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Autism Spectrum Disorder (ASD) diagnosis remains challenging because of its heterogeneity and reliance
on subjective behavioral assessments. Resting-state functional MRI (fMRI) presents a compelling
opportunity avenue for identifying objective biomarkers, but decoding its complex spatiotemporal patterns
requires advanced computational models. While Deep Learning (DL) approaches have progressed, many
struggle to concurrently capture local neural dynamics and global temporal dependencies. A novel end-
to-end CNN-Transformer hybrid framework designed for fMRI-based autism diagnosis is proposed to
address this. Our model leverages a two-layer convolutional module (temporal + depth-wise spatial
convolution) to extract localized spatiotemporal features, which are then processed by a 4-layer
Transformer encoder with a 4-head Multi-Head Self-Attention (MHSA) mechanism to model long-range,
global dependencies through a Multi-Head Self-Attention (MHSA) mechanism. Evaluated via a rigorous
10-fold cross-validation on the large multi-site ABIDE-I dataset (N=1,035), the suggested model achieved
state-of-the-art performance with an accuracy of 77.85%, a sensitivity of 76.52%, a specificity of 78.90%,
and an F1-score of 77.71%. Ablation studies confirmed the critical contribution of each architectural
component, demonstrating that the integration of the Transformer encoder and residual connections
provided a significant performance boost over the CNN-only baseline. and comparisons with pre-trained
CNNs and other leading methods demonstrated superior and statistically significant performance
(p<0.05). Despite an observed performance drop in site-specific evaluations, underscoring the challenge
of scanner heterogeneity, our results affirm that the synergistic integration of local feature learning and
global contextual modeling is a powerful paradigm for neuroimaging-based diagnostic applications.

Povzetek: Predlagan je hibridni CNN-Transformer model za diagnozo ASD iz mirujocih fMRI posnetkov,
ki zdruzi ucenje lokalnih vzorcev in dolgorocnih odvisnosti ter na podatkovni zbirki ABIDE-]1 doseze

priblizno 78 % natancnost in boljse rezultate od primerjanih metod.

1 Introduction

It is tough to effectively diagnose neurodevelopmental
disorders like autism because such disorders have a vast
variety of symptoms, especially in the younger population
[1], [2]. In general, psychiatric diagnosis is mainly based
on the observation of the behavior of the patient, which is
subjective and is done according to the criteria given in
manuals like DSM-5 and ICD-10; this kind of diagnosis
can be wrong sometimes [3], [4]. In contrast to many
physical diseases, for example, HIV and diabetes, which
can be verified by objective laboratory measures, mental
health disorders do not have consistent biological markers.
This makes differential diagnosis difficult because of
overlapping symptoms and no definitive tests [5]. ASD is
a condition that is often described as a
neurodevelopmental disorder with a particular emphasis
on the lifelong trajectory. ASD is described by social
communication problems with friendship and peer
relationships, repetitive behavior difficulties, and

restricted interests, usually identifiable in early childhood
[6,8]. The case of a child with autism is just one among
100 children worldwide [4,9]. Hence, finding the disorder
as early as possible is necessary to intervene in time.
Besides, demographic variations in the rates of autism
diagnosis are quite considerable, as male-to-female
differences in the rates of diagnosis are around four times,
implying gender-based disparities [10]. To increase the
accuracy of diagnosis, the scientists have employed
various means such as structured behavioral observation,
study of demographic trends, and brain imaging [11], [12].
The most recent research also deals with behavioral signal
processing; the work of Alkahtani et al. exemplifies this
[13] and Pandian et al. [14], where the authors have used
automated analysis of facial expressions and gaze
patterns, respectively, as one of the main behavioral
signals in their work. Besides that, Zunino et al. [15]
harnessed the power of recurrent neural networks by
employing them to analyze video data to identify
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individuals on the autism spectrum and those without
neurodevelopmental  conditions, i.e., neurotypical
controls.

Quantitative evaluations of neuroimaging data may
identify important biomarkers that could greatly enhance
the diagnostic capability of neurological and psychiatric
disorders [16], [17]. Machine learning methods have
become popular over the last few years to examine basic
and functional Magnetic Resonance Imaging (MRI and
fMRI) data to diagnose diseases, namely, Alzheimer's
[18], ADHD [19], and Autism [20]. This article primarily
distinguishes between autistic and typically developed
individuals using resting-state fMRI. The utilization of
fMRI for detecting autism has become a popular topic,
mainly due to large-scale public datasets like the Autism
Brain Imaging Data Exchange (ABIDE), which collects
brain imaging data from different sites worldwide [21].
Many studies utilized ABIDE data to develop and evaluate
a number of classification models [22], [23], [24], [25].
Some studies specifically employed several age groups of
the data set; for example, lidaka developed a probabilistic
neural network to classify the rs-fMRI data for subjects
younger than 20 years of age [26]. Plitt et al. tested two
different segments of the ABIDE rs-fMRI data and
claimed a classification accuracy of 76.67% [27]. Parisot
et al. improved a graph convolutional network model
representing individuals as nodes with features extracted
from the images and using phenotypic data as edge
weights, reaching an accuracy of 70.4% [28]. Sen et al., in
a broader study, presented a hybrid algorithm that
integrated features from both SMRI and fMRI and hence
achieved 64.3% accuracy in 1,111 participants from both
groups [29], [30]. Moreover, some researchers have also
examined the phenotypic markers besides the imaging
data: Parikh et al., for example, implemented demographic
variables—Ilike age, sex, handedness, and 1Q scores—as
features and evaluated their utility in the ABIDE
repository using different machine learning methods [30].

