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The demand for human activity recognition (HAR) from videos has witnessed a sig-
nificant surge in various real-life applications, including video surveillance, healthcare,
elderly care, among others. The explotion of short-form videos on social media platforms
has further intensified the interest in this domain. This research endeavors to focus on
the problem of HAR in general short videos. In contrast to still images, video clips
offer both spatial and temporal information, rendering it challenging to extract com-
plementary information on appearance from still frames and motion between frames.
This research makes a two-fold contribution. Firstly, we investigate the use of motion-
embedded images in a variant of two-stream Convolutional Neural Network architecture,
in which one stream captures motion using combined batches of frames, while another
stream employs a normal image classification ConvNet to classify static appearance.
Secondly, we create a novel dataset of Southeast Asian Sports short videos that encom-
passes both videos with and without effects, which is a modern factor that is lacking in
all currently available datasets used for benchmarking models. The proposed model is
trained and evaluated on two benchmarks: UCF-101 and SEAGS-V1. The results reveal
that the proposed model yields competitive performance compared to prior attempts to
address the same problem.

Povzetek:

1 Introduction There exists a plethora of research investigating
the challenging task of video classification. Cur-
rently, the majority of high-accuracy results have
been obtained using 3D convolutional kernels to
capture the temporal information within videos
[1][7][3]. Nonetheless, this architecture may be
cost-prohibitive to employ in practical scenarios
due to its high computational requirements. Con-
sequently, certain approaches prioritize compu-
tational efficiency to handle larger datasets, yet
may not be suitable for real-world applications
[25][16][2]. These methods often necessitate pow-
erful processors to train successfully. Conversely,
training Convolutional Neural Networks (Con-
vNets) to acquire temporal information in videos
offers a straightforward, albeit effective alterna-
tive. Researchers following this approach vary in

The task of human activity recognition (HAR)
pertains to the labeling of actions or activities
observed within video clips. In recent years, the
proliferation of online social platforms has led to
an exponential increase in the volume of media
data being uploaded, with short-form videos dom-
inating the internet landscape, beginning with
Tiktok and now extending to Facebook, Insta-
gram, and Youtube. Consequently, the need
for HAR has become increasingly crucial across
a range of domains, including content monitor-
ing, classification, and recommendation systems,
video retrieval, human-computer interaction, and
robotics.

In contrast to a still image, a video clip affords

not only static spatial information confined within
a single frame but also temporal information that
results from integrating spatial information across
frames to capture dynamic motions.

their methods for processing original frames, such
as fusing temporal information early or late in
the network [12], or combining multiple sequen-
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tial frames to generate optical flow information
[20]. Motivated by the positive outcomes of these
studies and the effectiveness of ConvNet models in
image recognition, we seek to explore the perfor-
mance of ConvNet models for video classification.
Notably, the extraction of temporal information
in short videos remains a less explored domain,
likely owing to its inherent difficulty.

This paper introduces a novel approach for em-
bedding both temporal and spatial features of
consecutive video frames into images, thereby en-
abling effective recognition of the static features
of a scene, such as objects, context, and entities,
as well as the motion information. Specifically, we
incorporate this method into a variant of the two-
stream ConvNet model. The first stream lever-
ages the images generated by our approach to de-
tect motion in videos, while the second stream
employs a conventional image classification net-
work to recognize spatial information, utilizing
single still video frames as inputs. This latter
stream aims to identify and preserve any spatial
information that might be lacking in the former.

To evaluate the performance of action recog-
nition models, various publicly available datasets
such as UCF-101 [21] and UCF Sport [19] have
been introduced, containing 101 action and 10
sport classes, respectively. Some datasets at-
tempt to cover a broader range of activities by
including more classes[12][13], while others incor-
porate user-uploaded data from multiple media
sources such as Youtube and Vimeo to simulate
daily human activities [8][5]. Despite these ef-
forts, most video datasets lack the complexity of
videos edited using text, filters, and effects that
are prevalent in short-form videos on social net-
works like Tiktok, Facebook, and Youtube. These
limitations can lead to inaccurate benchmarking
of models when applied to this new form of video
content. In this research, we also aim to collect
a novel dataset that includes both non-effected
and effected clips. Inspired by previous datasets
[19][12], we gathered data within the same Sport
category and focused on South-East Asian Game
sports. Our dataset, SEAGS_V1, consists of 8
sports classes and 1,168 videos sourced from
Youtube and Tiktok. The availability' of this
dataset will enable researchers to evaluate the
performance of their models on a more diverse
range of video content.

