

Spectrum Utilization of Coarse Granular Routing Elastic Optical Networks

ABSTRACT

In this paper, we investigate an elastic optical network that is based on coarse granular routing. The network can exploit both elastic optical networking and coarse granular routing techniques to deal with the trade-off between the link cost and the node cost for creating spectrum-and-cost efficient solution for future Internet backbone networks. Firstly, we have proposed an optical cross-connect (OXC) architecture that is capable of routing bandwidth-flexible lightpaths coarse-granularly. We, then, evaluated spectrum utilization of the elastic optical network employing the developed OXC architecture with typical modulation formats under various network and traffic conditions. Finally, numerical evaluation was used to verify the spectrum utilization efficiency of the proposed network in comparison with that of conventional WDM network and traditional elastic optical network.

CCS CONCEPTS

- Networks → Network architecture; Network performance evaluation

KEYWORDS

Optical network, elastic optical network, optical cross-connect, routing and spectrum assignment

ACM Reference format:

H.-C. Le, T.-L. Mai, and N. T. Dang. 2017. Spectrum Utilization of Coarse Granular Routing Elastic Optical Networks. *In SoICT'17: Eighth International Symposium on Information and Communication Technology, December 7–8, 2017, Nha Trang City, Viet Nam.* ACM, New York, NY, USA, 7 pages.

<https://doi.org/10.1145/3155133.3155180>

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

SoICT '17, December 7–8, 2017, Nha Trang City, Viet Nam

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5328-1/17/12...\$15.00

1 INTRODUCTION

Internet traffic growth rate has been kept very high over last decade and still tends to go beyond with newly emerged high-performance and bandwidth-killer applications such as 4k/HD/ultra-HD video, e-Science and cloud/grid computing [1, 2]. To cope with the explosive traffic growth and to support further mobility, flexibility and bandwidth heterogeneity, the need for cost-efficient and bandwidth-abundant flexible optical transport networks has become more and more critical [3, 4]. To scale up to Terabit/s, current optical transport networks based on current WDM technology with a fixed ITU-T frequency grid will encounter serious issues due to the stranded bandwidth provisioning, inefficient spectral utilization, and high cost [3]. Recent research efforts on optical transmission and networking technologies that are oriented forward more efficient, flexible, and scalable optical network solutions [4] can be categorized into two different approaches that are: 1) improving the link resource utilization/flexibility and 2) minimizing the node system scale/cost.

The first approach which aims to enhance the spectrum utilization and the network flexibility is currently dominated by the development of elastic optical networking technology [5-12]. Elastic optical networks (EON) realize spectrum- and energy-efficient optical transport infrastructure by exploiting bitrate-adaptive spectrum resource allocation with flexible spectrum/frequency grid and distance-adaptive modulation [8, 9]. They are also capable of providing dynamic spectrum-effective and bandwidth-flexible end-to-end lightpath connections while offering Telcos (IT/communication service providers) the ability to scale their networks economically with the traffic growth and the heterogeneity of bandwidth requirement [10, 11]. However, EON is still facing challenges owing to the lack of architectures and technologies to efficiently support bursty traffic on flexible spectrum. It also requires more complicated switching systems and more sophisticated network planning and provisioning control schemes [12].

On the other hand, the second approach targets the development of cost-effective, scalable and large scale optical switching systems [13-18]. One of the most attractive direction is the use of coarse granular optical path (lightpath) switching [16-17] that can be realizable with optical/spectrum selective switching technologies [18]. Spectrum selective switches (SSSs) are available with multiple spectrum granularities which is the

number of switching spectrum bands. It is demonstrated that, with a common hardware technology (i.e. MEMS, PLC, LCoS, ...), the hardware scale is increased dramatically as finer granular SSSs are applied. Coarser granular SSSs are simpler and more cost-effective but, their routing flexibility is limited more severely. Unfortunately, this routing limitation may seriously affect the network performance, especially in case of dynamic wavelength path provision. In other words, node hardware scale/cost reduction only can be attained at a cost of certain routing flexibility restriction. Therefore, it is desirable to enhance the node routing flexibility while still keeping the hardware reduction as large as possible.

