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With the rapid development of e-commerce, accurately predicting product sales and achieving dynamic
inventory control have become key challenges for enterprises to optimize supply chain management. The
traditional Prophet model excels at capturing long-term trends and seasonal characteristics in time series,
but has limited modeling capabilities for complex nonlinear relationships. Although LSTM neural
networks can effectively learn the dynamic dependencies of sequential data, they tend to overlook explicit
temporal patterns. This study constructs an LSTM-Prophet fusion model, first utilizing Prophet to
decompose the trends, seasonality, and holiday effects of sales data, and then inputting the residuals into
LSTM for nonlinear correction. Finally, the prediction accuracy is improved through weighted fusion.
Experiments based on 150,000 daily sales data from an e-commerce platform over three years show that
the average absolute error of the fusion model is reduced to 8.7, which is 29.3% and 17.1% lower than
that of the single Prophet (12.3) and LSTM (10.5) models, respectively, and the root mean square error
decreases by 22.6%. In inventory control simulations, this model drives an 18.4% increase in inventory
turnover rate and reduces the out-of-stock rate to 3.2%, effectively balancing prediction accuracy and
computational efficiency. However, the model still relies on high-quality historical data, has high
computational complexity, and has limited adaptability to new product launches and emergencies.

Povzetek: Predstavljen je hibridni model LSTM-Prophet za napoved prodaje in dinamicno upraviljanje
zalog, ki z razgradnjo ¢asovnih vzorcev (trend/sezona/prazniki) in nelinearno korekcijo z LSTM izboljsa
napovedno tocnost ter v simulacijah poveca obracanje zalog in zmanjSa izpade, a je odvisen od

kakovostnih podatkov in slabse prilagodljiv novim ali izrednim razmeram.

1 Introduction

As e-commerce rapidly evolves, predicting product sales
and controlling stock levels have turned into essential
concerns for business management [1].

Accurate sales forecasting optimizes inventory,
reduces costs, enhances supply chain response speed, and
strengthens corporate competitiveness [2, 3]. However,
sales data in an e-commerce environment often show
complex time series characteristics, including seasonality,
trend, and sudden fluctuations, which makes it difficult
for traditional forecasting methods to meet the demand of
high accuracy [4]. A single prediction model often cannot
fully capture these changeable patterns. Therefore,
exploring a more robust and adaptable fusion prediction
architecture has become the focus of current research [5].

Over the past few years, deep learning has shown
promise in analyzing sequential data, particularly with
long-term short-term memory networks (LSTM) used for
predicting sales due to their handling of long-range
dependencies [6, 7]. Conventional methods like Prophet
are good at managing cyclical and trend variations but
face challenges with nonlinear modeling [8]. Therefore,
it's crucial to enhance online sales prediction accuracy by

combining LSTM's long-range dependency management
with Prophet's cyclical and trend handling. This hybrid
model should be capable of simultaneously modeling
both complex nonlinear relationships and explicit
seasonal trends, as this integration addresses the key
requirements for improving prediction precision in this
domain.

The inventory management of e-commerce
platforms also faces severe challenges [9, 10]. Traditional
inventory strategies are often based on static thresholds
or simple historical averages, which makes it difficult to
cope with the uncertainty caused by sales fluctuations
[11]. Dynamic inventory control needs to rely on high-
precision forecast results and adjust replenishment
strategies in combination with real-time sales data to
avoid inventory backlogs or shortages. However, most
existing inventory optimization methods fail to fully
utilize the uncertainty information of the forecasting
model, resulting in a lack of robustness in decision-
making [12]. Therefore, based on building a sales
forecast model, it is of great significance to further
explore the dynamic inventory control mechanism based
on forecast confidence to enhance the intelligence level
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of the supply chain.

