Design and implementation of a new execution model for CAPE

ABSTRACT

CAPE, which stands for Checkpointing-Aided Parallel Execution,
is an approach based on checkpoints to automatically translate and
execute OpenMP programs on distributed-memory architectures.
This approach demonstrates high-performance and completes com-
patibility with OpenMP on distributed-memory system. This paper
presents a new design and implementation model for CAPE that
improves the performance and makes CAPE even more flexible.
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1 INTRODUCTION

In order to minimize programmers’ difficulties when developing
parallel applications, a parallel programming tool at a higher level
should be as easy-to-use as possible. MPI [11], which stands for
Message Passing Interface, and OpenMP [12] are two widely-used
tools that meet this requirement. MPI is a tool for high-performance
computing on distributed-memory environments, while OpenMP
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has been developed for shared-memory architectures. If MPI is
quite difficult to use, especially for non programmers, OpenMP is
very easy to use, requesting the programmer to tag the pieces of
code to be executed in parallel.

Some efforts have been made to port OpenMP on distributed-
memory architectures. However, apart from our solution, no so-
lution successfully met the two following requirements: 1) to be
fully compliant with the OpenMP standard and 2) high perfor-
mance. Most prominent approaches include the use of an SSI [10],
SCASH [15], the use of the RC model [9], performing a source-to-
source translation to a tool like MPI [1, 3] or Global Array [8], or
Cluster OpenMP [7].

Among all these solutions, the use of a Single System Image (SSI)
is the most straightforward approach. An SSI includes a Distributed
Shared Memory (DSM) to provide an abstracted shared-memory
view over a physical distributed-memory architecture. The main
advantage of this approach is its ability to easily provide a fully-
compliant version of OpenMP. Thanks to their shared-memory
nature, OpenMP programs can easily be compiled and run as pro-
cesses on different computers in an SSI. However, as the shared
memory is accessed through the network, the synchronization be-
tween the memories involves an important overhead which makes
this approach hardly scalable. Some experiments [10] have shown
that the larger the number of threads, the lower the performance.
As aresult, in order to reduce the execution time overhead involved
by the use of an SSI, other approaches have been proposed. For ex-
ample, SCASH that maps only the shared variables of the processes
onto a shared-memory area attached to each process, the other vari-
ables being stored in a private memory, and the RC model that uses
the relaxed consistency memory model. However, these approaches
have difficulties to identify the shared variables automatically. As
a result, no fully-compliant implementation of OpenMP based on
these approaches has been released so far. Some other approaches
aim at performing a source-to-source translation of the OpenMP
code into an MPI code. This approach allows the generation of high-
performance codes on distributed-memory architectures. However,
not all OpenMP directives and constructs can be implemented. As
yet another alternative, Cluster OpenMP, proposed by Intel, also
requires the use of additional directives of its own (ie. not included
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in the OpenMP standard). Thus, this one cannot be considered as a
fully-compliant implementation of the OpenMP standard either.

In order to bypass these limitations, we developed CAPE [6, 14]
which stands for Checkpointing-Aided Parallel Execution. CAPE
is a solution that provides a set of prototypes and frameworks to
automatically translate OpenMP programs for distributed mem-
ory architectures and make them ready for execution. The main
idea of this solution is using incremental checkpoint techniques
(ICKPT) [5, 13] to distribute the parallel jobs and their data to other
processes (the fork phase of OpenMP), and collect the results after
the execution of the jobs from all processors (the join phase of
OpenMP). ICKPT is also used to deal with the exchange of shared
data automatically.

Although CAPE is still under development, it has shown its abil-
ity to provide a very efficient solution. For example, a comparison
with MPI showed that CAPE is able to reach up to 90% of the MPI
performance [4, 17]. This has to be balanced with the fact that
CAPE for OpenMP requires the introduction of few pragma direc-
tives only in the sequential code, i.e. no complex code from the
user point of view, while writing an MPI code might require the
user to completely refactorise the code. Moreover, as compared
to other OpenMP for distributed-memory solutions, CAPE is fully
compatible with OpenMP [4, 6].