In this study, we evaluate the performance of
our proposed MEI Two-stream network on two

1SEAGS_V1 is currently available online here.
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widely-used action recognition datasets, UCF-
101 and SEAGS_V1. To investigate the poten-
tial of our approach further, we also experiment
with different backbone architectures and inte-
grate them into an EnsembleNet. Our empiri-
cal results demonstrate that our proposed method
holds considerable promise in enhancing the accu-
racy of Activity Recognition on short-form videos.

The content of this paper is organized as fol-
lows. In Section 2, we briefly review existing work
related to action recognition. Then we present
our proposed method in Section 3. We discuss
our experiments in Section 4. Finally, the con-
clusion and future work are discussed in Section

D.

2 Related Work

The early-stage methodologies employed for video
classification tasks typically involve a three-stage
process. Firstly, visual features of a video seg-
ment are extracted densely [9] or at a sparse set
of interest points[15]. Secondly, these extracted
features are combined into a fixed-sized video-
level description. Lastly, a classifier, such as a
SVM, is trained on the resulting ”bag of words”
representation to discriminate between the perti-
nent visual classes. Subsequently, ConvNets have
replaced all three stages with a single neural net-
work that is end-to-end trainable. However, there
are several approaches to augment the connectiv-
ity of a ConvNet in the time domain, exploiting
local spatio-temporal information[10] [12]. How-
ever, these approaches are challenged by the limi-
tations of ConvNets in capturing motion informa-
tion among frames, leading to the loss of temporal
features.

2.1 Two-stream architecture

To mitigate the aforementioned challenge, re-
searchers investigated a novel two-stream Con-
vNet architecture [20] [22]. This architecture in-
volves feeding the input videos into two distinct
streams: the spatial and temporal streams. Each
stream employs a deep ConvNet, with softmax
scores combined by late fusion. Notably, the in-
puts for each stream differ slightly. The spatial
stream processes individual video frames to rec-
ognize actions from still images. In contrast, the
temporal stream works on pre-computed optical
flow features using optical flow estimation tech-
niques, such as [23].
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2.2 Spatial-temporal feature fusion

method

The two-stream architecture has inspired numer-
ous studies, with many seeking to improve its
performance by focusing on two key areas: the
fusion stage and the temporal stream. In an ef-
fort to optimize the fusion stage, Feichtenhofer
et. al. conducted a comprehensive investigation
of various approaches to fusing the two networks
over space and time [4]. They ultimately dis-
cover that fusing a spatial and temporal network
at the convolution layer instead of the softmax
layer results in comparable performance, while
also significantly reducing a substantial number
of parameters. Another approach involves using
a separate architecture to combine image informa-
tion. Yue et. al. explored two video-classification
methods [18] which are both capable of aggregat-
ing frame-level ConvNet outputs into video-level
predictions: Feature Pooling methods max-pool
local information through time, while LSTM’s
hidden state evolves with each subsequent frame.

2.3 Variations of temporal stream

Various approaches have been explored in an ef-
fort to improve the performance of the tempo-
ral stream in the two-stream architecture. Zhang
et. al. investigates the replacement of optical
flow with motion vector, which can be obtained
directly from compressed videos without addi-
tional calculation [24], resulting in a more than
20x speedup compared to traditional two-stream
approaches. However, motion vectors tend to lack
fine structures and contain noisy and inaccurate
motion patterns, leading to a decline in recogni-
tion performance. An alternative approach in-
volves learning to predict optical flow using a su-
pervised ConvNet. Ng. et. al. proposes a multi-
task learning model, ActionFlowNet, that trains
a single stream network directly from raw pixels
to jointly estimate optical flow while recognizing
actions with ConvNet, capturing both appearance
and motion in a single model [17].

