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Autism Spectrum Disorder (ASD) diagnosis remains challenging because of its heterogeneity and reliance 

on subjective behavioral assessments. Resting-state functional MRI (fMRI) presents a compelling 

opportunity avenue for identifying objective biomarkers, but decoding its complex spatiotemporal patterns 

requires advanced computational models. While Deep Learning (DL) approaches have progressed, many 

struggle to concurrently capture local neural dynamics and global temporal dependencies. A novel end-

to-end CNN-Transformer hybrid framework designed for fMRI-based autism diagnosis is proposed to 

address this. Our model leverages a two-layer convolutional module (temporal + depth-wise spatial 

convolution) to extract localized spatiotemporal features, which are then processed by a 4-layer 

Transformer encoder with a 4-head Multi-Head Self-Attention (MHSA) mechanism to model long-range, 

global dependencies through a Multi-Head Self-Attention (MHSA) mechanism. Evaluated via a rigorous 

10-fold cross-validation on the large multi-site ABIDE-I dataset (N=1,035), the suggested model achieved 

state-of-the-art performance with an accuracy of 77.85%, a sensitivity of 76.52%, a specificity of 78.90%, 

and an F1-score of 77.71%. Ablation studies confirmed the critical contribution of each architectural 

component, demonstrating that the integration of the Transformer encoder and residual connections 

provided a significant performance boost over the CNN-only baseline. and comparisons with pre-trained 

CNNs and other leading methods demonstrated superior and statistically significant performance 

(p<0.05). Despite an observed performance drop in site-specific evaluations, underscoring the challenge 

of scanner heterogeneity, our results affirm that the synergistic integration of local feature learning and 

global contextual modeling is a powerful paradigm for neuroimaging-based diagnostic applications. 

Povzetek: Predlagan je hibridni CNN-Transformer model za diagnozo ASD iz mirujočih fMRI posnetkov, 

ki združi učenje lokalnih vzorcev in dolgoročnih odvisnosti ter na podatkovni zbirki ABIDE-I doseže 

približno 78 % natančnost in boljše rezultate od primerjanih metod. 

 

1 Introduction 
It is tough to effectively diagnose neurodevelopmental 

disorders like autism because such disorders have a vast 

variety of symptoms, especially in the younger population 

[1], [2]. In general, psychiatric diagnosis is mainly based 

on the observation of the behavior of the patient, which is 

subjective and is done according to the criteria given in 

manuals like DSM-5 and ICD-10; this kind of diagnosis 

can be wrong sometimes [3], [4]. In contrast to many 

physical diseases, for example, HIV and diabetes, which 

can be verified by objective laboratory measures, mental 

health disorders do not have consistent biological markers. 

This makes differential diagnosis difficult because of 

overlapping symptoms and no definitive tests [5]. ASD is 

a condition that is often described as a 

neurodevelopmental disorder with a particular emphasis 

on the lifelong trajectory. ASD is described by social 

communication problems with friendship and peer 

relationships, repetitive behavior difficulties, and  

 

restricted interests, usually identifiable in early childhood  

[6,8]. The case of a child with autism is just one among 

100 children worldwide [4,9]. Hence, finding the disorder  

as early as possible is necessary to intervene in time. 

Besides, demographic variations in the rates of autism 

diagnosis are quite considerable, as male-to-female 

differences in the rates of diagnosis are around four times, 

implying gender-based disparities [10]. To increase the 

accuracy of diagnosis, the scientists have employed 

various means such as structured behavioral observation, 

study of demographic trends, and brain imaging [11], [12]. 

The most recent research also deals with behavioral signal 

processing; the work of Alkahtani et al. exemplifies this 

[13] and Pandian et al. [14], where the authors have used 

automated analysis of facial expressions and gaze 

patterns, respectively, as one of the main behavioral 

signals in their work. Besides that, Zunino et al. [15] 

harnessed the power of recurrent neural networks by 

employing them to analyze video data to identify 
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individuals on the autism spectrum and those without 

neurodevelopmental conditions, i.e., neurotypical 

controls. 

Quantitative evaluations of neuroimaging data may 

identify important biomarkers that could greatly enhance 

the diagnostic capability of neurological and psychiatric 

disorders [16], [17]. Machine learning methods have 

become popular over the last few years to examine basic 

and functional Magnetic Resonance Imaging (MRI and 

fMRI) data to diagnose diseases, namely, Alzheimer's 

[18], ADHD [19], and Autism [20]. This article primarily 

distinguishes between autistic and typically developed 

individuals using resting-state fMRI. The utilization of 

fMRI for detecting autism has become a popular topic, 

mainly due to large-scale public datasets like the Autism 

Brain Imaging Data Exchange (ABIDE), which collects 

brain imaging data from different sites worldwide [21]. 

Many studies utilized ABIDE data to develop and evaluate 

a number of classification models [22], [23], [24], [25]. 

Some studies specifically employed several age groups of 

the data set; for example, Iidaka developed a probabilistic 

neural network to classify the rs-fMRI data for subjects 

younger than 20 years of age [26]. Plitt et al. tested two 

different segments of the ABIDE rs-fMRI data and 

claimed a classification accuracy of 76.67% [27]. Parisot 

et al. improved a graph convolutional network model 

representing individuals as nodes with features extracted 

from the images and using phenotypic data as edge 

weights, reaching an accuracy of 70.4% [28]. Sen et al., in 

a broader study, presented a hybrid algorithm that 

integrated features from both sMRI and fMRI and hence 

achieved 64.3% accuracy in 1,111 participants from both 

groups [29], [30]. Moreover, some researchers have also 

examined the phenotypic markers besides the imaging 

data: Parikh et al., for example, implemented demographic 

variables—like age, sex, handedness, and IQ scores—as 

features and evaluated their utility in the ABIDE 

repository using different machine learning methods [30]. 

