Informatica 41 (2017) 501-505 501

NEW RE-RANKING APPROACH IN MERGING SEARCH RESULTS

Trung Hung Vo
The University of Danang, Vietnam
Email: vthung@dut.udn.vn

Keywords: Search Engine, Algorithm, Merging, Re-ranking, Search Result List

Received: December 26, 2017

When merging query results from various information sources or from different search engines, popular
methods based on available documents scores or on order ranks in returned lists, its can ensure fast
response, but results are often inconsistent. Another approach is downloading contents of top documents
for re-indexing and re-ranking to create final ranked result list. This method guarantees better quality but
is resource-consuming. In this paper, we compare two methods of merging search results: a) applying
formulas to re-evaluate document based on different combinations of returned order ranks, documents
titles and snippets; b) Top-Down Re-ranking algorithm (TDR) gradually downloads, calculates scores
and adds top documents from each source into the final list. We propose also a new way to re-rank search
results based on genetic programming and re-ranking learning. Experimental result shows that the
proposed method is better than traditional methods in terms of both quality and time.

Povzetek: "[Click here and Enter short Abstract in Slovene language]"

1 Introduction

In the Internet, search engines like Google, Bing, Yahoo
provide a convenient mechanism for users to search and
exploit information on the Web. According to statistics of
"Surface Web" in 2017', it shows that Google indexes
about 50 billion web pages, Bing about 5 billion pages.

The size of the indexed World Wide Web

(Number of webpages)

£) : r |

E -
5F 2

Size in billion webpages

30 Dec 2016 13 Mar 2017 25 May 2017 04 Aug 2017 16 Oct 2017 28 Dec 2017

Figure 1: Size of the indexed webpages

The "Surface Web" is only about 1% of the "Deep Web" -
which is not indexed by popular search engines. Many
websites do not allow search engines to crawl, instead

! http://www.worldwidewebsize.com

offering themselves a separate query system such as
PubMed or the US Census Bureau.

However, when searching on search engines such as
Google, Yahoo or Bing users are not satisfied for two
reasons. Firstly, each search engine has different corpus,
searching and ranking methods so the returned results will
be different. Secondly, search engines now perform
monolingual searches (search only on the corresponding
language for search keywords), so users can not find
webpages in other languages.

To help users exploit the information effectively,
there are some tools that combine search results from
various sources. We can improve search results based on
the available search engines by building a Meta Search
Engines [1]. The nature of Meta Search Engines is to use
techniques to exploit existing search engines and to
process the results obtained from these search engines to
generate a new search result that better matches user
requirements. A Meta Search Engine needs to handle a
variety of issues such as query processing, search on
available search engines, processing returned results, re-
ranking results found, and display results for users. In this
study, we focused solely on re-ranking the results found
by the search engines available.

There are two approaches to solve the problem. The
first is to mix the search results (duplicate documents) of
different search engines on the same information space.
This method is often applied to "Surface Web". The
second is to combine search results from independent
sources (Federated Information Retrieval - FIR) [2], more
in line with the exploitation of "Deep Web" information.

502 Informatica 41 (2017) xxx-yyy

The research and development of a combination of
search results from multiple sources focused on three main
issues: server description, server selection, and merging
[1]. Server description is intended to estimate general
information about the original search server such as the
number of documents, terms; Frequency of search results
returned, ... Server selection is made based on the server
description information to determine the most suitable
server to send the query. Mixed results are the main work
of combining search results from multiple sources,
evaluating, rearranging documents, creating final list of
results returned to the user.

Merging techniques can be distinguished based on the
types of information used for evaluating, re-ranking
search results from sources [3]: server information search
(total number of documents, results returned); Statistical
information: the rank order of the document, the rating
provided by the originator; basic information (title,
abstract); or the content of the document itself. Research
is aimed at improving the evaluation criteria such as
accuracy, recall, data usage savings, response speed and
bandwidth usage.

The innovation in this paper is using machine learning
techniques and basic information returned from the
original search engine for re-ranking. We propose solution
of sequential mixing to balance the speed and quality of
the results.