Based on these observations, in order to exploit elastic optical networking and coarse granular switching for a realizing cost-efficient, spectrum effective and flexible optical transport network, we have firstly proposed a single-layer optical cross-connect architecture based on coarse granular switching spectrum selective switches. Elastic optical network that employs the developed OXC architecture is still able to take the advantages of elastic optical networking technology while attaining a substantial hardware reduction. We have then evaluated the network spectrum utilization in various network scenarios such as single modulation format (BPSK, QPSK, 8QAM and 16QAM) and distance-adaptive scheme. Numerical evaluations verified that, like a conventional elastic optical network, the proposed network can obtain a significant spectrum saving (up to 64%) comparing to the corresponding traditional WDM network.

2 COARSE GRANULAR ROUTING ELASTIC OPTICAL NETWORK

2.1 Proposed Optical Cross-connect Architecture Employing Coarse Granular Routing

To exploit elastic optical network technology while ensure a reasonable hardware scale requirement, we propose a coarse granular routing OXC architecture for elastic optical networks. Fig. 1 illustrates the proposed system. Instead of using fine granular spectrum selective switches in conventional bandwidth-variable OXC in EONs, coarse granular SSSs are deployed to create a cost-effective high-port count OXC system. Unlike neither traditional WDM networks that divide the spectrum into individual channels with the fixed channel spacing of either 50 GHz or 100 GHz specified by ITU-T standards nor elastic optical networks that employ a flexible frequency grid with a fine granularity (i.e. 12.5 GHz), the developed coarse granular routing elastic optical network uses the same flexible frequency grid but switches lightpaths at the spectrum band level, also called coarse granular routing entity – GRE, through coarse granular OXCs; all spectrum slots of a band must be routed together as a single entity.

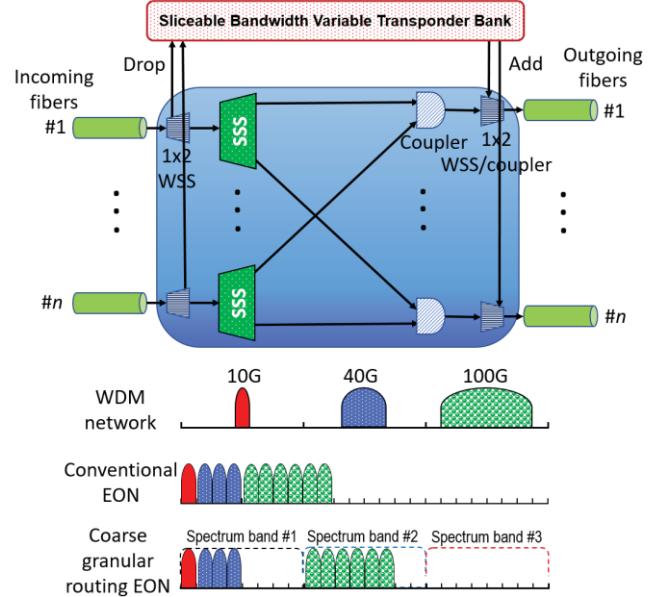


Figure 1: Coarse granular routing OXC architecture.

At present, most existing optical cross-connect systems are realized by optical selective switch technology which is one of the most popular and mature switching technologies. For creating high-port count OXCs, multiple SSSs can be cascaded to create a higher port count SSS to overcome the limitation of commercially available SSS port count which is currently 20+ and unlikely will be substantially enhanced cost-effectively in the near future [4, 18]. Hence, larger scale OXC requires more and/or higher port count SSSs. Moreover, spectrum selective switches are still costly and complicated devices. SSS cost/complexity strongly relies on the number of switching spectrum bands per fiber (the spectrum granularity). Finer granular SSSs are more complicated as well as have greater hardware scale and as a result, become more expensive.