In this study, we build upon the ideas of the
two-stream architecture [20] and modify the tem-
poral stream. Rather than relying on optical flow,
we introduce a novel approach that embeds mo-
tion into the original frames, generating motion-
embedded images that retain spatial features in
the temporal stream. This is based on the be-
lief that motion and appearance should not be
separated. However, the spatial stream is still
considered, as our current method for generating
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motion-embedded images may contain noisy and
inaccurate motion patterns caused by background
movement.

3 Proposed Method

In this section, we introduce our novel approach
called motion embedded image (MEI) and two-
stream network. The input video is fed into two
distinct streams, the normal and motion streams,
as illustrated in Figure 1. The processes in these
streams are implemented separately. Prior to be-
ing input into the streams, the input can be pre-
processed. These inputs are then fed into a Con-
vNet to perform image classification, and the pre-
diction scores of both streams are fused to pro-
duce the final prediction. In the following subsec-
tions, we provide comprehensive details of the mo-
tion embedding technique, motion stream, normal
stream, and fusion stage.

Figure 1: Illustration of our proposed two-stream
architecture. Normal stream (top) takes individ-
ual frames as inputs, while Motion stream (bot-
tom) requires motion embedded images which are
a combination of consecutive video frames. Then,
the convolutional neural networks in both streams
learn to classify them. Finally, a fusion algorithm
is performed to combine normal-motion informa-
tion. Both streams are end-to-end trainable.

3.1 Motion Embedding

As per the requirements of the Motion stream,
the input video frames must undergo a motion
embedding stage. Our proposed motion embed-
ding techniques are illustrated in Figure 2, which
depict the workflow involved in this stage. The re-
sulting output of this stage is motion-embedded
images that convey the direction and order of mo-
tion of a single image. Furthermore, we believe
that the spatial and temporal information stored
simultaneously gives more features for Convolu-
tional Neural Network to learn, which is described
in detail in a later sub-section.

All frames extracted from the input video
are orderly numbered as T and segmented into
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batches consisting of IV consecutive frames. Each
batch is fed into the motion embedding stage,
which comprises two components: image process-
ing and combinator. The image processing com-
ponent is responsible for generating new images
from origins, while the combinator aggregates the
processed images to create motion-embedded im-
ages. It is noteworthy that the aggregation of con-
secutive frames in a video emphasizes the parts
containing static objects and contexts, highlight-
ing the contours of the different stages in the
motion that can be easily distinguished from the
static parts. The combinator is often dependent
on the method used in the image processing com-
ponent. In the following sub-section, we present
our studies about two methods for processing im-
ages and their corresponding combinators.

Figure 2: Workflow of our motion embedding
technique. The figure illustrates a batch of N=5
consecutive frames from an input video before
and after processing which uses the Equal Di-
vision method. A combinator, then, merges all
processed frames to generate relevant motion em-
bedded images.

3.1.1 Equal division

To ensure that all frames contribute equally to
MEI, we divide the values of all pixels in each
frame by N. This technique also enables the com-
binator to keep the pixel values between 0 and
255. The formula for this technique is presented
below: ]
processed_img = original_img * N
In the formula, processed;mg and original;mg
are 2D arrays representing the pixel values of the
processed and original frames, respectively. The
operation is performed element-wise.

The combinator we suggest for this method
is simply a summation of all processed images.
Therefore, the final MEI for a batch concluding
at frame T is formulated by the following equa-
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tion:
T

Z processed_img i (1)
i=T—N+1

MElr =

In Figure 2, a batch of five consecutive frames
from an input video is depicted, which is pro-
cessed through the motion embedding stage using
the Equal Division method. As evident from the
figure and equations, it is obvious that the final
MEI likely presents a stack of images. Due to the
identical contributions of all frames to the final
image, the motion transitions are presented in a
uniform manner throughout the sequence.

3.1.2 Gradient division

The Equal Division method is limited in that it
fails to capture the directionality of the motion, as
it presents all action steps in an identical manner.
To overcome this limitation, we propose the Gra-
dient Division method. This method prioritizes
the most recent frame in a batch to serve as the
base frame for activity recognition and appropri-
ately weights the contribution of each frame in the
batch, with later frames carrying higher weights
than earlier ones.

