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Received:

This study investigated the performance of various machine learning algorithms in
predicting transportation modes from large datasets. The investigated algorithms
include Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), Decision Tree,
Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Logistic
Regression. We rigorously evaluated each algorithm’s performance using a robust set of
metrics such as precision, recall, and F1-score. This study comprehensively explains the
algorithm’s capabilities, strengths, and potential weaknesses across seven transportation
categories: ’walk’, ’bike’, ’bus’, ’car’, ’taxi’, ’train’, and ’subway’. The Decision Tree
(DT) model consistently outperformed the others, demonstrating superior accuracy and
a better balance of precision and recall across all modes of transportation. Specifically,
it achieved precision, recall, and F1 scores of around 83% to 94% across all categories.
These findings underline the suitability of the DT model for this classification task and
its potential for further applications in transportation mode prediction based on large
datasets. However, other algorithms like LSTM and RNN also showed promising results
in certain categories, suggesting the value of continued exploration of different models
depending on specific use cases.

1 Introduction

The complexities of how people move within a
community - their travel behaviors and trans-
portation choices - play a critical role in many
aspects of urban planning and development. This
intricate mosaic of movement patterns is ex-
tremely important, serving as a valuable tool for
policymakers, transportation planners, and urban
developers. It helps to predict future transporta-
tion needs accurately, guides critical decision-
making processes, and promotes environmentally
friendly practices [1].

Insights gleaned from this data are used by
transportation planners and policymakers to ac-
curately forecast future demand for various modes

of transportation. It provides recommendations,
aiding informed decisions in infrastructure and
service investment decisions [2]. For example, if
analysis shows that a sizable proportion of the
population relies on public transport, there is a
clear justification for investments in expanding
bus lines or adding tube stations [3].

Furthermore, data on travel behavior is a valu-
able tool for promoting environmentally sustain-
able transportation practices. If, for example, a
sizable proportion of the population relies solely
on private automobiles for commuting, this may
indicate a need for more environmentally friendly
transportation options. Cycling lanes, carpooling
programs, and better public transportation are all
potential solutions [4].
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Understanding travel behavior can also reveal
implications for health and safety. Assume that
many people prefer cycling, but that there are a
high number of traffic accidents involving cyclists
in the area. In that case, this troubling trend may
indicate the need for improved bike infrastructure
or increased safety education [5].

Moreover, this comprehension can shed light on
potential equity issues. When lower-income peo-
ple rely heavily on public transportation and the
service is either inadequate or unaffordable, it is
clear that policy changes are needed to ensure eq-
uitable transportation access [6].

Understanding travel behavior has a significant
impact on economic development. When deciding
where to locate, businesses in a variety of indus-
tries, including retail, food, and entertainment,
frequently consider potential customers’ modes of
transportation [4].

Another critical application is for communities
to understand how their populations travel to ef-
fectively prepare for and respond to a disaster.
This information can be used to predict which
roads may require immediate clearance and which
modes of transportation should be restored as
soon as possible [7].

This paper is organized as follows. Section 2
explores the background information. Section 3
conducts a thorough review of the existing litera-
ture. Section 4 provides a detailed explanation of
our proposed approach, which includes data pre-
processing, feature construction, and the intricate
aspects of the model architecture. Section 5 con-
tains a thorough examination of our experimental
findings. Finally, in Section 6, we wrap up our
discussion and draw meaningful conclusions.

2 Background

Understanding and predicting travel behavior is a
difficult task that necessitates the use of numerous
types of data and sophisticated analytical tech-
niques. As location-acquisition technology has
advanced, GPS trajectory data has become one of
the most important sources of information for re-
searching human mobility patterns. By providing
extensive records of individuals’ spatial-temporal
travels, these data provide significant insights into
how, why, and where people travel. However, be-
cause of the inherent complexity and variety of

human movement, extracting meaningful insights
from raw GPS trajectory data is a difficult pro-
cess [8].

To deal with this difficulty, various computa-
tional strategies have been developed over the
years. Among these, machine learning algorithms
have emerged as particularly promising. They are
capable of learning complex patterns from mas-
sive amounts of data, making them ideal for jobs
such as transportation mode prediction. Decision
trees, for example, have been widely used due to
their interpretability and versatility [9].

However, the performance of these algorithms
is heavily reliant on the quality of the incoming
data and how it is handled. As a result, data
preprocessing and feature extraction are critical
steps in model development. Techniques such as
data cleaning, normalization, and encoding are
frequently used to convert raw GPS data into a
format suitable for machine learning algorithms.

The study intends to use these approaches,
specifically the DT algorithm, to forecast trans-
portation modes from GPS trajectory data. This
study not only contributes to the larger field of
travel behavior analysis, but it also gives legisla-
tors, transportation planners, and urban develop-
ers practical insights [9].

3 Related Work

Over the years, numerous studies have been
conducted to unravel the complexities of travel
behavior and transportation mode prediction.
These investigations have shed light on various
aspects of travel behavior, influencing the evolu-
tion of prediction models and methodologies. De-
spite its simplicity, our approach has the poten-
tial to provide significant insights into this mul-
tifaceted area. Previous research emphasizes the
significance of decoding human mobility patterns
- a complex web of numerous factors that influ-
ence travel choices. These studies used a vari-
ety of methodologies to unravel this complex is-
sue, ranging from traditional statistical methods
to advanced machine learning algorithms.