During the last couple of years, deep learning (DL)
architectures, along with neural network models—Iike
autoencoders, Convolutional Neural Networks (CNNs),
and Long Short-Term Memory (LSTM) networks—have
been extremely popular as a means of achieving better
autism classification [31], [32]. Brown et al. presented a
novel DL framework that combined an element-wise layer
with data-informed structural priors, thus obtaining a
68.7% accuracy level for a total of 1,013 individuals (474
with autism and 539 healthy controls) [33]. Heinsfeld et
al. similarly executed a DL strategy on the same data, but
the library contained one thousand thirty-five subjects
(five hundred five with ASD and five hundred thirty
controls). They reached 70% accuracy and claimed that
their performance was better than that of the previous
works [34]. Moreover, Qiang et al. moved the research
forward by creating a hierarchically structured recurrent
variational autoencoder without supervision for detecting
autism with ABIDE data, which resulted in a remarkably
high accuracy of 82.1% [35]. Additionally, Subah et al.
were able to achieve autism classification accuracy of
88% by building a DL model that utilized the AAL and
CC200 brain atlases, and they reported that prediction of
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individuals with autism could be made with high accuracy
[36].

These models, however, have significant limitations
in that they are not easily parallelized for training and have
a limited capacity for modeling long-range temporal
dependencies. Besides, a single, fully comprehensive,
accurate model suitable for clinical practice has not yet
been presented. Meanwhile, the phenomenal success of
the Self-Attention (SA)-based Transformer model in
domains like computer vision has led to its adoption for
fMRI analysis [37]. The main power of the architecture
comes from its SA mechanism, which offers a global
receptive field that can fetch data from the whole sequence
to enhance the model's efficacy. So far, the use of such
Transformer-based architectures specifically for autism
classification via fMRI data is very limited. Indeed, the
most recent approaches have, in fact, gradually supplanted
the SA mechanism of the Transformer with their strategy
that provides a greater receptive field, and higher potential
to include global contextual information, and yields
improved performance. A typical limitation associated
with these approaches is that they are inclined to
underestimate the importance of local feature learning,
which is at the core of the fMRI signal decoding process.
While these Transformer-based architectures have
surpassed the old ones in decoding accuracy, a large room
for improvement still exists. To address such
shortcomings, a hybrid framework is developed that
effectively merges the two most promising technologies,
CNNs and Transformers, thus creating complementary
effects between them. The suggested network is an end-
to-end architecture comprising a convolutional module,
followed sequentially by a Transformer encoder, and
culminating in a classification layer. To formally guide
this investigation, the study is structured around the
following research questions (RQs) and corresponding
hypotheses (Hs):

RQ1: Can a hybrid CNN-Transformer architecture
more accurately classify ASD from rs-fMRI data
compared to existing CNN-only or Transformer-only
models?

H1: The proposed hybrid model will achieve superior
classification performance on the multi-site ABIDE-I
dataset by synergistically combining local spatiotemporal
feature extraction with global temporal dependency
modeling, outperforming state-of-the-art benchmarks.

RQ2: What is the individual contribution of the core
architectural components (i.e., the convolutional module,
the Transformer encoder, and their residual integration) to
the overall model performance?

H2: Ablation studies will confirm that each
component is critical, with the Transformer encoder
providing a significant performance boost by capturing
long-range dependencies, and the residual fusion of local
and global features yielding the most robust and accurate
model.

RQ3: How does the model's performance generalize
across heterogeneous data acquisition sites, and what is
the impact of key hyperparameters like the number of
Transformer layers and attention heads?
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H3: While the model will demonstrate strong overall
generalizability, its performance will exhibit site-specific
variability due to scanner heterogeneity. Furthermore, an
optimal configuration of architectural hyperparameters
(e.g., 4 layers, 4 heads) will exist, balancing model
complexity with effective learning.

The primary points of the work are essentially the
following: (I) A novel robust model structure is built
utilizing CNNs to localize features and a Transformer
encoder to effectively model long-range dependencies
across the entire context of fMRI data; (I1) The suggested
model is the new state-of-the-art benchmark, performing
at the forefront and thus setting the standard for future
research. These findings imply the robustness of the
model's generalization capacity and indicate its potential
as a reference model in subsequent research in fMRI-
based decoding; and (lIl) Several component-based
comparisons and ablation studies are performed to account
for the component contributions of our framework.

2 Methods

A convolutional transformer network with a MHSA
mechanism is presented to classify resting-state fMRI data
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as an objective nonverbal tool for autism analysis. Fig. 1
illustrates the block diagram of the suggested framework.
This type of system allows for directly classifying fMRI
time series from raw data, thus eliminating the need for
manually engineered features. Three main components
make up the model: a fully connected classifier, a
Transformer encoder, and a convolutional module. The
convolutional module detects local spatiotemporal
patterns in the brain signals obtained from fMRI by
applying two convolutional layers: a one-dimensional
temporal convolution, followed by a depth-wise spatial
convolution. The input for the module consists of standard
regional time series, and it can encode both the temporal
changes in blood-oxygen-level-dependent (BOLD)
signals, as well as the functional interactions between
different brain areas. The result is a new feature sequence
that captures more advanced temporal information. The
resultant feature sequence is the input to a Transformer
encoder that employs a MHSA mechanism to select and
assign weights to the most important features concerning
the entire sequence in question. The model culminates in
a compact classification module, consisting of a fully
connected layer, that generates the final diagnostic
outcome. Each component of this model is detailed below.

Residual Connection

Transformer
Encoder Block

e

Flatten Softmax

Figure 1: General block diagram of the proposed framework

2.1 ABIDE-I database

In cases where the scan was performed without the
member being given atask, it is called resting-state fMRI,
a common paradigm in the work of neurological and
psychiatric illnesses [38], [39]. This work employed the
preprocessed ABIDE-I dataset, a publicly available
dataset composed of 1,112 resting-state fMRI scans
collected from 505 persons with ASD and 530 typically
developing controls at 17 different sites internationally,
summarized in Table1l. The dataset contains
representative time series extracted from several a priori
defined regions of interest (ROIs) informed by multiple
brain atlases and processed from various preprocessing

pipelines. The current study utilized the data which had
been preprocessed utilizing the Configurable Pipeline for
the Analysis of Connectomes (C-PAC) [40] and
parcellated into 116 coherent functional regions based on
the AAL atlas [41] The preprocessing procedure included
standard procedures and included the removal of initial
volumes to allow for stabilization of the magnetic field,
motion realignment, regression of nuisance signals, slice-
timing correction, band-pass filtering to decrease low-
frequency drift and high-frequency noise, and intensity
normalization. One limitation to keep in mind is that the
gaining factors, namely, Echo Time (TE), Repetition Time
(TR), spatial and temporal resolutions, and whether
participants’ eyes were opened or closed were not
consistent across scanning sites.

