Video Background Music Recognition and Automatic Recommendation Based on Gmm Model
Abstract
Recognizing background music in videos is a widely utilized technology in the global music business. With the use of classification, the data about the audio signal's frequency response, orchestration, and temporal structure is represented. In the beginning, identification was a human process. This operation may now be carried out autonomously because of developments in technologies and signal-processing techniques. Due to the widespread utilization of social networks, many smartphones come with a video-shooting feature that people often employ to create user-generated entertainment and communicate it with others. Nonetheless, it might be difficult to choose background music that complements the subject. Those who want to include background music in their videos must actively search for the audio. Nevertheless, since it is a procedure that requires a lot of time and effort, the emphasis of this study is on the construction of a system that will assist people in more easily and quickly obtaining the proper background music for their interests. For automatic recognition of video background music and recommendation, we implemented a Gaussian mixture model (GMM). Using principal component analysis, audio characteristics were recovered for effective recognition. The outcomes were assessed using performance measures and contrasted with previously used methods. The findings indicate that the suggested GMM produces superior performance.DOI:
https://doi.org/10.31449/inf.v47i7.4812Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