During the last couple of years, deep learning (DL) 

architectures, along with neural network models—like 

autoencoders, Convolutional Neural Networks (CNNs), 

and Long Short-Term Memory (LSTM) networks—have 

been extremely popular as a means of achieving better 

autism classification [31], [32]. Brown et al. presented a 

novel DL framework that combined an element-wise layer 

with data-informed structural priors, thus obtaining a 

68.7% accuracy level for a total of 1,013 individuals (474 

with autism and 539 healthy controls) [33]. Heinsfeld et 

al. similarly executed a DL strategy on the same data, but 

the library contained one thousand thirty-five subjects 

(five hundred five with ASD and five hundred thirty 

controls). They reached 70% accuracy and claimed that 

their performance was better than that of the previous 

works [34]. Moreover, Qiang et al. moved the research 

forward by creating a hierarchically structured recurrent 

variational autoencoder without supervision for detecting 

autism with ABIDE data, which resulted in a remarkably 

high accuracy of 82.1% [35]. Additionally, Subah et al. 

were able to achieve autism classification accuracy of 

88% by building a DL model that utilized the AAL and 

CC200 brain atlases, and they reported that prediction of 

individuals with autism could be made with high accuracy 

[36]. 

These models, however, have significant limitations 

in that they are not easily parallelized for training and have 

a limited capacity for modeling long-range temporal 

dependencies. Besides, a single, fully comprehensive, 

accurate model suitable for clinical practice has not yet 

been presented. Meanwhile, the phenomenal success of 

the Self-Attention (SA)-based Transformer model in 

domains like computer vision has led to its adoption for 

fMRI analysis [37]. The main power of the architecture 

comes from its SA mechanism, which offers a global 

receptive field that can fetch data from the whole sequence 

to enhance the model's efficacy. So far, the use of such 

Transformer-based architectures specifically for autism 

classification via fMRI data is very limited. Indeed, the 

most recent approaches have, in fact, gradually supplanted 

the SA mechanism of the Transformer with their strategy 

that provides a greater receptive field, and higher potential 

to include global contextual information, and yields 

improved performance. A typical limitation associated 

with these approaches is that they are inclined to 

underestimate the importance of local feature learning, 

which is at the core of the fMRI signal decoding process. 

While these Transformer-based architectures have 

surpassed the old ones in decoding accuracy, a large room 

for improvement still exists. To address such 

shortcomings, a hybrid framework is developed that 

effectively merges the two most promising technologies, 

CNNs and Transformers, thus creating complementary 

effects between them. The suggested network is an end-

to-end architecture comprising a convolutional module, 

followed sequentially by a Transformer encoder, and 

culminating in a classification layer. To formally guide 

this investigation, the study is structured around the 

following research questions (RQs) and corresponding 

hypotheses (Hs): 

RQ1: Can a hybrid CNN-Transformer architecture 

more accurately classify ASD from rs-fMRI data 

compared to existing CNN-only or Transformer-only 

models? 

H1: The proposed hybrid model will achieve superior 

classification performance on the multi-site ABIDE-I 

dataset by synergistically combining local spatiotemporal 

feature extraction with global temporal dependency 

modeling, outperforming state-of-the-art benchmarks. 

RQ2: What is the individual contribution of the core 

architectural components (i.e., the convolutional module, 

the Transformer encoder, and their residual integration) to 

the overall model performance? 

H2: Ablation studies will confirm that each 

component is critical, with the Transformer encoder 

providing a significant performance boost by capturing 

long-range dependencies, and the residual fusion of local 

and global features yielding the most robust and accurate 

model. 

RQ3: How does the model's performance generalize 

across heterogeneous data acquisition sites, and what is 

the impact of key hyperparameters like the number of 

Transformer layers and attention heads? 
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H3: While the model will demonstrate strong overall 

generalizability, its performance will exhibit site-specific 

variability due to scanner heterogeneity. Furthermore, an 

optimal configuration of architectural hyperparameters 

(e.g., 4 layers, 4 heads) will exist, balancing model 

complexity with effective learning. 

The primary points of the work are essentially the 

following: (I) A novel robust model structure is built 

utilizing CNNs to localize features and a Transformer 

encoder to effectively model long-range dependencies 

across the entire context of fMRI data; (II) The suggested 

model is the new state-of-the-art benchmark, performing 

at the forefront and thus setting the standard for future 

research. These findings imply the robustness of the 

model's generalization capacity and indicate its potential 

as a reference model in subsequent research in fMRI-

based decoding; and (III) Several component-based 

comparisons and ablation studies are performed to account 

for the component contributions of our framework.  

2 Methods 
A convolutional transformer network with a MHSA 

mechanism is presented to classify resting-state fMRI data 

as an objective nonverbal tool for autism analysis. Fig. 1 

illustrates the block diagram of the suggested framework. 

This type of system allows for directly classifying fMRI 

time series from raw data, thus eliminating the need for 

manually engineered features. Three main components 

make up the model: a fully connected classifier, a 

Transformer encoder, and a convolutional module. The 

convolutional module detects local spatiotemporal 

patterns in the brain signals obtained from fMRI by 

applying two convolutional layers: a one-dimensional 

temporal convolution, followed by a depth-wise spatial 

convolution. The input for the module consists of standard 

regional time series, and it can encode both the temporal 

changes in blood-oxygen-level-dependent (BOLD) 

signals, as well as the functional interactions between 

different brain areas. The result is a new feature sequence 

that captures more advanced temporal information. The 

resultant feature sequence is the input to a Transformer 

encoder that employs a MHSA mechanism to select and 

assign weights to the most important features concerning 

the entire sequence in question. The model culminates in 

a compact classification module, consisting of a fully 

connected layer, that generates the final diagnostic 

outcome. Each component of this model is detailed below.

 

Figure 1: General block diagram of the proposed framework 

2.1 ABIDE-I database 

In cases where the scan was performed without the 

member being given a task, it is called resting-state fMRI, 

a common paradigm in the work of neurological and 

psychiatric illnesses [38], [39]. This work employed the 

preprocessed ABIDE-I dataset, a publicly available 

dataset composed of 1,112 resting-state fMRI scans 

collected from 505 persons with ASD and 530 typically 

developing controls at 17 different sites internationally, 

summarized in Table 1. The dataset contains 

representative time series extracted from several a priori 

defined regions of interest (ROIs) informed by multiple 

brain atlases and processed from various preprocessing 

pipelines. The current study utilized the data which had 

been preprocessed utilizing the Configurable Pipeline for 

the Analysis of Connectomes (C-PAC) [40] and 

parcellated into 116 coherent functional regions based on 

the AAL atlas [41] The preprocessing procedure included 

standard procedures and included the removal of initial 

volumes to allow for stabilization of the magnetic field, 

motion realignment, regression of nuisance signals, slice-

timing correction, band-pass filtering to decrease low-

frequency drift and high-frequency noise, and intensity 

normalization. One limitation to keep in mind is that the 

gaining factors, namely, Echo Time (TE), Repetition Time 

(TR), spatial and temporal resolutions, and whether 

participants’ eyes were opened or closed were not 

consistent across scanning sites.