The rest of this paper is organized as follows. In the
Session 2, we present an overview of re-ranking and focus
on previous efforts on techniques of re-ranking as well as
our analysis and remarks on pervious methods. Details of
our proposal in using genetic programming for the re-
ranking are presented in Section 3 and the experiment is
presented in Session 4. We conclude important points in
Section 5.

2 Overview on re-ranking

2.1 Ranking and re-ranking

In the information query, the ranking is usually done
by calculating the score of fit between the document and
the query, serving the goal of creating a list of documents
in decreasing order of the score (shows the degree of
suitability for user requirements).

After executing the initial query and receiving the
results from a search engine, the data can be extracted
including the query content itself, the text list, the ranking
points corresponding to the text (some may be hidden
from the user), some basic content for each text, such as
title, abstract. On an interactive system, the search is
performed repeatedly, and the system can store and
analyse the contents of executed queries, found
documents, read texts, declarations or manipulations by
users. The above information may be exploited by the
system to re-rank the result list in a variety of ways,
distinguished by the type of data used as using the
information of the available search engines, rating, or
considering to user information.

Microsoft Office User

Request

Figure 2: Mix model for search results

Merging search results from multiple sources has the
following process (Figure 2): The central server S,
receives the query from the user, sends the query to search
servers from S; to S,,. From each S; server, the list of L;
contains N best results created and returned to the central
server. S re-evaluates the documents based on the content
returned from the original search servers or the content
themselves to create the final result list returned to the
user.

2.2 Techniques of re-ranking

221

The simplest method to merge ranking results is Raw-
Score, which directly uses the rankings in each of the
original search result listings [4]. The CombSUM method
proposed by Fox and Shaw, takes the total score of the
document in the various search engines to determine the
CombSUM score for a document.

CombSUM = Z score;

i€IR Servers
with IR Servers as the set of search engines, score; is
the point of the document assigned by the i search engine.
The score assigned by a search engine can be
normalized to a NormalizedScore score to avoid
differences in searcher norms:
score — MinScore

Combination available rating

NormalizedScore =
lZ MaxScore — MinScore

with MinScore and MaxScore being the smallest and
largest values in the score of all documents assigned by
the search engine.

The weakness of this method is the difference of
search engines quality on ranking quality, scoring,
presentation methods, ... To overcome the limitation, we
can add a weighting for search engines. The
WeightedCombSUM score for a document is calculated
by the formula:

WeightedCombSUM

= Z w;XNormalizedScore;

i€EIR Servers
Here, w; is the weight assigned to the search engine i

in the set of search engines IR Servers; NormalizedScore;

Enter short title in File/Properties/Summary

is the normalization of being assigned by server i to the
document as in the formula of NormalizedScore.
Similarly, some studies [5] suggest a linear function
combining the ratings of search engines of the form:
n

M) =) fixsi(dq)

i=1
Here M(d, g) is the final ranking point, s;(d, g) is the
ranking (normalized) of the search engine i, §; is the
weight assigned to the search engine i. The limitation of
these methods lies in the need to identify values f5; by
manual methods or based on observation of training data.

2.2.2

The second solutions group uses ranking order
information in the original search list. The Round Robin
method [6] is the simplest method of mixing, which is
performed as follows: We have the result list which is
returned from L,, L,, ..., Ly; Firstly, we get the m first
result as R; from the list of L;, then take the m second
result is R, from the list of L; and so on. The final result of
the mixing process is in the form of Ly, ..., Lir1, Lir2, -+
Lur2, - This is the right solution to ensure search speed
when the source of quality information equivalent.

Borda mixing method [7] uses expert judgment
scores. Each expert ranked a number of ¢ documents. For
each expert, the top document is ¢, the second document
is ¢-1 and so on. If there are some unrated documents, the
remainder is divided equally among all unrated papers.
Finally, the materials are ranked according to the total
number of points assigned. Blending methods use useful
ranking information in the absence of information about
the search engine rankings. However, studies show that
this method of mixing is not as effective as the
combination of scores.

The LMS method (using result Length to calculate
Merging Score) introduces the original search server
counting formula based on the number of returned
documents, then identifies new points for documents by
multiplying the server point by original point [8].