Table 1: Details of the ABIDE-I database for every imaging location

Site Ya|US | U | UC _Trin Stanf | SD ; Pl | OL | OH \N( Max | Leu | K E/I Calt
le |[M |M|LA |ity |ord SuU L TT | IN | SU U Mun | ven | KI U ech

#Of

Auti | 28 | 46 | 66 |54 |22 |19 14 |15 129 |19 |12 |75 |24 29 20 | 14 | 19

sm

#Of 10

Con |28 |25 |74 |44 |25 |20 22 |15 |27 |15 |14 0 28 34 28 |13 | 18

trol

#OT 11 13

Mal |40 | 71 3 86 |47 |31 29 |30 |48 |29 |26 9 48 55 36 |21 |29

e




22 Informatica 50 (2026) 19-36

2.2 Convolutional module

Our framework (Fig. 2) has a convolutional module that
identifies and isolates spatiotemporal features of raw data
in BOLD time series form. The data are arranged in terms
of the batch size, the quantity of ROIs, and the sampling
points in terms of time (32, 116, 200). First, a one-
dimensional temporal convolution is executed that goes
across the time axis for each ROI separately. In this layer,

1D Tempora Bach | DEpth-w|se
convolution — Normalization —  Spatial
and RelU Convolution

— Normalization —

M. Yu

16 filters with a kernel size of 64 capture local temporal
patterns and fluctuations within each region's signal; thus,
the input is effectively expanded into a feature-rich
representation. The result is immediately standardized
with batch normalization and gets to the layer with the
ReLU activation function for stable and non-linear
processing. This stage changes the input to a different
shape of (32, 16, 116, 200), where the second dimension
now stands for those learned temporal features.

b Average

Pooling

Dropout

and RelU Regularization

Figure 2: Convolutional module of our proposed framework to extract spatiotemporal features from the raw BOLD
data

After temporal feature extraction, the depth-wise
spatial convolution is executed to represent the
interactions of different brain regions. A kernel size of
116, i.e., the number of ROIs, and a depth multiplier of 2
are used in this layer, which indicates that it learns two
spatial filters for each of the 16 temporal feature maps. To
perform the "depth-wise" operation, the quantity of groups
is assigned the value of the quantity of input channels (16);
each temporal feature is processed by its set of spatial
filters without cross-feature interference. Therefore, the
output shape is (32, 32, 1, 200), which combines the
spatial relationships across the brain in a compact form.
The next sequence is another batch normalization
followed by the ReLU activation. To reduce
computational complexity for subsequent transformer
layers and highlight the most salient features, an average
pooling operation with a size and stride of 8 is applied
along the temporal dimension, downsizing the sequence
length from 200 to 25. A dropout layer with a dropout rate
of 0.3 is employed for regularization, and the output is
finally reshaped into a sequence of 25 tokens, each with
32 features (32, 25, 32), preparing it for global temporal
modeling in the transformer encoder.

2.3 Transformer encoder block

The Transformer encoder block (see Fig. 3) is tasked with
modeling the global, long-range temporal dependencies
within the feature-embedded sequence produced by the
convolutional module. The input to this block is a
sequence of 25 tokens, each represented as a 32-
dimensional vector, effectively forming a compact,
higher-level representation of the brain's activity over time
for a batch of 32 subjects. The encoder is composed of a
stack of four identical layers, each with 2 main sublayers.
The first sublayer is a MHSA mechanism (Fig. 4) that

utilizes four attention heads. This enables the model to
simultaneously focus on data from multiple distinct
representation subspaces; splitting the features (32-
dimensional) into four 8-dimensional heads allows the
mechanism to attend to differences in temporal dynamics
within the entire BOLD signal and thus identify complex,
non-local interactions across the whole-time sequence.
For an input sequence of token embeddgins X € RTxdmodel
where T = 25 is the sequence length and dmoder = 32 is the
feature dimension. First, the input X is projected into
Queries (Q), Keys (K), and Values (V) using learned
weight matrices WQ, WK, WV g Rdmodelxdk \where dy =
dmodgei/h = 8 and h = 4 is the number of attention heads:
Q=XWoK=XWKV=XxwV @)
The scaled dot-product attention for each head is then

computed as:
. QK"
Attention(Q,K,V) = softmax \/d_ %4 2
K

The scaling factor % prevents the softmax function
k

from entering regions with extremely small gradients. The
outputs of all h heads are concatenated and projected back
to the original dimension dmegel USING a learned weight
matrix W° € RMdkxdmodel o form the final MHSA output:
MHSA(Q, K, V)=Concat(head, ..., headn)W°  (3)
Where head; = Attention(XW,*, XWX, XW/). In
our framework, this mechanism enables each of the 25
temporal tokens to compute a weighted sum over all other

tokens in the sequence. The attention weights
T

softmax (%) explicitly quantify the pairwise influence
k

between timepoints, allowing the model to identify
critical, globally-informative moments in the fMRI
sequence that are most relevant for the autism
classification task.
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Figure 3: Transformer encoder block of our proposed framework

Subsequent to the computation of the attention
weights, the resulting output is integrated with the original
input via a residual connection, followed by normalization
using LayerNorm. This critical step helps the training of
the deep network to be stable. The scaled output is
received by the 2nd sub-layer, which is a position-wise
Feed-Forward Network (FFN). The FFN contains a linear
projection that expands the dimensionality of the model
from 32 values to 128 values, and it applies a GELU
activation function to make the function nonlinear, before
projecting back to the original 32 dimensions. The
operation is independent and identical for each token, thus
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allowing further non-linear feature transformation. The
output of the FFN is once more combined with its input
through another residual connection and LayerNorm. The
structured combination of SA and feed-forward
processing, with the help of residuals and normalization,
allows each of the 25 tokens to be informed by every other
token in the sequence. Thus, the Transformer encoder
turns the feature embeddings into a potent representation
where each element is globally-informed and understands
the entire temporal dynamics, which is necessary for the
final autism classification.