Table 1: Details of the ABIDE-I database for every imaging location 
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2.2 Convolutional module 

Our framework (Fig. 2) has a convolutional module that 

identifies and isolates spatiotemporal features of raw data 

in BOLD time series form. The data are arranged in terms 

of the batch size, the quantity of ROIs, and the sampling 

points in terms of time (32, 116, 200). First, a one-

dimensional temporal convolution is executed that goes 

across the time axis for each ROI separately. In this layer, 

16 filters with a kernel size of 64 capture local temporal 

patterns and fluctuations within each region's signal; thus, 

the input is effectively expanded into a feature-rich 

representation. The result is immediately standardized 

with batch normalization and gets to the layer with the 

ReLU activation function for stable and non-linear 

processing. This stage changes the input to a different 

shape of (32, 16, 116, 200), where the second dimension 

now stands for those learned temporal features.

 

Figure 2: Convolutional module of our proposed framework to extract spatiotemporal features from the raw BOLD 

data 

After temporal feature extraction, the depth-wise 

spatial convolution is executed to represent the 

interactions of different brain regions. A kernel size of 

116, i.e., the number of ROIs, and a depth multiplier of 2 

are used in this layer, which indicates that it learns two 

spatial filters for each of the 16 temporal feature maps. To 

perform the "depth-wise" operation, the quantity of groups 

is assigned the value of the quantity of input channels (16); 

each temporal feature is processed by its set of spatial 

filters without cross-feature interference. Therefore, the 

output shape is (32, 32, 1, 200), which combines the 

spatial relationships across the brain in a compact form. 

The next sequence is another batch normalization 

followed by the ReLU activation. To reduce 

computational complexity for subsequent transformer 

layers and highlight the most salient features, an average 

pooling operation with a size and stride of 8 is applied 

along the temporal dimension, downsizing the sequence 

length from 200 to 25. A dropout layer with a dropout rate 

of 0.3 is employed for regularization, and the output is 

finally reshaped into a sequence of 25 tokens, each with 

32 features (32, 25, 32), preparing it for global temporal 

modeling in the transformer encoder. 

2.3 Transformer encoder block 

The Transformer encoder block (see Fig. 3) is tasked with 

modeling the global, long-range temporal dependencies 

within the feature-embedded sequence produced by the 

convolutional module. The input to this block is a 

sequence of 25 tokens, each represented as a 32-

dimensional vector, effectively forming a compact, 

higher-level representation of the brain's activity over time 

for a batch of 32 subjects. The encoder is composed of a 

stack of four identical layers, each with 2 main sublayers. 

The first sublayer is a MHSA mechanism (Fig. 4) that 

utilizes four attention heads. This enables the model to 

simultaneously focus on data from multiple distinct 

representation subspaces; splitting the features (32-

dimensional) into four 8-dimensional heads allows the 

mechanism to attend to differences in temporal dynamics 

within the entire BOLD signal and thus identify complex, 

non-local interactions across the whole-time sequence. 

For an input sequence of token embeddgins X ∈ ℝT×dmodel 

where T = 25 is the sequence length and dmodel = 32 is the 

feature dimension. First, the input X is projected into 

Queries (Q), Keys (K), and Values (V) using learned 

weight matrices WQ, WK, WV ∈ ℝdmodel×dk, where dk = 

dmodel/h = 8 and h = 4 is the number of attention heads: 

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉 (1) 

The scaled dot-product attention for each head is then 

computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (2) 

The scaling factor 
1

√𝑑𝑘
 prevents the softmax function 

from entering regions with extremely small gradients. The 

outputs of all h heads are concatenated and projected back 

to the original dimension dmodel using a learned weight 

matrix WO ∈ ℝh.dk×dmodel to form the final MHSA output: 

MHSA(Q, K, V)=Concat(head1, …, headh)WO      (3) 

Where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑊𝑖
𝑄 , 𝑋𝑊𝑖

𝐾 , 𝑋𝑊𝑖
𝑉). In 

our framework, this mechanism enables each of the 25 

temporal tokens to compute a weighted sum over all other 

tokens in the sequence. The attention weights 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) explicitly quantify the pairwise influence 

between timepoints, allowing the model to identify 

critical, globally-informative moments in the fMRI 

sequence that are most relevant for the autism 

classification task.
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Figure 3: Transformer encoder block of our proposed framework 

Subsequent to the computation of the attention 

weights, the resulting output is integrated with the original 

input via a residual connection, followed by normalization 

using LayerNorm. This critical step helps the training of 

the deep network to be stable. The scaled output is 

received by the 2nd sub-layer, which is a position-wise 

Feed-Forward Network (FFN). The FFN contains a linear 

projection that expands the dimensionality of the model 

from 32 values to 128 values, and it applies a GELU 

activation function to make the function nonlinear, before 

projecting back to the original 32 dimensions. The 

operation is independent and identical for each token, thus 

allowing further non-linear feature transformation. The 

output of the FFN is once more combined with its input 

through another residual connection and LayerNorm. The 

structured combination of SA and feed-forward 

processing, with the help of residuals and normalization, 

allows each of the 25 tokens to be informed by every other 

token in the sequence. Thus, the Transformer encoder 

turns the feature embeddings into a potent representation 

where each element is globally-informed and understands 

the entire temporal dynamics, which is necessary for the 

final autism classification.

 

Figure 4: Multi-head attention 

2.4 Classification module 

At the classification tier of the model, the feature maps 

obtained from the convolutional module are fused with the 

output of the Transformer encoder through a residual 

connection. This additive coupling guarantees that the 

localized spatiotemporal patterns identified by the 

convolutional layers and the globally contextualized 

representations derived by the Transformer are preserved 

and made available for direct propagation to the 

subsequent layers. After that, the combined feature maps 

are transformed from a multi-dimensional tensor into a 

one-dimensional vector to be compatible with the dense 

layers. To reduce overfitting and enhance the model's 

generalization capability on unseen data, a dropout layer 

with a ratio of 0.5 is employed, whereby 50% of the 

activations are randomly deactivated during the training 

process. The resulting feature vector is subsequently input 

into the final fully connected layer, which comprises 2 

output units corresponding to the 2 diagnostic categories 

in the autism classification task (i.e., autism and healthy). 

