Artificial Intelligence Methods for Modelling Tremor Mechanisms
Abstract
The paper summarises a Doctoral Thesis in which we focus on two main goals: (1) building models for differentiation between three most common tremors: Parkinsonian, essential and mixed type tremor and (2) development of a novel method for attribute visualisation on series.References
V. Groznik (2018) Metode umetne inteligence za modeliranje mehanizmov tremorjev: doktorska disertacija. Ljubljana. 139 pages, ilustr.
V. Groznik, M. Guid, A. Sadikov, M. Možina, D. Georgiev, V. Kragelj, S. Ribarič, Z. Pirtošek, and I. Bratko (2013) Elicitation of neurological knowledge with argument-based machine learning. Artificial Intelligence in Medicine, 57:133-144.
doi: 10.1016/j.artmed.2012.08.003
V. Groznik, A. Sadikov, M. Možina, J. Žabkar, D. Georgiev, and I. Bratko (2014) Attribute visualisation for computer-aided diagnosis : a case study. In ICHI 2014: proceedings, 2014 IEEE International Conference on Healthcare Informatics, IEEE Computer Society, Conference Publishing Services, pp. 294-299.
doi: 10.1109/ICHI.2014.47
V. Groznik, M. Možina, J. Žabkar, D. Georgiev, I. Bratko, and A. Sadikov (2015) Development, debugging, and assessment of ParkinsonCheck attributes through visualisation. In A. Briassouli, J. Benois-Pineau,
A. Hauptmann. Health monitoring and personalized feedback using multimedia data, Springer, pp. 47-71.
doi: 10.1007/978-3-319-17963-6_4
M. Guid, M. Možina, V. Groznik, D. Georgiev, A. Sadikov, Z. Pirtošek, and I. Bratko (2012) ABML knowledge refinement loop : a case study. In L. Chen, et al., editors, Foundations of intelligent systems, vol. 7661
of Lecture notes in computer science, Lecture notes in artificial Intelligence, Springer, pp. 41-50.
doi: 10.1007/978-3-642-34624-8_5
A. Sadikov, V. Groznik, J. Žabkar, M. Možina, D. Georgiev, Z. Pirtošek, and I. Bratko (2014) ParkinsonCheck smart phone app.. In T. Schaub, G. Friedrich, B. O'Sullivan, editors, ECAI 2014: proceedings, Frontiers in artificial intelligence and applications (Print), vol. 263, IOS Press, pp. 1213-1214.
doi: 10.3233/978-1-61499-419-0-1213
A. Sadikov, V. Groznik, M. Možina, J. Žabkar, D. Nyholm, M. Memedi, I. Bratko and D. Georgiev (2017) Feasibility of spirography features for objective assessment of motor function in Parkinson’s disease. Artificial intelligence in medicine, vol. 66, pp. 54--62.
doi: 10.1016/j.artmed.2017.03.011
DOI:
https://doi.org/10.31449/inf.v44i2.3177Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