This study proposes a hybrid LSTM-Prophet
framework, aiming to combine the nonlinear modeling
advantages of deep learning with the clarity of traditional
time series decomposition techniques to improve the
accuracy of e-commerce product sales forecasting.
Through the multi-modal feature fusion mechanism, the
architecture effectively integrates the high-order time
series features extracted by LSTM with the seasonal trend
components decomposed by Prophet, thereby enhancing
the model's adaptability to complex sales models. Aiming
to address the inventory optimization problem, this study
proposes a dynamic control strategy based on forecast
uncertainty. This strategy enables adaptive adjustment of
the safety stock level by quantifying the confidence
interval of forecast results, thereby facilitating refined
control of inventory costs.

The main contribution of this study is to propose an
end-to-end LSTM-Prophet fusion forecasting framework
and verify its superiority in multi-class e-commerce
product sales forecasting tasks through experiments. At
the same time, the proposed dynamic inventory control
model can adaptively adjust the inventory strategy
according to the prediction uncertainty, thereby
minimizing inventory costs while maintaining a high
service level. This research not only provides new
methodological support for e-commerce sales forecasts
but also offers a theoretical basis and practical guidance
for designing an intelligent inventory management
system.

The e-commerce sales forecasting model based on
the LSTM-Prophet fusion architecture achieves more
accurate demand forecasting by combining the
advantages of Prophet in handling trends, seasonality, and
holiday effects, as well as the ability of LSTM to capture
long-term dependencies and nonlinear fluctuations. The
inventory control module dynamically adjusts safety
stock and reorder points accordingly, optimizing
inventory levels. However, this model has limitations
such as high computational complexity, strict
requirements for data quality, dependence on experience
for parameter tuning, and limited effectiveness in dealing
with sudden fluctuations or new product forecasting.

The core assumption of the model research is that
the fusion model can significantly improve sales
forecasting accuracy by combining Prophet's explicit
decomposition ability for trend, seasonal, and holiday
effects, as well as LSTM's dynamic modeling advantage
for nonlinear residuals; The multimodal feature fusion
mechanism can enhance the model's ability to represent
heterogeneous e-commerce data; The dynamic inventory
strategy based on predictive uncertainty can adaptively
adjust safety stock, reducing stockout rates while
improving inventory turnover; This model exhibits
stronger robustness in seasonal peak and promotional
scenarios; Moreover, hyperparameter optimization has a
significant impact on model performance.

The current sales forecasting and inventory
management in the e-commerce field face core
challenges: a single model is difficult to accurately
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capture the complex time-series characteristics of sales
volume (such as long-term trends, seasonality, and
promotional impacts), leading to significant prediction
deviations. This, in turn, makes static inventory strategies
unable to adapt to dynamic market demands, easily
causing inventory backlog or stock-out risks. To address
this issue, this study aims to develop a LSTM-Prophet
fusion model to enhance prediction accuracy and
construct a dynamic inventory control closed-loop
system based on prediction results. Its measurable
specific objectives include: 1) wverifying that the
prediction error (such as MAPE, RMSE) of the fusion
model is significantly reduced compared to that of the
single model; 2) integrating these prediction results into
inventory decisions to achieve simultaneous optimization
of key indicators (such as inventory turnover rate, service
level, and total cost).

2 Theoretical basis and mechanism
analysis of LSTM-Prophet fusion
prediction

2.1 Decomposition principle of prophet
model in seasonal business time series

High-efficiency time series prediction tool - Prophet
model, easy to operate and quick to fit [13, 14]. It
supports Python and R language implementation by
decomposing time series and combining machine
learning methods for data prediction. The model can not
only analyze data trends, but also automatically identify
and eliminate outliers, thus improving the prediction
accuracy [15].

The Prophet model requires input data containing
two columns, where the ds column represents time and
the y column corresponds to the value. The model
decomposes the time series into four components: trend
term growth, period term seasonality, holiday term
holidays and error term [16]. The addition mode
decomposition formula (1) is:

y(t)=g(t)+s(t)+h(t)+s (1)

The observed value y(z) of the time series at time ¢
can be decomposed into multiple components. Among
them, the trend term g(#) describes the aperiodic variation
characteristics of the series, while the periodic term s(?)
describes the seasonal fluctuation of different time scales
including day, week, month and year. Furthermore, the
holiday term A(?) reflects the potential impact on the time
series of specific holidays, which may last one day or
more. The error term ¢ in the model represents an
unpredicted random fluctuation, which is usually
assumed to obey a normal distribution.