T

Linear
Concat
L
Scaled Dot-Product ]
Attention
L) =iy =L
Linear | Linear ) Linear ]

Q K ‘ %

Figure 4: Multi-head attention

2.4 Classification module

At the classification tier of the model, the feature maps
obtained from the convolutional module are fused with the
output of the Transformer encoder through a residual
connection. This additive coupling guarantees that the
localized spatiotemporal patterns identified by the
convolutional layers and the globally contextualized
representations derived by the Transformer are preserved
and made available for direct propagation to the
subsequent layers. After that, the combined feature maps
are transformed from a multi-dimensional tensor into a
one-dimensional vector to be compatible with the dense

layers. To reduce overfitting and enhance the model's
generalization capability on unseen data, a dropout layer
with a ratio of 0.5 is employed, whereby 50% of the
activations are randomly deactivated during the training
process. The resulting feature vector is subsequently input
into the final fully connected layer, which comprises 2
output units corresponding to the 2 diagnostic categories
in the autism classification task (i.e., autism and healthy).
The complete network is trained in an end-to-end manner
utilizing the cross-entropy loss function, which quantifies
the divergence between the predicted probability
distribution and the true diagnostic labels.
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3 Results

The training process was performed on an NVIDIA RTX
2080 Ti GPU (11 GB VRAM). The TensorFlow DL
library ran on a Windows 11 OS and on an Intel Core i7-
12700K processor. The ABIDE-I dataset evaluated the
proposed  framework's  stability, accuracy, and
generalizability. The model was trained for a maximum of
150 epochs using the AdamW optimizer with a weight
decay of 0.00001 to regularize learning. A cosine
annealing schedule was applied to the learning rate,
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starting at 0.0001 and decaying to a minimum of
0.000001. We employed a batch size of 32 and minimized
the categorical cross-entropy loss. To prevent overfitting
and ensure model selection, early stopping was triggered
if the validation loss failed to improve for 25 consecutive
epochs, with the best-performing weights being restored.
Furthermore, all random number generators for Python,
NumPy, and TensorFlow were fixed with a seed of 42 to
guarantee reproducible weight initialization and data
shuffling across all experiments. Fig. 5 shows the steps of
preprocessing fMRI data.

(A)

(C)

Figure 5: Sample data after preprocessing. (A) Raw resting-state fMRI images; (B) brain extraction, filtering, and slice
timing correction; and (C) image registration to standard space

The proposed model architecture, detailed in Table 2,
is a hybrid network designed to classify fMRI time-series
data. The specific hyperparameters for this architecture
were not chosen arbitrarily; as shown in Table 3, they were
selected from established ranges in the literature through
empirical testing and validation, balancing model
complexity with performance and regularization to
prevent overfitting. This approach is analogous to
optimizing a control system for stability under varying
operating conditions. We employed a grid search strategy
combined with 5-fold cross-validation on a held-out
development set from the multi-site ABIDE-I data. The
primary objective was to identify a configuration that
maintained high performance across different data
sources, thereby inherently building resilience to site-

specific scanner variations. Specifically, hyperparameters
such as the number of Transformer layers and attention
heads were optimized not just for peak accuracy on the
aggregate data, but for consistent performance across the
folds, which represent different data partitions and,
implicitly, different scanner contributions. Similarly,
temporal kernel sizes were evaluated for their ability to
capture biologically plausible hemodynamic response
dynamics across different TR (Repetition Time)
parameters present in the multi-site dataset. This process
ensured the model was tuned to be less sensitive to the
noise introduced by scanner heterogeneity, prioritizing
generalizable feature learning over site-specific
overfitting.
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Table 2: Model architecture: spatiotemporal convolutional network with Transformer encoder
Module Layer / Operation Key Parameters Input Shape | Output Shape Notes
116 ROIs (AAL
Input fMRI Time-Series - S)%) 116, (32, 116, 200) atlas), 200
timepoints.
F1=16 filters, kernel Learns temporal
Temporal ConvliD size= (1, 64), stride=1, (82, 116, | (32, 16, 116, features. Adds a
R 200) 200) A
padding='same dimension.
Stabilizes and
BatchNorm + ReLU | - (32,16,116, | (32, 16, 116, introduces non-
200) 200) lineari
inearity.
_ o D=2 spatial filters
Depth-wise Spatial D=2, kernel size= (}16’ (32,16, 116, per temporal filter.
c 1), groups=16, (32,32, 1, 200) _ -
onvlD addina="valid" 200) groups=F1 makes it
Convolutional P 9 depth-wise.
Module BatchNorm + ReLU | - (32, 32, 1, (32, 32, 1, 200) Processes  spatial
200) features.
o L Reduces sequence
Average Pooling pool size= (1, 8), stride= | (32, 32, 1, (32,32, 1, 25) length from 200 to
1,8) 200) 25
_ (32, 32, 1, Regularization
Dropout p=0.3 25) (32, 32,1, 25) during training.
T ¢ = 25 tokens
Reshape for (32, 32, 1, — . !
Transformer - 25) (32, 25, 32) e_ach with d_model
= 32 features.
Normalizes before
LayerNorm - (32,25,32) | (32,25, 32) attention.
Multi-Head _ L 4 heads, each with
Attention heads=4, key_dim=8 (32,25,32) | (32,25,32) dimension 8 (32/4),
Transformer . . Adds input to
Encoder (x L Add + LayerNorm Residual Connection (32,25,32) | (32,25, 32) attention output,
layers) . Expands to 128
Feed-Forward dim_ff=128, !
Network activation="GELU" (32,25,32) | (32,25, 32) glzms, then back to
. . Adds input to the
Add + LayerNorm Residual Connection (32,25,32) | (32,25, 32) FEN output.
) (32, 25 * 32) = | Prepares for a dense
Flatten (32, 25, 32) (32, 800) layer.
_ Final
Classifier Dropout p=0.5 (32, 800) (32, 800) regularization.
Fully Connected units=2 (32, 800) (32, 2) Final feature fusion.
) Output:  [P(ASD),
Softmax (32,2) (32, 2) P(Control)].
Output Class Probabilities - - (32,2) Final prediction.
Table 3: Hyperparameter selection: literature-informed ranges and final model configuration
Parameter Tested Value/Range (from Literature) Selected Value & Rationale
Batch Size 16, 32, 64 32
# Temporal Filters 8, 16, 32, 64 16
Temporal Kernel Size ~0.25-1s of data (e.g., 32, 64, 128 for TR=0.5s-2.0s) 64
Depth Multiplier 1,2,4 2
Pool Size (Temporal) 4,8,16 8
Dropout (Conv) 0.2-05 0.3
Transformer Dimension 32, 64,128 32
Number of Heads 2,4,8 4
FEN Dimension 128, 256, 512 (Often 4 * d_model) 128 (4 * 32)
Number of Layers 2,4,6,8 4
Dropout (Classifier) 04-0.7 0.5