The complete network is trained in an end-to-end manner 

utilizing the cross-entropy loss function, which quantifies 

the divergence between the predicted probability 

distribution and the true diagnostic labels. 
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3 Results 
The training process was performed on an NVIDIA RTX 

2080 Ti GPU (11 GB VRAM). The TensorFlow DL 

library ran on a Windows 11 OS and on an Intel Core i7-

12700K processor. The ABIDE-I dataset evaluated the 

proposed framework's stability, accuracy, and 

generalizability. The model was trained for a maximum of 

150 epochs using the AdamW optimizer with a weight 

decay of 0.00001 to regularize learning. A cosine 

annealing schedule was applied to the learning rate, 

starting at 0.0001 and decaying to a minimum of 

0.000001. We employed a batch size of 32 and minimized 

the categorical cross-entropy loss. To prevent overfitting 

and ensure model selection, early stopping was triggered 

if the validation loss failed to improve for 25 consecutive 

epochs, with the best-performing weights being restored. 

Furthermore, all random number generators for Python, 

NumPy, and TensorFlow were fixed with a seed of 42 to 

guarantee reproducible weight initialization and data 

shuffling across all experiments. Fig. 5 shows the steps of 

preprocessing fMRI data.

  

Figure 5: Sample data after preprocessing. (A) Raw resting-state fMRI images; (B) brain extraction, filtering, and slice 

timing correction; and (C) image registration to standard space 

The proposed model architecture, detailed in Table 2, 

is a hybrid network designed to classify fMRI time-series 

data. The specific hyperparameters for this architecture 

were not chosen arbitrarily; as shown in Table 3, they were 

selected from established ranges in the literature through 

empirical testing and validation, balancing model 

complexity with performance and regularization to 

prevent overfitting. This approach is analogous to 

optimizing a control system for stability under varying 

operating conditions. We employed a grid search strategy 

combined with 5-fold cross-validation on a held-out 

development set from the multi-site ABIDE-I data. The 

primary objective was to identify a configuration that 

maintained high performance across different data 

sources, thereby inherently building resilience to site-

specific scanner variations. Specifically, hyperparameters 

such as the number of Transformer layers and attention 

heads were optimized not just for peak accuracy on the 

aggregate data, but for consistent performance across the 

folds, which represent different data partitions and, 

implicitly, different scanner contributions. Similarly, 

temporal kernel sizes were evaluated for their ability to 

capture biologically plausible hemodynamic response 

dynamics across different TR (Repetition Time) 

parameters present in the multi-site dataset. This process 

ensured the model was tuned to be less sensitive to the 

noise introduced by scanner heterogeneity, prioritizing 

generalizable feature learning over site-specific 

overfitting.

 

 

 



A CNN-Transformer Hybrid Architecture for Capturing…                                                              Informatica 50 (2026) 19–36      25                                                                                                                                            

Table 2: Model architecture: spatiotemporal convolutional network with Transformer encoder 

Module Layer / Operation Key Parameters Input Shape Output Shape Notes 

Input fMRI Time-Series - 
(32, 116, 

200) 
(32, 116, 200) 

116 ROIs (AAL 

atlas), 200 

timepoints. 

Convolutional 

Module 

Temporal Conv1D 

F1=16 filters, kernel 

size= (1, 64), stride=1, 

padding='same' 

(32, 116, 

200) 

(32, 16, 116, 

200) 

Learns temporal 

features. Adds a 

dimension. 

BatchNorm + ReLU - 
(32, 16, 116, 

200) 

(32, 16, 116, 

200) 

Stabilizes and 

introduces non-

linearity. 

Depth-wise Spatial 

Conv1D 

D=2, kernel size= (116, 

1), groups=16, 

padding='valid' 

(32, 16, 116, 

200) 
(32, 32, 1, 200) 

D=2 spatial filters 

per temporal filter. 

groups=F1 makes it 

depth-wise. 

BatchNorm + ReLU - 
(32, 32, 1, 

200) 
(32, 32, 1, 200) 

Processes spatial 

features. 

Average Pooling 
pool size= (1, 8), stride= 

(1, 8) 

(32, 32, 1, 

200) 
(32, 32, 1, 25) 

Reduces sequence 

length from 200 to 

25. 

Dropout p=0.3 
(32, 32, 1, 

25) 
(32, 32, 1, 25) 

Regularization 

during training. 

Reshape for 

Transformer 
- 

(32, 32, 1, 

25) 
(32, 25, 32) 

T'_c = 25 tokens, 

each with d_model 

= 32 features. 

Transformer 

Encoder (x L 

layers) 

LayerNorm - (32, 25, 32) (32, 25, 32) 
Normalizes before 

attention. 

Multi-Head 

Attention 
heads=4, key_dim=8 (32, 25, 32) (32, 25, 32) 

4 heads, each with 

dimension 8 (32/4). 

Add + LayerNorm Residual Connection (32, 25, 32) (32, 25, 32) 
Adds input to 

attention output. 

Feed-Forward 

Network 

dim_ff=128, 

activation='GELU' 
(32, 25, 32) (32, 25, 32) 

Expands to 128 

dims, then back to 

32. 

Add + LayerNorm Residual Connection (32, 25, 32) (32, 25, 32) 
Adds input to the 

FFN output. 

Classifier 

Flatten - (32, 25, 32) 
(32, 25 * 32) = 

(32, 800) 

Prepares for a dense 

layer. 

Dropout p=0.5 (32, 800) (32, 800) 
Final 

regularization. 

Fully Connected units=2 (32, 800) (32, 2) Final feature fusion. 

Softmax - (32, 2) (32, 2) 
Output: [P(ASD), 

P(Control)]. 

Output Class Probabilities - - (32, 2) Final prediction. 

