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With the rapid development of e-commerce, accurately predicting product sales and achieving dynamic 

inventory control have become key challenges for enterprises to optimize supply chain management. The 

traditional Prophet model excels at capturing long-term trends and seasonal characteristics in time series, 

but has limited modeling capabilities for complex nonlinear relationships. Although LSTM neural 

networks can effectively learn the dynamic dependencies of sequential data, they tend to overlook explicit 

temporal patterns. This study constructs an LSTM-Prophet fusion model, first utilizing Prophet to 

decompose the trends, seasonality, and holiday effects of sales data, and then inputting the residuals into 

LSTM for nonlinear correction. Finally, the prediction accuracy is improved through weighted fusion. 

Experiments based on 150,000 daily sales data from an e-commerce platform over three years show that 

the average absolute error of the fusion model is reduced to 8.7, which is 29.3% and 17.1% lower than 

that of the single Prophet (12.3) and LSTM (10.5) models, respectively, and the root mean square error 

decreases by 22.6%. In inventory control simulations, this model drives an 18.4% increase in inventory 

turnover rate and reduces the out-of-stock rate to 3.2%, effectively balancing prediction accuracy and 

computational efficiency. However, the model still relies on high-quality historical data, has high 

computational complexity, and has limited adaptability to new product launches and emergencies. 

Povzetek: Predstavljen je hibridni model LSTM-Prophet za napoved prodaje in dinamično upravljanje 

zalog, ki z razgradnjo časovnih vzorcev (trend/sezona/prazniki) in nelinearno korekcijo z LSTM izboljša 

napovedno točnost ter v simulacijah poveča obračanje zalog in zmanjša izpade, a je odvisen od 

kakovostnih podatkov in slabše prilagodljiv novim ali izrednim razmeram. 

 

1 Introduction 
As e-commerce rapidly evolves, predicting product sales 

and controlling stock levels have turned into essential 

concerns for business management [1].  

Accurate sales forecasting optimizes inventory, 

reduces costs, enhances supply chain response speed, and 

strengthens corporate competitiveness [2, 3]. However, 

sales data in an e-commerce environment often show 

complex time series characteristics, including seasonality, 

trend, and sudden fluctuations, which makes it difficult 

for traditional forecasting methods to meet the demand of 

high accuracy [4]. A single prediction model often cannot 

fully capture these changeable patterns. Therefore, 

exploring a more robust and adaptable fusion prediction 

architecture has become the focus of current research [5]. 

Over the past few years, deep learning has shown 

promise in analyzing sequential data, particularly with 

long-term short-term memory networks (LSTM) used for 

predicting sales due to their handling of long-range 

dependencies [6, 7]. Conventional methods like Prophet 

are good at managing cyclical and trend variations but 

face challenges with nonlinear modeling [8]. Therefore, 

it's crucial to enhance online sales prediction accuracy by  

 

combining LSTM's long-range dependency management 

with Prophet's cyclical and trend handling. This hybrid  

model should be capable of simultaneously modeling 

both complex nonlinear relationships and explicit 

seasonal trends, as this integration addresses the key 

requirements for improving prediction precision in this 

domain. 

The inventory management of e-commerce 

platforms also faces severe challenges [9, 10]. Traditional 

inventory strategies are often based on static thresholds 

or simple historical averages, which makes it difficult to 

cope with the uncertainty caused by sales fluctuations 

[11]. Dynamic inventory control needs to rely on high-

precision forecast results and adjust replenishment 

strategies in combination with real-time sales data to 

avoid inventory backlogs or shortages. However, most 

existing inventory optimization methods fail to fully 

utilize the uncertainty information of the forecasting 

model, resulting in a lack of robustness in decision-

making [12]. Therefore, based on building a sales 

forecast model, it is of great significance to further 

explore the dynamic inventory control mechanism based 

on forecast confidence to enhance the intelligence level 
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of the supply chain. 

This study proposes a hybrid LSTM-Prophet 

framework, aiming to combine the nonlinear modeling 

advantages of deep learning with the clarity of traditional 

time series decomposition techniques to improve the 

accuracy of e-commerce product sales forecasting. 

Through the multi-modal feature fusion mechanism, the 

architecture effectively integrates the high-order time 

series features extracted by LSTM with the seasonal trend 

components decomposed by Prophet, thereby enhancing 

the model's adaptability to complex sales models. Aiming 

to address the inventory optimization problem, this study 

proposes a dynamic control strategy based on forecast 

uncertainty. This strategy enables adaptive adjustment of 

the safety stock level by quantifying the confidence 

interval of forecast results, thereby facilitating refined 

control of inventory costs. 

The main contribution of this study is to propose an 

end-to-end LSTM-Prophet fusion forecasting framework 

and verify its superiority in multi-class e-commerce 

product sales forecasting tasks through experiments. At 

the same time, the proposed dynamic inventory control 

model can adaptively adjust the inventory strategy 

according to the prediction uncertainty, thereby 

minimizing inventory costs while maintaining a high 

service level. This research not only provides new 

methodological support for e-commerce sales forecasts 

but also offers a theoretical basis and practical guidance 

for designing an intelligent inventory management 

system. 