This paper presents a new execution model that improves the
performance and the flexibility of CAPE. The paper is organized
as follows: the next section describes in details CAPE mechanisms,
capabilities and restrictions. Then Section 3 presents the design and
the implementation of the new execution model together with its
analysis in Section 4. Section 5 shows the result of the experimental
analysis. Finally, Section 6 concludes the paper and presents our
future works to improve CAPE.

2 CAPE PRINCIPLES

In order to execute OpenMP programs on distributed-memory sys-
tems, CAPE uses a set of templates to translate OpenMP source
code into CAPE source code. Then, the generated CAPE source code
is compiled using a traditional C/C++ compiler. At last, the binary
code can be executed independently on any distributed-memory
system supporting the CAPE framework. The different steps of the
CAPE compilation process for C/C++ OpenMP programs is shown
in the Figure 1.

CAPE
prototype

OpenMP CAPE CAPE executable
program Txl compiler program code

Figure 1: Translation OpenMP programs with CAPE.
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2.1 Execution model

The CAPE execution model is based on checkpoints that implement
the OpenMP fork-join model. This mechanism is shown in Figure 2.
To execute a CAPE code on a distributed-memory architecture, the
program first runs on a set of nodes, each node is running as a

process. Whenever the program meets a parallel section, the master
node distributes the jobs among the slave processes using the Dis-
continuous Incremental Checkpoints (DICKPT) [4, 5] mechanism.
Through this approach, the master node generates DICKPTs and
sends them to the slave nodes, each slave node receives a single
checkpoint. After sending checkpoints, the master node waits for
the results to be returned from the slaves. The next step is different
depending upon the nature of the node: the slave nodes receive their
checkpoint, inject it into their memory, execute their part of the
job, and sent back the result to the master node by using DICKPT;
the master node waits for the results and after receiving them all,
merges them before injection into its memory. At the end of the
parallel region, the master sends the resulting checkpoint to every
slaves to synchronize the memory space of the whole program.

2.2 Translation from OpenMP to CAPE

In the CAPE framework, a set of functions has been defined and
implemented to perform the tasks devoted to DICKPT, typically,
distributing checkpoints, sending/receiving checkpoints, extract-
ing/injecting a checkpoint from/to the program’s memory, etc. Be-
sides, a set of templates has been defined in the CAPE compiler to
perform the translation of the OpenMP program into the CAPE
program automatically and makes it executable in the CAPE frame-
work. So far, nested loops and shared-data variables constructs have
not supported yet. However, this is not regarded as an issue as this
can be solved at the level of the source-to-source translation and
does not require any modification in the CAPE philosophy. In this
end, CAPE can only be applied to OpenMP programs matching the
Bernstein’s conditions [2].

After the translations operated by the CAPE compiler, the OpenMP
source code is free of any OpenMP directives and structures. Fig-
ure 3 presents an example of code substitution for the specific case
of the parallel for construct. This example is typical of those
we implemented for the other constructs [3]. The automatically
generated code is based on the following functions that are part of
the CAPE framework:

e start( ) sets up the environment for the generation of
DICKPTs.

e stop( ) restores the environment used for the generation
of DICKPT.

e create(file) generates a checkpoint name file.

e inject(file) injects a checkpoint into the memory of the
current process.

e send(file, node) sends a checkpoint from current process
to another.

e wait_for(file) waits for checkpoints and merges them to
create another one.

e merge(file;,filey) merges two checkpoints together.

e broadcast(file) sends a checkpoint to all slave nodes.

e receive(file) waits for and receives a checkpoint.