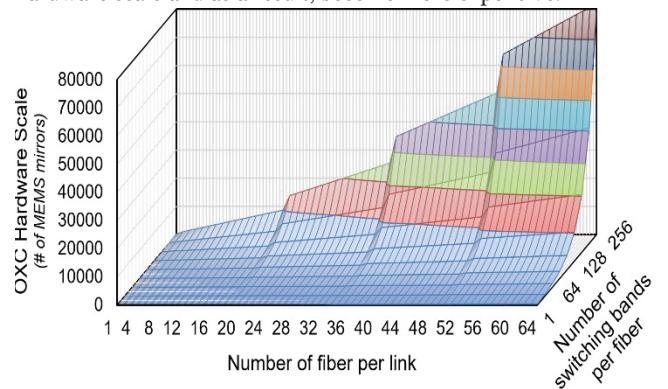


Figure 2: Hardware scale requirement of spectrum selective switch-based OXC.

Practically, the cost and the control complexity of spectrum selective switch-based systems rely strongly on the switch scale.

Total MEMS mirrors (MEMS-based systems are known as one of the most popular and widely adopted technologies in current ROADM/OXC systems) of the OXC architecture are calculated as $nL \left(1 + \left\lceil \frac{n-1}{M} \right\rceil\right)$ where n is the input/output fiber number ($n > 0$), M is the maximal selective switch size (i.e. SSS port count) and L is the SSS spectrum granularity. Adding/dropping portions are neglected. Based on that, Fig. 2 shows the hardware scale requirement of the developed OXC architecture, in terms of MEMS mirrors, with respect to both the number of input/output fibers (the port count) and the SSS spectrum granularity. The graph demonstrates that the switch scale increases as the number of input fibers becomes greater. The hardware scale increment becomes much more significant if finer spectrum granularity (more number of switching bands per fiber) is applied. Hence, a great deal of hardware scale/cost reduction can be achieved if the SSS spectrum granularity is limited at a reasonable value. It implies that coarse granular routing elastic optical network (using coarse granular SSSs) can be considered as a promising solution for creating cost-effective and bandwidth-abundant transport networks.

2.2 Routing and Spectrum Assignment in Coarse Granular Routing Elastic Optical Networks

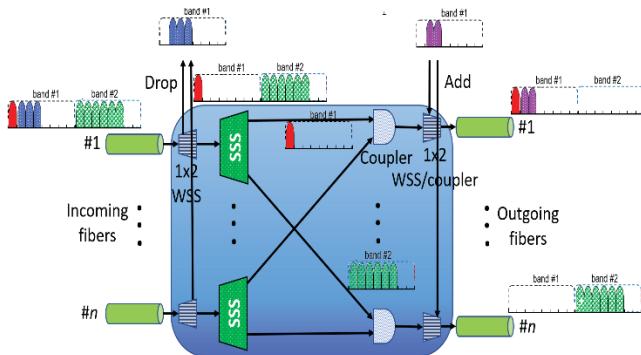


Figure 3: Coarse granular routing principle.

Fig. 3 illustrates the routing principle of coarse granular EON based on the proposed OXC architecture. Lightpaths (spectrum slot bundles) of a spectrum band can be added/dropped flexibly and dynamically by 1x2 WSSs/optical coupler equipped for incoming and outgoing fibers and sliceable bandwidth variable transponders with the spectrum band capacity. Unlike conventional elastic optical networks in which spectrum slots of each lightpath can be routed separately, whole spectrum slots of a spectrum band from an incoming fiber must be switched together as one entity due to the coarse granular routing restriction of spectrum selective switches. It means that all lightpaths which are assigned to spectrum slots of the same spectrum band have to be routed to a common output fiber. This restriction imposed by the spectrum band granularity of SSSs limits the routing flexibility of the proposed OXC architecture.

The node routing flexibility depends on the SSS spectrum granularity. In coarse granular routing elastic optical network, finer SSS granularity can be applied to improve the node routing flexibility, however, utilizing finer granular SSSs may cause a rapid increase in hardware-scale/cost. Therefore, the SSS granularity must be carefully determined while considering the balance the node routing flexibility against the hardware scale/cost.

