meta-field information", Adv. Sci. Technol.

Lett. 2016, 129, 19–24.

10- Goseva-Popstojanova, K.; Tyo, J., "Identification

of security related bug reports via text mining using

supervised and unsupervised classification", In

Proceedings of the IEEE International Conference on

Software Quality, Reliability and Security, Lisbon,

Portugal, 16–20 July 2018; pp. 344–355.

11- Kukkar, A.; Mohana, R., "A Supervised bug

report classification with incorporate and textual field

knowledge", Procedia Comp. Sci. 2018, 132, 352–361.

12- Tong, H.; Liu, B.; Wang, S., "Software defect

prediction using stacked denoising auto encoders and two-

stage ensemble learning", Inf. Softw. Technol. 2018, 96,

94–111.

13- More, A., "Survey of resampling techniques for

improving classification performance in unbalanced

datasets" arXiv 2016, arXiv:1608.06048.

14- Rawat, M.S.; Dubey, S.K., "Software defect

prediction models for quality improvement: A literature

study", IJCSI Int. J. Comput. Sci. Issues 2012, 9, 288–296

15- Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller,

A. "Predicting Vulnerable Software Components", In

Proceedings of the 14th ACM conference on Computer

and Communications Security, Alexandria, VA, USA,

28–31 October 2007; pp. 529–540.

16- Markad Ashok Vitthalrao, Mukesh Kumar Gupta,

"Software Vulnerability Classification based on Machine

Learning Algorithm", International Journal of Advanced

Trends in Computer Science and Engineering

(IJATSCE), ISSN 2278-3091, Volume 9, No.4, July –

August 2020, Page No.6653-6659.

17- Markad Ashok Vitthalrao, Mukesh Kumar Gupta,

"Software Vulnerability Classification based on Deep

Neural Network", International Journal of Engineering

and Advanced Technology (IJEAT), ISSN: 2249-8958

(Online), Volume-9 Issue-1, October 2019, Page

No.3146-3150.