2.3 Remarks

The good performance of CAPE as compared to those of MPI and
the full compliance to the OpenMP specifications [4, 6] have made
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Slave, Master Slave,
# pragma omp parallel for
for (A ; B ; C)
D ;
p— — J automatically translated into |
— “;H‘“ - > fork
mmp/// x“qgm? 1 if ( master ( ) )
7 T~ J 2 start ()
Lr'tm arallel code 3 for (A7 B; C)

— — J P 4 create ( before )
_result | rsﬂ///g \ 5 send ( before, slavep )
g EH“R;SA/// ; 6 create ( final )

R 7 stop ()

.////'“ak \ join 8 wait for ( after )
9 inject ( after )
10 if (! last parallel () )
11 merge ( final, after )

' 12 broadcast ( final )

13 else
14 receive ( before )
15 inject ( before )

16 start ()

17 D

18 create ( after; )
19 stop ()

Figure 2: CAPE execution model.

CAPE a good alternative to port OpenMP on distributed-memory ar- 20 send ( after;, master )
chitectures. So far, the implementation of CAPE has not completed 21 if (! last parallel () )
and will be improved in the following directions: 29 receive ( final )
(1) As shown in the Figure 2, the master node might act as a 23 inject ( final )
bottleneck when waiting for checkpoints from the slaves, 24 else
merging checkpoints and/or sending back data to slaves for 25 exit

memory synchronization.

(2) To distribute jobs to slaves, the master node generates a
number of checkpoints that depends upon the number of Figure 3: Template for the parallel for with incremental
slave nodes and so that each slave node receives a checkpoint checkpoints.

(Figure 5). This method can reach a high-level of optimization.

However, it might not be enough flexible for some cases as 1)

the number of slaves may not be identified at compile time, 2)

the OpenMP source code should be modified to detect when 3 A NEW EXECUTION MODEL FOR CAPE

the master generates the checkpoint and 3) the dynamic
scheduling of OpenMP can not be implemented using this
method.

(3) After distributing the jobs, the slave nodes execute the di-

In order to improve the performance of CAPE and its flexibility, we
designed a new execution model that extends the one presented
in Sec. 2.1. Figure 4 illustrates the model that can be described as

vided jobs while the master does not do anything until the follows:
reception of the resulting checkpoints from the slaves, which (1) At the beginning of the program, all nodes in the system
clearly wastes resources. execute the same sequential code.

(4) Nowadays, on most clusters, processors are equipped with (2) When a parallel region is reached, the master process creates
more than two cores so that the performance can be signif- a set of incremental checkpoints. The number of incremental
icantly improved when using a multi-core architecture of checkpoints depends upon the number of tasks in the parallel
each node in the system. region. Each incremental checkpoint contains the state of

(5) OpenMP shared-data variable environment is an important the program to be used to resume its execution in another
element of OpenMP that needs to be supported by CAPE. process at the saved time.
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Figure 4: A new execution model for CAPE.

(3) The master process scatters the set of incremental check-
points. Each node receives some of the checkpoints gener-
ated by the master process. This step is illustrated in the
Figure 6.

(4) The received incremental checkpoints are injected into the
slave processes’ memories.

(5) The slave processes resume their executions.

(6) Results on slave processes are extracted by identifying the
modified regions and recorded into incremental checkpoint.

(7) Incremental checkpoints of each process is sent back to the
master node. Incremental checkpoints are combined alto-
gether to generate a single checkpoint. This step can be
distributed among the processes if it need be.

(8) The final combined incremental checkpoint is injected in the
master process’ memory and the master process can resume
its execution.

Changing the execution model implies changing the translation
templates. Figure 7 presents the template for the #pragma omp
parallel for directive that adapts to the new execution model. The
other OpenMP directives can be designed in a similar way. For this
template, the CAPE functions are as follows:

o generate_dickpt(be fore;) (line 3): at each loop iteration, the
master process generates an incremental checkpoint.

o scatter(before, &recvy,, master) (line 4): the master process
scatters the checkpoints to the available processes, including
itself. Each process receives some of the checkpoints (recvy,).

e inject(recv,) (line 5): each checkpoint is injected into the
target process’ memory.

e the execution is resumed on instruction D (line 6).

o generate_dickpt(aftery) (line 7): each process generates an
incremental checkpoint that saves the result of its execution.