Trend terms can be modeled using logistic
regression or piecewise linear functions [17, 18]. Where
the mathematical formula (2) of the logistic regression
function is:
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C
g(t)=m(2)

In the model, C represents the saturation value of
quantity growth, k represents the growth rate, m is the
initial offset, and ¢ is the time variable. Considering that
the saturation value C and the growth rate k£ will change
dynamically with time ¢, the change point s;(/<j<S) is
introduced to capture the key turning point of the data.
When the quantity reaches the change point, the growth
rate will change by J;, and the following function (3) is
constructed accordingly:

aj(t):{l'tzsj 3

0,otherwise
At this time, the growth rate & satisfies equation (4):
t=k+a(t)' 5(4)

The offset m is adjusted to equation (5):

k+2.6;
Vi =(Sj _m_gj‘,?/l )X(l_#ié.j)(s)
1<j

After substituting (4) and (5) into (2), formula (6)
can be obtained:
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c(t) ;
1+exp(—(k+a(t)T5)x(t—(m+a(t)T7)))( )

g(t)=

The basic expression (7) for a linear function is as
follows:

g(t)=[k+a' ()s1t+[(m+a’(t)y;1(7)
Where y,=—s;0;.

2.2 Feature extraction mechanism of LSTM
Networks for nonlinear purchase behavior

When processing long sequence data, traditional RNNs
face the problems of gradient vanishing and explosion
[19, 20]. To solve this problem, LSTM network can
effectively distinguish the importance of information by
introducing memory units and gating mechanisms, and
preserve key features for a long time while ignoring
irrelevant information [21, 22].

Figure 1 presents the core structure of Long Short-
Term Memory (LSTM) networks, including the input
gate, forget gate, and output gate. The input gate regulates
the flow of information, the forget gate filters out
outdated information, and the output gate controls the
output information [23, 24]. These three gate structures
work together to complete the dynamic management of
memory unit information.
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Figure 1: LSTM structure
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LSTM is responsible for the storage and
transmission of long-term information, and its operation
mechanism is similar to a conveyor belt, which can
continuously maintain the integrity of information [25].
The forgetting gate module processes the hidden state /..
; and the input x; through the Sigmoid function to
generate a numerical value between 0 and 1, where W,
represents the weight matrix and by is the bias vector.
When the output value approaches 0, the corresponding
information in the cell state will be discarded; If it is close
to 1, the relevant information will be completely retained
and participate in the subsequent calculation process [26].
The calculation process is shown in equation (8).

fi=o(W; x[h.1,x 1+b, ) (8)

After receiving the hidden state 4,.; at the previous
time and the current input x;, the input gate structure first
calculates the information update ratio through the
Sigmoid function, and at the same time uses the fanh
function to nonlinear transform the current input. After
the output results of these two functions are multiplied
together, it is the effective information that finally needs
to be updated to the cell state. The specific calculation
process is given by formulas (9)-(11).

i =o(W - [.,% 1+0)(9)
ét :tanhONc : [htl X ] +bc ) (10)
C,=f, xC,,+i, xC, (11)

The selective retention of information is achieved by
the ratio i; and the current information C, where i, controls
the memory ratio and C, is the currently received
information. The hyperbolic tangent function tanh
participates in the calculation process. The current
information is retained after being filtered by i,xC,, and
the previous time information is selectively retained by
fixCr1. These two parts are added together to form a new
unit state.

2.3 The value and core contribution of

research

This research proposes an innovative LSTM Prophet dual
channel fusion architecture to meet the challenge of
single model in e-commerce sales forecasting, which is
difficult to take into account the linear trend and
nonlinear complex model. Its necessity lies in solving the
problem of insufficient accuracy of traditional methods in
dealing with complex scenarios such as seasonality and
sudden promotional changes, as well as the lag defect of
static inventory strategies. The novelty of the research
lies in the mechanism fusion and strategy innovation:
explicit temporal decomposition is performed through
Prophet, and the nonlinear features of residuals are
learned by LSTM, achieving complementary advantages;
Furthermore, a dynamic inventory control model based
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on predictive confidence intervals was constructed,

enabling safety stock to adaptively adjust with

uncertainty.

