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Today because of technology limits, digital images always include some defects, such as noise. Noise reduces image quality and affects the result of image processing. In almost cases, noise is Gaussian one. While in biomedical images, the usual noise is a combination of Poisson and Gaussian noises. This combination is naturally considered as a superposition of Gaussian noise over Poisson noise. In this paper, we propose a method to remove such a type of mixed noise based on a new approach: we consider the superposition of noises like a linear combination. We use the idea of the total variation of an image intensity (brightness) function to remove this combination of noises.
1 Introduction

Image denoising has attracted a lot of attention in recent years. In order to suppress noise effectively, we need to know its type. There are many types of noises, for example, Gaussian (digital images), Poisson (X-Ray images), Speckle (ultra sonograms) noises and so on.
One of the most famous effective methods is the total variation model [2-4, 10, 12, 17, 18, 22, 26]. The first person who suggested it to solve the denoising problem is Rudin [17]. He used the total variation as a universal tool in image processing. His denoising model is well-known as the ROF model [3, 17]. The ROF model is targeted to efficiently remove Gaussian noise only. 

This model is often used to remove not only Gaussian noise, but also other types of noise. For example, the ROF model suppresses Poisson noise not so effectively. Le T. [9] proposed another model, well-known as the modified ROF model to remove Poisson noise only. 

Gaussian and Poisson noises both are widespread in real situations, but their combination is important too, for example, in electronic microscopy images [7, 8]. In these images, both types of noises are combined as a superposition. In physical process, Poisson noise usually is added first, before Gaussian noise. Luisier F. with co-authors proposed the theoretically strong PURE-LET method [11] (Poisson-Gaussian unbiased risk estimate – linear expansion of thresholds) to remove this type of combination of noises. 
However, such kind of noises usually can be considered as dependent on the image acquisition systems. At the same time, in many papers devoted to the image denoising problem the idea of Poisson-Gaussian noise combination  is considered, even through such is not the case.  

From other side, many noise reduction approaches have been developed, particularly, wavelet-based transforms, etc. It needs to draw attention, noise reduction approaches that have been developed based on wavelet transform are only for Gaussian or Poisson noise.
In order to remove mixed noise, let us assume that the superposition of noises can be equivalent to some unknown linear combination of them.
We can combine ROF and modified ROF models to suppress the linear combination of noises. The obtained model is supposed to remove the mixed noise better than ROF or modified ROF models separately. Additionally, it is simpler than PURE-LET, because we try to find only the proportion between Poisson and Gaussian noises in the mixed noise.

In experiments, we use images and add noise into them. The image quality is compared with some other denoising methods such as ROF, modified ROF models, and PURE-LET method to remove the superposition of noises. In our paper [19], we proposed to remove the linear combination of Poisson and Gaussian noises and compared results with Wiener [1] and median [23] filters, and with Beltrami method [29]. Our method gives better results for Gaussian and Poisson noises separately, and for the combination of noises too. Hence, in this paper, we do not compare our approach with these methods. 

In order to compare image quality after restoration, we use criteria PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error), SSIM (Structure SIMilarity) [24, 25]. The PSNR criterion is the most important, because it is always used to evaluate images and signals quality.

In this paper, we try to represent and discuss only the case limited by the greyscale artificial and real images with artificial noise. According to it, we can use only criteria above based on the full-reference image quality evaluation approach. 
In the case of greyscale real images with unknown noises, we need to use the no-reference approach to evaluate the quality of denoising. In general, it is complicated theoretical problem to develop a criterion for it. 
Our investigation based on BRISQUE criterion [13] (Blind/Referenceless Image Spatial QUality Evaluator) in this case was discussed in paper [20]. 
2 Combined denoising model 
Let in 
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. In this paper, we consider that the function 
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According to [2, 3, 17, 18], an image smoothness is characterized by the total variation of an image intensity function. The total variation of the noisy image is always greater than the total variation of the corresponding smooth image. In order to solve the problem 
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Hence, we obtain the ROF model to remove Gaussian noise in the image [17, 18]:
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where 
[image: image17.wmf]0

>

l

 is Lagrange multiplier. This is a solution of the unconstrained optimization problem.

In order to remove Poisson noise, Le T. built another model based on ROF model [9] as the optimization problem 
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This model resulted in the following unconstrained optimization problem
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where 
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 is a coefficient of regularization. This is the known modified ROF model to remove Poisson noise.