Table 3: Hyperparameter selection: literature-informed ranges and final model configuration 

Parameter Tested Value/Range (from Literature) Selected Value & Rationale 

Batch Size 16, 32, 64 32 

# Temporal Filters 8, 16, 32, 64 16 

Temporal Kernel Size ~0.25-1s of data (e.g., 32, 64, 128 for TR=0.5s-2.0s) 64 

Depth Multiplier 1, 2, 4 2 

Pool Size (Temporal) 4, 8, 16 8 

Dropout (Conv) 0.2 - 0.5 0.3 

Transformer Dimension 32, 64, 128 32 

Number of Heads 2, 4, 8 4 

FFN Dimension 128, 256, 512 (Often 4 * d_model) 128 (4 * 32) 

Number of Layers 2, 4, 6, 8 4 

Dropout (Classifier) 0.4 - 0.7 0.5 

The model's evaluation involved a two-stage, 10-fold 

cross-validation process. Initially, it was tested on the full 

multi-site dataset (N=1,035) to assess its ability to 

generalize across diverse fMRI scanning parameters. 

After that, its performance was evaluated locally at each 

site based on smaller, site-specific datasets. Standard 

metrics, namely, accuracy, sensitivity, specificity, and F1-

score were utilized for a thorough performance analysis. 
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Sensitivity and specificity were instrumental in detecting 

the rare classes, whereas the F1-score was a balanced 

measure of sensitivity and specificity relevant to the 

possible class imbalance. Fig. 6 presents the outcomes of 

the initial phase of the experiment. Our framework yielded 

77.85% accuracy, 76.52% sensitivity, 78.90% specificity, 

and 77.71% F1-score for autism diagnosis from fMRI 

data. Table 4 compares our classification performance in 

the first stage against some known techniques employing 

the ABIDE-I database. The statistical importance of the 

performance differential between the suggested model and 

other leading methods is evaluated using the p-value from 

the paired Wilcoxon Signed-Rank Test. Our proposed 

model achieves the highest accuracy, F1-score, and Kappa 

scores, indicating superior overall performance and 

reliability. It also shows a strong balance between 

Sensitivity and Specificity. The low p-values for other 

models suggest their results are statistically significant 

compared to a baseline.

 

Figure 6: Performance metrics obtained by our proposed framework on the entire ABIDE-I dataset 

Table 4: Performance and Kappa of leading techniques on the ABIDE-I dataset 

Model Accuracy Sensitivity Specificity F1-score P-value Kappa 

ASD-DiagNet [40] 70.32 68.30 72.24 70.21 0.008 0.625 

ASD-SAENet [42] 70.81 62.25 79.11 69.67 0.010 0.632 

ASDC-Net [20] 76.72 73.48 79.07 76.17 0.192 0.710 

BrainNetDiffusion 

[43] 
69.65 73.00 66.18 69.42 0.003 0.621 

Ours 77.85 76.52 78.90 77.71 - 0.734 

The performance of our proposed hybrid architecture 

was further benchmarked against several established pre-

trained CNNs adapted for fMRI-based classification. 

These models were chosen for their proven success in 

computer vision tasks. The data in Table 5 reveals that our 

model is better than all the pretrained CNNs regarding all 

the critical metrics. The enhanced performance is 

significantly different statistically, as shown by the very 

small p-values (<0.05) from the paired Wilcoxon Signed-

Rank Test, when comparing the accuracy distributions, 

among the cross-validation folds. Also, the Kappa value 

for our model of 0.734 depicts that the degree of 

agreement is considerably greater compared to the pre-

trained models, which were between 0.521 and 0.682. 

Although transfer learning from the pre-trained vision 

models can be a good baseline, their architectural priors 

do not best fit the spatiotemporal fMRI data. Conversely, 

our CNN-Transformer hybrid can more effectively 

acquire the complex temporal dynamics and the global 

dependencies of the brain activities at rest; hence, it can 

make the classification significantly more robust and 

accurate.
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Table 5: Performance comparison of the suggested framework with pre-trained CNN models on the ABIDE-I dataset 

Model Accuracy (%) 
Sensitivity 

(%) 

Specificity 

(%) 
F1-score (%) P-value Kappa 

VGG-16 70.15 68.92 71.25 70.07 0.005 0.621 

ResNet-50 72.40 70.18 74.33 72.18 0.012 0.648 

InceptionV3 71.83 73.50 70.25 71.84 0.009 0.637 

DenseNet-121 73.65 72.04 75.01 73.49 0.038 0.673 

EfficientNetB0 72.90 71.35 74.22 72.75 0.021 0.658 

Proposed (Ours) 77.85 76.52 78.90 77.71 - 0.734 

This shows a detailed account of how the primary 

architectural hyperparameters influence the model's 

performance. In particular, this concerns the depth of the 

Transformer encoder and the quantity of SA heads. The 

number of layers, L, one of the most critical factors of the 

Transformer’s representational power, was changed. The 

depths from 1 to 10 encoder blocks were tried, as shown 

by the graph in Fig. 7. The classification accuracies were 

changing widely with different depths. The 7-layer model 

averaged classification accuracy at 77.85%, 4.95% more 

than the 10-layer model. The initial performance gain with 

increasing depth, from L=1 to L=7, is attributable to the 

model's enhanced representational capacity for capturing 

the complex, hierarchical temporal dependencies in the 

fMRI signal. However, the subsequent decline in accuracy 

for deeper models (L=8 to L=10) is a strong indicator of 

overfitting. Deeper networks have a higher propensity to 

memorize noise and site-specific artifacts present in the 

multi-site ABIDE-I dataset rather than learning the 

generalizable spatiotemporal signatures of autism. 

Furthermore, very deep Transformers can suffer from 

optimization difficulties, such as vanishing gradients, 

which may prevent effective training. The performance 

was also checked concerning how the quantity of attention 

heads, which are the primary components of the multi-

head attention mechanism allows the parallel processing 

of different input aspects, is affected. The number of heads 

from 1 to 16 was experimented with, as illustrated in Fig. 

8. The performance fluctuated with the quantity of heads 

used; so, the model was susceptible to this parameter. In 

general, models that employed four attention heads were 

the best performers across the metrics. Indeed, the four-

head model exceeded the accuracy of 1, 2, 8, and 16-head 

models by 1.73%, 1.31%, 2.02%, and 0.80%, respectively.  

With fewer heads (e.g., 1 or 2), the model likely suffers 

from expressive bottleneck, where the attention 

mechanism lacks the capacity to simultaneously focus on 

different aspects of the temporal dynamics, such as short-

term fluctuations versus long-range trends in the BOLD 

signal. Conversely, when the number of heads is excessive 

(e.g., 8 or 16), the feature dimensionality per head 

becomes too small (4 or 2 dimensions, respectively), 

leading to attention collapse or degenerate attention.