The model's evaluation involved a two-stage, 10-fold

After that, its performance was evaluated locally at each

cross-validation process. Initially, it was tested on the full
multi-site dataset (N=1,035) to assess its ability to
generalize across diverse fMRI scanning parameters.

site based on smaller, site-specific datasets. Standard
metrics, namely, accuracy, sensitivity, specificity, and F1-
score were utilized for a thorough performance analysis.
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Sensitivity and specificity were instrumental in detecting
the rare classes, whereas the F1-score was a balanced
measure of sensitivity and specificity relevant to the
possible class imbalance. Fig. 6 presents the outcomes of
the initial phase of the experiment. Our framework yielded
77.85% accuracy, 76.52% sensitivity, 78.90% specificity,
and 77.71% F1-score for autism diagnosis from fMRI
data. Table 4 compares our classification performance in
the first stage against some known techniques employing
the ABIDE-I database. The statistical importance of the

80
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~J
=
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performance differential between the suggested model and
other leading methods is evaluated using the p-value from
the paired Wilcoxon Signed-Rank Test. Our proposed
model achieves the highest accuracy, F1-score, and Kappa
scores, indicating superior overall performance and
reliability. It also shows a strong balance between
Sensitivity and Specificity. The low p-values for other
models suggest their results are statistically significant
compared to a baseline.

78.9

77.71

Specificity Fi-score

Figure 6: Performance metrics obtained by our proposed framework on the entire ABIDE-1 dataset

Table 4: Performance and Kappa of leading techniques on the ABIDE-I dataset

Model Accuracy Sensitivity Specificity F1-score P-value Kappa
ASD-DiagNet [40] 70.32 68.30 72.24 70.21 0.008 0.625
ASD-SAENEet [42] 70.81 62.25 79.11 69.67 0.010 0.632
ASDC-Net [20] 76.72 73.48 79.07 76.17 0.192 0.710
arg]'”NetD'ff”s'O” 69.65 73.00 66.18 69.42 0.003 0.621
Ours 77.85 76.52 78.90 77.71 - 0.734

The performance of our proposed hybrid architecture
was further benchmarked against several established pre-
trained CNNs adapted for fMRI-based classification.
These models were chosen for their proven success in
computer vision tasks. The data in Table 5 reveals that our
model is better than all the pretrained CNNs regarding all
the critical metrics. The enhanced performance is
significantly different statistically, as shown by the very
small p-values (<0.05) from the paired Wilcoxon Signed-
Rank Test, when comparing the accuracy distributions,
among the cross-validation folds. Also, the Kappa value

for our model of 0.734 depicts that the degree of
agreement is considerably greater compared to the pre-
trained models, which were between 0.521 and 0.682.
Although transfer learning from the pre-trained vision
models can be a good baseline, their architectural priors
do not best fit the spatiotemporal fMRI data. Conversely,
our CNN-Transformer hybrid can more effectively
acquire the complex temporal dynamics and the global
dependencies of the brain activities at rest; hence, it can
make the classification significantly more robust and
accurate.
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Table 5: Performance comparison of the suggested framework with pre-trained CNN models on the ABIDE-I dataset

Model Accuracy (%) (S(;SS'“V'W ?g;uﬁcny F1-score (%) | P-value Kappa
VGG-16 70.15 68.92 71.25 70.07 0.005 0.621
ResNet-50 72.40 70.18 74.33 72.18 0.012 0.648
InceptionV3 71.83 73.50 70.25 71.84 0.009 0.637
DenseNet-121 73.65 72.04 75.01 73.49 0.038 0.673
EfficientNetBO | 72.90 71.35 74.22 72.75 0.021 0.658
Proposed (Ours) | 77.85 76.52 78.90 77.71 - 0.734

This shows a detailed account of how the primary
architectural hyperparameters influence the model's
performance. In particular, this concerns the depth of the
Transformer encoder and the quantity of SA heads. The
number of layers, L, one of the most critical factors of the
Transformer’s representational power, was changed. The
depths from 1 to 10 encoder blocks were tried, as shown
by the graph in Fig. 7. The classification accuracies were
changing widely with different depths. The 7-layer model
averaged classification accuracy at 77.85%, 4.95% more
than the 10-layer model. The initial performance gain with
increasing depth, from L=1 to L=7, is attributable to the
model's enhanced representational capacity for capturing
the complex, hierarchical temporal dependencies in the
fMRI signal. However, the subsequent decline in accuracy
for deeper models (L=8 to L=10) is a strong indicator of
overfitting. Deeper networks have a higher propensity to
memorize noise and site-specific artifacts present in the
multi-site  ABIDE-l dataset rather than learning the
generalizable spatiotemporal signatures of autism.
Furthermore, very deep Transformers can suffer from
optimization difficulties, such as vanishing gradients,

which may prevent effective training. The performance
was also checked concerning how the quantity of attention
heads, which are the primary components of the multi-
head attention mechanism allows the parallel processing
of different input aspects, is affected. The number of heads
from 1 to 16 was experimented with, as illustrated in Fig.
8. The performance fluctuated with the quantity of heads
used; so, the model was susceptible to this parameter. In
general, models that employed four attention heads were
the best performers across the metrics. Indeed, the four-
head model exceeded the accuracy of 1, 2, 8, and 16-head
models by 1.73%, 1.31%, 2.02%, and 0.80%, respectively.
With fewer heads (e.g., 1 or 2), the model likely suffers
from expressive bottleneck, where the attention
mechanism lacks the capacity to simultaneously focus on
different aspects of the temporal dynamics, such as short-
term fluctuations versus long-range trends in the BOLD
signal. Conversely, when the number of heads is excessive
(e.g., 8 or 16), the feature dimensionality per head
becomes too small (4 or 2 dimensions, respectively),
leading to attention collapse or degenerate attention.

