Effective Deep Multi-source Multi-task Learning Frameworks for Smile Detection, Emotion Recognition and Gender Classification
Abstract
Automatic human facial recognition has been an active reasearch topic with various potential applications. In this paper, we proposeĀ effective multi-task deep learning frameworks which can jointly learn representations for three tasks: smile detection, emotion recognition and gender classification. In addition, our frameworks can be learned from multiple sources of data with different kinds of task-specific class labels. The extensive experiments show that ourframeworks achieve superior accuracy over recent state-of-the-art methods in all of three tasks on popular benchmarks. We also show that the joint learning helps the tasks with less data considerably benefit from other tasks with richer data.DOI:
https://doi.org/10.31449/inf.v42i3.2301Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