Convolutional Neural Networks (CNNs) have
been widely used among these because of their
ability to automatically learn and extract fea-
tures from spatial data. Regardless of their ad-
vantages, CNNs require a large amount of train-
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Table 1: Comparison of Different ML Models
Model Accuracy % F1-Score %
CNN-ensemble [10] 81.92 81.77
LSTM-based DNN [11] 80.99 80.53
GRU-based DNN [12] 81.12 80.83
LRCN [13] 82.32 82.30
STPC-Net [14] 81.22 81.05
CE-RCRF [1] 85.23 85.41

ing data for optimal performance and can be
computationally intensive, making them slower
to train [10]. Other works were based on deep
Neural Networks (DNN) such as [11], [12]. Even
though They are effective at learning and remem-
bering long sequences, they are computationally
demanding and may be prone to overfitting due to
their complexity. On the other hand, long-term
Recurrent Convolutional Network (LRCN) com-
bines the strengths of CNN and RNN rather than
specifically incorporating LSTMs. LRCN is in-
tended to efficiently process sequential data with
spatial features by combining the spatial feature
extraction capabilities of CNNs with the temporal
modeling capabilities of RNN [13].

The Spatial-Temporal Pattern Chain Network
(STPC-Net) is a network that models complex
spatial-temporal patterns and is specifically de-
signed for transportation mode identification. De-
spite its efficacy, the model may be overly com-
plex for tasks where simpler models would suffice
[14]. The Contrast-Enhanced Robust Conditional
Random Field (CE-RCRF) method combines the
advantages of both the Contrast Enhancement
(CE) and the Robust Conditional Random Field
(RCRF) methods. It is more complex and com-
putationally demanding than other methods for
dealing with noise and uncertainties in GPS data
[1]. The investigation of these techniques and
their effectiveness in predicting travel behavior
has yielded useful insights for future research in
this field. The results of these techniques, includ-
ing their accuracy and F1-score, are shown in Ta-
ble 1.

4 Proposed Methodology

Our paper proposes a comprehensive frame-
work for Travel Mode Identification that includes
four steps; namemly data preprocessing, feature
construction, predictive models, and evaluation

methods. These modules collaborate to form a
unified pipeline for identifying travel modes effec-
tively and efficiently.

The first step, data preprocessing, is crucial in
preparing raw data for further analysis. To ensure
the quality and consistency of the data, this step
involves cleaning and standardizing it. We ensure
the reliability of the data used for travel mode
identification by addressing missing values, out-
liers, and inconsistencies. This step also included
extracting meaningful features. These character-
istics are carefully chosen based on their relevance
and potential impact on travel mode identifica-
tion.

Then, we employed an array of predictive mod-
els to classify travel modes based on the con-
structed features. Our goal was to juxtapose the
performance of these models to discern the most
effective one(s) for our specific task. The models
used include Multilayer Perceptron (MLP), Long
Short-Term Memory (LSTM), Recurrent Neural
Networks (RNN), Decision Trees, Logistic Regres-
sion, and K-nearest Neighbors (KNN) algorithms.
Each of these models was trained on the same set
of training data and evaluated on a common test-
ing set to ensure a fair comparison. As part of the
modeling process, we paid attention to appropri-
ate model-specific configurations, such as choos-
ing an optimal number of layers for MLP or tun-
ing the number of neighbors in KNN, to guarantee
each model’s best possible performance.

In the final step, we evaluate the efficacy of
the various predictive models that we have used.
We use a set of performance metrics for this pur-
pose, including accuracy, precision, recall, and the
F1 score. These metrics enable us to assess each
model’s ability to correctly identify travel modes.
Every individual model is subjected to a thor-
ough evaluation, providing us with detailed in-
sights into the model’s strengths, weaknesses, and
distinguishing characteristics. We determine the
most efficient and effective model for travel mode
identification by comparing the performance of all
of these models. As part of the evaluation process,
we also consider the computational efficiency and
ease of tuning the model’s hyperparameters. This
in-depth examination seeks to provide a clear un-
derstanding of the best-performing model on the
travel mode identification dataset.

In this study, we use the extensive geographic
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data contained in Microsoft’s GeoLife GPS Tra-
jectory 1.3 dataset 1, a robust repository that in-
cludes a wealth of information about human mo-
bility patterns [15].

The GeoLife GPS Trajectory 1.3 dataset from
Microsoft is a rich repository of geographic data
that provides a comprehensive view of mobil-
ity patterns, making it an invaluable resource
for geospatial researchers and developers. This
dataset, derived from a variety of location-enabled
devices, enables a thorough examination of spa-
tial and temporal behaviors [15].

The GPS Trajectory 1.3 dataset, which was cre-
ated as part of Microsoft’s GeoLife project, con-
tains the mobility data of 182 users from April
2007 to August 2012. This massive dataset in-
cludes 17,621 trajectories and over 24.7 million
individual location points [15].

Each trajectory in the dataset is a series of
time-stamped points that provide not only lo-
cation information but also a chronological per-
spective necessary for understanding movement
patterns over time. The location points were
recorded at five-second intervals, resulting in a
high-resolution view of each trajectory [15].