Moreover, similar to conventional elastic optical networks, coarse granular routing elastic optical network also can support single or multiple modulation formats flexibly and dynamically. Each lightpath can be assigned a pre-determined modulation format (single modulation format scenario) or an appropriate modulation format according to its distance (called distance-adaptive scenario). In distance-adaptive scheme, for a given traffic capacity, modulating optical signal with a higher-order format offers higher capacity per spectrum slot and consequently, requires less number of spectrum slots. It means that applying higher-order modulation format obtains higher spectrum efficiency but its optical transparent reach is shortened and consequently, more frequent regeneration and/or more regeneration resources are required. In contrast, utilizing lower-order modulation formats might reduce the spectrum slot capacity and therefore, may cause an increment in the required number of spectrum slots. Hence, impact of the modulation format assignment scenarios on the network spectrum utilization needs to be estimated.

3 SPECTRUM UTILIZATION EVALUATION

3.1 Spectrum Utilization Analysis

In this section, we evaluated the spectrum utilization of three comparative optical networks including WDM, traditional EON and our developed coarse granular routing elastic optical networks. Without the loss of generality, we assumed the following parameters. The channel spacing based on ITU-T frequency grid of traditional WDM network is 100 GHz ($G_{WDM}=100$ GHz) while the lowest order modulation format (i.e. BPSK) is applied. Elastic optical network utilizes a typical channel spacing of 12.5 GHz ($G_{EON}=12.5$ GHz) with five modulation format assignment scenarios including four single modulation formats (BPSK, QPSK, 8QAM and 16QAM) and a distance-adaptive schemes.

3.1.1 Point-to-point link.

In this part, we simply estimated the spectrum utilization of a single point-to-point link with 3 comparative technologies including WDM, EON and our coarse granular routing EON (denoted as GRE). We assumed that the considered link includes $H_{s,d}$ hops and has the total distance of $D_{s,d}$ where (s, d) is the source and destination node pair of the link, and requested bitrate of the connection on the link is $R_{s,d}$ (Gbps).

Based on that, let C_{WDM} be the channel capacity of BPSK WDM, the number of spectrum slots needed in the conventional WDM network, $NS_{WDM}(s, d)$, can be calculated as,

$$NS_{WDM}(s, d) = \left\lceil \frac{R_{s,d}}{C_{WDM}} \right\rceil H_{s,d}. \quad (1)$$

Therefore, the total WDM spectrum is,

$$S_{WDM}(s, d) = G_{WDM} \left\lceil \frac{R_{sd}}{C_{WDM}} \right\rceil H_{sd}. \quad (2)$$

For conventional elastic optical network, the spectrum slot number required in a single modulation format scheme (which uses only one modulation format of optical signals) is given by,

$$NS_{EON-MOD}(s, d) = \left\lceil \frac{R_{s,d}}{C_{EON-MOD}} \right\rceil H_{s,d} \quad (3)$$

where, MOD denotes the selected modulation format (it will be replaced by BPSK, QPSK, 8QAM or 16QAM) and $C_{EON-MOD}$ is the corresponding slot capacity. From Equation (3), the necessary spectrum of single modulation format elastic optical link can be evaluated as,

$$S_{EON-MOD}(s, d) = G_{EON} \left\lceil \frac{R_{s,d}}{C_{EON-MOD}} \right\rceil H_{s,d}. \quad (4)$$

Let α be the spectrum grooming ratio ($0 < \alpha \leq 1$); $\alpha = \frac{x}{GRE}$ where GRE is the number of spectrum slots per group, the capacity of coarse granular routing entity, and x is the average number of spectrum slots which carry the traffic in a coarse granular routing entity. Consequently, the number of spectrum slots and the corresponding total spectrum required for coarse granular routing EON link are respectively calculated as,

$$NS_{GRE-MOD}(s, d) = \frac{1}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-MOD}} \right\rceil H_{s,d}, \quad (5)$$

and

$$S_{GRE-MOD}(s, d) = \frac{GRE \times G_{EON}}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-MOD}} \right\rceil H_{s,d}. \quad (6)$$

