Arabic Sentiment Analysis Using Naïve Bayes and CNN-LSTM
Abstract
Sentiment analysis (SA) is a useful NLP task. There are hundreds of Arabic sentiments analysis systems. However, because of the morphological nature of the Arabic languages, there are still many challenges that need more work. In this paper, two classifiers have been used: Naive Bayes and CNN-LSTM models. The experiments are conducted on Arabic tweets dataset that consists of 58k tweets written in several dialects, the same preprocessing steps have been done before fitting the models. The experimental results show that the deep Learning CNN-LSTM classifier fits better for this task which achieved an accuracy of 98% while Naive Bayes achieved 87.6%.DOI:
https://doi.org/10.31449/inf.v46i6.4199Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