Ranking order information

2.2.3 Ranking learning

In a local search system, documents can be indexed in
a variety of ways such as VSM, LSI, LMIR, ... The score
of a document versus a query in different ways can be
considered as different attributes of the document. Current
information query systems tend to apply machine learning
techniques to model or create ranking formulas based on
these attributes.

The learning process consists of two steps: training
and testing. The training input is D consisting of the set
{<q, d, r>}, where ¢ is the query, d is the document
represented by the list of attributes {1}, f5, ..., fu}, 7 is the
relevancy of the document d versus the query g. The
training step involves the construction of an F' rating
model, based on a training database that determines the
relationship between the attributes of the document and
the relevance of the document to the query. At the test
step, the ranking model applied to the 7-dataset is made
up of the set {<Gres, diests Fresr™ /!> the Ppregicr Value is the diey

Informatica 41 (2017) 501-505 503

document relevancy for the g, query. - calculated by the
F-rating model - will be compared to the 7, value for the
rating quality of the rating model. Data for training D and
experimental data T are usually generated by editing the
search results in practice, and then manually evaluated by
experts.

Ranking methods generally have the same approach
by optimizing the objective function: find the maximum
value of the gain function or find the minimum value of
the loss function.

Ranking techniques are divided into three groups:
point-wise, pair-wise and list-wise [9]. With a point-wise
approach, each training object corresponds to an assigned
document attached to the rating value. The learning
process involves finding a model that maps each object to
a rating close to its actual value. The pair-wise approach
utilizes pairs of documents that are associated with rank
order (before or after) as training subjects. In the list-wise
approach, the training object is itself the list of ranked
documents corresponding to the query.

The characteristic of the point-wise solution group is
PRank introduced by K. Crammer and Y. Singer [10]
using a regression analysis.

In the pair-wise group, they constructed the RankSVM
ranking algorithm with the aim of minimizing bias in the
list of sorted pairs. This method is often referred to in
studies as a basis for comparison. Freund applies boosting
and introduces the RankBoost algorithm [11]. The
advantage of this approach is that it is easy to deploy and
can run in parallel for testing. Another example is FRank
based on the probability ranking model.

In the ListNet method of the list-wise group, the
document list itself is considered a training subject. The
authors use a probability method to calculate the loss
function for the list, which is determined by the difference
between the expected sorting list and the correct sorting
list. Neural network models and gradient descent are used
in deployment algorithms to determine the ranking model.

While the presented methods may apply to mixing
results from multiple search engines, the ranking learning
methods apply to the case of the search system. Kits and
documents are indexed in different ways. According to
Liu and colleagues [12], ranking methods with training
data (referred to as supervised ranking) were evaluated
more effectively than others one (may be considered non-
supervisor ranking).

2.2.4

By default, traditional web search engines perform
keyword-based queries. However, two different users,
with different interests, can use same keywords with
different search goals. In order to better meet the
individual user's search needs, the user's declaration of
behaviour and habits of the user during the search
operation has become a research object. personalized
ranking results or cooperative ratings [13].

Personalization of rankings results in querying and
ranking results for users based on individual user interests
and is carried out through two processes: (1) The
information that describes the user's interest and (2) the

Using user information

504 Informatica 41 (2017) xxx—yyy

data collection reasoning to predict the content is close to
the user's desires.

Initial data collection solutions require the user to
disclose the information interest through the registration
table, and the user may change this information [14]. The
problem with this solution is that the user does not want
to, or has difficulty in providing feedback about their
search results as well as their concerns. Another direction,
more popular, perform "learning", create user profiles
through search history to classify, create groups of topics
of interest to users with the aim of providing more
information for the ranking. Based on the collected data,
the authors build a model that describes and exploits
relationships between users, queries, and Web pages, and
serves search results matching the needs of user. In terms
of characteristics, models may be limited to the
exploitation of "two-way data" that exploits the user's
interest in information topics, or "data in three directions"
(three-way data) incorporates more information about the
site.

In addition to the user-identified information solution,
a number of solutions for exploiting user group
information, created through the analysis of the already-
searched content of the set User groups have the same
characteristics (geographic location, occupation, interest)
or have common search habits, such as Collaborative
Filtering (CF). Web sites that meet a person's profile will
be considered appropriate for others in the same group.

