An Analysis of Technology Issues in Mobile Augmented Reality

Tito Pinandita, Siti Nurul Mahfuzah Mohamad, Farah Nadia Azman, Hidayatulah Himawan


Augmented reality technology is now increasingly modern and developing rapidly, this research is a summary of the popularity of augmented reality technology to date. Augmented reality applications are increasingly used in the fields of education, health, and even the military. Other research explains how to combine augmented reality with other technologies. By conducting a literature review of 1582 documents from 2017 to 2022 related to augmented reality, several combinations using AR technology were obtained. This research is to find challenges and opportunities for augmented reality applications in the future. Some studies illustrate that there are still some shortcomings in augmented reality technology, either in the form of image quality or the design of the technology. It is expected that in the future, the shortcomings found in previous studies can be improved.

Full Text:



U. Syaripudin, D. R. Ramdania, W. Widiawaty, W. B. Zulfikar, and D. S. Maylawati, “Fast corner detection in augmented reality learning management of the corpse,” Informatica (Slovenia), vol. 45, no. 6. Slovene Society Informatika, Department of ICT, Asia E-University, Kuala Lumpur, Malaysia, pp. 29–36, 2021, doi: 10.31449/inf.v45i6.3580.

P. A. Rauschnabel, A. Brem, and Y. K. Ro, “Augmented Reality Smart Glasses : Definition , Conceptual Insights , and Managerial Importance,” -, no. 313, pp. 1–21, 2015.

A. K. Dash, S. K. Behera, D. P. Dogra, and P. P. Roy, “Designing of marker-based augmented reality learning environment for kids using convolutional neural network architecture,” Displays, vol. 55, no. October, pp. 46–54, 2018, doi: 10.1016/j.displa.2018.10.003.

P. A. Rauschnabel and Y. K. Ro, “Augmented reality smart glasses: an investigation of technology acceptance drivers,” Int. J. Technol. Mark., vol. 11, no. 2, p. 123, 2016, doi: 10.1504/ijtmkt.2016.075690.

C. Andri, M. H. Alkawaz, and A. B. Sallow, “Adoption of mobile augmented reality as a campus tour application,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 64–69, 2018, doi: 10.14419/ijet.v7i4.11.20689.

T. D. Parsons, J. Asbee, and C. G. Courtney, “Interaction of Cognitive and Affective Load Within a Virtual City.” Clinical Education, Simulation, & Immersive Technology, Arizona State University, Tempe, AZ, USA, pp. 1–9, 2022, doi: 10.1109/TAFFC.2022.3220953.

M. Billinghurst, A. Clark, and G. Lee, “A survey of augmented reality,” Found. Trends Human-Computer Interact., vol. 8, no. 2–3, pp. 73–272, 2014, doi: 10.1561/1100000049.

Z. Lv et al., “PreprintTouch-less Interactive Augmented Reality Game on Vision Based Wearable Device,” Springer, 2015, [Online]. Available:

A. M. Rinaldi, C. Russo, and C. Tommasino, “An Augmented Reality CBIR System Based on Multimedia Knowledge Graph and Deep Learning Techniques in Cultural Heritage,” vol. 11, no. 12. Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Via Claudio, 21, Napoli, 80125, Italy, 2022, doi: 10.3390/computers11120172.

T. Piumsomboon, A. Day, B. Ens, Y. Lee, G. Lee, and M. Billinghurst, “Exploring enhancements for remote mixed reality collaboration,” SIGGRAPH Asia 2017 Mob. Graph. Interact. Appl. SA 2017, no. November, 2017, doi: 10.1145/3132787.3139200.

L. Abada and S. Aouat, “Intelligent Systems for Science and Information,” Intell. Syst. Sci. Inf., vol. 542, pp. 369–387, 2014, doi: 10.1007/978-3-319-04702-7.

S. Fleck, M. Hachet, and J. M. Christian Bastien, “Marker-based Augmented Reality: Instructional-design to improve children interactions with astronomical concepts,” Proc. IDC 2015 14th Int. Conf. Interact. Des. Child., pp. 21–28, 2015, doi: 10.1145/2771839.2771842.

M. Fiala, “ARTag, a fiducial marker system using digital techniques,” in Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2005, vol. II, pp. 590–596, doi: 10.1109/CVPR.2005.74.