The e-commerce sales forecasting model based on 

the LSTM-Prophet fusion architecture achieves more 

accurate demand forecasting by combining the 

advantages of Prophet in handling trends, seasonality, and 

holiday effects, as well as the ability of LSTM to capture 

long-term dependencies and nonlinear fluctuations. The 

inventory control module dynamically adjusts safety 

stock and reorder points accordingly, optimizing 

inventory levels. However, this model has limitations 

such as high computational complexity, strict 

requirements for data quality, dependence on experience 

for parameter tuning, and limited effectiveness in dealing 

with sudden fluctuations or new product forecasting. 

The core assumption of the model research is that 

the fusion model can significantly improve sales 

forecasting accuracy by combining Prophet's explicit 

decomposition ability for trend, seasonal, and holiday 

effects, as well as LSTM's dynamic modeling advantage 

for nonlinear residuals; The multimodal feature fusion 

mechanism can enhance the model's ability to represent 

heterogeneous e-commerce data; The dynamic inventory 

strategy based on predictive uncertainty can adaptively 

adjust safety stock, reducing stockout rates while 

improving inventory turnover; This model exhibits 

stronger robustness in seasonal peak and promotional 

scenarios; Moreover, hyperparameter optimization has a 

significant impact on model performance. 

The current sales forecasting and inventory 

management in the e-commerce field face core 

challenges: a single model is difficult to accurately 

capture the complex time-series characteristics of sales 

volume (such as long-term trends, seasonality, and 

promotional impacts), leading to significant prediction 

deviations. This, in turn, makes static inventory strategies 

unable to adapt to dynamic market demands, easily 

causing inventory backlog or stock-out risks. To address 

this issue, this study aims to develop a LSTM-Prophet 

fusion model to enhance prediction accuracy and 

construct a dynamic inventory control closed-loop 

system based on prediction results. Its measurable 

specific objectives include: 1) verifying that the 

prediction error (such as MAPE, RMSE) of the fusion 

model is significantly reduced compared to that of the 

single model; 2) integrating these prediction results into 

inventory decisions to achieve simultaneous optimization 

of key indicators (such as inventory turnover rate, service 

level, and total cost). 

2 Theoretical basis and mechanism 

analysis of LSTM-Prophet fusion 

prediction 

2.1 Decomposition principle of prophet 

model in seasonal business time series 

High-efficiency time series prediction tool - Prophet 

model, easy to operate and quick to fit [13, 14]. It 

supports Python and R language implementation by 

decomposing time series and combining machine 

learning methods for data prediction. The model can not 

only analyze data trends, but also automatically identify 

and eliminate outliers, thus improving the prediction 

accuracy [15]. 

The Prophet model requires input data containing 

two columns, where the ds column represents time and 

the y column corresponds to the value. The model 

decomposes the time series into four components: trend 

term growth, period term seasonality, holiday term 

holidays and error term [16]. The addition mode 

decomposition formula (1) is: 

 

ty(t ) g(t ) s( t ) h(t ) = + + + (1) 

 

The observed value y(t) of the time series at time t 

can be decomposed into multiple components. Among 

them, the trend term g(t) describes the aperiodic variation 

characteristics of the series, while the periodic term s(t) 

describes the seasonal fluctuation of different time scales 

including day, week, month and year. Furthermore, the 

holiday term h(t) reflects the potential impact on the time 

series of specific holidays, which may last one day or 

more. The error term εt in the model represents an 

unpredicted random fluctuation, which is usually 

assumed to obey a normal distribution. 

Trend terms can be modeled using logistic 

regression or piecewise linear functions [17, 18]. Where 

the mathematical formula (2) of the logistic regression 

function is: 
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1 k( t m )
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g( t )

e− −
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+
(2) 

 

In the model, C represents the saturation value of 

quantity growth, k represents the growth rate, m is the 

initial offset, and t is the time variable. Considering that 

the saturation value C and the growth rate k will change 

dynamically with time t, the change point sj(1≤j≤S) is 

introduced to capture the key turning point of the data. 

When the quantity reaches the change point, the growth 

rate will change by δj, and the following function (3) is 

constructed accordingly: 

 

1

0

j

j

,t s
a ( t )

,otherwise


= 


(3) 

 

At this time, the growth rate k satisfies equation (4): 

 
Tt k a( t ) = + (4) 

 

The offset m is adjusted to equation (5): 
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After substituting (4) and (5) into (2), formula (6) 

can be obtained: 

 

1 T T

C( t )
g( t )

exp( ( k a( t ) ) ( t ( m a( t ) ))) 
=

+ − +  − +
(6) 

 

The basic expression (7) for a linear function is as 

follows: 

 
T T

jg( t ) [ k ( t ) ]t [( m ( t ) ]   = + + + (7) 

 

Where γj=−sj∙δj. 

2.2 Feature extraction mechanism of LSTM 

Networks for nonlinear purchase behavior 

When processing long sequence data, traditional RNNs 

face the problems of gradient vanishing and explosion 

[19, 20]. To solve this problem, LSTM network can 

effectively distinguish the importance of information by 

introducing memory units and gating mechanisms, and 

preserve key features for a long time while ignoring 

irrelevant information [21, 22]. 

Figure 1 presents the core structure of Long Short-

Term Memory (LSTM) networks, including the input 

gate, forget gate, and output gate. The input gate regulates 

the flow of information, the forget gate filters out 

outdated information, and the output gate controls the 

output information [23, 24]. These three gate structures 

work together to complete the dynamic management of 

memory unit information. 

 

 
Figure 1: LSTM structure 
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LSTM is responsible for the storage and 

transmission of long-term information, and its operation 

mechanism is similar to a conveyor belt, which can 

continuously maintain the integrity of information [25]. 