 

Figure 7: Performance of our framework with various depths of the Transformer encoder 
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Figure 8: Performance of our framework with various numbers of heads of SA 

During the second experimental phase, 5-fold cross-

validation was independently conducted at each site. The 

resulting figures are presented in Table 6. The figure 

shows that the proposed framework's performance has 

decreased by 3.64% from phase 1. Performance metrics 

fluctuated quite a bit between different sites, with 

accuracies going from 63.55% (Trinity) to 96.42% 

(NYU), which points to strong site-specific effects. 

Although sites like NYU and OHSU performed 

excellently, sites like Yale and SBL, on the other hand, 

exhibited very low results. This indicates that the model's 

strength is contingent upon the attributes of the local data, 

thereby highlighting the problem of a universally 

consistent diagnostic tool.

Table 6: Classification performance through 5-fold cross-validation on each data site utilizing the suggested 

framework 

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) 

Yale 68.31 64.85 70.00 67.32 

USM 76.00 75.23 75.98 75.60 

UM 70.25 69.54 72.67 71.07 

UCLA 78.91 79.40 80.15 79.77 

Trinity 63.55 61.33 66.37 63.75 

Stanford 71.50 70.69 72.95 71.80 

SDSU 69.81 69.14 69.74 69.4 

SBL 64.22 62.10 65.10 63.56 

PITT 75.73 73.48 76.44 74.93 

OLIN 76.20 75.00 77.50 76.22 

OHSU 92.00 91.50 92.62 92.05 

NYU 96.42 95.63 97.29 96.45 

MaxMun 65.17 64.19 67.00 65.56 

Leuven 71.50 69.20 73.11 71.10 

KKI 77.93 77.00 78.46 77.72 

CMU 78.00 76.11 79.83 77.92 

Caltech 66.10 65.72 67.21 66.45 

Average 74.21 72.94 75.43 74.15 
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Figure 9: Site-wise performance variability and its relationship with sample size. (A) Classification accuracy, 

sensitivity, and specificity across the 17 imaging sites in the ABIDE-I dataset. The dashed lines represent the mean 

performance for each metric. Significant fluctuations highlight the impact of site-specific scanner parameters and 

protocols. (B) Bubble chart illustrating the correlation between a site's total sample size and classification accuracy. 

The size of each bubble corresponds to the sample size, and the color represents the F1-Score. 

 

Figure 10: Interpretability analysis of the proposed hybrid model. (A) Average attention map across the test set, 

showing the relative importance between different timepoints in the fMRI sequence. (B) Saliency map highlighting the 

top 15 most influential brain regions (from the AAL atlas) for the model's classification decision. Node size 

corresponds to the mean saliency score, and edges represent strong functional connections between highly salient 

regions.

The superior performance of our model necessitates 

an investigation into its decision-making process to 

establish clinical trustworthiness. The interpretability 

analyses revealed the neurophysiologically plausible 

foundations of the model's predictions. The aggregated 

attention maps (Figure 10A) revealed that the model does 

not attend uniformly to all time points but identifies 

specific, transient intervals of high diagnostic importance. 

These critical periods often correspond to moments of 

significant BOLD signal fluctuation, suggesting the model 

leverages dynamic shifts in brain state rather than static 

average connectivity. More critically, the ROI saliency 

analysis (Figure 10B) identified a set of brain regions that 

consistently yielded high saliency scores. This set 

prominently included key nodes of established networks 

implicated in autism pathophysiology, such as the Default 
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Mode Network (e.g., Posterior Cingulate Cortex, Medial 

Prefrontal Cortex), the Salience Network (e.g., Anterior 

Insula, Anterior Cingulate Cortex), and regions involved 

in social cognition (e.g., Temporoparietal Junction, 

Superior Temporal Sulcus). This convergence between the 

model's learned features and the known neurobiology of 

autism strongly validates the clinical relevance of our 

approach and argues against the model latching onto 

artifactual, non-biological signals in the data. These 

interpretability results are a direct consequence of the 

hybrid, control-theoretic architecture. The CNN's role as a 

local state estimator efficiently preprocesses the high-

dimensional input, isolating meaningful local neural 

patterns. The Transformer, acting as the optimal 

controller, then performs a global, context-aware 

integration of these patterns. It effectively computes the 

temporal dependencies and identifies which estimated 

states (CNN features) and at which time points (attention 

weights) are most predictive. This two-stage process is 

what enables the discovery of coherent, large-scale brain 

dynamics relevant to autism, a task that pure CNN or 

Transformer models struggle with due to their respective 

limitations in capturing global or local context. Therefore, 

the novelty of our framework lies not only in its 

performance but in its biologically-plausible, adaptive 

strategy for decoding complex brain network dynamics. 

An extensive ablation study measured how much each 

core component contributed to our hybrid framework. The 

baseline model was a convolutional module (Section 2.2), 

followed directly by the classification head. The 

Transformer encoder and the residual connection were 

gradually added one by one, and the performance on the 

ABIDE-I dataset was measured utilizing 10-fold cross-

validation. The outcomes shown in Table 7 are clear in 

that the proposed architecture achieves a notable 

performance gain. The baseline CNN-only model 

exhibited moderate performance, thus proving its 

capability to extract meaningful local spatiotemporal 

features. However, by adding the Transformer encoder, 

the performance improved dramatically as the accuracy 

increased by 4.69% and the Kappa value rose from 0.625 

to 0.699. The enhancement in the result indicates the 

major role of the Transformer SA mechanism for 

modeling the global, long-range temporal dependencies in 

the fMRI sequence, which the CNN is incapable of. 

Therefore, the work incorporating the residual connection, 

which combined the local features from the CNN with the 

global context from the Transformer, resulted in the best 

outcome, as it could add an extra 1.92% in accuracy and 

reached a final Kappa of 0.734. This means that the local 

details facilitated by the residual connection provide the 

complementary information to the global context; thus, a 

more powerful and balanced feature representation for the 

final classification emerges.  To statistically validate the 

improvement from each architectural addition, a paired 

Wilcoxon signed-rank test was performed on the accuracy 

distributions across the 10 folds for each model variant. 

This analysis showed that our full model is significantly 

better than other variants (P<0.05).