M. Fiala, “Artag revision 1, a fiducial marker system using digital techniques,” Techniques, no. November, 2010, [Online]. Available:

M. Kalia, A. Avinash, N. Navab, and S. Salcudean, “Preclinical evaluation of a markerless, real-time, augmented reality guidance system for robot-assisted radical prostatectomy,” vol. 16, no. 7. Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada, pp. 1181–1188, 2021, doi: 10.1007/s11548-021-02419-9.

E. Wild et al., “Robust augmented reality guidance with fluorescent markers in laparoscopic surgery,” Int. J. Comput. Assist. Radiol. Surg., vol. 11, no. 6, pp. 899–907, 2016, doi: 10.1007/s11548-016-1385-4.

E. Cieza and D. Lujan, “Educational Mobile Application of Augmented Reality Based on Markers to Improve the Learning of Vowel Usage and Numbers for Children of a Kindergarten in Trujillo,” Procedia Comput. Sci., vol. 130, pp. 352–358, 2018, doi: 10.1016/j.procs.2018.04.051.

H. Subakti and J. R. Jiang, “A marker-based cyber-physical augmented-reality indoor guidance system for smart campuses,” Proc. - 18th IEEE Int. Conf. High Perform. Comput. Commun. 14th IEEE Int. Conf. Smart City 2nd IEEE Int. Conf. Data Sci. Syst. HPCC/SmartCity/DSS 2016, pp. 1373–1379, 2017, doi: 10.1109/HPCC-SmartCity-DSS.2016.0194.

D. Chaves-Diéguez et al., “Providing iot services in smart cities through dynamic augmented reality markers,” Sensors (Switzerland), vol. 15, no. 7, pp. 16083–16104, 2015, doi: 10.3390/s150716083.

L. Yu, S. K. Ong, and A. Y. C. Nee, “A tracking solution for mobile augmented reality based on sensor-aided marker-less tracking and panoramic mapping,” Multimed. Tools Appl., vol. 75, no. 6, pp. 3199–3220, 2016, doi: 10.1007/s11042-014-2430-3.

M. Žuži, J. Čejka, F. Bruno, D. Skarlatos, and F. Liarokapis, “Impact of dehazing on underwater marker detection for augmented reality,” Front. Robot. AI, vol. 5, no. AUG, pp. 1–13, 2018, doi: 10.3389/frobt.2018.00092.

R. Kuriya, T. Tsujimura, and K. Izumi, “Augmented reality robot navigation using infrared marker,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., vol. 2015-Novem, pp. 450–455, 2015, doi: 10.1109/ROMAN.2015.7333607.

M. Krichenbauer, G. Yamamoto, T. Taketom, C. Sandor, and H. Kato, “Augmented Reality versus Virtual Reality for 3D Object Manipulation,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 2, pp. 1038–1048, 2018, doi: 10.1109/TVCG.2017.2658570.

J. Rambach, A. Pagani, and D. Stricker, “Augmented Things: Enhancing AR Applications leveraging the Internet of Things and Universal 3D Object Tracking,” in Adjunct Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2017, 2017, pp. 103–108, doi: 10.1109/ISMAR-Adjunct.2017.42.

J. Rambach, A. Pagani, M. Schneider, O. Artemenko, and D. Stricker, “6DoF object tracking based on 3D scans for augmented reality remote live support,” Computers, vol. 7, no. 1, pp. 1–22, 2018, doi: 10.3390/computers7010006.

A. Crivellaro, M. Rad, Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit, “A novel representation of parts for accurate 3d object detection and tracking in monocular images,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 4391–4399, 2015, doi: 10.1109/ICCV.2015.499.

R. Radkowski, “Object Tracking With a Range Camera for Augmented Reality Assembly Assistance,” J. Comput. Inf. Sci. Eng., vol. 16, no. 1, pp. 1–8, 2016, doi: 10.1115/1.4031981.

H. Peng, “Application Research on Face Detection Technology based on OpenCV in Mobile Augmented Reality,” Int. J. Signal Process. Image Process. Pattern Recognit., vol. 8, no. 4, pp. 249–256, 2015, doi: 10.14257/ijsip.2015.8.4.22.

C. Santos, T. Araújo, J. Morais, and B. Meiguins, “Hybrid Approach Using Sensors, GPS and Vision Based Tracking to Improve the Registration in Mobile Augmented Reality Applications,” Int. J. Multimed. Ubiquitous Eng., vol. 12, no. 4, pp. 117–130, 2017, doi: 10.14257/ijmue.2017.12.4.10.

N. Bursztyn, B. Shelton, A. Walker, and J. Pederson, “Increasing undergraduate interest to learn geoscience with GPS-based augmented reality field trips on students’ own smartphones,” GSA Today, vol. 27, no. 6, pp. 4–10, 2017, doi: 10.1130/GSATG304A.1.