This dataset is geographically diverse, covering
a wide range of areas in more than 30 Chinese
cities. Because of the broad geographic scope,
comparative studies of mobility patterns in vari-
ous cultural and urban contexts are possible [15].

Furthermore, one distinguishing feature of this
dataset is that it includes a wealth of associated
information in addition to geographic and tempo-
ral data. For some users, a mode of transporta-
tion is available, providing insight into the op-
tions of walking, cycling, driving, or taking pub-
lic transportation. This extra layer of data can
be especially useful in studies that look at trans-
portation options and travel behavior [15].

4.1 Data Preprocessing

Data preprocessing was the first step in preparing
our dataset for further research. This stage essen-
tially ensured that the dataset’s format was stan-
dardized, that unnecessary attributes were re-
moved, and that all necessary changes were made.

1https://www.microsoft.com/en-
us/research/publication/geolife-gps-trajectory-dataset-
user-guide/

The following preprocessing procedures were car-
ried out:

1. Data Integration:
Data from 18,670 files from 182 people were
combined into a single data file, and 69
users’ trajectory labels were similarly in-
tegrated. After exporting the trajectory
data points to a unified dataset, they were
linked with their labels, yielding approxi-
mately 24,876,978 records.

2. Data Reduction:
The process of data reduction entailed re-
moving irrelevant attributes from the dataset
to streamline it. This includes the removal of
the ”Param” attribute, which had no infor-
mational value because it was consistently 0
across all instances. Furthermore, due to the
prevalence of undefined and incongruous val-
ues, the ”Altitude” attribute was also elimi-
nated. Finally, cases lacking labels and those
with a zero value for the time attribute were
systematically eliminated from the dataset to
ensure data integrity and to assist the re-
quirement of supervised learning.

4.2 Feature Construction

Following data Preprocessing, the next crucial
stage is feature construction, which tries to estab-
lish meaningful features that will serve as valuable
inputs for the modeling process. The following
steps were taken to complete this process:

1. Attribute Generation:
The process of the feature creation proce-
dure began by extracting critical attributes
from the existing GPS coordinates and times-
tamps. To begin, the property denoting the
distance to the next location was determined
in kilometers using the equation (1). Using
the equation (2), the time to the next loca-
tion was then calculated in hours. Along with
this, the velocity attribute was introduced,
which was calculated as the distance-to-time
ratio and expressed in kilometers per hour us-
ing the equation (3). This change improved
the dataset’s acceptability for further analy-
sis and added an essential predictive feature
to the model.



Informatica 45 page 501–yyy 5

The dataset was supplemented by comput-
ing two more nuanced attributes in addition
to these fundamental attributes. These in-
cluded the acceleration, which was stated in
kilometers per hour squared and calculated
using equation (4), and the angular veloc-
ity, which was expressed in radians per hour
and calculated using equation (5). The in-
clusion of these complex features increased
the dataset’s analytical reach, offering deeper
and more detailed insights for the following
stages of analysis and modeling.

2. Outlier Removal
To ensure data integrity and improve the ro-
bustness of our analysis, we started by re-
moving any instances in the dataset that
showed dubious or physically impossible
travel situations. Cases with negative Ve-
locity, Time to the next point, or Distance
to the next point values, in particular, were
immediately eliminated. This critical phase
aided in the removal of data irregularities and
other errors that may have occurred during
the data collection procedure.

3. Data Constraint Application
We established speed limits for each dis-
tinct mode of transportation after removing
these outliers. This necessitated setting aver-
age speed limits for various modes of trans-
portation, including walking and biking, as
well as other types of motorized and pub-
lic transportation. Instances that exceeded
the established speed limits were deemed ab-
normal and were removed from the dataset.
By adhering to realistic speed constraints,
our dataset remained grounded in reasonable
travel conditions. The speed limits for each
mode of transportation are depicted in Ta-
ble 2. The study’s reliability and accuracy
were significantly improved by this thorough
approach to feature development, which in-
cluded screening out rare situations and ad-
hering to strict travel mode speed thresholds.

4.3 Travel Mode Identifier

The cornerstone of every machine learning en-
deavor is undeniably the dataset in use. As we
transition from the data preprocessing and fea-
ture construction phases into model development,

Table 2: Speed Limits for Each Mode of Travel

Travel Mode Speed Limit
(km/h)

Walk 12
Bike 50
Car 160
Taxi 140
Bus 120
Subway 150
Train 320

Table 3: Class Distribution After Data Prepro-
cessing and Feature Construction

Transportation
Mode

Counts Percentage
(%)

Walk 1,497,710 28.16
Bus 1,275,389 23.98
Bike 945,077 17.77
Train 560,528 10.54
Car 511,585 9.62
Subway 286,112 5.38
Taxi 241,976 4.55

it becomes imperative to gain an understanding
of the refined dataset. It is the characteristics
of this dataset that illuminate the intricacies of
the problem at hand and hint at potential chal-
lenges that might arise during model construc-
tion. Post-processing, our dataset encompasses
5,318,377 instances, each assigned to one of seven
distinct classes. A detailed breakdown of these
classes can be found in Table 3.

