A CRISP-DM and Predictive Analytics Framework for Enhanced Decision-Making in Research Information Management Systems
Abstract
Full Text:
PDFReferences
(2000). CRISP-DM 1.0 – Step-by-step data mining guide. SPSS Inc.
Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 26(2):173–194. https://doi.org/10.1007/s12525-016-0219-0
Al Sadi, I. M. S. (2021). Open access analytics with open access repository data: A Multi-level perspective (Doctoral dissertation, University of Southampton).
Azeroual, O. (2019). Text and Data Quality Mining in CRIS. Information, 10(12):374. https://doi.org/10.3390/info10120374.
Azeroual, O., Nacheva, R., Nikiforova, A., Störl, U., & Fraisse, A. (2023). Predictive Analytics intelligent decision-making framework and testing it through sentiment analysis on Twitter data. In Proceedings of the 24th International Conference on Computer Systems and Technologies (pp. 42-53).
Azeroual, O., Nikiforova, A. and Sha, K., 2023, June. Overlooked Aspects of Data Governance: Workflow Framework For Enterprise Data Deduplication. In 2023 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS) (pp. 65-73). IEEE.
Azeroual, O.; Schöpfel, J.; Pölönen, J. and Nikiforova, A. (2022). Putting FAIR Principles in the Context of Research Information: FAIRness for CRIS and CRIS for FAIRness. In Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KMIS, pages 63–71. https://doi.org/10.5220/0011548700003335
Beulen, E., & Dans, M. A. (2023). Data Analytics and Digital Transformation. Taylor & Francis.
Bibri, S. E. (2021). Data-driven smart sustainable cities of the future: An evidence synthesis approach to a comprehensive state-of-the-art literature review. Sustainable Futures, 3, 100047. https://doi.org/10.1016/j.sftr.2021.100047
Burow, L.; Gerards, Y.; Demmer, M. (2017). Effektiv und effizient steuern mit
Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R.
Chen, C. P.; Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques, and technologies: A survey on Big Data. Information sciences, 275, 314-347. https://doi.org/10.1016/j.ins.2014.01.015
Chu, M. K., & Yong, K. O. (2021). Big data analytics for business intelligence in accounting and audit. Open Journal of Social Sciences, 9(9), 42–52. https://doi.org/10.4236/jss.2021.99004
Clements, A.; Proven, J., 2015. The emerging role of institutional CRIS in facilitating open scholarship. In: LIBER Annual Conference 2015, London, June 25th, 2015. https://dspace-cris.eurocris.org/handle/11366/393
Dutt, S., Chandramouli, S., Das, A. (2019). Machine Learning. Pearson.
Eckerson, W. W. (2007). Predictive Analytics: Extending the Value of Your Data
Eisenhardt, K.M.; Zbaracki, M.J. (1992). Strategic Decision Making. Strategic Management Journal, 13,17–37. https://www.jstor.org/stable/2486364
Elsevier. (2023). Why you need a Research Information Management System (RIMS). [Online] Available at: https://www.elsevier.com/research-intelligence/rims-and-cris-systems. [Accessed 2 July 2023]
euroCRIS. (2020). Why does one need a CRIS? The Research Process and how a CRIS can support it. [Online] Available at: https://eurocris.org/why-does-one-need-cris. [Accessed 2 July 2023]
Fraumeni, B. M. (2001). E-commerce: Measurement and measurement issues. American Economic Review, 91(2), 318–322. https://www.jstor.org/stable/2677781
Frizzo-Barker, J., Chow-White, P. A., Adams, P. R., Mentanko, J., Ha, D., & Green, S. (2020). Blockchain as a disruptive technology for business: A systematic review. International Journal of Information Management, 51, 102029. https://doi.org/10.1016/j.ijinfomgt.2019.10.014
Gartner. (2023). Small And Midsize Business (SMB). [Online] Available at: https://www.gartner.com/en/information-technology/glossary/smbs-small-and-midsize-businesses. [Accessed 2 July 2023]
Grover, V., Chiang, R. H., Liang, T. P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of management information systems, 35(2), 388-423. https://doi.org/10.1080/07421222.2018.1451951
Halper, F. (2014). Predictive analytics for business advantage. TDWI Research, 1-32.
http://hdl.handle.net/11366/1015
https://doi.org/10.1007/s12176-017-0122-3
https://doi.org/10.1016/j.jbusres.2016.08.001
https://www.jstor.org/stable/1503543
Hüther, O., & Krücken, G. (2016). Nested organizational fields: Isomorphism and differentiation among European universities. The University Under Pressure (Research in the Sociology of Organizations, Vol. 46), Emerald Group Publishing Limited, Bingley, pp. 53–83. https://doi.org/10.1108/S0733-558X20160000046003
Jeffery, K., 2012. CRIS in 2020. In: CRIS2012: 11th International Conference on Current Research Information Systems (Prague, June 6–9, 2012). http://dspacecris.eurocris.org/ handle/11366/119
Jetten, M.; Simons, E. (2019). Research data management incorporated in a Research Information Management system. A case study on archiving data sets and writing Data Management Plans at Radboud University, the Netherlands.EUNIS19: 25th EUNIS Annual Congress (June 5-7, 2019, NTNU, Trondheim, Norway).
Kelley, K.; Clark, B.; Brown, V.; Sitzia, J. (2003). Good practice in the conduct and reporting of survey research. International Journal for Quality in Health Care, 15(3): 261–266. https://doi.org/10.1093/intqhc/mzg031
Kim, SW., Gil, JM. (2019). Research paper classification systems based on TF-IDF and LDA schemes. Hum. Cent. Comput. Inf. Sci. 9, 30. https://doi.org/10.1186/s13673-019-0192-7.
