A Study on Error Feature Analysis and Error Correction in English Translation Through Machine Translatio
Abstract
English translation is the most frequently encountered problem in English learning, and fast, efficient and correct English translation has become the demand of many people. This paper studied the most frequently encountered English grammatical error problem in English translation by the Transformer grammatical error correction model in machine translation and explored whether machine translation could analyze the features of the errors that may occur in English translation and correct them. The results of the study showed that the precision of the Transformer model reached 93.64%, the recall rate reached 94.01%, the value was 2.35, and the value of Bilingual Evaluation Understudy was 0.94, which were better than those of the other three models. The Transformer model also showed stronger error correction performance than Seq2seq, convolutional neural network, and recurrent neural network models in analyzing error correction instances of English translation. This paper proves that it is feasible and practical to identify and correct English translation errors by machine translation based on the Transformer model.DOI:
https://doi.org/10.31449/inf.v47i8.4862Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