0

85

~J co
u o

Accuracy (%)

~l
=]

65

60

5

6 7 8 9
Depth

10

Figure 7: Performance of our framework with various depths of the Transformer encoder
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Figure 8: Performance of our framework with various numbers of heads of SA

During the second experimental phase, 5-fold cross-
validation was independently conducted at each site. The
resulting figures are presented in Table 6. The figure
shows that the proposed framework’s performance has
decreased by 3.64% from phase 1. Performance metrics
fluctuated quite a bit between different sites, with
accuracies going from 63.55% (Trinity) to 96.42%

(NYU), which points to strong site-specific effects.
Although sites like NYU and OHSU performed
excellently, sites like Yale and SBL, on the other hand,
exhibited very low results. This indicates that the model's
strength is contingent upon the attributes of the local data,
thereby highlighting the problem of a universally
consistent diagnostic tool.

Table 6: Classification performance through 5-fold cross-validation on each data site utilizing the suggested

framework

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)
Yale 68.31 64.85 70.00 67.32
USM 76.00 75.23 75.98 75.60
UM 70.25 69.54 72.67 71.07
UCLA 78.91 79.40 80.15 79.77
Trinity 63.55 61.33 66.37 63.75
Stanford 71.50 70.69 72.95 71.80
SDSU 69.81 69.14 69.74 69.4
SBL 64.22 62.10 65.10 63.56
PITT 75.73 73.48 76.44 74.93
OLIN 76.20 75.00 77.50 76.22
OHSU 92.00 91.50 92.62 92.05
NYU 96.42 95.63 97.29 96.45
MaxMun 65.17 64.19 67.00 65.56
Leuven 71.50 69.20 73.11 71.10
KKI 77.93 77.00 78.46 77.72
CMU 78.00 76.11 79.83 77.92
Caltech 66.10 65.72 67.21 66.45
Average 74.21 72.94 75.43 74.15
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Figure 9: Site-wise performance variability and its relationship with sample size. (A) Classification accuracy,
sensitivity, and specificity across the 17 imaging sites in the ABIDE-I dataset. The dashed lines represent the mean
performance for each metric. Significant fluctuations highlight the impact of site-specific scanner parameters and
protocols. (B) Bubble chart illustrating the correlation between a site's total sample size and classification accuracy.
The size of each bubble corresponds to the sample size, and the color represents the F1-Score.
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Figure 10: Interpretability analysis of the proposed hybrid model. (A) Average attention map across the test set,
showing the relative importance between different timepoints in the fMRI sequence. (B) Saliency map highlighting the
top 15 most influential brain regions (from the AAL atlas) for the model's classification decision. Node size
corresponds to the mean saliency score, and edges represent strong functional connections between highly salient
regions.

The superior performance of our model necessitates
an investigation into its decision-making process to
establish clinical trustworthiness. The interpretability
analyses revealed the neurophysiologically plausible
foundations of the model's predictions. The aggregated
attention maps (Figure 10A) revealed that the model does
not attend uniformly to all time points but identifies
specific, transient intervals of high diagnostic importance.

These critical periods often correspond to moments of
significant BOLD signal fluctuation, suggesting the model
leverages dynamic shifts in brain state rather than static
average connectivity. More critically, the ROI saliency
analysis (Figure 10B) identified a set of brain regions that
consistently yielded high saliency scores. This set
prominently included key nodes of established networks
implicated in autism pathophysiology, such as the Default
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Mode Network (e.g., Posterior Cingulate Cortex, Medial
Prefrontal Cortex), the Salience Network (e.g., Anterior
Insula, Anterior Cingulate Cortex), and regions involved
in social cognition (e.g., Temporoparietal Junction,
Superior Temporal Sulcus). This convergence between the
model's learned features and the known neurobiology of
autism strongly validates the clinical relevance of our
approach and argues against the model latching onto
artifactual, non-biological signals in the data. These
interpretability results are a direct consequence of the
hybrid, control-theoretic architecture. The CNN's role as a
local state estimator efficiently preprocesses the high-
dimensional input, isolating meaningful local neural
patterns. The Transformer, acting as the optimal
controller, then performs a global, context-aware
integration of these patterns. It effectively computes the
temporal dependencies and identifies which estimated
states (CNN features) and at which time points (attention
weights) are most predictive. This two-stage process is
what enables the discovery of coherent, large-scale brain
dynamics relevant to autism, a task that pure CNN or
Transformer models struggle with due to their respective
limitations in capturing global or local context. Therefore,
the novelty of our framework lies not only in its
performance but in its biologically-plausible, adaptive
strategy for decoding complex brain network dynamics.
An extensive ablation study measured how much each
core component contributed to our hybrid framework. The
baseline model was a convolutional module (Section 2.2),
followed directly by the classification head. The

M. Yu

Transformer encoder and the residual connection were
gradually added one by one, and the performance on the
ABIDE-I dataset was measured utilizing 10-fold cross-
validation. The outcomes shown in Table 7 are clear in
that the proposed architecture achieves a notable
performance gain. The baseline CNN-only model
exhibited moderate performance, thus proving its
capability to extract meaningful local spatiotemporal
features. However, by adding the Transformer encoder,
the performance improved dramatically as the accuracy
increased by 4.69% and the Kappa value rose from 0.625
to 0.699. The enhancement in the result indicates the
major role of the Transformer SA mechanism for
modeling the global, long-range temporal dependencies in
the fMRI sequence, which the CNN is incapable of.
Therefore, the work incorporating the residual connection,
which combined the local features from the CNN with the
global context from the Transformer, resulted in the best
outcome, as it could add an extra 1.92% in accuracy and
reached a final Kappa of 0.734. This means that the local
details facilitated by the residual connection provide the
complementary information to the global context; thus, a
more powerful and balanced feature representation for the
final classification emerges. To statistically validate the
improvement from each architectural addition, a paired
Wilcoxon signed-rank test was performed on the accuracy
distributions across the 10 folds for each model variant.
This analysis showed that our full model is significantly
better than other variants (P<0.05).