Kotu, V., & Deshpande, B. (2014). Predictive analytics and data mining: concepts and practice with rapidminer. Morgan Kaufmann.
Krüger, A. K., & Petersohn, S. (2022). From Research Evaluation to Research Analytics. The digitization of academic performance measurement. Valuation Studies, 9(1), 11-46.
Maassen, P. A. (1997). Quality in European higher education: Recent trends and their historical roots. European Journal of education, 111–127.
Marr, B. (2018) Here's Why Data Is Not The New Oil https://www.forbes.com/sites/bernardmarr/2018/03/05/heres-why-data-is-not-the-new-oil/?sh=1c70e5133aa9
MicroStrategy (2021). 2020 GLOBAL STATE OF ENTERPRISE ANALYTICS MINDING THE DATA-DRIVEN GAP. Online: 2020-Global-State-of-Enterprise-Analytics.pdf (microstrategy.com)
Nacheva, R. (2022). Emotions Mining Research Framework: Higher Education in the Pandemic Context. In: Terzioğlu, M.K. (eds) Advances in Econometrics, Operational Research, Data Science and Actuarial Studies. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-85254-2_18.
Nikiforova, A. (2023). HackCodeX Forum Keynote “Data Quality as a prerequisite for you business success: when should I start taking care of it?”, https://anastasijanikiforova.com/2023/06/07/hackcodex-forum-keynote-data-quality-as-a-prerequisite-for-you-business-success-when-should-i-start-taking-care-of-it/
Paul, L. R.; Sadath, L.; Madana, A. (2021). Artificial Intelligence in Predictive Analysis of Insurance and Banking. In Artificial Intelligence (pp. 31-54). CRC Press.
Perrons, R. K., & Jensen, J. W. (2015). Data as an asset: What the oil and gas sector can learn from other industries about “Big Data”. Energy Policy, 81, 117–121. https://doi.org/10.1016/j.enpol.2015.02.020
Piryonesi, S. M., & El-Diraby, T. E. (2020). Data analytics in asset management: Cost-effective prediction of the pavement condition index. Journal of Infrastructure Systems, 26(1), 04019036. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
Predictive Analytics. Controlling & Management Review, 61(9):48–56.
Qiu, F., et al. (2022). Predicting students’ performance in e-learning using learning process and behaviour data. Sci Rep 12, 453. https://doi.org/10.1038/s41598-021-03867-8.
Rahimi, N., Eassa, F., Elrefaei, L. (2020). An Ensemble Machine Learning Technique for Functional Requirement Classification. Symmetry, 12, 1601. https://doi.org/10.3390/sym12101601.
Rathore, A. K., Kar, A. K., & Ilavarasan, P. V. (2017). Social media analytics: Literature review and directions for future research. Decision Analysis, 14(4), 229-249.
Romeike, F.; Eicher, A. (2016). Predictive Analytics: Looking into the future. FIRM Yearbook, pp. 168–171.
Salemink, I., Dufour, S., van der STEEN, M., & Officer, S. P. (2019). Future advanced data collection. In the Conference of European Statisticians, vol. 58.
Sarker, I.H. (2021) Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN COMPUT. SCI. 2, 377. https://doi.org/10.1007/s42979-021-00765-8
Schöpfel, J., Azeroual, O., & Saake, G. (2020). Implementation and user acceptance of research information systems: An empirical survey of German universities and research organisations. Data Technologies and Applications, 54(1), 1-15. https://doi.org/10.1108/DTA-01-2019-0009
Schöpfel, J.; Azeroual, O. (2021).Current research information systems and institutional repositories: From data ingestion to convergence and merger. Editor(s): David Baker, Lucy Ellis, In Chandos Digital Information Review, Future Directions in Digital Information, Chandos Publishing, pp. 19-37. https://doi.org/10.1016/B978-0-12-822144-0.00002-1.
Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of business research, 70, 263–286.
Spencer, S. B. (2015). Privacy and predictive analytics in e-commerce. 49 New England Law Review 101, 629. https://ssrn.com/abstract=2678381
Stylos, N., & Zwiegelaar, J. (2019). Big data as a game changer: how does it shape business intelligence within a tourism and hospitality industry context? In Big data and innovation in tourism, travel, and hospitality (pp. 163-181). Springer, Singapore. https://doi.org/10.1007/978-981-13-6339-9_11
Tanlamai, J., Khern-am-nuai, W., & Adulyasak, Y. (2022). Identifying arbitrage opportunities in retail markets using predictive analytics. Available at SSRN 3764048. http://dx.doi.org/10.2139/ssrn.3764048
Tanvir, Q. (2021). Multi-Page Document Classification using Machine Learning and NLP. [Online] Available at: https://towardsdatascience.com/multi-page-document-classification-using-machine-learning-and-nlp-ba6151405c03. [Accessed 2 August 2023]
University of Ljubljana. (2023). Orange Data Mining. [Online] Available at:https://orangedatamining.com. [Accessed 2 October 2023]
Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3-28. https://doi.org/10.1257/jep.28.2.3
Vu Nguyen Hai, D., & Gaedke, M. (2021, May). Applying Predictive Analytics on Research Information to Enhance Funding Discovery and Strengthen Collaboration in Project Proposals. In International Conference on Web Engineering (pp. 490-495). Cham: Springer International Publishing.
Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological forecasting and social change, 126, 3-13. https://doi.org/10.1016/j.techfore.2015.12.019
Warehousing. TDWI Best Practices Report, Renton.
Zazzaro, G., Mercogliano, P., & Romano, G. (2017). Data Mining for Forecasting fog Events and Comparing Geographical Sites. IARIA Int. J. Adv. Networks Serv, 10, 160-171.
DOI: https://doi.org/10.31449/inf.v49i18.5613

This work is licensed under a Creative Commons Attribution 3.0 License.