Table 1: Comparison of sales forecasting and inventory
control methods

Traditional Single Proposed
ML LSTM-
Aspect Methods
(ARIMA) Models Prophet
(LSTM) Fusion
Neural Combines
. temporal
Linear networks o
- . decompositio
Core statistics for  capturin .
. n with long-
Approach stationary g non-
. . term
series linear dependenc
patterns O penaency
learning
Forecast Lower Moierat Higher
0 -
Accuracy (MAP]§ Z15% (MAPE (M?";])E ’
10-18%) o
Inventory  Slow turnover, Improve Fast turnover,
Performanc high stockout p d low stockout
€ rate rate
Precise
Simple, fast Handles forecasting,
Strength . complex strong
computation 3
patterns dynamic
control
Limited
Fails with long- Higher model
Weakness complex term complexit
fluctuations  temporal plexity
learning

Table 1 shows that the LSTM-Prophet fusion model
proposed in this study has achieved significant
breakthroughs in e-commerce sales forecasting and
inventory control. This model leverages complementary
strengths: the Prophet component accurately analyzes
trends, seasonality, and promotional effects in time series,
while the LSTM network effectively captures nonlinear
features and long-term dependencies. Experiments
demonstrate that this fusion architecture improves
prediction accuracy (MAPE) to 5-8%, and significantly
reduces the out-of-stock rate through a dynamic
inventory control mechanism, providing more accurate
decision support for e-commerce enterprises.
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3 Construction method of fusion
forecasting model for inventory
optimization

3.1 Multimodal e-commerce data fusion and
feature engineering

In the e-commerce product sales forecasting and
inventory dynamic control model, multi-modal data
fusion and feature engineering are key links in building a
high-performance  forecasting  framework.  Data
modalities in e-commerce scenarios are significantly
heterogeneous, covering structured transaction data,
unstructured user Dbehavior data, and external
environment variables. Structured data primarily includes
historical sales time series, commodity attributes, and
inventory level indicators, which typically exhibit clear
periodicity and trend characteristics. Unstructured data
involves the emotional polarity of user comments, the
heat map of page browsing trajectories, and the word
embedding representation of search keywords, which
requires feature extraction through natural language
processing and computer vision technology. External
environmental variables include macroeconomic
indicators, seasonal weather patterns, and the price
fluctuation index of competing products. Such data have
important reference value for long-term forecasting.

The core of feature engineering lies in solving the
problem of spatiotemporal alignment and representation
fusion of multi-source data. Aiming at time series data, a
multi-scale sliding window statistics method is used to
extract lag features, rolling statistics, and time series
difference features, and the Fourier transform is used to
capture hidden periodic components. For high-
dimensional sparse user behavior data, the user intention
vector is formed by a weighted aggregation of the
attention mechanism, and a graph neural network models
the collaborative filtering relationship among goods. In
terms of cross-modal feature interaction, the gated feature
cross-layer is designed to dynamically adjust the
contribution weights of different modal features, such as
using product operations to capture the nonlinear
coupling effect between price sensitivity and user income
level. In order to eliminate the influence of dimensional
differences on  model  convergence,  robust
standardization is adopted for numerical features, and
supervised representation learning is carried out for
category features through Target Encoding.

The dataset used in this study is sourced from real e-
commerce transaction data on the Tianchi platform,
encompassing multi-dimensional information such as
user behavior, product information, transaction orders,
and inventory dynamics. It possesses broad industry
representativeness and practical application value,
effectively supporting the construction and validation of
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models for the LSTM-Prophet fusion architecture in the
field of e-commerce sales forecasting and inventory
control

The construction of spatiotemporal features requires
special consideration of the particularity of e-commerce
scenarios. Construct geospatial characteristics at the
commodity level, including GDP quantiles within the
coverage radius of regional warehouses, logistics
timeliness baselines, and distribution density of
competing products. In the time dimension, in addition to
the conventional annual, monthly, and daily cycle
characteristics, it is also necessary to introduce
promotional calendar event markers and dummy
variables of platform traffic support policies. Aiming at
the cold start problem of new products, the cross-
commodity migration features are designed, and the
category similarity matrix is used to migrate the sales
model of mature products to the new product feature
space.