The forgetting gate module processes the hidden state ht-

1 and the input xt through the Sigmoid function to 

generate a numerical value between 0 and 1, where Wf 

represents the weight matrix and bf is the bias vector. 

When the output value approaches 0, the corresponding 

information in the cell state will be discarded; If it is close 

to 1, the relevant information will be completely retained 

and participate in the subsequent calculation process [26]. 

The calculation process is shown in equation (8). 

 

=t f t -1 t ff (W [h ,x ]+b )  (8) 

 

After receiving the hidden state ht-1 at the previous 

time and the current input xt, the input gate structure first 

calculates the information update ratio through the 

Sigmoid function, and at the same time uses the tanh 

function to nonlinear transform the current input. After 

the output results of these two functions are multiplied 

together, it is the effective information that finally needs 

to be updated to the cell state. The specific calculation 

process is given by formulas (9)-(11). 

 

=t i t-1 t ii (W [h ,x ]+b )  (9) 

 

=t C t -1 t CC tanh(W [h ,x ] +b ) (10) 

 

= +t t t -1 t tC f C i C  (11) 

 

The selective retention of information is achieved by 

the ratio it and the current information C, where it controls 

the memory ratio and 𝐶̃ t is the currently received 

information. The hyperbolic tangent function tanh 

participates in the calculation process. The current 

information is retained after being filtered by it×𝐶̃t, and 

the previous time information is selectively retained by 

ft×Ct-1. These two parts are added together to form a new 

unit state. 

 

2.3 The value and core contribution of 

research 
This research proposes an innovative LSTM Prophet dual 

channel fusion architecture to meet the challenge of 

single model in e-commerce sales forecasting, which is 

difficult to take into account the linear trend and 

nonlinear complex model. Its necessity lies in solving the 

problem of insufficient accuracy of traditional methods in 

dealing with complex scenarios such as seasonality and 

sudden promotional changes, as well as the lag defect of 

static inventory strategies. The novelty of the research 

lies in the mechanism fusion and strategy innovation: 

explicit temporal decomposition is performed through 

Prophet, and the nonlinear features of residuals are 

learned by LSTM, achieving complementary advantages; 

Furthermore, a dynamic inventory control model based 

on predictive confidence intervals was constructed, 

enabling safety stock to adaptively adjust with 

uncertainty. 

Table 1: Comparison of sales forecasting and inventory 

control methods 

Aspect 

Traditional 

Methods 

(ARIMA) 

Single 

ML 

Models 

(LSTM) 

Proposed 

LSTM-

Prophet 

Fusion 

Core 

Approach 

Linear 

statistics for 

stationary 

series 

Neural 

networks 

capturin

g non-

linear 

patterns 

Combines 

temporal 

decompositio

n with long-

term 

dependency 

learning 

Forecast 

Accuracy 

Lower 

(MAPE >15%

) 

Moderat

e 

(MAPE 

10-18%) 

Higher 

(MAPE 5-

8%) 

Inventory 

Performanc

e 

Slow turnover, 

high stockout 

rate 

Improve

d 

Fast turnover, 

low stockout 

rate 

Strength 
Simple, fast 

computation 

Handles 

complex 

patterns 

Precise 

forecasting, 

strong 

dynamic 

control 

Weakness 

Fails with 

complex 

fluctuations 

Limited 

long-

term 

temporal 

learning 

Higher model 

complexity 

 

Table 1 shows that the LSTM-Prophet fusion model 

proposed in this study has achieved significant 

breakthroughs in e-commerce sales forecasting and 

inventory control. This model leverages complementary 

strengths: the Prophet component accurately analyzes 

trends, seasonality, and promotional effects in time series, 

while the LSTM network effectively captures nonlinear 

features and long-term dependencies. Experiments 

demonstrate that this fusion architecture improves 

prediction accuracy (MAPE) to 5-8%, and significantly 

reduces the out-of-stock rate through a dynamic 

inventory control mechanism, providing more accurate 

decision support for e-commerce enterprises. 
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3 Construction method of fusion 

forecasting model for inventory 

optimization 

3.1 Multimodal e-commerce data fusion and 

feature engineering 

In the e-commerce product sales forecasting and 

inventory dynamic control model, multi-modal data 

fusion and feature engineering are key links in building a 

high-performance forecasting framework. Data 

modalities in e-commerce scenarios are significantly 

heterogeneous, covering structured transaction data, 

unstructured user behavior data, and external 

environment variables. Structured data primarily includes 

historical sales time series, commodity attributes, and 

inventory level indicators, which typically exhibit clear 

periodicity and trend characteristics. Unstructured data 

involves the emotional polarity of user comments, the 

heat map of page browsing trajectories, and the word 

embedding representation of search keywords, which 

requires feature extraction through natural language 

processing and computer vision technology. External 

environmental variables include macroeconomic 

indicators, seasonal weather patterns, and the price 

fluctuation index of competing products. Such data have 

important reference value for long-term forecasting. 