M. Akçayır and G. Akçayır, “Advantages and challenges associated with augmented reality for education: A systematic review of the literature,” Educ. Res. Rev., vol. 20, pp. 1–11, 2017, doi: 10.1016/j.edurev.2016.11.002.

J. A. Muñoz-Cristóbal, I. M. Jorrín-Abellan, J. I. Asensio-Peréz, A. Martínez-Monés, L. P. Prieto, and Y. Dimitriadis, “Supporting teacher orchestration in ubiquitous learning environments: A study in primary education,” IEEE Trans. Learn. Technol., vol. 8, no. 1, pp. 83–97, 2015, doi: 10.1109/TLT.2014.2370634.

Y.-L. Chang, H.-T. Hou, C.-Y. Pan, Y.-T. Sung, and K.-E. Chang, “International Forum of Educational Technology & Society Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places,” J. Educ. Technol. Soc. Educ. Technol. Soc., vol. 18, no. 182, pp. 166–178, 2015.

F. Ke and Y. C. Hsu, “Mobile augmented-reality artifact creation as a component of mobile computer-supported collaborative learning,” Internet High. Educ., vol. 26, pp. 33–41, 2015, doi: 10.1016/j.iheduc.2015.04.003.

S. J. Lu and Y. C. Liu, “Integrating augmented reality technology to enhance children’s learning in marine education,” Environ. Educ. Res., vol. 21, no. 4, pp. 525–541, 2015, doi: 10.1080/13504622.2014.911247.

J. Han, M. Jo, E. Hyun, and H. jeong So, “Examining young children’s perception toward augmented reality-infused dramatic play,” Educ. Technol. Res. Dev., vol. 63, no. 3, pp. 455–474, 2015, doi: 10.1007/s11423-015-9374-9.

H. C. K. Lin, M. C. Chen, and C. K. Chang, “Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system,” Interact. Learn. Environ., vol. 23, no. 6, pp. 799–810, 2015, doi: 10.1080/10494820.2013.817435.

J. Ferrer-Torregrosa, J. Torralba, M. A. Jimenez, S. García, and J. M. Barcia, “ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy,” J. Sci. Educ. Technol., vol. 24, no. 1, pp. 119–124, 2015, doi: 10.1007/s10956-014-9526-4.

V. F. Martins, L. Gomes, and M. de P. Guimarães, “Challenges and possibilities of use of augmented reality in education case study in music education,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9159, pp. 223–233, 2015, doi: 10.1007/978-3-319-21413-9_16.

A. Fenais, N. Smilovsky, S. T. Ariaratnam, and S. K. Ayer, “A Meta-Analysis of Augmented Reality Challenges in the Underground Utility Construction Industry,” Constr. Res. Congr. 2018 Infrastruct. Facil. Manag. - Sel. Pap. from Constr. Res. Congr. 2018, vol. 2018-April, no. March, pp. 80–89, 2018, doi: 10.1061/9780784481295.009.

R. Gusman and M. E. Apriyani, “Analisis Pemanfaatan Metode Markerless User Defined Target Pada Augmented Reality Sholat Shubuh,” J. INFOTEL - Inform. Telekomun. Elektron., vol. 8, no. 1, p. 64, 2016, doi: 10.20895/infotel.v8i1.53.

A. H. Pujabaladika and L. Anifah, “Marker Based Tracking Augmented Reality pada Brosur Jurusana Teknik Informatikaa Universitas Negeria Surabaya,” Jinacs, vol. 01, no. 03, pp. 150–156, 2020.

S. Kasetty Sudarshan, “Presented to The Faculty of the Department of Software Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science By Sneha Kasetty Sudarshan May , 2018,” 2017.

P. A. Rauschnabel, “Virtually enhancing the real world with holograms: An exploration of expected gratifications of using augmented reality smart glasses,” Psychol. Mark., vol. 35, no. 8, pp. 557–572, 2018, doi: 10.1002/mar.21106.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph., vol. 36, no. 4, 2017, doi: 10.1145/3072959.3073624.

V. Elia, M. G. Gnoni, and A. Lanzilotto, “Evaluating the application of augmented reality devices in manufacturing from a process point of view: An AHP based model,” Expert Syst. Appl., 2016, doi: 10.1016/j.eswa.2016.07.006.

