Performance analysis of communication model on position based routing protocol : review analysis

Hidayatulah Himawan, Aslinda Hassan, Nazrul Azhar Bahaman

Abstract


Research on the Vanet system always has its own challenges and obstacles. The communication system between nodes is certainly the main problem that is always faced. The communication model and concept in the routing protocol process is a very decisive choice to get good communication quality. Four categories in vanet system topology, namely position based routing protocols, broadcast based routing protocols, cluster based routing protocols and multicast/geocast routing protocols, have fundamental differences, especially in the concept of sending data and information between nodes. For this reason, in this study, the selection of standardization and integration of data delivery between nodes is of particular concern and is certainly an interesting thing to study more deeply. The ability to send data properly in busy and fast traffic conditions has its own challenges. For this, there are many variables that must be considered, so that communication between nodes will be better.

Full Text:

PDF

References


I. A. Abbasi, A. S. Khan, and S. Ali, “Dynamic Multiple Junction Selection Based Routing protocol for VANETs in city environment,” Appl. Sci., 2018, doi: 10.3390/app8050687.

K. N. Qureshi, A. H. Abdullah, F. Bashir, S. Iqbal, and K. M. Awan, “Cluster-based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks,” Int. J. Commun. Syst., 2018, doi: 10.1002/dac.3533.

M. Jagadeesan, C. Chandrasekar, and K. Jayasudha, “A new approach on step clustering based greedy routing in vehicular ad hoc networks,” J. Theor. Appl. Inf. Technol., 2017.

T. Darwish and K. Abu Bakar, “Lightweight intersection-based traffic aware routing in Urban vehicular networks,” Comput. Commun., 2016, doi: 10.1016/j.comcom.2016.04.008.

O. A. Hammood, M. N. M. Kahar, M. N. Mohammed, W. A. Hammood, and J. Sulaiman, “The VANET-Solution Approach for Data Packet Forwarding Improvement,” Adv. Sci. Lett., 2018, doi: 10.1166/asl.2018.12952.

N. M. Al-Kharasani, Z. A. Zukarnain, S. K. Subramaniam, and Z. M. Hanapi, “An Adaptive Relay Selection Scheme for Enhancing Network Stability in VANETs,” IEEE Access, vol. 8, pp. 128757–128765, 2020, doi: 10.1109/ACCESS.2020.2974105.

M. Ye, L. Guan, and M. Quddus, “TDMP: Reliable target driven and mobility prediction based routing protocol in complex vehicular ad-hoc network,” arXiv. 2020.

C. Zhao, J. Han, X. Ding, L. Shi, and F. Yang, “An analytical model for interference alignment in broadcast assisted vanets,” Sensors (Switzerland), vol. 19, no. 22, 2019, doi: 10.3390/s19224988.

H. Ghafoor and I. Koo, “Spectrum-Aware Geographic Routing in Cognitive Vehicular Ad Hoc Network Using a Kalman Filter,” J. Sensors, 2016, doi: 10.1155/2016/8572601.

I. Rasheed and F. Hu, “Intelligent super-fast Vehicle-to-Everything 5G communications with predictive switching between mmWave and THz links,” Veh. Commun., 2021, doi: 10.1016/j.vehcom.2020.100303.

W. Qi, Q. Song, X. Wang, L. Guo, and Z. Ning, “SDN-Enabled Social-Aware Clustering in 5G-VANET Systems,” IEEE Access, vol. 6, pp. 28213–28224, 2018, doi: 10.1109/ACCESS.2018.2837870.

F. Goudarzi, H. Asgari, and H. S. Al-Raweshidy, “Traffic-aware VANET routing for city environments-a protocol based on ant colony optimization,” IEEE Syst. J., 2019, doi: 10.1109/JSYST.2018.2806996.

M. Tabassum, M. A. Razzaque, M. M. Hassan, A. Almogren, and A. Alamri, “Interference-aware high-throughput channel allocation mechanism for CR-VANETs,” Eurasip J. Wirel. Commun. Netw., vol. 2016, no. 1, pp. 1–15, 2016, doi: 10.1186/s13638-015-0494-z.