Anomaly detection and data correction mechanisms
are crucial links in ensuring feature quality. The improved
STL decomposition algorithm is used to identify outliers
in the sales series, and root cause analysis is conducted
by combining commodity off-shelf records and platform
system fault logs. For missing data, multiple filling is
performed based on commodity life cycle curve fitting
and a similar interpolation method for similar
commodities. In the feature selection stage, the dynamic
correlation between features and target variables is
evaluated by calculating Time-varying Mutual
Information, and the time series evolution law of feature
contribution is analyzed by SHAP value, and finally, a
feature subset with spatiotemporal adaptability is formed.
This feature engineering scheme lays a theoretical
foundation for the hierarchical feature utilization of the
subsequent LSTM-Prophet hybrid model, in which the
shallow network focuses on capturing local time series
patterns, and the deep network is responsible for
modeling global trends and cross-modal relationships.

3.2 Dual-channel collaborative architecture
design of LSTM-Prophet

Forecasting complex, layered time series data with a
single model often results in limited accuracy in dynamic
settings. In contrast, the combined model can integrate
more comprehensive  time  series information,
significantly improving prediction accuracy. The Prophet
model excels in linear feature extraction by decomposing
trend, period, and special event components, and is
particularly adept at handling trend change points and
outliers. The LSTM-Prophet model is suitable for long-
term nonlinear time series prediction, combining various
adjustment techniques for hierarchical collaborative
prediction. The process is shown in Figure 2.
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Figure 2: Flow chart of LSTM-Prophet hierarchical prediction model

The LSTM Prophet fusion model constructed in this
study adopts a hierarchical collaborative prediction
architecture. Firstly, the Prophet model serves as the
foundational module responsible for explicitly
decomposing the sales time series, extracting
deterministic components including long-term trends,
weekly/monthly/annual seasonality, and holiday effects.
Its advantage lies in the ability to quickly identify and
adapt to structural changes and outliers in time series,
with good interpretability. Subsequently, the remaining
sequences, modeled by Prophet and including nonlinear
changes and complex interrelations not considered by the
linear model, are used as inputs for the LSTM network.
The unique gating mechanism of LSTM and its cell state
enable it to be adept at learning long-term dependencies
and dynamic patterns in the sequence, thereby improving
the predictive ability for segments that Prophet could not
explain. Finally, the outputs of the two models are fused
through weighting or direct addition to form the final
point prediction result. This dual pathway structure
retains the interpretability and stability of traditional time
series models, while incorporating the powerful fitting
ability of deep Ilearning for complex nonlinear
relationships.

To address the challenge that single models struggle
to capture both linear trends and nonlinear fluctuations in
e-commerce sales forecasting, this study proposes a
weighted residual correction-based LSTM-Prophet
fusion mechanism. The core workflow is as follows: First,
the Prophet model decomposes the original sales series
y(t)into its trend, seasonality, and holiday components,
yielding the initial prediction yp(t)=g(t)+s(t)+h(t). The
residual series €(t)=y(t)— yP(t), which represents patterns
unexplained by Prophet, is then fed into the LSTM
network to learn its nonlinear dynamics, producing the
residual prediction €(t). Finally, the overall forecast is

obtained via weighted fusion: y«(t)= y, (t)+ie(t), where A
is an adaptive weight. This mechanism effectively
combines Prophet's explicit temporal decomposition with
LSTM's capability for modeling nonlinear residuals,
providing a more accurate foundation for subsequent
dynamic inventory control.

After constructing a time series model, it is crucial
to evaluate its predictive accuracy and efficiency.
Typically, we would input the validation dataset into the
model and compare the predicted values with the actual
observed values. In this paper, the following key
indicators are used for error analysis, where y; represents
the actual observed value of the verification set, y; is the
predicted value of the model, and # represents the sample
size of the verification set.