Due to the sparseness of the data sparsity, the latent
semantic indexing algorithm is widely used as the primary
technique for data modelling to optimize the layout as well
as volume calculation [15].

2.3 Remarks

In the re-evaluation methods based on the rating of the
original search engines, raw-score is the simplest method,
which will compare directly the origin of the documents
to the final result list. CombSUM is taking the total score
of the document in the various search engines to determine
the ranking in the final list. This score is standardized to
avoid differences in the norms of each search engine, or to
supplement the corresponding original server quality
parameters in the Weighted CombSUM.

The second solutions group uses ranking order
information in the original search list. This is the right
solution to ensure search speed when the source of quality
information equivalent.

The third solutions group uses the basic information
(such as headings, excerpts, ...) of the original results in
the scoring of documents. It compares the query with the
title or footnote of the document, then applies the scoring
formula based on ranking factors, title points, point
lengths, lengths of title, and excerpts. In the news search
system "News MetaSearcher" [16], in addition to the
above factors, the time to update the document is also
included in the rating formula.

The fourth solutions group performs the loading of the
entire contents of the documents present in the original
search result listings, then uses the indexing and scoring
mechanism at the central server to perform the sorting, re-

Microsoft Office User

ordering the materials. It reviews the entire document to
ensure a stable end result list, but takes a lot of time and
bandwidth to load data from multiple servers.

The methods in the two first groups rely on the
statistical information returned from the query (score, rank
order) to perform calculations, so ensure a quick response
to the final ranking result. However, some of the factors
that make the quality of the endorsements are not good:
Firstly, the search engines have large differences in data
size, ranking algorithms that make the scoring formula
based only on statistical information is not really relevant;
Second, in reality the search server usually does not
provide information about the document review point.

The third solutions group is usually chosen in practice
because of its advantages in both speed and search quality
compared to the two first groups. The final solution group
has a stable ranking quality, but requires a lot of time for
downloading the full content of the candidate materials as
well as computational time for indexing and re-rating.

From here the requirement for a solution is guaranteed
to make the most out of the basic information from the
return lists, on the other hand requires the content of the
documents in the final list to be consistent with the query
and satisfactoriness on time and bandwidth costs.

3 Proposal solution

3.1 Idea

We propose a new solution to re-rank search results in
using genetic programming.

Genetic Programming (GP) was first introduced by
Koza [17], based on genetic algorithms. In GP, each
potential solution as a function is called an individual in
the population set. GPs operate through the loop
mechanism: at each generation, the dominant individual
selectivity in the population is based on the content of the
price; Perform hybrid, mutant, and spawn operations to
create better individuals for later generations.

From randomness and irrelevance to the algorithmic
principle of individual formation, in many cases genetic
programming helps to overcome localized optimization
errors. Although there is no assurance that the results
identified by genetic programming are optimal,
experimentation in different areas indicates that this result
is generally better than the application of algorithms
defined by the expert, in many cases, this result is close to
the optimal solution [17].

An important element in the implementation of
genetic programming is the definition of the individual, on
the basis of which the content is determined, ensuring that
the measurement accurately determines the quality of the
solution. In addition, the complexity of the content, the
number of individuals in the population, the rate of
hybridization and mutation, the number of generations to
be tested should be well defined to balance the ability to
create a good solution, eliminate solutions that are not
suitable for the calculation volume and time to solve the
problem.

Previously, the practice of ranking methods was
conducted independently, on different sets of data. This

Enter short title in File/Properties/Summary

does not allow comparison of methods and hinders
research. In 2007, Microsoft introduced the LETOR
(LEARNING TO Rank) data set for the study of
techniques in text search. In version 3.0 [18], the
OHSUMED collection is edited from MEDLINE - a
database of medical publications - for academic rankings.
From the data of 106 queries, three files are created: the
trainset contains 63 queries, the validation set contains 21
queries, and the testing set contains 22 queries. Each file
contains records in the following format:

<Ib> qid:<q> 1:<vI> 2:<vy2> 45:<v45>

where <Ib> is the value of relevance; <g> is the
query number; <v/>, ... <v45> are values that correspond
to the features of the documents, which are calculated on
the basis of common rankings for search. Some examples
of attributes used include:
ID | Formula
1 | Ygieqna €(q, @) in the titles
5 Yqieqna 108 (dffqi)) in the titles
11 | BM25 of the title
14 | LMIR.JM of the title
16 | Yg,eqna €(qi, d) in the compendium
26 | BM25 of the compendium
28 | LMIR.JM of the compendium

Table 1: Example attribute of the OHSUMED collection

In the above formulas, ¢, is the query keyword i" in
the query ¢, d is the document, c(q; d) is the number of
occurrences of ¢; in the document d; C is the total number
of documents in the corpus, df(g;) is the number of
documents containing the keyword ¢;. The BM25 and
LMIR.IM scores are documented using the BM25 rating
model and the Jelinek - Mercer smoothing language model
[19].

3.2 Modelling application of genetic
programming

The GP application solution for rating learning is as
following model:

- Input 1: Training data set D with recording records
in the form of the OHSUMED collection;

- Input 2: Parameters N, is the number of generations,
N, is the number of individuals per generation, N, is the
hybrid speed, N, is the speed of the mutation.

- Output: The rank function F(q, d), which sets the
value to a real number, corresponds to the relevance of the
document d to the query gq.

The training process consists of five steps as follows:

- Step 1: Randomly identify first generation
individuals;

- Step 2: Determine the value of the content for each
individual;

- Step 3: Perform hybrid and mutation operations;

* http://pyevolve.sourceforge.net (access on
15/01/2016)

Informatica 41 (2017) 501-505 505

- Step 4: Create a new generation and repeat steps
from 2 to 4 until you have enough N,

- Step 5: Choose the best individual result.

Each individual (gene) is defined as a function f{g, d)
that measures the relevance of the document to the query,
with the following options:

- Option 1: The linear function uses 45 attributes:

TF — AF = ayXf1 + ayXfo + -+ ag5 X fus

- Option 2: Linear function, using only a selective
random attribute:

TF — RF = aileil + aizxfiz + -+ ainxfin

- Option 3: Apply function to attributes. Limit the use
of functions x, 1/x, sin(x), log(x), and 1/(1+¢€").

TF — FF = a;xXhy(f1) + azxh,(f2) + -
+ a45%Xhy5(fys)

- Option 4: Create a TF-GF function similar to the one
presented in [20], but retain the evaluation of non-linear
functions. The function is binary tree, with inner vertices
being operators, leaf vertices are constants or variables.

In the formulas, a; are the parameters, f; are the
attribute values of the document, #; are the function.

In options 1, 2 and 3, to hybridize two individuals f;(q,
d) and f>(q, d), a random list of parameters has the same
index of functions to be exchanged. The mutation
operation for the individual, f{g,d), is performed by
swapping two random parameters of the function f{g, d).

Comparison of search and ranking solutions is usually
based on the measures P@k, MAP, NDCG@k [20] that is
used to determine the value of the content. Here, we test
the fitness function corresponding to the MAP value.

In the first two options, N, N,, N., N,, are respectively
100, 100, 0.9, 0.1. For option 3, N,, N, are defined as
200,400. In option 4, Ng, N, N, N,, are respectively 1000,
100, 0.9 and 0.2. These values are determined by
experiment. The N, value, given in alternatives 3 and 4, is
greater due to the complexity and diversity of individuals
- the ranking function.

4 Experiment

The TF-Ranking experimental software, built on the
basis of the PyEvolve library, was developed by Christian
S. Perone’, which enables the development of a genetic
algorithm for development in the Python language.

In the OHSUMED collection, the data is divided into
five directories, each containing the train.txt, vali.txt and
test.txt files for training, re-evaluation, and
experimentation. According to each directory, the training
and experiment steps are as follows:

- The training module reads data from train.txt for best
pbest selection, applying the scoring function to the text in
test.ixt.

- Microsoft's Eval-Score-3.0.pl tool is used to
generate P@k, MAP, NDCG@k values (k = 1,2,5,100),
evaluating the effect of the generated point function.