The core of feature engineering lies in solving the 

problem of spatiotemporal alignment and representation 

fusion of multi-source data. Aiming at time series data, a 

multi-scale sliding window statistics method is used to 

extract lag features, rolling statistics, and time series 

difference features, and the Fourier transform is used to 

capture hidden periodic components. For high-

dimensional sparse user behavior data, the user intention 

vector is formed by a weighted aggregation of the 

attention mechanism, and a graph neural network models 

the collaborative filtering relationship among goods. In 

terms of cross-modal feature interaction, the gated feature 

cross-layer is designed to dynamically adjust the 

contribution weights of different modal features, such as 

using product operations to capture the nonlinear 

coupling effect between price sensitivity and user income 

level. In order to eliminate the influence of dimensional 

differences on model convergence, robust 

standardization is adopted for numerical features, and 

supervised representation learning is carried out for 

category features through Target Encoding. 

The dataset used in this study is sourced from real e-

commerce transaction data on the Tianchi platform, 

encompassing multi-dimensional information such as 

user behavior, product information, transaction orders, 

and inventory dynamics. It possesses broad industry 

representativeness and practical application value, 

effectively supporting the construction and validation of 

models for the LSTM-Prophet fusion architecture in the 

field of e-commerce sales forecasting and inventory 

control 

The construction of spatiotemporal features requires 

special consideration of the particularity of e-commerce 

scenarios. Construct geospatial characteristics at the 

commodity level, including GDP quantiles within the 

coverage radius of regional warehouses, logistics 

timeliness baselines, and distribution density of 

competing products. In the time dimension, in addition to 

the conventional annual, monthly, and daily cycle 

characteristics, it is also necessary to introduce 

promotional calendar event markers and dummy 

variables of platform traffic support policies. Aiming at 

the cold start problem of new products, the cross-

commodity migration features are designed, and the 

category similarity matrix is used to migrate the sales 

model of mature products to the new product feature 

space. 

Anomaly detection and data correction mechanisms 

are crucial links in ensuring feature quality. The improved 

STL decomposition algorithm is used to identify outliers 

in the sales series, and root cause analysis is conducted 

by combining commodity off-shelf records and platform 

system fault logs. For missing data, multiple filling is 

performed based on commodity life cycle curve fitting 

and a similar interpolation method for similar 

commodities. In the feature selection stage, the dynamic 

correlation between features and target variables is 

evaluated by calculating Time-varying Mutual 

Information, and the time series evolution law of feature 

contribution is analyzed by SHAP value, and finally, a 

feature subset with spatiotemporal adaptability is formed. 

This feature engineering scheme lays a theoretical 

foundation for the hierarchical feature utilization of the 

subsequent LSTM-Prophet hybrid model, in which the 

shallow network focuses on capturing local time series 

patterns, and the deep network is responsible for 

modeling global trends and cross-modal relationships. 

3.2 Dual-channel collaborative architecture 

design of LSTM-Prophet 

Forecasting complex, layered time series data with a 

single model often results in limited accuracy in dynamic 

settings. In contrast, the combined model can integrate 

more comprehensive time series information, 

significantly improving prediction accuracy. The Prophet 

model excels in linear feature extraction by decomposing 

trend, period, and special event components, and is 

particularly adept at handling trend change points and 

outliers. The LSTM-Prophet model is suitable for long-

term nonlinear time series prediction, combining various 

adjustment techniques for hierarchical collaborative 

prediction. The process is shown in Figure 2. 
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Figure 2: Flow chart of LSTM-Prophet hierarchical prediction model 

 

The LSTM Prophet fusion model constructed in this 

study adopts a hierarchical collaborative prediction 

architecture. Firstly, the Prophet model serves as the 

foundational module responsible for explicitly 

decomposing the sales time series, extracting 

deterministic components including long-term trends, 

weekly/monthly/annual seasonality, and holiday effects. 

Its advantage lies in the ability to quickly identify and 

adapt to structural changes and outliers in time series, 

with good interpretability. Subsequently, the remaining 

sequences, modeled by Prophet and including nonlinear 

changes and complex interrelations not considered by the 

linear model, are used as inputs for the LSTM network. 

The unique gating mechanism of LSTM and its cell state 

enable it to be adept at learning long-term dependencies 

and dynamic patterns in the sequence, thereby improving 

the predictive ability for segments that Prophet could not 

explain. Finally, the outputs of the two models are fused 

through weighting or direct addition to form the final 

point prediction result. This dual pathway structure 

retains the interpretability and stability of traditional time 

series models, while incorporating the powerful fitting 

ability of deep learning for complex nonlinear 

relationships. 

To address the challenge that single models struggle 

to capture both linear trends and nonlinear fluctuations in 

e-commerce sales forecasting, this study proposes a 

weighted residual correction-based LSTM-Prophet 

fusion mechanism. The core workflow is as follows: First, 

the Prophet model decomposes the original sales series 

y(t)into its trend, seasonality, and holiday components, 

yielding the initial prediction yp(t)=g(t)+s(t)+h(t). The 

residual series ϵ(t)=y(t)− yp(t), which represents patterns 

unexplained by Prophet, is then fed into the LSTM 

network to learn its nonlinear dynamics, producing the 

residual prediction ϵl(t). Finally, the overall forecast is 

obtained via weighted fusion: yf(t)= yp (t)+λϵl(t), where λ 

is an adaptive weight. This mechanism effectively 

combines Prophet's explicit temporal decomposition with 

LSTM's capability for modeling nonlinear residuals, 

providing a more accurate foundation for subsequent 

dynamic inventory control. 

After constructing a time series model, it is crucial 

to evaluate its predictive accuracy and efficiency. 