At the feature construction level, this study fully
considers multi-source heterogeneous data in e-
commerce scenarios. In addition to historical sales
sequences, it also integrates product attributes (such as
category, price range, lifecycle stage), promotional
activity information (discount intensity, promotion type),
user behavior indicators (click through rate, add in rate),
and external environmental variables (such as weather
data, macroeconomic index). To process these
multimodal data, a combination of feature engineering
and embedding techniques was adopted: for categorical
features (such as product ID and category), embedding
layers were used to map them into low dimensional dense
vectors; For temporal features, statistical measures such
as mean, standard deviation, and skewness are calculated
through sliding windows to capture recent dynamics;
When processing text data, pre-trained models such as
BERT are often used to extract features, and attention
mechanisms are introduced to dynamically focus on the
importance of different time points and feature
dimensions, enhancing the discriminative ability of



A Hybrid LSTM-Prophet Model for Sales Forecasting and...

feature expression.

3.3 Model evaluation indicators

During the model evaluation phase, it is usually necessary
to use a validation dataset for evaluation, and the model
performance is determined by the difference between the
predicted results and the actual data. For time series
prediction problems, commonly used evaluation
indicators include key parameters such as the squared
absolute error. The Mean Absolute Error (MAE)
highlights the average size of the difference between the
predicted values and the actual values. The calculation
formula is shown in equation (12), which clearly
indicates the accuracy of the model's predictive ability.

_ la, —c,|+|a, —c,|+...+|a, —c,|
n

(12)

eMAE

The Mean Absolute Percentage Error (MAPE)
measures the relative error between actual values and
predicted values; the calculation formula is shown in
Equation (13). This indicator reflects the relative
magnitude of prediction errors and is commonly used to
evaluate the accuracy of models.

la —c

18 i
Bware ==, ——— (13
nZ —(13)

Root Mean Square Error (RMSE) is used to measure
the deviation between actual values and predicted values,
obtained by calculating the square root of the average of
the squared errors. It reflects the overall error of the
prediction, and the specific calculation formula can be
seen in equation (14).

1 N
Cuse =«,/ﬁzl(a—c)z (14)

In the above formula, the predicted sequence length
is n, the real sales quantity is a, and the predicted value is
¢. RMSE can measure the square error of model
prediction results and provide a certain basis for
evaluating model performance.

The upper limit of the interval is used as the
replenishment trigger point for aggressive strategies to
cope with potential demand peaks, while the lower limit
of the interval serves as the benchmark for conservative
strategies to control inventory costs. The safety stock
level is dynamically adjusted based on the width of the
interval - automatically increasing the safety stock buffer
during periods of high uncertainty such as promotional
periods or new product launches, and reducing the
inventory level during periods of stable sales. This
mechanism achieves a shift from static thresholds to
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adaptive inventory control based on forecast uncertainty.

4 Experiment and results analysis

Based on the sales forecast results, this study designed a
data-driven dynamic inventory control strategy. The core
of this strategy lies in introducing a "prediction
uncertainty" quantification mechanism: dynamically
adjusting the safety stock level by calculating the
confidence interval of the predicted value (such as 90%
or 95% interval). When the prediction uncertainty is high
(such as in the early stage of promotion or new product
launch), the system will automatically increase the safety
stock threshold to buffer the potential shortage risk
caused by demand fluctuations; On the contrary, when the
prediction confidence is high, the inventory level should
be appropriately lowered to reduce capital occupation and
storage costs. The optimization goal of inventory strategy
is to minimize the total cost, including inventory holding
cost, out of stock loss cost, and order processing cost.

This study employs Bayesian optimization for
automatic hyperparameter tuning, conducting efficient
searches for the number of LSTM layers (1-3), the
number of hidden units (32-256), the dropout rate (0.1-
0.5), and the seasonal parameters of Prophet, with the
goal of minimizing the weighted mean absolute
percentage error (WMAPE). Model evaluation
comprehensively  considers  prediction  accuracy
(WMAPE, RMSE), inventory control effectiveness (out-
of-stock rate <5%, turnover rate >10 times/year), and
computational efficiency, and selects the optimal model
configuration through a weighted scoring method.