To compare and assess the performance of var-
ious classifiers, we used Multilayer Perceptron
(MLP), Logistic Regression, k-nearest Neighbors
(KNN), Decision Trees, Long Short-Term Mem-
ory (LSTM), and Recurrent Neural Networks
(RNN) in our approach. These classifiers were
chosen for their demonstrated ability to han-
dle multiclass classification tasks in a variety of
contexts. Each classifier has its implementation
method, but they all share a common foundation
of preprocessing steps and performance evalua-
tion metrics.

We implemented machine learning algorithms
in Google Colab notebooks using Python 2. The
initial steps for all algorithms were similar. We
imported the necessary libraries, loaded the data

2https://colab.research.google.com/
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Figure 1: Formula for calculating the distance between two points

d = 2×R× arcsin

(√
sin2

(
Lat2− Lat1

2

)
+ cos(Lat1)× cos(Lat2)× sin2

(
Long2− Long1

2

))
(1)

where:
- d represents the distance to the next point in kilometers (km),
- 2 represents a constant factor used in the calculation,
- R is the radius of the Earth in kilometers, taken to be approximately 6,371 km,
- Lat1 and Lat2 are the latitude coordinates of the two points,
- Long1 and Long2 are the longitude coordinates of the two points.

Figure 2: Formula for calculating the time to reach the next point

t = (Datetime2−Datetime1)× 24.0 (2)

where:
- t represents the time duration between two points in hours (h),
- Datetime1 and Datetime2 are the timestamps of the two points.

Figure 3: Formula for calculating the velocity

v =
d

t
(3)

where:
- v represents the velocity in kilometers per hour (km/h),
- d represents the distance to the next point in kilometers,
- t is the time taken to travel from the first point to the second point in hours.

Figure 4: Formula for calculating the acceleration

a =
v2 − v1

t
(4)

where:
- a represents the acceleration in kilometers per hour squared (km/h2),
- v1 and v2 are the initial and final velocities respectively,
- t represents the time interval.

Figure 5: Formula for calculating the angular velocity

∆Term = sin2
(
Lat2− Lat1

2

)
+ cos(Lat1)× cos(Lat2)× sin2

(
Long2− Long1

2

)
(5)

av =
2× atan2

(√
∆Term,

√
1−∆Term

)
R× t

(6)

where:
- av represents the angular velocity in radians per hour (degrees/h),
- Lat1 and Lat2 are the initial and final latitudes respectively in radians,
- Long1 and Long2 are the initial and final longitudes respectively in radians,
- R is the radius of the Earth, taken to be approximately 6,371 km,
- t represents the time interval.
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into a pandas DataFrame, and performed prelim-
inary data preprocessing.

The first step was to retrieve the dataset from
a CSV file on Google Drive. We then used dic-
tionary mapping to convert categorical variables,
such as ’TransportationMode’, ’UserCode’, and
’TrajectoryCode’ into numerical form.

We used a predefined dictionary ’mode dict’
to transform the ’TransportationMode’ variable,
which served as the target variable. We also con-
verted ’UserCode’ and ’TrajectoryCode’ into nu-
merical codes to make the dataset suitable for ma-
chine learning models. We chose a percentage of
the dataset for subsequent analysis to ensure effi-
cient processing.

We separated the dataset into features (X) and
labels (y) after the initial preprocessing steps.
The ’TransportationMode’ column was among the
labels, while the other columns were among the
features. We used StandardScaler to normalize
the features to ensure they were consistent. This
step required removing the mean and scaling the
features to unit variance, which is a requirement
for many machine learning estimators.

To assess the models’ performance, we divided
the data into training and testing sets using the
sklearn train test split function. The training set
contained 80% of the data, while the test set re-
ceived the remaining 20%. This division allowed
us to evaluate the models’ performance on previ-
ously unseen data, ensuring a fair evaluation.

In this study, we leveraged multiple machine-
learning models to tackle our research objectives.
To comprehensively evaluate their performance,
we employed a robust set of key metrics, includ-
ing accuracy, bias, variance, precision, recall, and
the F1 score. By considering these metrics, we
gained valuable insights into the identifier’s ef-
ficacy across various modes and ascertained its
precision in predicting specific modes.

We used the DecisionTreeClassifier from
sklearn to implement the DT model, training it
on our data and using it to predict the labels of
the test set. Its performance was assessed by com-
paring predicted and actual labels.

We imported the Logistic Regression classifier
from sklearn for the Logistic Regression model,
followed the same process as the DT model, and
evaluated the model similarly.

The KNN model was built with Sklearn’s K-

Neighbors Classifier. We used the same evalua-
tion process after fitting the model to the training
data to make predictions on the test set.

We defined and built the architecture of the
MLP, LSTM, and RNN models using Tensor-
Flow’s Keras API. The MLP model had input,
hidden, and output layers, with ’relu’ as the hid-
den layer activation function. The LSTM model
began with an LSTM layer, while the RNN model
began with a SimpleRNN layer. All three models
concluded with a Dense layer with ’softmax’ as
the activation function, which is appropriate for
multiclass classification problems.