Table 7: Results of the ablation study on the ABIDE-I dataset 

Model 

Variant 
Accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 
F1-score (%) Kappa P-value 

CNN only 

(Baseline) 
71.24 69.88 72.45 71.11 0.625 0.008 

CNN + 

Transformer 

Encoder 

75.93 74.60 77.12 75.83 0.699 0.034 

Full model 77.85 76.52 78.90 77.71 0.734 - 

To empirically validate the advantage of the 

Transformer encoder over traditional recurrent models for 

capturing long-range temporal dependencies in fMRI data, 

we conducted a comparative study against two widely-

used RNN variants: Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU). For a fair comparison, 

we replaced the Transformer encoder in our hybrid 

framework with equivalent LSTM and GRU modules 

while keeping the convolutional feature extractor and 

classification head identical. All models were trained and 

evaluated using the same 10-fold cross-validation protocol 

on the ABIDE-I dataset. The results, summarized in Table 

8, demonstrate a clear performance hierarchy. The 

standard LSTM model achieved an accuracy of 73.15%, 

while the GRU performed slightly better at 74.08%. Both 

RNN variants were outperformed by our proposed CNN-

Transformer hybrid, which achieved a significantly higher 

accuracy of 77.85% (P < 0.05, paired Wilcoxon test). This 

performance gap of 3.7-4.7% provides strong empirical 

support for the theoretical advantages of the self-attention 

mechanism. 

Based on a review of previous publications, it can be 

inferred that most of the works have attempted to provide 

a diagnosis for autism through the analysis of the ABIDE-

I fMRI dataset. To be precise, this research contrasts its 

performance with those earlier methods, whose effects 

give the main frame for interpreting the current findings. 

Our model, as reported in Table 9, has reached an accuracy 

of 77.85% which is 2.65% higher than the first-best 

accuracy figure reported in [24] for 1,035 samples. 

Besides that, our findings are better than those of [44] that 

claimed an accuracy of 74.53% for the 860-subjects 

cohort, even if the effect of sample size is not considered. 

By merging a CNN network with a Transformer encoder, 

the proposed method delivers at least 2.65% better results 

than other DL techniques. While this margin may appear 

modest, its practical significance is substantial given the 

high heterogeneity of the ABIDE-I dataset. Indeed, the 
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practical significance of this margin must be 

contextualized within the challenges of neuroimaging-

based diagnosis. This improvement equates to correctly 

classifying dozens more individuals in a large cohort and 

represents a meaningful step towards a more reliable 

biomarker. The concurrent increase in the F1-score further 

indicates a more balanced model, which is critical for a 

fair diagnostic tool.

Table 8: Performance comparison of the proposed CNN-Transformer hybrid with RNN-based variants on the ABIDE-

I dataset. 

Model Accuracy (%) 
Sensitivity 

(%) 

Specificity 

(%) 
F1-Score (%) Kappa 

P-Value vs. 

Proposed 

CNN-LSTM 73.15 71.84 74.32 72.56 0.643 0.012 

CNN-GRU 74.08 72.91 75.12 73.47 0.658 0.023 

CNN-

Transformer 

(Ours) 

77.85 76.52 78.90 77.71 0.734 — 

Table 9: Comparing the performance of our proposed technique with some state-of-the-art study in autism diagnosis 

through the fMRI ABIDE-I dataset 

Reference Number of subjects Model Accuracy (%) 

[45] 871 SVC 66.80 

[34] 1035 AE+DNN 70.00 

[28] 871 GCN 70.40 

[40] 1035 AE+SLP 70.30 

[46] 872 Ensemble GCN 70.86 

[47] 1035 CNN 70.22 

[48] 1035 Extra-Trees 72.20 

[49] 949 Ensemble MLP 74.52 

[42] 1035 SAE+MLP 70.80 

[44] 860 3D CNN 74.53 

[24] 1035 SSDAE+MLP 75.20 

Ours 1035 CNN+Transformer 77.85 

Even though it yields promising results, this study has 

a few limits that required to be considered and that provide 

directions for further research. The model that was 

proposed performed differently to a great extent in various 

data acquisition sites, as shown in Table 6. This draws 

attention to the major problem of neuroimaging: site-

specific variations in the scanner hardware, acquisition 

protocols, and participant demographics can all cause 

confounding effects. Our model has proved to be a good 

generalization; however, its use as a universal clinical 

instrument will depend on how these heterogeneity issues 

can be solved. Subsequent research will deal with 

incorporating advanced harmonization methods like 

ComBat or DL-based domain adaptation to eliminate site-

specific biases and perform better. The second point is that 

the model's interpretability, which has somewhat resolved 

the investigation of the attention weights, still demands in-

depth supplementary research. The more detailed analysis 

correlating the model features with the neurobiological 

circuits that are involved in autism (e.g., the default mode 

or salience networks) will help to convince the clinical 

sector that our findings are relevant. The investigation was 

limited to the ABIDE-I dataset only. It is necessary to 

verify the model on larger and more recent multi-site 

datasets, such as ABIDE-II and those containing different 

populations in terms of age and sex, to thoroughly evaluate 

the model's generalizability and its potential to be 

translated into real-world clinical practice. 

4 Discussion 
This study proposed a novel CNN-Transformer hybrid 

framework for the automated diagnosis of ASD from 

resting-state fMRI data. The results demonstrate that our 

model achieves state-of-the-art performance on the multi-

site ABIDE-I dataset, outperforming a range of 

established deep learning models and pre-trained CNNs. 

The key success of this work lies not only in the reported 

metrics but in the architectural synergy that drives them, a 

point that merits detailed discussion in the context of prior 

art and the specific challenges of fMRI analysis. 

4.1 Comparative analysis with state-of-the-

art methods 

Our model's accuracy of 77.85% represents a meaningful 

advancement over previous leading methods. When 

compared to other deep learning approaches on the 

ABIDE-I dataset, our hybrid framework shows a clear and 

consistent improvement. For instance, Heinsfeld et al. [34] 

employed a deep autoencoder followed by a neural 

network, reporting an accuracy of 70.0%. While effective 

in learning compact representations, their model likely 

lacks the explicit, hierarchical feature engineering for 

spatiotemporal data that our convolutional module 

provides. Similarly, Eslami et al. [40] (ASD-DiagNet, 

70.3% accuracy) also used an autoencoder-based 
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approach but may be limited in capturing the very long-

range temporal dependencies present in fMRI sequences. 