Y. J. Chang, H. H. Liu, Y. S. Kang, C. C. Kao, and Y. S. Chang, “Using augmented reality smart glasses to design games for cognitive training,” Proc. 2016 13th Int. Conf. Remote Eng. Virtual Instrumentation, REV 2016, no. February, pp. 252–253, 2016, doi: 10.1109/REV.2016.7444474.

S. Oh, K. Park, S. Kwon, and H. J. So, “Designing a multi-user interactive simulation using AR glasses,” TEI 2016 - Proc. 10th Anniv. Conf. Tangible Embed. Embodied Interact., pp. 539–544, 2016, doi: 10.1145/2839462.2856521.

S. Kim, M. A. Nussbaum, and J. L. Gabbard, “Augmented Reality ‘Smart Glasses’ in the Workplace: Industry Perspectives and Challenges for Worker Safety and Health,” IIE Trans. Occup. Ergon. Hum. Factors, vol. 4, no. 4, pp. 253–258, 2016, doi: 10.1080/21577323.2016.1214635.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph., vol. 36, no. 6, 2017, doi: 10.1145/3130800.3130889.

A. M. Calle-Bustos, M. C. Juan, I. García-García, and F. Abad, “An augmented reality game to support therapeutic education for children with diabetes,” PLoS One, vol. 12, no. 9, pp. 1–23, 2017, doi: 10.1371/journal.pone.0184645.

D. Panepistēmio Peiraiōs, IEEE Education Society, and Institute of Electrical and Electronics Engineers, “Proceedings of 2017 IEEE Global Engineering Education Conference (EDUCON) : date and venue: 25-28 April 2017, Athens, Greece.,” 2017 IEEE Glob. Eng. Educ. Conf. (EDUCON), Glob. Eng. Educ. Conf. (EDUCON), 2017 IEEE, no. April, p. 1735, 2017.

D. Richardson, “Exploring the potential of a location based augmented reality game for language learning,” Int. J. Game-Based Learn., vol. 6, no. 3, pp. 34–49, 2016, doi: 10.4018/IJGBL.2016070103.

C. Y. Lin and Y. M. Chang, “Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities,” Res. Dev. Disabil., vol. 37, pp. 1–8, 2015, doi: 10.1016/j.ridd.2014.10.016.

M. Ullah et al., “Serious Games in Science Education. A Systematic Literature Review,” vol. 4, no. 3. Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, 2815, Norway, pp. 189–209, 2022, doi: 10.1016/j.vrih.2022.02.001.

L. Oppermann, L. Blum, and M. Shekow, “Playing on AREEF -evaluation of an underwater augmented reality game for kids,” Proc. 18th Int. Conf. Human-Computer Interact. with Mob. Devices Serv. MobileHCI 2016, pp. 330–340, 2016, doi: 10.1145/2935334.2935368.

S. pei Tsai, “Augmented reality enhancing place satisfaction for heritage tourism marketing,” Curr. Issues Tour., vol. 23, no. 9, pp. 1078–1083, 2020, doi: 10.1080/13683500.2019.1598950.

J. D. Hemanth, U. Kose, O. Deperlioglu, and V. H. C. de Albuquerque, “An augmented reality-supported mobile application for diagnosis of heart diseases,” J. Supercomput., vol. 76, no. 2, pp. 1242–1267, 2020, doi: 10.1007/s11227-018-2483-6.

H. Himawan, A. Hassan, and N. A. Bahaman, “Performance Analysis of Communication Model on Position Based Routing Protocol: Review Analysis,” vol. 46, no. 6. Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia, pp. 9–19, 2022, doi: 10.31449/inf.v46i6.4024.

Y. Ariyana and A. I. Wuryandari, “Basic 3D interaction techniques in Augmented Reality,” Proc. 2012 Int. Conf. Syst. Eng. Technol. ICSET 2012, 2012, doi: 10.1109/ICSEngT.2012.6339281.

A. D. Acqua et al., “Colored Visual Tags : a Robust Approach for Augmented Reality,” pp. 423–427, 2005.

M. Rohs, “Marker-Based Embodied Interaction for Handheld Augmented Reality Games Marker-Based Embodied Interac-,” vol. 4, no. 5, 2007.

M. Fiala, “Comparing ARTag and ARToolkit plus fiducial marker systems,” HAVE 2005 IEEE Int. Work. Haptic Audio Vis. Environ. their Appl., vol. 2005, pp. 148–153, 2005, doi: 10.1109/HAVE.2005.1545669.

O. Korkalo, “Light-Weight Marker Hiding for Augmented Reality,” pp. 247–248, 2010.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.