The following describes our proposed formulas
for image processing component:

Tmod N +1

N

sum_N = E i, contrib =
— sum_N
1=

processed_img = original_img * contrib

In the above formula, processed_img,
original_img are 2D arrays of the processed
and original frames’ pixel values, respectively.
The equation is performed element-wisely. The
two scalars sum_N, contrib are aimed to calcu-
late the contribution of frame T in a batch of V
frames.

The combinator we suggest for this method is
similar to the formula 1 for the Equal Division
combinator.

Figure 3 shows a batch of 5 consecutive frames
from an input video. It is fed into the mo-
tion embedding stage using the Gradient Division
method. As shown in the figures and formulas
above, the later frames in the batch contribute
more to the final output image. This leads to a
much better presentation of the direction of action
in final motion embedded images. We believe that
based on this motion trail, Convolutional Neural
Network can learn temporal and spatial informa-
tion simultaneously.
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Figure 3: Workflow of our motion embedding
technique. The figure illustrates a batch of N=>5
consecutive frames from an input video before
and after processing which uses the Gradient Di-
vision method. A combinator, then, merges all
processed frames to generate relevant motion em-
bedded images.

3.2 Motion stream

The motion stream proceeds in a sequential man-
ner, where batches of N consecutive frames are
sequentially fed into the stream. The motion
stream operation involves two primary stages.
Firstly, the input batch is transformed into an
MEI through the motion embedding stage. Subse-
quently, the generated images are processed by a
ConvNet to predict the spatial-temporal features
from MEI.

3.3 Normal stream

Initially, we endeavored to investigate the fea-
sibility of employing MEI exclusively for action
recognition. However, our experiments revealed
that contemporary motion embedding techniques
tend to retain motion trails from extraneous ob-
jects and backgrounds, resulting in suboptimal
outcomes. Consequently, we discerned that static
appearance remains a valuable source of informa-
tion, given its capacity to capture immobile ob-
jects without motion trails. Accordingly, we re-
solved to supplement our approach by adding a
normal stream to perform classifications grounded
in still images. This stream comprises an im-
age classification ConvNet architecture and can
be enhanced by leveraging recent breakthroughs
in large-scale image recognition methods [14]. By
pre-training this network on a comprehensive im-
age classification dataset, such as the ImageNet
challenge dataset, we can further enhance its pre-
dictive capabilities.

The normal stream is designed to process in-
dividual video frames. In each batch, the most
recent frame, referred to as the base frame when
using Gradient Division for the motion stream, is
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extracted and fed into the Convolutional Neural
Network (CNN) of this stream.

3.4 Fusion stage

The predictions generated by the two streams of
image classification are integrated through a fu-
sion process to produce the ultimate prediction
output. At present, our approach to this fusion
stage is to compute the arithmetic mean of the
predictions, as explicated by formula 2.

pred(z) = normal_pred(x) + motion_pred(z)

2
(2)
where x indicates the input image and
normal_pred, motion_pred and pred present
the prediction of normal, motion stream, and the
final prediction result, respectively.

4 Experiments and Results
4.1 Dataset
4.1.1 UCF-101

The UCF-101 dataset [21] is a prominent bench-
mark for evaluating the performance of human ac-
tion recognition models. The dataset comprises a
diverse collection of 101 action classes, spanning
over 13,000 clips and 27 hours of video data. No-
tably, the dataset features realistic user-uploaded
videos that capture camera motion and cluttered
backgrounds. To evaluate the performance of our
approach, we adopt the split-test 01 provided by
the authors of this dataset.

4.1.2 SEAGS_V1

We present a novel dataset, SEAGS_V1, that fea-
tures a diverse mix of effect and non-effect videos.