Graph-based methods, such as the Graph 

Convolutional Network (GCN) by Parisot et al. [28] 

(70.4% accuracy), excel at modeling the brain as a 

connectome of static functional connections. However, 

they often overlook the rich, dynamic temporal 

information within the BOLD signal itself. Our model's 

strength is its direct processing of the raw time series, 

allowing it to learn both the spatial relationships (via 

depth-wise convolution) and the complex, global temporal 

dynamics (via the Transformer) simultaneously. The most 

direct predecessor to our work is the SSDAE+MLP model 

by Liu et al. [24], which achieved 75.2% accuracy. Our 

2.65% performance improvement can be attributed to the 

Transformer encoder's superior capability in modeling the 

entire temporal context compared to the stacked denoising 

autoencoder, which may struggle with long-range 

dependencies that are not local in time. 

4.2 The added value of transformers over 

RNNs and CNNs 

A central contribution of this work is the demonstration 

that the Transformer architecture is uniquely suited to 

address the specific limitations of previous models in 

fMRI analysis. Compared to Recurrent Neural Networks 

(RNNs) like LSTMs, which have been used for temporal 

modeling [31], the Transformer offers two distinct 

advantages for fMRI. First, the self-attention mechanism 

provides a global receptive field from the first layer, 

allowing any timepoint to directly influence any other. 

This is crucial for identifying non-local, transient brain 

states that are critical for ASD diagnosis but may be 

separated by many seconds in the scan. In contrast, 

LSTMs process data sequentially, making it difficult to 

learn dependencies between distant timepoints due to the 

vanishing gradient problem. Second, the Transformer's 

parallelizable architecture leads to more efficient training 

on modern hardware, unlike the sequential nature of 

RNNs. 

When compared to standard CNNs, which are 

powerful local feature extractors [47], the Transformer 

compensates for their fundamental constraint: a limited 

receptive field. A CNN's ability to integrate information is 

bounded by the size of its kernel and the depth of its layers. 

While CNNs are excellent at identifying local temporal 

patterns and spatial relationships between adjacent brain 

regions, they are inherently poor at modeling the brain's 

global, system-wide dynamics that unfold over the entire 

scanning session. Our ablation study (Table 7) 

quantitatively confirms this, showing a significant 

performance jump when the Transformer encoder is added 

to the CNN baseline. The Transformer acts as a powerful 

global contextualizer, re-weighting and integrating the 

local features produced by the CNN to form a 

representation that is informed by the entire temporal 

history of the brain's activity. 

4.3 Synthesis: The hybrid architecture as a 

synergistic solution 

Therefore, the performance of our model is not the result 

of a single component but of their synergistic integration. 

The convolutional module acts as a dedicated, high-

resolution feature engine, extracting meaningful local 

spatiotemporal patterns from the noisy, high-dimensional 

fMRI data. The Transformer encoder then serves as a 

sophisticated temporal reasoning module, identifying 

which of these local patterns are globally significant and 

how they interact across time to form a diagnostic 

signature. This division of labor—local feature extraction 

followed by global contextual modeling—proves to be a 

powerful paradigm. It is this hybrid design that allows our 

model to surpass the performance ceilings of architectures 

that rely solely on one approach, setting a new benchmark 

for fMRI-based ASD diagnosis. 

4.4 Multi-site heterogeneity: Limitations 

and future directions with 

harmonization 

A central finding of this work is the substantial 

performance variability observed across different imaging 

sites (Table 6, Figure 9), with accuracy ranging from 

63.55% (Trinity) to 96.42% (NYU). This performance 

drop at specific sites underscores a fundamental challenge 

in neuroimaging-based machine learning: multi-site bias. 

This bias arises from differences in scanner 

manufacturers, acquisition protocols, head coils, and 

participant demographics across sites, which can 

introduce non-biological, site-specific variance that 

confounds the model's ability to learn generalizable 

features of ASD. While our hybrid architecture 

demonstrates a degree of inherent robustness by achieving 

a strong aggregate performance, the results confirm that 

architectural advances alone are insufficient to fully 

overcome this data-level challenge. The model's 

performance is strongly correlated with site-specific 

sample size (Figure 9B), suggesting that sites with larger, 

potentially more representative datasets allow the model 

to better learn to ignore site-specific noise. Conversely, 

smaller sites may not provide enough data for the model 

to disentangle the signal of ASD from the site-specific 

artifact. To directly address this limitation in future work, 

the application of statistical and deep learning-based 

harmonization techniques is essential. Methods such as 

ComBat could be employed as a preprocessing step. 

ComBat uses an empirical Bayes framework to adjust for 

site effects by standardizing the mean and variance of 

features (e.g., ROI time series or functional connectivity 

matrices) across sites, effectively removing scanner-

specific biases while preserving biological variability 

associated with the condition. 

Furthermore, while the results on ABIDE-I are 

compelling, the clinical translation of such a model hinges 

on its performance across independent datasets. As an 

immediate next step, we will conduct external validation 

on the ABIDE-II repository and initiate prospective 

clinical studies to assess real-world generalizability. We 
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will also explore domain adaptation techniques to enhance 

cross-dataset robustness, ensuring the model's reliability 

beyond the specific characteristics of its initial training 

data. 

5 Conclusion 
A new CNN-Transformer hybrid framework is proposed 

in this article to identify ASD from rest-state fMRI data 

automatically. Our model is essentially designed to use the 

strength of convolutional networks for local feature 

extraction and transformer encoders to capture global 

dependencies. Through various metrics and experiments, 

our method on the ABIDE-I dataset has set a new state-of-

the-art level, beating the existing techniques and pre-

trained CNN models in multiple performance metrics. The 

ablation experiment reported unequivocal real-world 

results that coupling both architectural structures was 

necessary to achieve the highest performance, with the SA 

component being the most instrumental in capturing long-

range temporal dynamics in BOLD signals. While site-

related variability is an ongoing challenge, the model's 

robust performance indicates the considerable promise of 

hybrid DL architectures for unraveling intricate 

neuroimaging data. This work contributes a strong, 

generalizable framework that not only advances the field 

of fMRI-based autism diagnosis but also is a valuable 

reference for future research seeking to leverage 

Transformer-based models in computational 

neuroscience. 
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