In order to build a model for removing the mixed Poisson-Gaussian noise, we also solve the same optimization problem 
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, but with a different constraint as follows.

This constraint is very similar to constraints above. We consider, the noise variance is unchangeable (Poisson noise is not changed and Gaussian noise only depends on noise variance):
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The probability density function of Gaussian noise is
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and the probability distribution of Poisson noise is
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We have to notice that intensity functions of images 
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 and 
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 are integer (for example, for 8-bits greyscale image the range of intensity is from 0 to 255).

In order to combine Gaussian and Poisson noises, we consider the following linear combination
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According to (1), we obtain the denoising problem as a constrained optimization problem
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where 
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 is a constant value. We transform this problem into unconstrained optimization problem by using Lagrange functional
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3 Discrete denoising model 

The problem (2) can be solved by using Lagrange multipliers method [5, 16, 28]. 
We use Euler-Lagrange equation [28]. Let a function 
[image: image46.wmf](,)

fxy

 be defined in a limited domain  
[image: image47.wmf]2

R

WÌ

 and be second-order continuously differentiated by 
[image: image48.wmf]x

 and 
[image: image49.wmf]y

, where 
[image: image50.wmf](,)

xy

ÎW

. Let 
[image: image51.wmf](,,,,)

xy

Fxyfff

 be a convex functional, where 
[image: image52.wmf]/

x

ffx

=¶¶

, 
[image: image53.wmf]/

y

ffy

=¶¶

. Then the solution of the following optimization problem


[image: image54.wmf](,,,,)min

xy

Fxyfffdxdy

W

®

ò


satisfies the following Euler-Lagrange equation 
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We use the above result to solve the obtained model. Then the solution of the problem (2) satisfies the following Euler-Lagrange equation
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where 
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In order to obtain the discrete form of the model (4), we add an artificial time parameter and consider the function 
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 in the following diffusion equation
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Then the discrete form of the equation (5) is
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4 Optimal model parameters

In practice, parameters 
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4.1 Optimal parameters λ1 and λ2
Let 
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The discrete form for 
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4.2 Optimal parameter μ
In order to find the optimal 
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, we multiply (3) by 
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The discrete form is
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4.3 Optimal parameter σ
The parameter 
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 is calculated at the first step of the iteration process. We use the method of Immerker [6]:
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4.4 Initial solution
In the iteration procedure (6), the result depends on initial parameters 
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 are randomized, the result is unacceptable too, because of the additional noise added in the image.

Of course, initial values of 
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 need to be closed to required values. We evaluate
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 as average values of neighbour pixels of the image, for example, by the method of Immerker.

5 Image quality evaluation
In order to evaluate the image quality after denoising, we use criteria PSNR, MSE and SSIM [24, 25]:
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For example, 
[image: image139.wmf]6

12

10

KK

-

==

, 
[image: image140.wmf]L

 is an image intensity with 
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The greater the value of 
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, the better the image quality. If the value of 
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 belongs to the interval from 20 to 25, then the image quality is acceptable, for example, for wireless transmission [21].

The 
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 is a mean squared error and is used to evaluate the difference between two images. The lower the value of 
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The value of 
[image: image148.wmf]SSIM

Q

 is used to evaluate an image quality by comparing the similarity of two images. This value is between -1 and 1. The greater the value of 
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, the better the image quality.

6 Experiments and discussion
In this paper, we consider cases as in [19] and additionally the superposition of noises. The image size is changed from 300x300 pixels to 256x256 pixels specified in PURE-LET method [11]. We process the artificial image with artificial noise and the real image with artificial noise. The artificial image is noise-free and we need to add noise with high intensity (the image to be very noisy) to reduce its quality. Therefore, we specify 0.6 for proportion of Gaussian noisy image and 0.4 for proportion of Poisson noisy image. The real image (captured by a digital device) already includes some noise. We specify 0.5 for proportion of Gaussian noisy image and 0.5 for proportion of Poisson noisy image too. 

We need to point the attention in the case of Gaussian noise our method sometimes can be better than ROF, because the method to evaluate the variance of Gaussian noise can be better than one included in the original ROF model in many cases. In the case of superposition of noises, our method sometimes can be better than PURE-LET, because parameters of our method are usually more optimal than in original model too.