MLP, LSTM, and RNN models were all built
with the ’sparse categorical crossentropy’ loss
function, the ’adam’ optimizer, and ’accuracy’ as
a performance metric. Following training, the
models were used to predict test set labels, and
their performance was evaluated by comparing
these predictions to actual labels.

The performance of the models was assessed
using confusion matrices and heatmaps generated
with the Seaborn and Matplotlib libraries.

Furthermore, we considered the inherent char-
acteristics and trade-offs of each model when de-
termining their applicability to our specific prob-
lem. Decision trees, for example, are interpretable
but may struggle with complex patterns, whereas
models such as MLP, LSTM, and RNN can cap-
ture such patterns but may require more compu-
tational resources and time for fine-tuning.

5 Results and Analysis

We used cross-validation to evaluate the effective-
ness of the various classifiers used, which included
MLP, KNN, Decision Tree, LSTM, RNN, and Lo-
gistic Regression. The five-fold cross-validation
method was used specifically to provide a reliable
estimate of the model’s potential performance on
unseen data, protecting against overfitting. In ad-
dition, we investigated the bias-variance trade-off
for each model to better understand its robustness
and generalization capabilities.

Six different machine learning algorithms were
used in this study to model and predict the multi-
class transportation dataset. Several metrics, in-
cluding accuracy, precision, recall, and the F1-
score, were used to evaluate and compare the per-
formance of the models. In analyzing the results,
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Figure 6: Performance Comparison of Transport
Modes with MLP Algorithm

we will look at two perspectives, the first from
the Model point of view, and the second from the
point of view of the results of the transfer mode.

The MLP model had an overall accuracy of
68.55%. According to the confusion matrix, the
model performed best in the ’walk’ category, cor-
rectly identifying approximately 89% of instances.
The ’taxi’ and ’subway’ categories, on the other
hand, had the lowest accuracy, with only about
8% and 32% of instances correctly identified, re-
spectively. This indicates that the model has
difficulty distinguishing between these categories.
The details of the MLP performance are provided
in Table 4 and Figure 6.

The overall accuracy of the KNN model was
79.29%, which ed well in all categories, with the
highest accuracy observed in the ’train’ category
(approximately 91% of instances correctly identi-
fied). The model, on the other hand, struggled
with the ’taxi’ and ’subway’ categories, as evi-
denced by lower recall rates of 50% and 59%, re-
spectively. KNN performance is provided in Table
5 and Figure 7.

The DT model outperformed the previous two
algorithms with an overall accuracy of 87.41%.
It performed exceptionally well in distinguish-
ing the ’train’ category, correctly identifying ap-
proximately 96% of instances. Interestingly, this
model performed relatively well in the ’taxi’ cat-
egory (approximately 83% correct), a category
that presented difficulties for the previous algo-
rithms. The ’bus’ category, on the other hand,

Figure 7: Performance Comparison of Transport
Modes with KNN Algorithm

Figure 8: Performance Comparison of Transport
Modes with DT Algorithm

had a lower recall rate (82%), indicating some
misclassification. The details of the DT model
performance, including precision, and recall for
each transportation mode, are provided in Table
6 and Figure 8.

The overall accuracy of the LSTM model was
72.46%. The model did well in the ’train’ cat-
egory, with a recall rate of 91%, but struggled
in the ’taxi’ and ’subway’ categories, with recall
rates of 24% and 37%, respectively. The details of
the LSTM performance, including precision, and
recall for each transportation mode, are provided
in Table 7 and Figure 9.

The accuracy of the RNN model was 70.86%.
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Table 4: Precision, recall, and f1-score for the Multilayer Perceptron (MLP) model
Mode walk bike bus car taxi train subway accuracy precision recall support
walk 268,077 22,360 8,847 467 1 2 0 89.43% 63% 89% 299,754
bike 30,229 144,562 12,078 2,350 34 66 40 76.34% 67% 76% 189,359
bus 78,596 25,694 136,840 2,776 603 8,129 1,895 53.76% 69% 54% 254,533
car 21,626 4,906 15,392 56,029 879 2,327 978 54.85% 81% 55% 102,137
taxi 10,702 8,664 13,111 2,488 3,809 8,683 1,076 7.84% 68% 8% 48,533
train 2,937 667 5,211 1,689 27 101,754 81 90.55% 81% 91% 112,366
subway 16,690 7,461 5,498 3,584 253 5,418 18,090 31.74% 82% 32% 56,994

Table 5: Precision, recall, and f1-score for the K-Nearest Neighbors (KNN) model
Mode walk bike bus car taxi train subway accuracy precision recall support
walk 259,771 8,869 23,096 3,076 1,497 385 3,060 86.66% 77% 87% 299,754
bike 14,327 160,364 11,116 1,719 787 139 907 84.68% 84% 85% 189,359
bus 40,956 15,132 183,604 3,602 3,917 4,798 2,524 72.13% 76% 72% 254,533
car 7,828 2,981 6,503 79,371 1,939 746 2,769 77.71% 82% 78% 102,137
taxi 5,431 1,866 8,707 3,392 24,025 4,194 918 49.50% 67% 50% 48,533
train 1,514 483 3,817 902 2,403 102,688 559 91.38% 89% 91% 112,366
subway 7,754 1,437 5,029 5,291 1,500 2,367 33,616 58.98% 76% 59% 56,994

It excelled in the ’train’ category, correctly iden-
tifying approximately 89% of instances. However,
it performed poorly in the ’taxi’ and ’subway’ cat-
egories, with recall rates of 23% and 37%, respec-
tively (8 and Figure 10).