On the other hand, for the distance-adaptive scheme of both conventional EON and our GRE networks, the modulation format of each lightpath is determined individually and assigned dynamically according to total distance of the lightpath. Hence, if we assume that the simplest modulation format assignment strategy, which assigns the possible highest order of modulation format, is used, the total spectrum slot number required by the distance adaptive scheme of EON and GRE networks are,

$$NS_{EON-adap}(s, d) = \begin{cases} \left\lceil \frac{R_{s,d}}{C_{EON-16QAM}} \right\rceil H_{s,d} & \text{if } D_{s,d} \leq L_{16QAM} \\ \left\lceil \frac{R_{s,d}}{C_{EON-8QAM}} \right\rceil H_{s,d} & \text{if } L_{16QAM} < D_{s,d} \leq L_{8QAM} \\ \left\lceil \frac{R_{s,d}}{C_{EON-QPSK}} \right\rceil H_{s,d} & \text{if } L_{8QAM} < D_{s,d} \leq L_{QPSK} \\ \left\lceil \frac{R_{s,d}}{C_{EON-BPSK}} \right\rceil H_{s,d} & \text{otherwise,} \end{cases} \quad (7)$$

and

$$NS_{GRE-adap}(s, d) = \begin{cases} \frac{1}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-16QAM}} \right\rceil H_{s,d} & \text{if } D_{s,d} \leq L_{16QAM} \\ \frac{1}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-8QAM}} \right\rceil H_{s,d} & \text{if } L_{16QAM} < D_{s,d} \leq L_{8QAM} \\ \frac{1}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-QPSK}} \right\rceil H_{s,d} & \text{if } L_{8QAM} < D_{s,d} \leq L_{QPSK} \\ \frac{1}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-BPSK}} \right\rceil H_{s,d} & \text{otherwise.} \end{cases} \quad (8)$$

From Equations (7) and (8), the required spectrum utilization of elastic optical link and that of GRE one are estimated accordingly by,

$$S_{EON-adap}(s, d) = G_{EON} NS_{EON-adap}(s, d) \quad (9)$$

and

$$S_{GRE-adap}(s, d) = GRE \times G_{EON} NS_{GRE-adap}(s, d). \quad (10)$$

3.1.2 Spectrum utilization of the network.

Given a network topology $G=\{V, E\}$ in which V is the set of nodes, $|V|=n$, and E is set of links. For each node pair (s, d) ($(s, d) \in V \times V$), we assume that the traffic load requested from the source node, s , to the destination node, d , is $R_{s,d}$, the hop count and the distance of the route connecting s and d are $H_{s,d}$ and $D_{s,d}$ respectively.

Based on the calculations given in Equations (2) and (4), total spectrum required in conventional WDM network is,

$$S_{WDM} = \sum_{\substack{(s,d) \in V \times V \\ s \neq d}} G_{WDM} \left\lceil \frac{R_{s,d}}{C_{WDM}} \right\rceil H_{s,d}, \quad (11)$$

and the spectrum utilization of elastic optical networks for single modulation format scheme is given by,

$$S_{EON-MOD} = \sum_{\substack{(s,d) \in V \times V \\ s \neq d}} G_{EON} \left\lceil \frac{R_{s,d}}{C_{EON-MOD}} \right\rceil H_{s,d}. \quad (12)$$

Similarly, from Equation (6), we have the total spectrum utilization of coarse granular routing elastic optical network for single modulation format scheme as following,

$$S_{GRE-MOD} = \sum_{\substack{(s,d) \in V \times V \\ s \neq d}} \frac{GRE \times G_{EON}}{\alpha} \left\lceil \frac{R_{s,d}}{GRE \times C_{EON-MOD}} \right\rceil H_{s,d}. \quad (13)$$