Slave, Master Slaves

Figure 5: Scheduling method in CAPE-2.

Slavey Master Slaves

Figure 6: Scheduling method in new execution model.

o allreduce(aftery, &after, [< ops >]) (line 8): the after,
checkpoint of process n is sent to the other processes. Check-
points are combined, calculated and saved in a new after
checkpoint. This is performed using the Recursive Doubling
algorithm [16] as illustration in Figure 8.

o inject(after) (line 9): incremental checkpoint after is in-
jected into the application’s memory to synchronize the state
of the program on all nodes.

4 PERFORMANCE ANALYSIS AND
EVALUATION

Moving from a scheduling of CAPE processes based on the number
of nodes (Figure 5) to a scheduling based on the number of jobs (Fig-
ure 6) makes CAPE more flexible at least for the three following
reasons:

(1) The number of available processes can be identified at run-
time. The master node can distribute the jobs to all available
processes.

(2) All OpenMP scheduling mechanisms such as static and
dynamic can be implemented on CAPE. This is because the
master node generates a number of checkpoints depending
on number of jobs. First step, one checkpoint can be sent
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# pragma omp parallel for
for (A ; B ; C)
D ;

J automatically translated into |

if ( master () )

for (A ; B ; C)

generate_dickpt (before;)

scatter (before, &recv, ,master)
inject (recv, )
D
generate_dickpt (aftery)
allreduce (aftery,, &after, [<ops>1])
inject (after)
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Figure 7: Prototype for the parallel for for new model.
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Figure 8: Recursive doubling for allreduce.

to each slave node to execute a divided job. When the slave
node finishes, it will be sent the next checkpoint that has
not been executed yet.

(3) There is no need to modify the OpenMP source code to
detect the location of the master process that generated the
incremental checkpoints and sent them to the slave nodes.

Considering that both initial and sequential codes of the program
are executed in the same way in any processes of the system, only
the execution time of the parallel regions has been considered.

Let ¢7 be the execution time of the fork phase, ¢ be the computa-
tion time to execute the divided jobs and ¢; be the time for the join
phase, ie. the time to synchronize data after executing the divided
jobs at all nodes. For each parallel region, the execution time can
be computed using equation 1.

t=tf+tc+tj (1)

Note that tf is similar for both methods as both consider the
work-shared steps and the generation of incremental checkpoints,
and incremental checkpoints only consist of very few bytes, ie. the
fork phase time is close to zero.

For t¢, in the previous execution model, the master process was
not involved in the calculation phase, it wastes the resources of the
system. Assume that, we have n jobs and p processes, each process
will take one unit of time to execute a job. And assume that, the
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number of jobs is divided equally among the processes. As a result,

the value for t. was:
n
te = 2
= [5] @

With the new execution model, all processes are involved in the
computation phase so that ¢, is equal to:

n
. m ©

tj is also impacted by the new execution model. In the previous
one, the value for ¢; was equal to the time for the slave processes
to send their results to the master node for combination plus the
time to receive the final checkpoint and inject it into the process’
memory. This work was done sequentially. Thus, the time to send
or receive a checkpoint can be given by:

tj=2(p-1) @

With the new execution model, the Recursive Doubling algo-

rithm [16] is applied to communicate between all processes, so that
tj becomes:

t = logap] )

Computation time ¢, is the most important factor that affects
the execution time of a parallel region. From equations (2) and (3),
it is easy to demonstrate that ¢, for the previous execution model is
always larger than t. for the new execution model, ie. the execution
time for CAPE is reduced with this new execution model. And the
resources is used more efficiently.

Besides, using the Recursive Doubling algorithm during the join
phase with the new execution model allows saving time when
synchronizing data between processes. This is highlighted by com-
paring equations (4) and (5) with the previous execution model and
the new execution model respectively.