The overall accuracy of the Logistic Regression
model was 50.99%. Most categories were difficult
for the model to distinguish, particularly ’taxi,’
where it failed to correctly identify any instances.
Surprisingly, the model performed relatively well
in the ’walk’ and ’train’ categories, correctly iden-
tifying approximately 86% and 75% of instances,

Figure 9: Performance Comparison of Transport
Modes with LSTM Algorithm

respectively. The details of the Logistic Regres-
sion model performance, including the precision,
and recall for each transportation mode, are pro-
vided in Table 9 and Figure 11.

According to previous results, the DT model
emerges as the optimal choice in a comparative
analysis of various machine learning algorithms
based on key evaluation metrics, as shown in Ta-
ble 10, despite a slightly lower accuracy of 85%,
as opposed to the highest of 89% manifested by
the MLP, LSTM, and RNN algorithms. The
DT model is superior because it has the lowest

Figure 10: Performance Comparison of Transport
Modes with RNN Algorithm
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Table 6: Precision, recall, and f1-score for the DT model
Mode walk bike bus car taxi train subway accuracy precision recall support
walk 254,616 5,355 29,470 2,248 3,936 862 3,267 84.94% 84% 85% 299,754
bike 5,840 175,546 6,088 420 327 101 1,037 92.70% 93% 93% 189,359
bus 32,520 6,044 209,397 1,167 2,150 1,446 1,809 82.26% 82.26% 83% 254,533
car 2,811 457 1,208 94,927 569 279 1,886 92.94% 94% 93% 102,137
taxi 2,910 320 2,090 592 40,355 1,362 904 83.15% 81% 83% 48,533
train 785 78 1,515 235 1,407 107,869 477 96.00% 96% 96% 112,366
subway 4,987 384 1,926 1,088 1,058 456 47,095 82.63% 83% 83% 56,994

Table 7: Precision, recall, and f1-score for the Long Short-Term Memory (LSTM) model
Mode walk bike bus car taxi train subway accuracy precision recall support
walk 266,177 15,745 13,846 3,686 196 25 79 88.38% 66% 89% 299,754
bike 24,629 147,263 14,329 2,804 155 72 107 78.91% 74% 78% 189,359
bus 69,971 17,356 152,815 2,622 3,002 6,413 2,354 59.47% 73% 60% 254,533
car 14,940 3,683 9,632 69,781 2,060 1,062 979 65.50% 78% 68% 102,137
taxi 7,902 8,769 9,620 3,023 11,472 7,033 714 22.60% 61% 24% 48,533
train 2,110 695 4,137 1,560 1,267 102,408 189 91.42% 85% 91% 112,366
subway 15,880 5,364 4,447 5,799 717 3,935 20,852 36.18% 83% 37% 56,994

recorded bias of 16% and the lowest competi-
tive variance of 15%. These indicators point to
improved model robustness in comparison to its
counterparts, reducing the risk of overfitting or
underfitting.

Importantly, in the context of Table 10, the DT
model has 84% precision, indicating a lower prob-
ability of false-positive instances. At the same
time, it maintains a commendable recall rate of
85%, indicating its effectiveness in identifying true
positives. Furthermore, the DT algorithm’s F1-
score, which represents the harmonic mean of pre-

Figure 11: Performance Comparison of Transport
Modes with Logistic Regression Algorithm

cision and recall, peaks at 84%, indicating a de-
sirable balance between these two critical parame-
ters. As a result of the comprehensive evaluation,
the DT model provides the most advantageous
trade-off among accuracy, bias-variance equilib-
rium, precision, recall, and F1-score, as shown in
Table 10.

Bike Travel Mode Given the data in Table
11, which compares various machine learning al-
gorithms for predicting bike travel mode, it is
clear that the DT model outperforms the others.
It achieves the highest accuracy of 93%, a signif-
icant advantage over the second best, the KNN
algorithm, which achieves 85%. Furthermore, the
DT model is exceptionally stable, with the lowest
recorded bias and variance, both of which are 7%.
This implies that this model is less prone to over-
fitting or underfitting, which improves its overall
reliability in the context of bike travel mode pre-
diction.

The DT model outperforms all other models
in terms of precision, recall, and F1-score, which
are critical measures in determining a model’s ef-
fectiveness at accurately predicting true positives
and its balance of false positives and true posi-
tives.