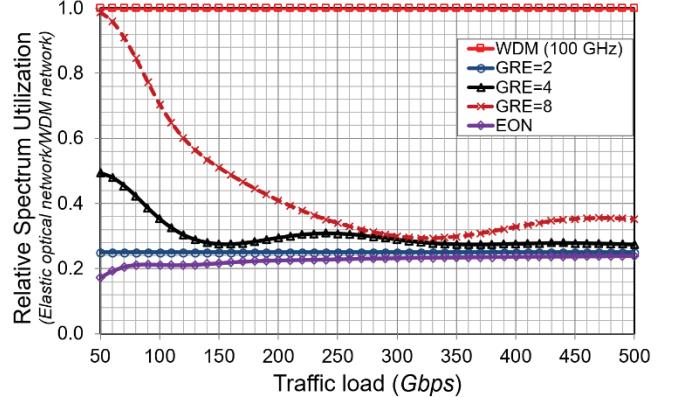
Moreover, in distance-adaptive scheme, elastic optical networks including both conventional network and our developed network are able to assign modulation format dynamically. In fact, there are many different modulation assignment strategies, i.e. shortest path first (or least spectrum), least generating resource, ... Depending on the applied strategy, the implementing portions of available modulation formats can be varied. If we assume that α, β, γ and δ are coefficients which determine the distribution of the selected modulation formats (BPSK, QPSK, 8QAM and 16QAM) in the network respectively, $\alpha \geq 0, \beta \geq 0, \gamma \geq 0, \delta \geq 0$ and $\alpha + \beta + \gamma + \delta = 1$. Based on Equations (12) and (13), the required spectrum of distance-adaptive conventional elastic optical network and that of GRE network can be estimated as,

$$S_{EON-adap} = \alpha S_{EON-BPSK} + \beta S_{EON-QPSK}$$

$$+\gamma S_{EON-8QAM} + \delta S_{EON-16QAM} \quad (14)$$

$$S_{GRE-adap} = \alpha S_{GRE-BPSK} + \beta S_{GRE-QPSK} + \gamma S_{GRE-8QAM} + \delta S_{GRE-16QAM} \quad (15)$$

This means that the performance of distance adaptive networks is in the middle comparing to other single modulation format elastic networks.


From Equations (11)–(15), the length of lightpaths, in term of both hop count and distance, significantly affects the usage of spectrum; longer paths are, more spectrum is required. It should be minimized to optimize the resource usage in elastic optical networks. In other words, the shortest paths should be used for lightpaths. However, note that implementing the shortest paths simply may result in a substantial spectrum collision.

3.2 Numerical Results

In order to verify the performance of the developed coarse granular routing elastic optical network, we used the following parameters for numerical evaluation. The frequency grid of WDM network is 100 GHz and spectrum slot bandwidth of EON and GRE networks is 12.5 GHz. Tested network topology is pan-European optical transport network, COST266. Traffic load is represented by the traffic demand requested between node pairs which is assigned randomly according to a uniform distribution in the range from 50 Gbps to 500 Gbps (for each traffic load, 100 samples were tested and the average values were then plotted). In the numerical experiments, we also assumed comparative elastic optical networks provide four typical modulation formats which are BPSK, QPSK, 8-QAM and 16-QAM. Consequently, there are 5 different network scenarios that are 4 single modulation format schemes (BPSK, QPSK, 8-QAM, and 16-QAM) and a distance-adaptive scheme. The coarse granular switching group capacity, *GRE* (the number of spectrum slots per group), is set as a variable. Here, we tested *GRE* with three values including 2, 4, and 8 (*GRE*=1, GRE network is equivalent to conventional EON). The results of the WDM network are used as a benchmark (its graph is always 1); all obtained results for EON and GRE networks are compared to that of the corresponding WDM network and the relative results will be displayed.

Firstly, Fig. 4 shows the spectrum utilization comparison among traditional WDM network, EON and the developed network with different GRE values when the traffic varies from 50 to 500 Gbps for the single modulation format scheme of 16QAM. The attained results verify that both our network and conventional elastic optical network offer a significant spectrum saving comparing to WDM network; more than 64% spectrum reduction can be achieved thank to the uses of the flexible grid and high order modulation format. However, note that more regeneration resources may be necessary due to the short optical reach of 16QAM. It also demonstrates the relative spectrum utilization of EON and GRE networks tends to decreased slightly as the traffic load becomes greater or finer granular routing is applied (smaller *GRE*). That is because large traffic load can fill up huge channel spacing as used in conventional WDM

networks and thus, using finer frequency grid does not help much to reduce the spectrum utilization.

Figure 4: Spectrum usage of comparative optical network with single modulation format scheme of 16QAM.