5 EXPERIMENTS

In order to measure the impact of the new execution model on
the performance, as mathematically analyzed in Section 4, some
experiments were conducted. These experiments were performed
on 4-node and 16-node clusters. Each node includes an Intel core
i3-2100, a dual-core 4-thread CPU running at 3.10 GHz and 2 GB of
RAM. These computers are connected using a 100 Mb/s Ethernet
network. To avoid external influence as much as possible, the entire
system was dedicated to the tests during all of the performance of
measurement campaign.

The program used as the basis for these experiments is the classic
matrix-matrix multiplication. The sizes of the matrix are increased
from 1600x1600, 3200%3200 to 9600x9600. Each program will be
executed at least 10 times to measure the total execution times and
a confidence interval of at least 98% has been always achieved for
the measures. Data reported here are the means of the 10 measures.

Figure 9 and Figure 10 present the total execution time of CAPE
on 4-node and 16-node clusters respectively. As can be seen from
these figures, the execution time of both models are shown, the
gray color (OLD) is represented for the previous execution model,
and the blue one (NEW) is represented for the new execution model.
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Figure 9: Total execution time (in seconds) of two models
on 4-node clusters.

The horizontal axis shows the size of the matrix and vertical axis
shows the execution time in seconds.

For 4-node clusters, compared with the previous model, the ex-
ecution time of the new model is reduced significantly and the
reduction is inversely proportional to the size of the matrix. The
larger the size of matrix is, the less time it takes. It is easy to under-
stand that because there are only three nodes executed the divided
jobs on the previous execution model. The master just divides and
distributes jobs to slave, and then waits for the returned results.
It does not participate in computational works. However,the new
execution model is in contrast, after divided jobs, master node re-
ceives and executes a part of divided jobs. Therefore the calculation
time (t¢) on this model is much lower than itself on previous model,
especially, on the cluster which only has 4 nodes.
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Figure 10: Total execution time (in seconds) of two models
on 16-node clusters.

For 16-node cluster, the result in the Figure 10 shows the same
trend, the new execution model is better than the previous one.
However, the distance of execution time of two models is closer.
It maintains a saving time around 10%. It is because the larger the
number of nodes is, the less time it takes to calculate the divided
jobs. Therefore, the total saving time of ¢, in this case is not too
much.

Figure 11 presents the execution time of the fork (¢7), the cal-
culation (t;) and the join (tj) phases for both previous and new
execution models on the master node on 16-node clusters. The
matrix size 9600 X 9600 is selected in this case.

783

2 0 0 10
Fork Cakculate Join

OLD wNEW

Figure 11: Execution time (in seconds) the fork, the calcu-
lation and the join phases for both previous and new execu-
tion models on the master node.

In the previous model, after the fork operation, the master node
waits for the result from the slave nodes. Therefore, the value for
tc is equal to zero. For the same phase using the new execution
model, the master node participate in the execution together with
the slave nodes, so that t. is much larger than zero. However, the
new execution model uses the free resources of the master node
to compute a part of the jobs of the whole program. This does not
increase the whole execution time, but also contributes to improve
the global efficiency of the system. The join phase comes right after
the computation phase in the previous execution model. At this
time, the master node waits for the results from the slave nodes
and the synchronization of data. With the new execution model,
this time is dedicated to the synchronization of data. Therefore, ¢;
is much smaller for the new execution model as compared with the
previous execution one.

Indeed, both the theoretical analysis and the practical experi-
ments on clusters composed of 4 nodes and 16 nodes to be compared
the previous execution model and the new execution model show
that the resources of the system are used more efficiently and the
execution time is significantly reduced (decreased at least by 10%).
This shows that the new execution model is a good direction to
pursue the development of CAPE in the future.

6 CONCLUSION AND FUTURE WORKS

In this paper, we analysed the disadvantages of the previous execu-
tion model and proposed a new one to solve some of them. The the-
oretical analysis and experimentations showed that the execution
time and the risk of bottlenecks are significantly reduced. Besides,
a new scheduling method has been developed and presented to
improve the flexibility of CAPE.

For the future works, we will keep on developing CAPE using this
new execution model. We will use the operations on checkpoints
to implement OpenMP’s shared-data environment variables.
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