A Study of Identification of Corporate Financial Fraud Using Neural Network Algorithms in an Information-based Environment
Abstract
This paper provides a brief overview of corporate financial fraud behavior and the initial feature indicators utilized for detecting financial fraud. Principal Component Analysis (PCA) was employed to refine these feature indicators. Subsequently, the Back-Propagation Neural Network (BPNN) algorithm was applied for identification. Simulation experiments were conducted to test the BPNN algorithm's parameters. Additionally, a comparative analysis was conducted to compare the BPNN algorithm with the decision tree and Support Vector Machine (SVM) algorithms. The results demonstrated that PCA effectively reduced the initial set of 30 indicators to 20, retaining 90.64% of the essential information. The optimal configuration for the BPNN algorithm was seven hidden nodes and the application of the ReLU activation function. Furthermore, the BPNN algorithm outperformed the decision tree and SVM algorithms in the context of financial fraud recognition.DOI:
https://doi.org/10.31449/inf.v47i9.5220Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