6.1 Artificial image with artificial noise

We use artificial image with artificial mixed noise for the first test. The image includes eight bars (Fig. 1a). Other images (Fig. 1b-j) show noisy and denoised images and zoomed out part of them.

Artificial noise is generated by linear combination, and by superposition of Poisson and Gaussian noises.

For both cases, we consider Poisson noise first. Its probability density is
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. Poisson noise variance is an average value 
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. If the grey value of a pixel after adding of Poisson noise is out of the interval from 0 to 255, it needs to be reset to 
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. For this image, there are no pixels out of this interval. Next, we consider the variance of Gaussian noise is four times greater than the variance of Poisson noise 
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For the linear combination of noises, we denote the intensity function of Gaussian noisy image as 
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. As above, values of 
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 need to be between 0 and 255. If the grey value of a pixel after adding of Gaussian noise is out of the interval from 0 to 255, it needs to be reset to 
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. In this case, there are 1075 pixels out of this interval (1.64%). 
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Figure 1: Denoising of the artificial image: a)-b) original image, c)-d) noisy image with linear combination of noises, e)-f) denoised image (c), g)-h) noisy image with superposition of noises, i)-j) denoised image (g). 

The final noisy image (linear combination of noises in Fig. 1c) is created with proportion 0.6 for Gaussian noisy image 
[image: image171.wmf](1)
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 and proportion 0.4 for Poisson noisy image 
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Then we define proportion for linear combination as 
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. Coefficients of linear combination are defined as (1 = 6/7 = 0.8571, (2 = 1/7 = 0.1429. 
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Figure 2: Denoising of the real image: a)-b) original image, c)-d) noisy image with linear combination of noises, e)-f) denoised image (c), g)-h) noisy image with superposition of noises, i)-j) denoised image (g).

Values of QPSNR, QMSE, and QSSIM of the noisy image (linear combination of noises) are, respectively, 19.4291, 741.5963, and 0.1073.

In the case of the image with superposition of noises, we add Gaussian noise over Poisson noisy image. The intensity function of this Gaussian noisy image is 
[image: image185.wmf](1)

v

 too. As above, the grey values of 
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 need to be between 0 and 255. If the grey value of a pixel after adding of Gaussian noise is out of the interval from 0 to 255, it needs to be reset to 
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There are 1220 pixels out of this interval (1.86%). The noisy image (superposition of noises, Fig. 1g) is also Gaussian noisy image 
[image: image188.wmf](1)

vv

=

. In this case, we don’t know (1 and (2, therefore we use the algorithm with automatically defined parameters. 

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	19.4291
	0.1073
	741.5963

	ROF
	34.1236
	0.8978
	25.1606

	Modified ROF
	32.4315
	0.8703
	37.8791

	PURE-LET 
	33.0309
	0.9277
	32.3587

	Proposed method 

(1=0.8571,

(2=0.1429,

( = 0.5003,

( = 47.1757
	41.1209
	0.9841
	4.9905

	Proposed method with automatically defined parameters

(1=0.8414,

(2=0.1586,

( = 0.5112,

( = 41.0314
	41.0998
	0.9840
	5.0478


Table 1: Quality of noise removing for the artificial image with linear combination of noises.

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	15.1406
	0.0457
	1990.8

	ROF
	31.4797
	0.8364
	21.2502

	Modified ROF
	28.4591
	0.7871
	27.5694

	PURE-LET 
	28.9451
	0.7986
	25.9883

	Proposed method 

(1=1, (2=0,

( = 0.3033,

( = 47.1757
	35.8011
	0.9598
	16.8122

	Proposed method with automatically defined parameters

(1=0.9715,

(2=0.0285,

( = 0.3021,

( = 46.0314
	35.7589
	0.9596
	17.2658


Table 2: Quality of noise removing for the artificial image with Gaussian noise.

Values of QPSNR, QMSE, and QSSIM of the noisy image are, respectively, 14.9211, 2093.9827, and 0.0439.

Tables 1 – 4 show results for linear combination of noises, Gaussian noise, Poisson noise, and superposition of noises for the artificial image.

6.2 Real image with artificial noise

The artificial noise is generated by linear combination and superposition of Poisson and Gaussian noises.