Our dataset is obtained from a variety of video
platforms, including Youtube, TikTok, and Face-
book reels. We leverage normal videos as the base
data for actions, while short videos with added
image effects, text, and stickers serve to enrich
the dataset for improved recognition of short ef-
fect videos. Figure 6 showcases some examples
from our dataset that include text and stickers.
Short videos of less than 20 seconds are included
in their entirety, except for the intro and outro,
while longer videos are manually split into 2-4 seg-
ments that are 5-20 seconds in duration.

To facilitate our experiments, SEAGS_V1 is
structured in the same manner as UCF-101, with
videos organized into folders corresponding to
their respective class labels. The name of the video
is formatted as

v_<class label>_<index>.mp4
We also provide the following files:
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classInd.txt file contains index of each class
label.

testlist.txt file contains the path to testing
videos accounting for 30% of dataset.

trainlist.txt file contains the path to train-
ing videos accounting for 70% of dataset.

After data collection, SEAGS_V1 is completed
with 8 classes. Each class consists of 100 - 160
videos, each video is between 1 and 20 seconds
long. Figures 4, 5 and Table 1 show the statistics
of SEAGS_V1 dataset.
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Figure 4: Statistical chart of the clip amount of
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Figure 5: Statistical chart of the total time and
average video duration of classes

Table 1: An overview of the SEAGS_V1 dataset

Actions 8

Clips 1169
Total Duration 188 m
Mean Clip Length | 9.64 s
Min Clip Length 1.0s
Max Clip Length | 20.0 s
Audio No

4.2 Data Augmentation

Upon close examination of our dataset,
SEAGS_V1, we figure out that many behav-
iors are labeled with the same action class,
yet differed only in their direction. To further
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augment the dataset and facilitate learning in
these cases, we implemented a data augmenta-
tion technique that involves flipping the original
images. Figure 6 shows some examples of flipped
and original video frames from our dataset.

Figure 6: Some flipped and original video frames
from dataset SEAGS_V1

4.3 Image classification backbones

For UCF-101, we consider to use EfficientNetBO
as the backbone. For SEAGS_V1, we conduct ex-
periments using a range of backbones, including
EfficientNetB0O, DenseNet201, InceptionNetV3,
ResNet50, and MobileNetV2. Moreover, we ex-
plore the potential benefits of ensembling multi-
ple base ConvNet models into a stronger classifier,
which we refer to as EnsembleNet, by summing
the probability prediction of each model.

K
1
ensemble_net(x) = I Z base_nety(x)
k

where = indicates the input image and K repre-
sents the number of base models.

4.4 Motion embedding implementation

We use some specific parameters to create embed-
ded motion images, namely N = 10 and inter-
val_frames = 5 for SEAGS_V1 and N = 10 and
interval_frames = 10 for UCF-101.

Here, interval_frames refers to the distance, in
terms of frame count, between two consecutive
batches or the distance from the first frame of
batch k to the first frame of batch £+ 1. Each em-
bedded motion image is generated from a batch of
N frames. As depicted in Figure 7, a comparison
of three types of images - normal image, MEI with
Gradient Division, and Equal Division - highlights
the effectiveness of Gradient Division in preserv-
ing the direction of motion in activities, whereas
Equal Division does not. Accordingly, we employ
Gradient Division as the method for the motion
embedding process in our experiments. Figure 8
shows some motion-embedded images from both
the SEAGS_V1 and UCF-101 datasets.
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Figure 7: Some examples of normal image (left),
MEI with Gradient Division (middle) and with
Equal Division (right) from two datasets

Figure 8: Some motion embedded (left) and its
original images (right) from SEAGS_V1 (A, B, C,
D) and UCF-101 (E, F, G, H) datasets

4.5 Training

We partition the dataset into training and vali-
dation sets at a ratio of 7:3. We conclude the
training process once the validation accuracy ex-
ceeded 0.9. Notably, training with normal images
requires only 10 epochs to achieve the desired vali-
dation accuracy, whereas training with MEI takes
50 epochs. Each stream is trained independently,
and the probabilities are subsequently fused for
prediction purposes.