Furthermore, the spectrum usage comparison in the case of distance-adaptive scheme for the three comparative networks is illustrated in Fig. 5. Similarly, our proposed network and conventional network require less spectrum than the corresponding WDM network does and the same graph trends as in Fig. 4 can be seen. However, in this network scheme, the spectrum utilization savings are less than those for 16QAM single modulation format scheme due to the possibility of implementing lower order modulation format to cope with the distance of required traffic without using any regenerating resource.

Figure 5: Spectrum utilization comparison for distance-adaptive scheme.

In order to clarify the impact of using modulation format on the network performance, we compared 5 different network scenarios including 4 single modulation format schemes (BPSK, QPSK, 8QAM and 16QAM) and distance-adaptive scheme with the traffic load of 100 Gbps (see Fig. 6). It is confirmed that using higher order modulation formats provides better spectrum saving. Even the developed network can reduce the hardware scale, the spectrum utilization of our network (as *GRE*=4) is more

than that of EON due to the limitation of routing flexibility. This also shows the importance of flexible modulation format assignment in saving spectrum while dealing the trade-off between the node routing flexibility (node cost) and the link resource requirement.

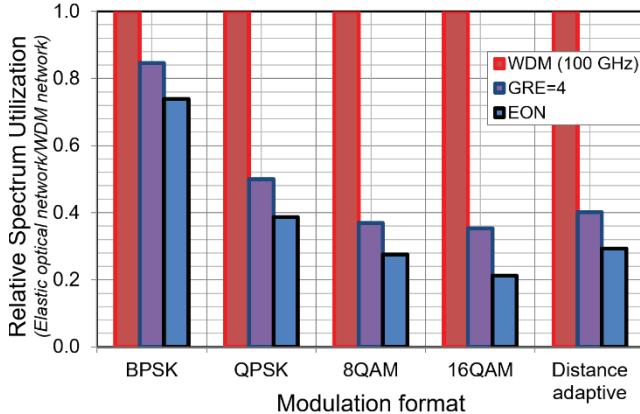


Figure 6: Impact of modulation formats.

Finally, Fig. 7 demonstrates the dependence of spectrum utilization on the routing granularity, the number of spectrum slots per switching group - *GRE*, applied when the traffic load is fixed at 100 Gbps and 250 Gbps. Again, it is shown that finer granular routing (smaller *GRE*) offers better network performance, in terms of spectrum utilization, especially for small traffic load. The reason is that small traffic load may not fill up whole the spectrum band switched in the GRE network. Finer granular routing is expected to reduce the spectrum utilization, however, it may result in an explosive increase in the hardware scale. Hence, in the network point of view, it is desirable to balance the spectrum usage and the hardware scale requirements.

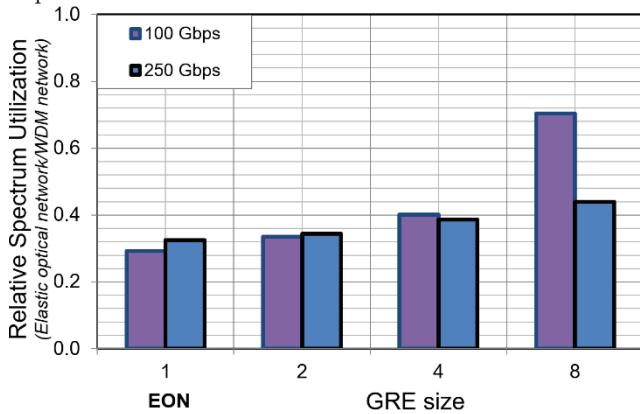


Figure 7: Dependence of the network spectrum usage on the routing granularity, *GRE*.