A. Vladyko, A. Khakimov, A. Muthanna, A. A. Ateya, and A. Koucheryavy, “Distributed edge computing to assist ultra-low-latency VANET applications,” Futur. Internet, vol. 11, no. 6, 2019, doi: 10.3390/fi11060128.

F. Noor, P. Sahni, and S. Kaur, “Optimized dynamic clustering to improve the network efficiency in IOV (Internet of Vehicles),” J. Crit. Rev., 2020, doi: 10.31838/jcr.07.19.117.

R. K. Jaiswal, “Position-based routing protocol using Kalman filter as a prediction module for vehicular ad hoc networks,” Comput. Electr. Eng., 2020, doi: 10.1016/j.compeleceng.2020.106599.

M. Houmer, M. Ouaissa, M. Ouaissa, and M. L. Hasnaoui, “SE-GPSR: Secured and Enhanced Greedy Perimeter Stateless Routing Protocol for Vehicular Ad hoc Networks,” Int. J. Interact. Mob. Technol., 2020, doi: 10.3991/ijim.v14i13.14537.

T. Zhang and Q. Zhu, “EVC-TDMA: An enhanced TDMA based cooperative MAC protocol for vehicular networks,” J. Commun. Networks, vol. 22, no. 4, pp. 316–325, 2020, doi: 10.1109/JCN.2020.000021.

A. Guleria and K. Singh, “Position based adaptive routing for VANETs,” Int. J. Comput. Networks Commun., 2017, doi: 10.5121/ijcnc.2017.9105.

X. Cheng and B. Huang, “A center-based secure and stable clustering algorithm for VANETs on highways,” Wirel. Commun. Mob. Comput., vol. 2019, 2019, doi: 10.1155/2019/8415234.

X. Bi, B. Guo, L. Shi, Y. Lu, L. Feng, and Z. Lyu, “A new affinity propagation clustering algorithm for V2V-Supported VANETs,” IEEE Access, vol. 8, pp. 71405–71421, 2020, doi: 10.1109/ACCESS.2020.2987968.

L. R. Gallego Tercero, R. M. Mendez, and M. E. Rivero-Angeles, “Spatio-temporal routing in episodically connected vehicular networks,” Comput. y Sist., 2020, doi: 10.13053/CYS-24-4-3467.

E. Gurumoorthi and A. Ayyasamy, “Cache Agent Based Location Aided Routing Protocol Using Direction for Performance Enhancement in VANET,” Wirel. Pers. Commun., 2019, doi: 10.1007/s11277-019-06610-9.

R. Dutta and R. Thalore, “A Review of Various Routing Protocols in VANET,” Int. J. Adv. Eng. Res. Sci., 2017, doi: 10.22161/ijaers.4.4.34.

G. Swathi, “Refining the Renowned Route Performance on Location Information About Mobile Adhoc Network,” Autom. Control Comput. Sci., 2019, doi: 10.3103/S0146411619020081.

M. P. Senthil, M. A. Jayanthi, and R. Shobana, “Vehicles Awake Routing Protocol with Analysis Determine Knowledge Perception for VANET,” Int. J. Trend Sci. Res. Dev., 2018, doi: 10.31142/ijtsrd14569.

F. Li, X. Song, H. Chen, X. Li, and Y. Wang, “Hierarchical routing for vehicular Ad Hoc networks via reinforcement learning,” IEEE Trans. Veh. Technol., 2019, doi: 10.1109/TVT.2018.2887282.

D. Huang and Y. Yan, “A contention-based routing protocol for VANET,” Telkomnika (Telecommunication Comput. Electron. Control., 2016, doi: 10.12928/TELKOMNIKA.v14i1.2743.

A. N. Hassan, A. H. Abdullah, O. Kaiwartya, Y. Cao, and D. K. Sheet, “Multi-metric geographic routing for vehicular ad hoc networks,” Wirel. Networks, 2018, doi: 10.1007/s11276-017-1502-5.

L. Liu, C. Chen, B. Wang, Y. Zhou, and Q. Pei, “An Efficient and Reliable QoF Routing for Urban VANETs with Backbone Nodes,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2905869.

K. Qureshi, “Road Perception Based Geographical Routing Protocol for Vehicular Ad Hoc Networks,” Int. J. Distrib. Sens. Networks, vol. 2016, 2016, doi: 10.1155/2016/2617480.