Typically, we would input the validation dataset into the 

model and compare the predicted values with the actual 

observed values. In this paper, the following key 

indicators are used for error analysis, where yi represents 

the actual observed value of the verification set, ŷi is the 

predicted value of the model, and n represents the sample 

size of the verification set. 

At the feature construction level, this study fully 

considers multi-source heterogeneous data in e-

commerce scenarios. In addition to historical sales 

sequences, it also integrates product attributes (such as 

category, price range, lifecycle stage), promotional 

activity information (discount intensity, promotion type), 

user behavior indicators (click through rate, add in rate), 

and external environmental variables (such as weather 

data, macroeconomic index). To process these 

multimodal data, a combination of feature engineering 

and embedding techniques was adopted: for categorical 

features (such as product ID and category), embedding 

layers were used to map them into low dimensional dense 

vectors; For temporal features, statistical measures such 

as mean, standard deviation, and skewness are calculated 

through sliding windows to capture recent dynamics; 

When processing text data, pre-trained models such as 

BERT are often used to extract features, and attention 

mechanisms are introduced to dynamically focus on the 

importance of different time points and feature 

dimensions, enhancing the discriminative ability of 

Data Processing Prophet

Calculation of

Multi-indicators

At

St

Net

Net vt

at

Rt

Multi- indicators Data

Actor Net at

E-commerce

Context

LSTM Layer

Multi-Head Attention 

Layer

Attention Layer for 

ActionProbability

Selection

Key, value

Key, value

Decoder

Context  Embedding

Hidden stateQuery
Graph embedding 

Scale Embeddings

H0

H6

Nodes Embeddings

Node

Coordinates

Scale

k= n/m

Encoder

Trading Agent



A Hybrid LSTM-Prophet Model for Sales Forecasting and…                                    Informatica 50 (2026) 37–52   43                                                                                                                                            

 

 

feature expression. 

3.3 Model evaluation indicators 

During the model evaluation phase, it is usually necessary 

to use a validation dataset for evaluation, and the model 

performance is determined by the difference between the 

predicted results and the actual data. For time series 

prediction problems, commonly used evaluation 

indicators include key parameters such as the squared 

absolute error. The Mean Absolute Error (MAE) 

highlights the average size of the difference between the 

predicted values and the actual values. The calculation 

formula is shown in equation (12), which clearly 

indicates the accuracy of the model's predictive ability. 

 

1 1 2 2 n n

MAE

a c a c ... a c
e

n

− + − + + −
= (12) 

 

The Mean Absolute Percentage Error (MAPE) 

measures the relative error between actual values and 

predicted values; the calculation formula is shown in 

Equation (13). This indicator reflects the relative 

magnitude of prediction errors and is commonly used to 

evaluate the accuracy of models. 

 

1

1 n
i i

MAPE

i i

a c
e

n a=

−
=  (13) 

 

Root Mean Square Error (RMSE) is used to measure 

the deviation between actual values and predicted values, 

obtained by calculating the square root of the average of 

the squared errors. It reflects the overall error of the 

prediction, and the specific calculation formula can be 

seen in equation (14). 

 

( )
2

1

1 N

RMSE

t

e a c
n −

= − (14) 

 

In the above formula, the predicted sequence length 

is n, the real sales quantity is a, and the predicted value is 

c. RMSE can measure the square error of model 

prediction results and provide a certain basis for 

evaluating model performance. 

The upper limit of the interval is used as the 

replenishment trigger point for aggressive strategies to 

cope with potential demand peaks, while the lower limit 

of the interval serves as the benchmark for conservative 

strategies to control inventory costs. The safety stock 

level is dynamically adjusted based on the width of the 

interval - automatically increasing the safety stock buffer 

during periods of high uncertainty such as promotional 

periods or new product launches, and reducing the 

inventory level during periods of stable sales. This 

mechanism achieves a shift from static thresholds to 

adaptive inventory control based on forecast uncertainty. 

4 Experiment and results analysis 

Based on the sales forecast results, this study designed a 

data-driven dynamic inventory control strategy. The core 

of this strategy lies in introducing a "prediction 

uncertainty" quantification mechanism: dynamically 

adjusting the safety stock level by calculating the 

confidence interval of the predicted value (such as 90% 

or 95% interval). When the prediction uncertainty is high 

(such as in the early stage of promotion or new product 

launch), the system will automatically increase the safety 

stock threshold to buffer the potential shortage risk 

caused by demand fluctuations; On the contrary, when the 

prediction confidence is high, the inventory level should 

be appropriately lowered to reduce capital occupation and 

storage costs. The optimization goal of inventory strategy 

is to minimize the total cost, including inventory holding 

cost, out of stock loss cost, and order processing cost. 

This study employs Bayesian optimization for 

automatic hyperparameter tuning, conducting efficient 

searches for the number of LSTM layers (1-3), the 

number of hidden units (32-256), the dropout rate (0.1-

0.5), and the seasonal parameters of Prophet, with the 

goal of minimizing the weighted mean absolute 

percentage error (WMAPE). Model evaluation 

comprehensively considers prediction accuracy 

(WMAPE, RMSE), inventory control effectiveness (out-

of-stock rate <5%, turnover rate >10 times/year), and 

computational efficiency, and selects the optimal model 

configuration through a weighted scoring method. 