Table 7: Results of the ablation study on the ABIDE-I dataset

\'\;lz;?aerlu Accuracy (%) zzr;smvny (Soze)zufluty F1-score (%) | Kappa P-value
CNN —only | 2 54 69.88 72.45 71.11 0.625 0.008
(Baseline)

CNN +

Transformer 75.93 74.60 77.12 75.83 0.699 0.034
Encoder

Full model 77.85 76.52 78.90 77.71 0.734 -

To empirically validate the advantage of the
Transformer encoder over traditional recurrent models for
capturing long-range temporal dependencies in fMRI data,
we conducted a comparative study against two widely-
used RNN variants: Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU). For a fair comparison,
we replaced the Transformer encoder in our hybrid
framework with equivalent LSTM and GRU modules
while keeping the convolutional feature extractor and
classification head identical. All models were trained and
evaluated using the same 10-fold cross-validation protocol
on the ABIDE-I dataset. The results, summarized in Table
8, demonstrate a clear performance hierarchy. The
standard LSTM model achieved an accuracy of 73.15%,
while the GRU performed slightly better at 74.08%. Both
RNN variants were outperformed by our proposed CNN-
Transformer hybrid, which achieved a significantly higher
accuracy of 77.85% (P < 0.05, paired Wilcoxon test). This
performance gap of 3.7-4.7% provides strong empirical

support for the theoretical advantages of the self-attention
mechanism.

Based on a review of previous publications, it can be
inferred that most of the works have attempted to provide
a diagnosis for autism through the analysis of the ABIDE-
| fTMRI dataset. To be precise, this research contrasts its
performance with those earlier methods, whose effects
give the main frame for interpreting the current findings.
Our model, as reported in Table 9, has reached an accuracy
of 77.85% which is 2.65% higher than the first-best
accuracy figure reported in [24] for 1,035 samples.
Besides that, our findings are better than those of [44] that
claimed an accuracy of 74.53% for the 860-subjects
cohort, even if the effect of sample size is not considered.
By merging a CNN network with a Transformer encoder,
the proposed method delivers at least 2.65% better results
than other DL techniques. While this margin may appear
modest, its practical significance is substantial given the
high heterogeneity of the ABIDE-I dataset. Indeed, the
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practical significance of this margin must be
contextualized within the challenges of neuroimaging-
based diagnosis. This improvement equates to correctly
classifying dozens more individuals in a large cohort and
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represents a meaningful step towards a more reliable
biomarker. The concurrent increase in the F1-score further
indicates a more balanced model, which is critical for a
fair diagnostic tool.

Table 8: Performance comparison of the proposed CNN-Transformer hybrid with RNN-based variants on the ABIDE-

| dataset.
Model Accuracy (%) er)lsmwty (SOESC”'C'W F1-Score (%) | Kappa Er;/;élsjs dvs.
CNN-LSTM | 73.15 71.84 74.32 72.56 0.643 0.012
CNN-GRU 74.08 72.91 75.12 73.47 0.658 0.023
CNN-
Transformer 77.85 76.52 78.90 77.71 0.734 —
(Ours)

Table 9: Comparing the performance of our proposed technique with some state-of-the-art study in autism diagnosis
through the fMRI ABIDE-I dataset

Reference Number of subjects Model Accuracy (%)
[45] 871 SVC 66.80
[34] 1035 AE+DNN 70.00
[28] 871 GCN 70.40
[40] 1035 AE+SLP 70.30
[46] 872 Ensemble GCN 70.86
[47] 1035 CNN 70.22
[48] 1035 Extra-Trees 72.20
[49] 949 Ensemble MLP 74.52
[42] 1035 SAE+MLP 70.80
[44] 860 3D CNN 74.53
[24] 1035 SSDAE+MLP 75.20
Ours 1035 CNN-+Transformer 77.85

Even though it yields promising results, this study has
a few limits that required to be considered and that provide
directions for further research. The model that was
proposed performed differently to a great extent in various
data acquisition sites, as shown in Table 6. This draws
attention to the major problem of neuroimaging: site-
specific variations in the scanner hardware, acquisition
protocols, and participant demographics can all cause
confounding effects. Our model has proved to be a good
generalization; however, its use as a universal clinical
instrument will depend on how these heterogeneity issues
can be solved. Subsequent research will deal with
incorporating advanced harmonization methods like
ComBat or DL-based domain adaptation to eliminate site-
specific biases and perform better. The second point is that
the model's interpretability, which has somewhat resolved
the investigation of the attention weights, still demands in-
depth supplementary research. The more detailed analysis
correlating the model features with the neurobiological
circuits that are involved in autism (e.g., the default mode
or salience networks) will help to convince the clinical
sector that our findings are relevant. The investigation was
limited to the ABIDE-I dataset only. It is necessary to
verify the model on larger and more recent multi-site
datasets, such as ABIDE-II and those containing different
populations in terms of age and sex, to thoroughly evaluate
the model's generalizability and its potential to be
translated into real-world clinical practice.

4 Discussion

This study proposed a novel CNN-Transformer hybrid
framework for the automated diagnosis of ASD from
resting-state fMRI data. The results demonstrate that our
model achieves state-of-the-art performance on the multi-
sitt ABIDE-I dataset, outperforming a range of
established deep learning models and pre-trained CNNs.
The key success of this work lies not only in the reported
metrics but in the architectural synergy that drives them, a
point that merits detailed discussion in the context of prior
art and the specific challenges of fMRI analysis.

4.1 Comparative analysis with state-of-the-
art methods

Our model's accuracy of 77.85% represents a meaningful
advancement over previous leading methods. When
compared to other deep learning approaches on the
ABIDE-I dataset, our hybrid framework shows a clear and
consistent improvement. For instance, Heinsfeld et al. [34]
employed a deep autoencoder followed by a neural
network, reporting an accuracy of 70.0%. While effective
in learning compact representations, their model likely
lacks the explicit, hierarchical feature engineering for
spatiotemporal data that our convolutional module
provides. Similarly, Eslami et al. [40] (ASD-DiagNet,
70.3% accuracy) also used an autoencoder-based
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approach but may be limited in capturing the very long-
range temporal dependencies present in fMRI sequences.