For both cases, we consider Poisson noise first. Poisson noise variance is an average value 
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. If the grey value of a pixel after adding of Poisson noise is out of the interval from 0 to 255, it needs to be reset to 
[image: image190.wmf](2)

ijij

vu

=

. Here there are no pixels out of this interval. 

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	26.6776
	0.3640
	139.7396

	ROF
	36.4958
	0.9381
	14.5715

	Modified ROF
	44.6347
	0.9897
	2.2001

	PURE-LET 
	37.4485
	0.9404
	10.5692

	Proposed method 

(1=0, 
(2=1,

( = 0.8012,

( = 0.0001
	44.6343
	0.9897
	2.2014

	Proposed method with automatically defined parameters

(1=0.0524,

(2=0.9476,

( = 0.7923,

( = 2.0544
	44.6156
	0.9896
	2.2466


Table 3: Quality of noise removing for the artificial image with Poisson noise.

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	14.9211
	0.0439
	2093.983

	ROF
	31.2913
	0.8346
	48.3008

	Modified ROF
	30.5471
	0.8232
	56.5601

	PURE-LET 
	33.9889
	0.9298
	25.9534

	Proposed method with automatically defined parameters

(1=0.8014,

(2=0.1986,

( = 0.4812,

( = 40.0314
	37.3366
	0.9677
	12.0066


Table 4: Quality of noise removing for the artificial image with superposition of noises.

For Gaussian noise, we consider the variance of Gaussian noise is four times greater than the variance of Poisson noise 
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. The real image is a human skull [14] (Fig. 2a). Others (Fig. 2b-j) show noisy and denoised images and zoomed out part of them. 

For the case of linear combination of noises, we denote the intensity function of Gaussian noisy image as 
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. As above, the grey values of intensity function 
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 also need to be between 0 and 255. If the grey value of a pixel after adding of Gaussian noise is out of the interval from 0 to 255, it needs to be reset to 
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. In this case, there are 5355 pixels out of this interval (8.17%). The final image (linear combination of noises, Fig. 2c) is created with proportion 0.5 for Gaussian noisy image 
[image: image195.wmf](1)

v

 and proportion 0.5 for Poisson noisy image 
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	QPSNR
	QSSIM
	QMSE

	Noisy
	23.6878
	0.5390
	278.1619

	ROF
	27.3974
	0.8295
	118.3975

	Modified ROF
	25.5644
	0.7513
	197.5403

	PURE-LET 
	25.7781
	0.8105
	191.0341

	Proposed method 

(1=0.8, (2=0.2,

( = 0.0524,

( = 36.3529
	27.6641
	0.8331
	110.9451

	Proposed method with automatically defined parameters

(1=0.7804,

(2=0.2196,

( = 0.0512,

( = 34.2311
	27.6039
	0.8325
	112.8984


Table 5: Quality of noise removing for the real image with linear combination of noises.

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	18.0693
	0.3337
	1014.3

	ROF
	24.0246
	0.7299
	257.4095

	Modified ROF
	23.2511
	0.7019
	311.8742

	PURE-LET 
	23.8712
	0.7989
	265.6153

	Proposed method 

(1=1, (2=0,

( = 0.0956,

( = 36.3529
	24.2011
	0.8029
	242.5101

	Proposed method with automatically defined parameters

(1=0.9538,

(2=0.0462,

( = 0.0902,

( = 35.0633
	24.1882
	0.8028
	247.8894


Table 6: Quality of noise removing for the real image with Gaussian noise.
Hence, coefficients of linear combination are defined as (1 = 4/5 =0.8, (2 = 1/5 = 0.2. Values of QPSNR, QMSE, and QSSIM of final noisy image are, respectively, 23.6878, 278.1619, and 0.5390.

For superposition of noises, we add Gaussian noise over Poisson noisy image. We denote the intensity function of Gaussian noisy image as 
[image: image199.wmf](1)

v

. As above, grey values of 
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 need to be between 0 and 255. If the grey value after adding of Gaussian noise is out of the interval from 0 to 255, it needs to be reset to 
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. In this case, there are 5621 pixels out of this interval (8.58%). The final noisy image (superposition of noises, Fig. 2g) is also the Gaussian noisy image 
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In this case, we don’t know (1 and (2, therefore we use the algorithm to find them. Values of QPSNR, QMSE, and QSSIM of the final noisy image (superposition) are, respectively, 
[image: image203.wmf]17.8071

, 1077.3831, and 0.3242.

