Network security situational level prediction based on a double-feedback Elman model
Abstract
Network Security Situational Awareness (NSSA) is an important element in network security research. Predicting network security situational level can help grasp the network security situation. This study mainly focuses on the double-feedback Elman model. Firstly, NSSA was briefly introduced. Then, relevant indicators were selected to establish a security situational indicator system. A back-propagation neural network (BPNN) model was designed to evaluate the situational value. A dual-feedback Elman model was used to predict the future situational level. The actual network environment was built to conduct experiments. The results showed that the evaluation results of only three samples obtained by the BPNN model did not match the actual situation, with an accuracy of 90%, and the prediction results of only four samples obtained by the dual-feedback Elman model did not match the actual situation, with an accuracy of 96.67%. The experimental results verify the reliability of the network security situational level prediction method designed in this study. The NSSA method can be promoted and applied in practice.DOI:
https://doi.org/10.31449/inf.v46i1.3775Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