4.6 Two-stream implementation

We train both the spatial and temporal streams
using the same model architecture, albeit inde-
pendently. The motion stream is fed with the
MEIs generated using the parameters specified in
the previous section. During testing, the normal
stream processes all the last frames of the batches
to make predictions.
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4.7 Results

Our experimental results on the UCF-101 dataset
demonstrate that our proposed method achieved
significantly higher accuracy than the initial mod-
els developed by Soomro et. al. [21], Karpathy
et. al. [12], and a two-stream model [6]. How-
ever, when compared to the original two-stream
model [20] and the state-of-the-art approach de-
veloped by Wang et. al. [11], our method exhibits
a noticeable performance gap, as shown in Table
2.

Table 2: Experiment result on UCF-101 dataset
(split test 01) (backbone EfficientNetB0)

Model Accuracy (%)
Soomro et al [21] 43.9
Karpathy et al [12] 65.4
Han et al [6] 68.0
Simonyan et al [20] 88.0
Kalfaoglu et al [11] 98.69
Ours (with normal image) 68.54
Ours (with MEI) 67.04
Ours (Two-stream) 70.08

Table 3: Experiment result on SEAGS_V1 dataset
with normal image

Backbone Accuracy (%)
EfficientNetB0 84.9
DenseNet201 89.2
MobileNetV2 87.2
ResNet50 64.1
InceptionV3 86.9
Ensemble (5 base models) 92.9

(Do on 1/10 of the total frames of each video)

Overall, the experimental results presented in
Tables 2, 3, and 4 suggest that the accuracy of
models trained with MEIs is marginally lower
than that of models trained with normal images.
In particular, the incorrect predictions of MEI-
based models are primarily observed in videos
with moving contexts, where the MEIs generated
from these videos make it difficult for the models
to distinguish between actions and context, re-
sulting in suboptimal performance. Figure 8 (B,
F) provides examples of poorly generated MEIs
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Table 4: Experiment result on SEAGS_V1 dataset
with motion embedded image

Backbone Accuracy (%)
EfficientNetB0 88.3
DenseNet201 87.5
MobileNetV2 81.5
ResNetb0 52.7
InceptionV3 85.8
Ensemble (5 base models) 92.9

Table 5: Experiment result on SEAGS_V1 dataset
with proposed two-stream model

Backbone Accuracy (%)
EfficientNetBO 90.02
DenseNet201 89.46
MobileNetV?2 88.89
ResNet50 60.11
InceptionV3 88.32

from such videos. In contrast, normal images are
found to preserve clear visual information among
objects, even in the presence of moving contexts.
Conversely, MEIs exhibit a distinct advantage
in videos with static or minimally moving con-
texts, where they can effectively highlight the mo-
tion of activities that may not be apparent in
normal images. Figure 8 provides examples of
such scenarios (A, C, D, H). Hence, the fusion of
these two types of images in a two-stream archi-
tecture significantly improves the accuracy of the
final result on both datasets, as evidenced by the
results presented in Tables 2 and 5. Notably, in
cases where the motion of activities is relatively
consistent, MEIs and normal images exhibit simi-
lar characteristics, and the models can effectively
learn spatial information. Figure 8 (E, G) pro-
vides examples of such cases.
5 Conclusion

In this paper, we propose an approach of applying
motion embedded Image (MEI) in a human ac-
tivity recognition two-stream ConvINet model for
short-form videos. We also propose an unprece-
dented dataset called SEAGS_V1, which consists
of both non-effected and effected short videos of
8 local Southeast Asian Sports.

Currently, our experiments on UCF-101 and
SEAGS_V1 datasets show that combining the mo-
tion stream with the normal spatial stream gives
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significantly better results than using each stream
as an independent model. Moreover, ConvNet
models using the ensembled backbone have no-
tably higher accuracy than those using only one
backbone. The derived results show a promising
potential of the model to advance prediction effi-
ciency in the human activity recognition problem.

Extra training data is beneficial for our model
to learn spatial and temporal information, so we
are planning to train it on large video datasets
such as Sports-1M. Our next direction is to mod-
ify the architecture so it can focus more on the
activity instead of the whole image and the ex-
tracted information will not be diluted. The most
important improvement plan is to make the mo-
tion stream retain more spatial information so the
model only consists of one motion stream and be-
comes more lightweight.
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