In the case of a certain emerging beauty e-commerce 

platform, facing the cold start scenario of lacking 

historical data for 50 new products, the LSTM-Prophet 

fusion model demonstrated significant advantages. Test 

results showed that the first-month forecasted weighted 

mean absolute percentage error (WMAPE) was 18.5%, 

which was 14.3 and 5.6 percentage points higher than that 

of the ARIMA model (32.8%) and the single LSTM 

model (24.1%), respectively. In terms of inventory 

control, the out-of-stock rate was controlled at 6.2%, 

significantly lower than the control group's 15.7% and 

10.3%. Meanwhile, the inventory turnover rate reached 

9.8 times per year. Especially during the Double 11 

shopping festival, the model accurately predicted the 

sales peak of three popular products, enabling advance 

stock preparation and avoiding potential out-of-stock 

losses worth 500,000 yuan, thus verifying the 

effectiveness and practicality of this architecture in cold 

start scenarios. 

Figure 3 clearly shows that the loss value drops 

sharply in the early stages of training, indicating that the 

model quickly grasps the main features of the data. As 

training progresses, the loss decline rate slows down, 

indicating that the model begins to capture more subtle 

data patterns. 
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Figure 3: Training loss function result 

 

This study uses Redis (Remote Dictionary Server) 

cache to predict high-frequency access results and 

inventory status. The model is deployed in the form of 

Docker containers, relying on Kubernetes to achieve 

elastic scaling to meet the high concurrency prediction 

needs during the e-commerce promotion period. The 

front-end decision board integrates a visualization 

module that supports operators to monitor and predict 

performance in real-time, and can manually adjust 

strategy parameters. The prediction results of the LSTM 

Prophet model on the test set are shown in Figure 4, 

which includes the TOTAL sequence of layer A and the 

four typical sequences with the best and worst 

performance in layers B and C. 

 

 
Figure 4: Prediction performance of LSTM-Prophet model test set for partial sequences 
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Table 2: Test set prediction error of LSTM-Prophet model 

 

Time series name MAXAPE MAPE VMAPE MAE RMSE 

TOTAL 13.78% 5.57% 3.03% 14479415 17248335 

AS 18.00% 9.79% 8.77% 13154851 15210839 

AF 21.14% 10.98% 11.67% 1267087 1612239 

EU 18.66% 8.80% 6.15% 4645406 6001694 

LA 19.17% 11.03% 11.85% 1005023 1176566 

NA 14.01% 6.44% 4.72% 3750251 4691954 

OA 20.26% 9.16% 8.39% 665989 797943 

As shown in Table 2, by combining LSTM with the 

Prophet residual term, the LSTM-Prophet model 

performs better on the sequence test set than the Prophet 

model alone.  

Figure 5 shows that the combined methods have a 

significant difference in MAPE values. The MAPE of the 

arithmetic mean combination is 5.03%, the MAPE of the 

entropy weight combination is 5.27%, and the MAPE of 

the reciprocal variance combination is the lowest, only 

3.57%. 

 

 
Figure 5: Average absolute error ratio of combined model 

 

 

Based on the experimental results presented in the 

absolute error ratio line chart, this study evaluated the 

predictive performance of the LSTM-Prophet fusion 

model. As illustrated in the Figure 6, over 10 time periods, 

the absolute error ratios of the four models exhibited 

significant differences. Among them, the Standard model 

demonstrated the largest fluctuation range and the highest 

value, with a peak close to 160, indicating its  

 

 

 

 

most unstable predictive performance. The LSTM model 

and the Prophet model showed relative improvement, but 

still fluctuated within the error ratio range of 20-40. 

Notably, the MIP curve representing the fusion model 

consistently maintained the lowest and most stable level, 

with the error ratio stabilized below 10, significantly 

outperforming other comparative models. This result 

intuitively demonstrates the effectiveness of the LSTM-

Prophet fusion architecture in reducing prediction errors, 

and its stable low-error characteristic provides a reliable 

decision-making foundation for subsequent inventory 

dynamic control.
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Figure 6: Absolute error ratio of combined model 

 

Based on the MAPE comparison results shown in 

Table 3, this experiment systematically evaluated the 

LSTM-Prophet fusion model. The experimental results 

indicate that the proposed LSTM-Prophet fusion model 

exhibits optimal prediction accuracy across all seven 

types of time series. Specifically, on the "TOTAL" 

aggregate sequence, the MAPE of the fusion model is 

5.57%, significantly lower than that of the single Prophet 

model (8.61%), the single LSTM model (19.07%), and  

 

the linear combination model (11.80%). Especially on the 

"LA" sequence with significant fluctuations, the fusion 

model reduced the prediction error from 19.26% for the 

single model to 11.03%, representing a 42.7% 

improvement. These results validate the effectiveness of 

the LSTM-Prophet fusion architecture in capturing 

complex temporal characteristics of e-commerce sales, 

providing a reliable predictive foundation for subsequent 

inventory dynamic control.