S. Rahimi and M. A. Jabraeil Jamali, “A hybrid geographic-DTN routing protocol based on fuzzy logic in vehicular ad hoc networks,” Peer-to-Peer Netw. Appl., 2019, doi: 10.1007/s12083-018-0642-4.

S. Kandasamy and S. Mangai, “A smart transportation system in VANET based on vehicle geographical tracking and balanced routing protocol,” Int. J. Commun. Syst., 2021, doi: 10.1002/dac.4714.

T. S. J. Darwish, K. Abu Bakar, and K. Haseeb, “Reliable Intersection-Based Traffic Aware Routing Protocol for Urban Areas Vehicular Ad Hoc Networks,” IEEE Intell. Transp. Syst. Mag., 2018, doi: 10.1109/MITS.2017.2776161.

G. Sun, Y. Zhang, H. Yu, X. Du, and M. Guizani, “Intersection Fog-Based Distributed Routing for V2V Communication in Urban Vehicular Ad Hoc Networks,” IEEE Trans. Intell. Transp. Syst., 2020, doi: 10.1109/TITS.2019.2918255.

A. Ram and M. K. Mishra, “Density-connected cluster-based routing protocol in vehicular ad hoc networks,” Ann. des Telecommun. Telecommun., 2020, doi: 10.1007/s12243-020-00788-x.

Ramya K, Kubra Banu, Harshitha M S, and Kiran Y M ,narasimha M R, “An unattended Cluster-based VANET-Oriented Evolving Graph Model and ATED Reliable Routing Theme,” Int. J. Eng. Res., 2020, doi: 10.17577/ijertv9is040748.

X. Zhang, L. Mu, J. Zhao, and C. Xu, “An efficient anonymous authentication scheme with secure communication in intelligent vehicular ad-hoc networks,” KSII Trans. Internet Inf. Syst., vol. 13, no. 6, pp. 3280–3298, 2019, doi: 10.3837/tiis.2019.06.028.

N. B. Gayathri, G. Thumbur, P. Vasudeva Reddy, and Z. U. R. Muhammad, “Efficient Pairing-Free Certificateless Authentication Scheme with Batch Verification for Vehicular Ad-Hoc Networks,” IEEE Access, vol. 6, pp. 31808–31819, 2018, doi: 10.1109/ACCESS.2018.2845464.

Z. Situ, I. W.-H. Ho, T. Wang, S. C. Liew, and S. C.-K. Chau, “OFDM Modulated PNC in V2X Communications: An ICI-Aware Approach Against CFOs and Time-Frequency-Selective Channels,” IEEE Access, vol. 7, pp. 4880–4897, 2019, doi: 10.1109/ACCESS.2018.2889219.

B. Dias et al., “Agnostic and modular architecture for the development of cooperative ITS applications,” J. Commun. Softw. Syst., vol. 14, no. 3, pp. 218–227, 2018, doi: 10.24138/jcomss.v14i3.550.

K. Pandey, S. K. Raina, R. S. Raw, and B. Singh, “Throughput and delay analysis of directional-location aided routing protocol for vehicular ad hoc networks,” Int. J. Commun. Syst., 2017, doi: 10.1002/dac.3192.

X. Jiang, “PTMAC: A prediction-based TDMA MAC protocol for reducing packet collisions in VANET,” IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 9209–9223, 2016, doi: 10.1109/TVT.2016.2519442.

M. A. Karabulut, A. F. M. S. Shah, and H. Ilhan, “OEC-MAC: A novel OFDMA based efficient cooperative MAC protocol for VANETS,” IEEE Access, vol. 8, pp. 94665–94677, 2020, doi: 10.1109/ACCESS.2020.2995807.

S. Haider, G. Abbas, Z. H. Abbas, and T. Baker, “DABFS: A robust routing protocol for warning messages dissemination in VANETs,” Comput. Commun., 2019, doi: 10.1016/j.comcom.2019.08.011.

M. Ahmad, Q. Chen, and Z. Khan, “Microscopic congestion detection protocol in VANETs,” J. Adv. Transp., vol. 2018, 2018, doi: 10.1155/2018/6387063.




DOI: https://doi.org/10.31449/inf.v46i6.4024

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.