Therefore, based on the comprehensive evalua-
tion presented in Table 11, the DT model appears
to provide the most beneficial trade-off among
accuracy, bias-variance equilibrium, precision, re-
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Table 8: Precision, recall, and f1-score for the Recurrent Neural Network (RNN) model
Mode walk bike bus car taxi train subway accuracy precision recall support
walk 260,588 16,829 17,572 4,395 108 79 183 89.40% 66% 87% 299,754
bike 26,734 143,799 14,995 3,059 382 46 344 73.72% 72% 76% 189,359
bus 67,050 20,776 149,221 4,603 3,873 5,868 3,142 57.70% 71% 59% 254,533
car 14,682 4,133 10,155 67,852 2,806 722 1,787 63.52% 75% 66% 102,137
taxi 8,712 9,012 9,222 2,908 11,126 6,565 988 19.56% 53% 23% 48,533
train 2,227 722 4,992 1,886 1,790 99,845 904 89.99% 85% 89% 112,366
subway 15,791 5,225 4,380 5,554 752 3,971 21,321 35.65% 74% 37% 56,994

Table 9: precision, recall, and f1-score for the Logistic Regression model
Mode walk bike bus car taxi train subway accuracy precision recall support
walk 258,048 21,357 20,290 54 0 5 0 86.08% 54% 86% 299,754
bike 69,838 49,492 66,581 3,425 0 23 0 26.13% 51% 26% 189,359
bus 84,460 20,941 126,863 11,361 1 8,738 2,169 49.84% 42% 50% 254,533
car 26,056 1,732 42,307 17,882 0 13,679 481 17.50% 30% 18% 102,137
taxi 15,711 1,152 17,547 10,610 0 3,422 91 0% 0% 0% 48,533
train 2,292 256 15,711 9,867 0 84,233 7 74.96% 73% 75% 112,366
subway 21,909 1,626 16,115 6,050 0 5,345 5,949 10.43% 68% 10% 56,994

Table 10: Performance of Various Machine Learning Algorithms for Walk Mode Prediction

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 89% 38% 9% 63% 89% 74%
KNN 87% 23% 13% 77% 87% 82%
DT 85% 16% 15% 84% 85% 84%
LSTM 88% 34% 12% 66% 89% 76%
RNN 89% 35% 11% 66% 87% 75%
Logistic Regression 86% 46% 14% 54% 86% 66%

call, and F1-score in the context of predicting bike
travel mode.

Bus Travel Mode As presented in Table 12,
the DT model outperforms the other machine
learning algorithms considered in the domain of
bus travel mode prediction. With an accuracy
rate of 82%, it significantly surpasses the second-
best performer, KNN, which achieves 72% accu-
racy. The DT model demonstrates remarkable
robustness, evident in its lowest recorded bias of
17% and equally commendable variance rate of
18%. Additionally, the model excels in precision,
recall, and F1-score, all measuring at 83%. These
results underscore the model’s superior ability to
predict true positives and effectively balance false
positives and true positives.

Therefore, based on the comprehensive evalua-
tion presented in Table 12, the DT model emerges
as the optimal choice for bus travel mode predic-
tion, offering the best trade-off between accuracy,
bias-variance balance, precision, recall, and F1-

score.

Car Travel Mode Based on the data pre-
sented in Table 13 for car travel mode prediction,
the DT model once again demonstrates excep-
tional performance compared to the other eval-
uated machine learning models. With an accu-
racy rate of 93%, it significantly outperforms the
second-best model, KNN, which achieves an ac-
curacy rate of 78%. The robustness of the DT
model is further highlighted by its minimal bias of
6% and remarkably low variance of 7%, indicating
a reduced likelihood of overfitting or underfitting
and enhancing the algorithm’s overall reliability.

Furthermore, the DT model excels in precision,
recall, and F1-score, achieving a score of 94% in
each category. This reflects its superior ability
to accurately predict true positives while main-
taining a balanced proportion of false positives.
In conclusion, the comprehensive evaluation pre-
sented in Table 13 solidifies the DT model as the
optimal choice for car travel mode prediction, pro-
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Table 11: Performance of Various Machine Learning Algorithms for Bike Mode Prediction

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 76% 30% 25% 67% 76% 72%
KNN 85% 16% 15% 84% 85% 84%
DT 93% 7% 7% 93% 93% 93%
LSTM 79% 27% 21% 74% 78% 76%
RNN 74% 27% 26% 72% 76% 74%
Logistic Regression 26% 49% 74% 51% 26% 35%

Table 12: Performance of Various Machine Learning Algorithms for Bus Mode Prediction

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 54% 33% 45% 69% 54% 61%
KNN 72% 24% 28% 76% 72% 74%
DT 82% 17% 18% 83% 82% 83%
LSTM 59% 26% 41% 73% 60% 66%
RNN 58% 30% 42% 71% 59% 64%
Logistic Regression 50% 58% 50% 42% 50% 45%

viding the most favorable trade-off among accu-
racy, bias-variance balance, precision, recall, and
F1-score.

Subway Travel Mode As shown in Table 14,
the DT model outperforms the other machine
learning algorithms under consideration for pre-
dicting subway travel mode. It has an astound-
ing accuracy rate of 83%, far outperforming the
second-best-performing algorithm, KNN, which
has an accuracy rate of 59%. The DT algorithm’s
bias and variance scores of 17% further demon-
strate its robustness. These results indicate that
the model has an impressive robustness that re-
duces the likelihood of overfitting or underfitting,
thereby increasing its reliability for this prediction
task.