 

Table 3: Test set MAPE comparison of models 

 MAPE 

Time series name Single Prophet LSTM-Prophet Prophet + LSTM Linear Combination Single LSTM 

TOTAL 8.61% 5.57% 11.80% 19.07% 

AS 10.73% 9.79% 14.76% 18.80% 

AF 14.95% 10.98% 21.91% 29.96% 

EU 9.70% 8.80% 25.47% 44.42% 

LA 19.26% 11.03% 22.07% 26.04% 

NA 9.67% 6.44% 13.64% 18.94% 

OA 10.87% 9.16% 13.15% 16.21% 

 

Based on the comparison results of model prediction 

performance shown in Figure 7, this experiment 

systematically evaluated the anomaly detection 

capability of the LSTM-Prophet fusion architecture. The 

figure above presents the statistics of anomaly counts on 

10 nodes, where I R represents the actual number of 

anomalies and I F denotes the number of anomalies 

predicted by the model. The results indicate that the 

distribution trends of predicted and actual values are 

highly consistent across all nodes, and the numerical 

differences remain within a reasonable range. The ratio 

values in the figure below further verify the accuracy of 

the model, with the anomaly detection ratios for all nodes 

stably maintained within a reasonable range of 0.2 to 0.6, 

with nodes 3, 7, and 9 having ratios closest to the ideal 

value of 0.5. This experimental result confirms the high 

reliability of the LSTM-Prophet fusion model in 

identifying sales anomaly fluctuations, providing 

technical support for the subsequent establishment of an 

inventory dynamic regulation mechanism based on 

anomaly early warning.
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Figure 7: Model prediction effect diagram 

 

Based on the experimental results of prediction 

performance comparison shown in Figure 8, this study 

systematically evaluated the prediction performance of 

the LSTM-Prophet fusion model. The line chart results in 

the upper figure demonstrate that the model's predicted 

values (Probability curve) exhibit high consistency with 

the actual observed values (Actual curve) across the 

entire range of node counts (0-500), with the trajectories 

of the two curves largely overlapping. It is particularly 

noteworthy that the true anomalies (True Anomalies) are 

mainly concentrated in the range of node counts from 100 

to 300, while the number of false positives (False) from 

the model is small and evenly distributed, indicating that 

the model has high accuracy in anomaly detection. The 

scatter plot in the lower figure further reveals the 

relationship between node degree (Node Degree) and 

prediction score (Score). The data shows that when the 

node degree is within the range of 0.2-0.4, the model 

maintains optimal prediction stability (scores 

concentrated in the range of -0.2 to 0.0). This 

experimental result verifies that the LSTM-Prophet 

fusion architecture has reliable anomaly detection 

capability and prediction accuracy in e-commerce sales 

forecasting, providing an important basis for establishing 

precise inventory dynamic control strategies.

 

 
Figure 8: Comparison of prediction effect 
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Based on the experimental results of prediction 

performance comparison shown in Figure 9, this study 

systematically evaluated the prediction performance of 

the LSTM-Prophet fusion model. The line chart results in 

the upper figure demonstrate that the model's predicted 

values (Probability curve) exhibit high consistency with 

the actual observed values (Actual curve) across the 

entire range of node counts (0-500), with the trajectories 

of the two curves largely overlapping. It is particularly 

noteworthy that the true anomalies (True Anomalies) are 

mainly concentrated in the range of node counts from 100 

to 300, while the number of false positives (False) from 

the model is small and evenly distributed, indicating that 

the model has high accuracy in anomaly detection. The 

scatter plot in the lower figure further reveals the 

relationship between node degree (Node Degree) and 

prediction score (Score). The data shows that when the 

node degree is within the range of 0.2-0.4, the model 

maintains optimal prediction stability (scores 

concentrated in the range of -0.2 to 0.0). This 

experimental result verifies that the LSTM-Prophet 

fusion architecture has reliable anomaly detection 

capability and prediction accuracy in e-commerce sales 

forecasting, providing an important basis for establishing 

precise inventory dynamic control strategies.

 

 
Figure 9: Comparison of prediction accuracy 

 

According to the data analysis in Figure 10, the 

model performance reaches the best when the fifth group 

of parameters is combined. The combined time step is set 

to 72 and the hidden layer dimension is 64. At this time, 

MAPE and MAE of the model are the minimum values 

among the 30 groups of parameters, while R2 reaches the 

highest value, and all three evaluation indexes perform 

the best. 

 

 
Figure 10: Evaluation index of hyperparameter combination 

 

As shown in Figure 11, both the MAE/200 and 

MSE/100000 values were significantly lower than the 

other combinations, while the R2 values were 

significantly higher than all comparative data. Since 

smaller MAE and MSE represent better model 

performance, and larger R2 indicates better fitting effect, 

it can be determined that parameter combination 5 can 

make the model achieve optimal training effect. 
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Figure 11: Evaluation indexes of different parameter combinations 

 

5 Discussion 
The LSTM-Prophet fusion model demonstrated 

significant advantages in the experiment, with a mean 

absolute error (MAE) of 8.7, which was 29.3% and 17.1% 

lower than that of the single Prophet model (12.3) and 

LSTM model (10.5), respectively. The inventory turnover 

rate increased by 18.4%, and the stock-out rate decreased 

to 3.2%. However, the model performed poorly in new 

product forecasting (MAE increased to 15.2) and sudden 

market fluctuation scenarios, with errors increasing by 

40–50%. The model has good cross-category adaptability 

(MAPE for multiple categories <12%) and scalability, but 

it is highly dependent on high-quality historical data, 

sensitive to data missing and external emergencies, and 

faces the challenge of high computational complexity in 

hyperparameter tuning. 

Addressing the issue in current e-commerce sales 

forecasting where a single model struggles to balance 

linear trends and nonlinear fluctuations, and lacks 

statistical rigor, this study constructs an LSTM-Prophet 

fusion model. The aim is to verify, through a paired t-test, 

whether its prediction accuracy (MAE, MAPE, RMSE) is 

statistically significant (p<0.05) compared to a single 

model. Additionally, it reports the 95% confidence 

intervals for each evaluation metric to quantify 

uncertainty. Based on this, the prediction confidence 

intervals are integrated into the inventory dynamic 

control strategy, with the goal of increasing the inventory 

turnover rate by over 18% and controlling the stock-out 

rate within 5%. This forms a statistically reliable and 

decision-making transparent intelligent supply chain 

optimization scheme. 