Graph-based methods, such as the Graph
Convolutional Network (GCN) by Parisot et al. [28]
(70.4% accuracy), excel at modeling the brain as a
connectome of static functional connections. However,
they often overlook the rich, dynamic temporal
information within the BOLD signal itself. Our model's
strength is its direct processing of the raw time series,
allowing it to learn both the spatial relationships (via
depth-wise convolution) and the complex, global temporal
dynamics (via the Transformer) simultaneously. The most
direct predecessor to our work is the SSDAE+MLP model
by Liu et al. [24], which achieved 75.2% accuracy. Our
2.65% performance improvement can be attributed to the
Transformer encoder's superior capability in modeling the
entire temporal context compared to the stacked denoising
autoencoder, which may struggle with long-range
dependencies that are not local in time.

4.2 The added value of transformers over
RNNs and CNNs

A central contribution of this work is the demonstration
that the Transformer architecture is uniquely suited to
address the specific limitations of previous models in
fMRI analysis. Compared to Recurrent Neural Networks
(RNNS) like LSTMs, which have been used for temporal
modeling [31], the Transformer offers two distinct
advantages for fMRI. First, the self-attention mechanism
provides a global receptive field from the first layer,
allowing any timepoint to directly influence any other.
This is crucial for identifying non-local, transient brain
states that are critical for ASD diagnosis but may be
separated by many seconds in the scan. In contrast,
LSTMs process data sequentially, making it difficult to
learn dependencies between distant timepoints due to the
vanishing gradient problem. Second, the Transformer's
parallelizable architecture leads to more efficient training
on modern hardware, unlike the sequential nature of
RNNs.

When compared to standard CNNs, which are
powerful local feature extractors [47], the Transformer
compensates for their fundamental constraint: a limited
receptive field. A CNN's ability to integrate information is
bounded by the size of its kernel and the depth of its layers.
While CNNs are excellent at identifying local temporal
patterns and spatial relationships between adjacent brain
regions, they are inherently poor at modeling the brain's
global, system-wide dynamics that unfold over the entire
scanning session. Our ablation study (Table 7)
quantitatively confirms this, showing a significant
performance jump when the Transformer encoder is added
to the CNN baseline. The Transformer acts as a powerful
global contextualizer, re-weighting and integrating the
local features produced by the CNN to form a
representation that is informed by the entire temporal
history of the brain's activity.

4.3 Synthesis: The hybrid architecture as a
synergistic solution

Therefore, the performance of our model is not the result
of a single component but of their synergistic integration.
The convolutional module acts as a dedicated, high-
resolution feature engine, extracting meaningful local
spatiotemporal patterns from the noisy, high-dimensional
fMRI data. The Transformer encoder then serves as a
sophisticated temporal reasoning module, identifying
which of these local patterns are globally significant and
how they interact across time to form a diagnostic
signature. This division of labor—Iocal feature extraction
followed by global contextual modeling—proves to be a
powerful paradigm. It is this hybrid design that allows our
model to surpass the performance ceilings of architectures
that rely solely on one approach, setting a new benchmark
for fMRI-based ASD diagnosis.

4.4  Multi-site heterogeneity: Limitations
and future directions with
harmonization

A central finding of this work is the substantial
performance variability observed across different imaging
sites (Table 6, Figure 9), with accuracy ranging from
63.55% (Trinity) to 96.42% (NYU). This performance
drop at specific sites underscores a fundamental challenge
in neuroimaging-based machine learning: multi-site bias.
This bias arises from differences in scanner
manufacturers, acquisition protocols, head coils, and
participant demographics across sites, which can
introduce non-biological, site-specific variance that
confounds the model's ability to learn generalizable
features of ASD. While our hybrid architecture
demonstrates a degree of inherent robustness by achieving
a strong aggregate performance, the results confirm that
architectural advances alone are insufficient to fully
overcome this data-level challenge. The model's
performance is strongly correlated with site-specific
sample size (Figure 9B), suggesting that sites with larger,
potentially more representative datasets allow the model
to better learn to ignore site-specific noise. Conversely,
smaller sites may not provide enough data for the model
to disentangle the signal of ASD from the site-specific
artifact. To directly address this limitation in future work,
the application of statistical and deep learning-based
harmonization techniques is essential. Methods such as
ComBat could be employed as a preprocessing step.
ComBat uses an empirical Bayes framework to adjust for
site effects by standardizing the mean and variance of
features (e.g., ROI time series or functional connectivity
matrices) across sites, effectively removing scanner-
specific biases while preserving biological variability
associated with the condition.

Furthermore, while the results on ABIDE-I are
compelling, the clinical translation of such a model hinges
on its performance across independent datasets. As an
immediate next step, we will conduct external validation
on the ABIDE-II repository and initiate prospective
clinical studies to assess real-world generalizability. We
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will also explore domain adaptation techniques to enhance
cross-dataset robustness, ensuring the model's reliability
beyond the specific characteristics of its initial training
data.

5 Conclusion

A new CNN-Transformer hybrid framework is proposed
in this article to identify ASD from rest-state fMRI data
automatically. Our model is essentially designed to use the
strength of convolutional networks for local feature
extraction and transformer encoders to capture global
dependencies. Through various metrics and experiments,
our method on the ABIDE-I dataset has set a new state-of-
the-art level, beating the existing techniques and pre-
trained CNN models in multiple performance metrics. The
ablation experiment reported unequivocal real-world
results that coupling both architectural structures was
necessary to achieve the highest performance, with the SA
component being the most instrumental in capturing long-
range temporal dynamics in BOLD signals. While site-
related variability is an ongoing challenge, the model's
robust performance indicates the considerable promise of
hybrid DL architectures for unraveling intricate
neuroimaging data. This work contributes a strong,
generalizable framework that not only advances the field
of fMRI-based autism diagnosis but also is a valuable
reference for future research seeking to leverage
Transformer-based models in computational
neuroscience.
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