For each option, the mean value for each of the P@k,
MAP, NDCG@k scores of the five directories was taken

506 Informatica 41 (2017) xxx-yyy

as the scores for the experimental option. The
implementation of training and experiment was done 5
times, the average value for comparison and evaluation of
results.

Table 2, Table 3 and Table 4 compare MAP, P@k and
NDCG@k (with k = 1, 2, 5, 10) of the proposed solution
against the baseline method, published in website of the
LETOR’ assessment data set. Bold cells contain the
highest values in the corresponding column.

Method MAP
Regression 0.4220
RankSVM 0.4334
RankBoost 0.4411
ListNet 0.4457
FRank 0.4439
TF-AF 0.4456
TF-RF 0.4467
TF-FF 0.4468
TF-GF 0.4427

Table 2: Comparison of MAP values

Method K=1 K=2 K=5 K=10
Regression 0.4456 | 0.4532 | 0.4278 | 0.4110
RankSVM 0.4958 | 0.4331 | 0.4164 | 0.4140
RankBoost 0.4632 | 0.4504 | 0.4494 | 0.4302
ListNet 0.5326 0.481 0.4432 0.441
FRank 0.5300 | 0.5008 | 0.4588 | 0.4433
TF-AF 0.5506 | 0.4789 | 0.4476 | 0.4348
TF-RF 0.5545 | 0.4835 | 0.4633 | 0.4404
TF-FF 0.5294 | 0.4957 | 0.4600 | 0.4437
TF-GF 0.4997 | 0.4760 | 0.4507 | 0.4372

Table 3: Comparison of NDCG@k values

Method P@l P@2 | P@5 | P@10
Regression 0.5965 | 0.6006 | 0.5337 | 0.4666
RankSVM 0.5974 | 0.5494 | 0.5319 | 0.4864
RankBoost 0.5576 | 0.5481 | 0.5447 | 0.4966
ListNet 0.6524 | 0.6093 | 0.5502 | 0.4975
FRank 0.6429 | 0.6195 | 0.5638 | 0.5016
TF-AF 0.6691 | 0.6167 | 0.5499 | 0.4955
TF-RF 0.6642 | 0.6020 | 0.5653 | 0.4954
TF-FF 0.6619 | 0.6279 | 0.5612 | 0.4983
TF-GF 0.6220 | 0.6058 | 0.5520 | 0.4969

Table 4: Comparison of P@k values

Experimental results show that the TF-AF, TF-RF
alternatives are good. MAP, NDCG @ k and P @ k values
outperformed the corresponding Regression, RankSVM,
and RankBoost methods, which were equivalent and
slightly better than the ListNet and FRank methods. The

3 http://research.microsoft.com/en-
us/um/beijing/projects/letor/letor3baseline.aspx

Microsoft Office User

TF-GF method was not very good: Despite the good
results on the training set, the results on the experimental
set were just average, sign of overfitting.

One-time training for 5 directories with TF-AF, TF-
TF, TF-FF, and TF-GF options takes 150 minutes, 70
minutes, 200 minutes and 10 hours respectively on a dual-
CPU computer. Core 3.30 GHz, 4 GB RAM installed
Windows 7.

This result shows that the use of linear functions for
ranking assures efficiency, both in terms of experimental
quality and duration of training.

5 Conclusion

The paper introduces an overview on re-ranking. It
evaluates the application of methods of mixing
information retrieval results from multiple sources by re-
calculating the scores based on the basic information
returned from the original search engine and proposing a
re-ranking method. sequentially, progressively download
the best documents to create the final result list.

The innovation of this proposal is applying the
machine learning method in using genetic programming.
We experimented proposal solution on the LETOR
experimental data set to develop a new ranking system
with the objective of evaluating the effectiveness of this
learning methodology. Experimental results suggest that
the proposed method is better than traditional methods in
terms of both quality and time.

Our next research is to integrate this re-ranking tool in
multi-language and cross-language search systems. The
systems are intended to allow users to find documents in
languages other than the language of the search keywords.

Acknowledgement

We sincerely thank the Science and Technology
Development Fund of the University of Danang
(Vietnam) and the I13S Research Center of the University
of Nice - Sophia Antipolis (France) for their support.