The LSTM-Prophet fusion model constructed in this 

study adopts a dual-channel collaborative architecture: 

first, the Prophet model is utilized to explicitly 

decompose the sales time series, extracting linear 

components such as trend terms, seasonal terms, and 

holiday effects; subsequently, the residual sequence that 

Prophet fails to fit is input into the LSTM network, 

through its gating mechanism, to learn nonlinear dynamic 

features; finally, the prediction results are obtained 

through weighted fusion. The model hyperparameters are 

automatically tuned through Bayesian optimization, with 

the number of LSTM layers ranging from 1 to 3, the 

number of hidden units ranging from 32 to 256, and the 

Dropout rate set between 0.1 and 0.5. Training is 

conducted using 150,000 daily sales data from e-

commerce platforms over a three-year period, covering 

multimodal features such as product attributes, 

promotional activities, and user behaviors. Spatio-

temporal features are constructed through methods such 

as sliding window statistics and Fourier transform. 

Experiments show that this architecture reduces the mean 

absolute error (MAE) on the test set to 8.7, which is 29.3% 

and 17.1% lower than that of the single Prophet and 

LSTM models, respectively. The inventory turnover rate 

is increased by 18.4%, and the out-of-stock rate is 

controlled at 3.2%. 

 

6 Conclusion 
This paper proposes an e-commerce product sales 

forecasting and inventory dynamic control model based 

on the LSTM-Prophet fusion architecture, aiming to 

address the issue of insufficient accuracy in traditional 

forecasting methods for complex e-commerce scenarios. 

By combining the efficiency of LSTM in time series 

modeling with the advantages of Prophet in detecting 

seasonal and trend features, the model significantly 

improves the accuracy of sales forecasting and optimizes 

the inventory dynamic control strategy. 

In the experiment, we selected the product sales data 

of a large e-commerce platform for a three-year period, 

encompassing a total of 1,000 products across five 

categories, and verified the model's performance. The 

experimental results show that: 

(1) In the sales forecasting task, the average absolute 

error MAE of the LSTM-Prophet fusion model is 12.3, 

which is 23.5% lower than that of the single LSTM model 

and 31.8% lower than that of the Prophet model, proving 

the effectiveness of the fusion architecture. 

(2) For the forecast of seasonal commodities, the 

forecast error of the model during the peak holiday period 

is only 8.7, which is 42.1% lower than that of the 
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traditional ARIMA model. 

(3) In the inventory dynamic control experiment, the 

inventory turnover rate based on the forecast results 

increased to 5.2 times/year, the inventory backlog cost 

decreased by 18.7%, and the out-of-stock rate decreased 

to 3.4%, which was significantly better than the static 

inventory strategy. 

The core limitation of the LSTM Prophet fusion 

model lies in its excessive reliance on historical data and 

vulnerability to sudden external events, which can easily 

lead to inventory backlog or shortage. The solution lies in 

enhancing the adaptability and system resilience of the 

model: firstly, introducing external signals such as social 

media trends and news events to enable the model to 

perceive market mutations; Secondly, establish a 

mechanism for quantifying prediction uncertainty and 

manual intervention, and initiate manual decision-

making when confidence is low; The third is to adopt a 

layered prediction strategy, using complex models for 

core products and lightweight models for long tail 

products to improve efficiency; Ultimately, the prediction 

will be linked with the flexible supply chain, and safety 

stock will be dynamically adjusted based on the 

confidence level of the prediction to construct an 

intelligent inventory control system that is resistant to 

impact. 

In future research, we will further optimize multi-

category collaborative forecasting and explore a real-time 

data-driven adaptive regulation mechanism to provide e-

commerce companies with efficient sales forecasting and 

inventory management solutions. 

 

Table 4: Nomenclature table 

 

Category 
Abbreviation/Sym

bol 

Full Name / 

Description 

Model Names 

LSTM 

Long Short-

Term Memory 

Network 

Prophet 

Facebook's 

Open-Source 

Time Series 

Forecasting 

Model 

LSTM-Prophet 

The Hybrid 

Model 

Proposed in 

This Study 

Model Variables 

y(t) 

Observed 

Value at 

Time t(e.g., 

Sales) 

g(t),s(t),h(t) 

Trend, 

Seasonal, and 

Holiday 

Category 
Abbreviation/Sym

bol 

Full Name / 

Description 

Components 

of the Prophet 

Model 

Ct, ht 

Cell State and 

Hidden State 

of LSTM 

ft, it, ot 

Forget Gate, 

Input Gate, 

and Output 

Gate of LSTM 

Evaluation 

Metrics 

MAE 
Mean 

Absolute Error 

MAPE 

Mean 

Absolute 

Percentage 

Error 

RMSE 
Root Mean 

Square Error 

R² 
Coefficient of 

Determination 

Inventory 

Metrics 

Inventory 

Turnover Rate 

Measure of 

Inventory 

Flow 

Efficiency 

Stockout Rate 

Probability of 

Inventory 

Shortage 

Safety Stock 

Buffer Stock 

for Dealing 

with 

Uncertainty 
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