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	28.4991
	0.7625
	91.8683

	ROF
	31.0567
	0.9457
	50.9818

	Modified ROF
	31.1992
	0.9022
	48.9375

	PURE-LET 
	30.8955
	0.8678
	53.1066

	Proposed method 

(1=0, (2=1,

( = 0.0541,

( = 0.0001
	31.1334
	0.8986
	49.7922

	Proposed method with automatically defined parameters

(1=0.0491,

(2=0.9509,

( = 0.0567,

( = 4.2012
	31.1316
	0.8986
	50.1094


Table 7: Quality of noise removing for the real image with Poisson noise.

	
	QPSNR
	QSSIM
	QMSE

	Noisy
	17.8077
	0.3242
	1077.383

	ROF
	23.1936
	0.7062
	311.6856

	Modified ROF
	23.0413
	0.7033
	319.3831

	PURE-LET 
	23.6278
	0.7072
	282.0349

	Proposed method with automatically defined parameters

(1=0.7704,

(2=0.2296,

( = 0.1102,

( = 36.3412
	23.7292
	0.7094
	275.5229


Table 8: Quality of noise removing for the real image with superposition of noises.
Tables 5 – 8 show results for linear combination of noises, Gaussian noise, Poisson noise, and superposition of noises for the real image.

6.3 About of initial solution
In order to create the initial image, we use the convolution operator. The table 9 shows the dependency of restored result for the initial image, where: 

(a) Initial parameters 
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(b) Initial parameters 
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(c) Initial solution 
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 is given as a randomized matrix;

(d) Initial solution 
[image: image207.wmf]0
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 is given as an average value of neighbour pixels by the convolution operator with the mask 
[image: image208.wmf](
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 of the size 3x3.

Table 9 shows the best result of denoising is (d) by criteria PSNR and MSE. 

The result (c) by SSIM looks different in contract to ones in Tables 1-8. It illustrates incorrectness of a randomized initial solution (accidental and not stable, if a probability distribution is unknown). 

Next, we have to notice that the non-optimal result (a) has been used in experiments for Table 5. It appears to be enough for the good result with automatically defined model parameters.

	
	(a)
	(b)
	(c)
	(d)

	(1
	0.7804
	0.8094
	0.8733
	0.8032

	(2
	0.2196
	0.1906
	0.1267
	0.1968

	(
	0.0512
	0.0573
	0.0653
	0.0565

	(
	34.2311

	QPSNR
	27.6039
	27.2214
	26.5611
	27.6523

	QMSE
	112.8984
	120.4355
	132.0264
	107.5431

	QSSIM
	0.8325
	0.8317
	0.8395
	0.8392


Table 9: Dependency of denoising on initial solution.
At last, the variant (b) initially looks better than (a) for kind of better assumption of 
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 to process the real image. Nevertheless, our assumption about 
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 is very far from the good one, and evidently the limit of the number of steps 
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 is insufficient in this case. 

As a result, the variant (d) is the best idea for initial solution.

7 Conclusion

In this paper, we proposed a novel method that can effectively remove the mixed Poisson-Gaussian noise. Furthermore, our proposed method can be also used to remove Gaussian or Poisson noise separately. This method is based on the variational approach.

The denoising result strongly depends on values of coefficients of linear combination 
[image: image212.wmf]1
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 and 
[image: image213.wmf]2

l

. These values can be set manually or can be defined automatically. When processing real images, we can use the proposed method with automatically defined parameters.

Although our method concentrates on removing the linear combination of noise, but it also efficiently removes the superposition of noises. In this case, we consider the superposition of noises is equivalent to some linear combination of them with coefficients found in iteration process.
In this paper we show that our simple model “feels” well the wide range of proportion of two types of noises. As a result, it appears to be the good basis for removing superposition of such noises.  
It is evident, the iteration process (6) used here is insufficiently effective in comparing with other possible computational schemes. In this paper, we try to compare our approach to image denoising with PURE-LET method only in possible reduction of our model complexity, not in others. 

We would like to express our great thanks to developers of PURE-LET method for kindly granted us the original executable module of it. 
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