References

[1] M. Jacob and E. Jacob (2008), Information retrieval
on Internet using meta-search engines: A review,
Journal of Scientific & Industrial Research, Volume
67, p.p. 739-746.

[2] M. Shokouhi and L. Si (2011), Federated Search,
Foundations and TrendsR in Information Retrieval,
Volume 5(No. 1), p.p. 101-107.

[3] J. Callan (2002), Distributed information retrieval,
The Information Retrieval Series: Springer, INRE,
Volume 7, p.p. 127-150.

[4] S. Wu, F. Crestani, Y. Bi (2006), Evaluating Score
Normalization Methods in Data Fusion, Information
Retrieval Technology, Proceedings of 3™ Asia

Enter short title in File/Properties/Summary

(3]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

Information Retrieval Symposium, AIRS 2006,
Singapore.

W. Shengli, B. Yaxin, Z. Xiaoqin (2011), The linear
combination data fusion method in information
retrieval, Proceedings of 22" International
Conference Database and Expert Systems
Applications, pp. 219-233.

S. Wu, S. McClean (2005), Data Fusion with
Correlation Weights, Lecture Notes in Computer
Science, Volume 3408/2005, p.p. 275-286.

E.W. Selberg (1999), Towards Comprehensive Web
Search, Graduate School: University of Washington.
Y. Rasolofo, F. Abbaci, J. Savoy (2001), Approaches
to collection selection and results merging for
distributed information retrieval, ACM (ed),
CIKM'01 Proceedings of the tenth international
conference on Information and knowledge
management: ACM, p.p. 191 - 198.

L. Hang (2011), Learning to Rank for Information
Retrieval and Natural Language Processing,
Synthesis Lectures on Human Language
Technologies, Morgan & Claypool Publishers, p.p.
1-113.

C. Koby, S. Yoram (2002), Pranking with Ranking,
Advances in Neural Information Processing Systems
14, Volume 14, p.p. 641-647.

Y. Freund, 1. Raj, R.E. Schapire (2003), An Efficient
Boosting Algorithm for Combining Preferences, The
Journal of Machine Learning Research, Volume 4,

p-p- 933-969.
L. Yu-Ting, L. Tie-Yan, Q. Tao, M. Zhi-Ming, L.
Hang (2007), Supervised rank aggregation,

Proceedings of the 16th international conference on
World Wide Web - WWW °07, p.p. 481-490.

M.R. Ghorab, D. Zhou, L. Seamus, V. Wade (2012),
Multilingual user modeling for personalized re-

[14]

[15]

[16]

[17]

[18]

[19]

(20]

Informatica 41 (2017) 501-505 507

ranking of multilingual web search results, CEUR
Workshop Proceedings, Volume 872, p.p. 1-4.

P.A. Chirita, C. Kohlsch (2005), Using ODP
Metadata to Personalize Search Categories and
Subject Descriptors, Proceedings of the 28th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, p.p. 178-
-185.

T. Nasrin (2016), Automatic Wordnet Development
for Low-Resource Languages using Cross-Lingual
WSD, Journal of Artificial Intelligence Research,
Volume 56, p.p. 61-87.

Y. Rasolofo, D. Hawking, J. Savoy (2003), Result
Merging Strategies for a Current News
MetaSearcher, Information Processing &
Management, No 39(4), p.p. 581-609.

P.J. Angeline (1994), Genetic programming: On the
programming of computers by means of natural
selection, Biosystems., MIT Press Cambridge.

Q. Tao, L.T. Yan, X. Jun, L. Hang (2010), LETOR:
A benchmark collection for research on learning to
rank for information retrieval, Information
Retrieval, Volume 13, No. 4, p.p. 346-374.

C. Zhai, J. Lafferty (2001), 4 study of smoothing
methods for language models applied to Ad Hoc
information retrieval, Proceedings of the 24th annual
international ACM SIGIR conference on Research
and development in information retrieval - SIGIR
’01, p.p. 334-342.

T.G. Lam, T.H. Vo, C.P. Huynh (2015), Building
Structured Query in Target Language for
Vietnamese — English Cross Language Information
Retrieval ~ Systems, International Journal of
Engineering Research & Technology (IJERT),
Volume 4, No. 04, p.p. 146-151.