Furthermore, the DT model outperforms in
terms of precision, recall, and F1-score, scoring
83% across these three critical evaluation met-
rics. These results demonstrate the model’s ex-
ceptional ability to identify true positives while
maintaining a balanced proportion of false posi-
tives. As a result of the comprehensive evaluation
in Table 14, the DT model offers the best trade-off
among accuracy, bias-variance balance, precision,
recall, and F1-score, emerging as the best choice
for subway travel mode prediction.

Taxi Travel Mode According to the analysis
of the data in Table 15 for taxi travel mode pre-
diction, the DT model outperforms all other eval-
uated machine learning models significantly. The

DT model has an accuracy rate of 83%, which is
significantly higher than the next most accurate
model, KNN, which has a rate of 50%. The DT
model’s bias and variance rates, both less than
20%, highlight its exceptional robustness, imply-
ing a lower proclivity for overfitting or underfit-
ting and thus contributing to overall model relia-
bility.

Furthermore, the DT model performs ad-
mirably in terms of precision, recall, and F1-score,
with scores of 81%, 83%, and 82%, respectively.
These metrics represent the model’s superior abil-
ity to correctly identify true positives while main-
taining a desirable balance of true and false pos-
itives. As a result of the comprehensive evalua-
tion presented in Table 15, the DT model provides
the best trade-off between accuracy, bias-variance
balance, precision, recall, and F1-score, position-
ing itself as the best choice for taxi travel mode
prediction.

Train Travel Mode According to Table 16,
which compares machine learning models for pre-
dicting train travel mode, the DT model is su-
perior. The DT model has the highest accuracy
of 96%, outperforming the MLP, KNN, LSTM,
and RNN models, all of which have accuracies in
the lower nineties. The DT model also demon-
strates superior robustness, with a recorded bias
of 4% and a variance rate of 4%, implying less sus-
ceptibility to overfitting or underfitting and thus
increasing its reliability for the prediction task.
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Table 13: Performance of Various Machine Learning Algorithms for Car Mode Prediction

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 55% 17% 55% 81% 55% 65%
KNN 78% 18% 22% 82% 78% 80%
DT 93% 6% 7% 94% 93% 94%
LSTM 66% 21% 34% 78% 68% 73%
RNN 64% 25% 36% 75% 66% 71%
Logistic Regression 18% 70% 82% 30% 18% 22%

Table 14: Performance of Various Machine Learning Algorithms for Subway Mode Prediction.

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 32% 18% 69% 82% 32% 46%
KNN 59% 24% 41% 76% 59% 66%
DT 83% 17% 17% 83% 83% 83%
LSTM 36% 18% 64% 83% 37% 51%
RNN 36% 23% 64% 74% 37% 50%
Logistic Regression 10% 32% 90% 68% 10% 18%

Table 15: Performance of Various Machine Learning Algorithms for Taxi Mode Prediction

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 8% 37% 90% 68% 8% 14%
KNN 50% 33% 50% 67% 50% 57%
DT 83% 19% 17% 81% 83% 82%
LSTM 23% 39% 77% 61% 24% 34%
RNN 20% 41% 80% 53% 23% 32%
Logistic Regression 0% 100% 100% 0% 0% 0%

The DT model outperforms its competitors in
terms of precision, recall, and F1-score, scoring
96% across all three metrics. These scores repre-
sent not only the model’s ability to identify true
positives accurately but also its effectiveness in
maintaining a balance between true positives and
false positives. As a result of the comprehen-
sive evaluation in Table 16, the DT model can be
considered as the best choice for predicting train
travel mode.

6 Conclusion

The extensive evaluation of six machine learning
algorithms for predicting multi-class transporta-
tion modes (MLP, KNN, Decision Tree, LSTM,
RNN, and Logistic Regression) revealed distinct
results. The Decision Tree model was found to be
the most robust model across all modes of trans-
portation, including walking, bike, bus, car, sub-
way, taxi, and train. It had the best overall ac-

curacy and consistently achieved high precision,
recall, and F1 scores.

The DT algorithm’s superior performance can
be attributed to inherent strengths such as sim-
plicity, interpretability, and adaptability, which
allow it to effectively handle multi-class predic-
tion problems. These findings highlight the im-
portance of using DT algorithms for transporta-
tion mode prediction tasks, and they provide valu-
able insights for researchers and practitioners in
this field.

Despite the encouraging results, it should be
noted that the performance of machine learning
algorithms is dependent on the specific nature of
the dataset, implying that different datasets may
yield different results. Future research could look
into potential improvements to the other algo-
rithms under consideration, as well as the per-
formance of other deep learning models. Further-
more, testing these models with a broader range
of transportation scenarios and datasets, possi-
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Table 16: Performance of Various Machine Learning Algorithms for Train Mode Prediction.

Algorithm Accuracy Bias Variance Precision Recall F1-score

MLP 91% 21% 9% 81% 91% 85%
KNN 91% 11% 9% 89% 91% 90%
DT 96% 4% 4% 96% 96% 96%
LSTM 91% 17% 9% 85% 91% 88%
RNN 90% 16% 10% 85% 89% 87%
Logistic Regression 75% 27% 25% 73% 75% 74%

bly incorporating real-world factors such as traf-
fic conditions or weather patterns, would enrich
and broaden the study’s findings and implica-
tions. Furthermore, investigating hybrid models
that combine the strengths of multiple algorithms
could be a promising direction for future research.
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