4 CONCLUSIONS

We have introduced a coarse granular routing elastic optical network with a single-layer optical cross-connect architecture

based on coarse granular switching spectrum/wavelength selective switches. By imposing coarse granular spectrum selective switching, the developed network is still able to take the advantages of elastic optical networking technology while attaining a significant hardware reduction. In order to estimate the performance of the proposed network, we have evaluated its spectrum utilization in various network scenarios, single modulation format (including BPSK, QPSK, 8QAM or 16QAM) and distance adaptive schemes, under different traffic conditions. We also compared the spectrum utilization of our network to that of corresponding traditional WDM network and conventional elastic optical network. Numerical results verified that, similar to conventional elastic optical network, the proposed network offers a substantial spectrum saving, says up to 64%, comparing to traditional WDM network. The developed network provides a promising solution to deal with the trade-off between node cost and link cost for creating cost-effective and spectrum-efficient future Internet backbone networks.

ACKNOWLEDGMENT

REFERENCES

- [1] Cisco Visual Networking Index: Forecast and Methodology, *Cisco system*, 2014–2019. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
- [2] E. B. Desurvire. 2006. Capacity demand and technology challenges for lightwave systems in the next two decades. *Journal of Lightwave Technology*, vol. 24, No. 12, pp. 4697-4710.
- [3] J. Berthold, A. Saleh, L. Blair, J. Simmons. 2008. Optical networking: Past, present, and future. *Journal of Lightwave Technology*, vol. 26, No. 9, pp. 1104-1118.
- [4] K. Sato, H. Hasegawa. 2009. Optical Networking Technologies That Will Create Future Bandwidth-Abundant Networks. *Journal of Optical Communications and Networking*, vol. 1, no. 2, pp.A81-A93.
- [5] A. Jukan and J. Mambretti. 2012. Evolution of Optical Networking Toward Rich Digital Media Services. *Proceedings of the IEEE*, vol. 100, no. 4, pp. 855-871.
- [6] G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri. 2011. On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. *Journal of Lightwave Technology*, 29(1), 53-61.
- [7] G. Zhang, M. De Leenheer, A. Morea and B. Mukherjee. 2013. A Survey on OFDM-Based Elastic Core Optical Networking. *IEEE Communications Surveys & Tutorials*, vol. 15, no. 1, pp. 65-87.
- [8] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka. 2009. Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies. *IEEE Communications Magazine*, vol. 47, pp. 66-73.
- [9] O. Gerstel, M. Jinno, A. Lord and S. J. B. Yoo. 2012. Elastic optical networking: a new dawn for the optical layer?. *IEEE Communications Magazine*, vol. 50, no. 2, pp. s12-s20.
- [10] A. Lord, P. Wright and A. Mitra. 2015. Core Networks in the Flexgrid Era. *Journal of Lightwave Technology*, vol. 33, no. 5, pp.1126-1135.
- [11] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka and A. Hirano. 2010. Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network. *IEEE Communications Magazine*, vol. 48, no. 8, pp.138-145.
- [12] B. Chatterjee, N. Sarma and E. Oki. 2015. Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial. *IEEE Communications Surveys & Tutorials*, vol. PP, no. 99, pp. 1.
- [13] T. Zami, D. Chiaroni. 2012. Low contention and high resilience to partial failure for colorless and directionless OXC. *Proceedings of Photonics in Switching*, paper Fr-S25-O15.
- [14] I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, S. L. Woodward. 2012. Performance of Colorless, Non-directional ROADMs with Modular Client-side

Fiber Cross-connects. *Optical Fiber Communication Conference (OFC2012)*, paper NM3F.7.

- [15] Y. Li, L. Gao, G. Shen, L. Peng. 2012. Impact of ROADM colorless, directionless and contentionless (CDC) features on optical network performance. *IEEE Journal of Optical Communication and Networking*, vol. 4, No. 11, pp. B58-B67.
- [16] H.-C. Le, H. Hasegawa, K. Sato. 2014. Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects. *Optics Express*, vol. 22, no. 3, pp. 3157-3168.
- [17] Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato. 2012. A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop. *Proceedings of OFC/NFOEC (OSA, 2012)*, paper JW2A.2.
- [18] R. Hirako, K. Ishii, H. Hasegawa, K. Sato, H. Takahashi, M. Okuno. 2011. Development of Single PLC-Chip Waveband Selective Switch that Has Extra Ports for Grooming and Termination. *Proceedings of the 16th Opto-Electronics and Communications Conference*, pp. 492-493.