In the case of a certain emerging beauty e-commerce
platform, facing the cold start scenario of lacking
historical data for 50 new products, the LSTM-Prophet
fusion model demonstrated significant advantages. Test
results showed that the first-month forecasted weighted
mean absolute percentage error (WMAPE) was 18.5%,
which was 14.3 and 5.6 percentage points higher than that
of the ARIMA model (32.8%) and the single LSTM
model (24.1%), respectively. In terms of inventory
control, the out-of-stock rate was controlled at 6.2%,
significantly lower than the control group's 15.7% and
10.3%. Meanwhile, the inventory turnover rate reached
9.8 times per year. Especially during the Double 11
shopping festival, the model accurately predicted the
sales peak of three popular products, enabling advance
stock preparation and avoiding potential out-of-stock
losses worth 500,000 yuan, thus verifying the
effectiveness and practicality of this architecture in cold
start scenarios.

Figure 3 clearly shows that the loss value drops
sharply in the early stages of training, indicating that the
model quickly grasps the main features of the data. As
training progresses, the loss decline rate slows down,
indicating that the model begins to capture more subtle
data patterns.
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Figure 3: Training loss function result

This study uses Redis (Remote Dictionary Server)
cache to predict high-frequency access results and
inventory status. The model is deployed in the form of
Docker containers, relying on Kubernetes to achieve
elastic scaling to meet the high concurrency prediction
needs during the e-commerce promotion period. The
front-end decision board integrates a visualization

module that supports operators to monitor and predict
performance in real-time, and can manually adjust
strategy parameters. The prediction results of the LSTM
Prophet model on the test set are shown in Figure 4,
which includes the TOTAL sequence of layer A and the
four typical sequences with the best and worst
performance in layers B and C.
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Figure 4: Prediction performance of LSTM-Prophet model test set for partial sequences
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Table 2: Test set prediction error of LSTM-Prophet model
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Time series name MAXAPE MAPE VMAPE MAE RMSE
TOTAL 13.78% 5.57% 3.03% 14479415 17248335
AS 18.00% 9.79% 8.77% 13154851 15210839
AF 21.14% 10.98%  11.67% 1267087 1612239
EU 18.66% 8.80% 6.15% 4645406 6001694
LA 19.17% 11.03%  11.85% 1005023 1176566
NA 14.01% 6.44% 4.72% 3750251 4691954
OA 20.26% 9.16% 8.39% 665989 797943

As shown in Table 2, by combining LSTM with the
Prophet residual term, the LSTM-Prophet model
performs better on the sequence test set than the Prophet
model alone.

Figure 5 shows that the combined methods have a

significant difference in MAPE values. The MAPE of the
arithmetic mean combination is 5.03%, the MAPE of the
entropy weight combination is 5.27%, and the MAPE of
the reciprocal variance combination is the lowest, only
3.57%.

Correlation of Selected Measures
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Figure 5: Average absolute error ratio of combined model

Based on the experimental results presented in the
absolute error ratio line chart, this study evaluated the
predictive performance of the LSTM-Prophet fusion
model. As illustrated in the Figure 6, over 10 time periods,
the absolute error ratios of the four models exhibited
significant differences. Among them, the Standard model
demonstrated the largest fluctuation range and the highest
value, with a peak close to 160, indicating its

most unstable predictive performance. The LSTM model
and the Prophet model showed relative improvement, but
still fluctuated within the error ratio range of 20-40.
Notably, the MIP curve representing the fusion model
consistently maintained the lowest and most stable level,
with the error ratio stabilized below 10, significantly
outperforming other comparative models. This result
intuitively demonstrates the effectiveness of the LSTM-
Prophet fusion architecture in reducing prediction errors,
and its stable low-error characteristic provides a reliable
decision-making foundation for subsequent inventory
dynamic control.
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Figure 6: Absolute error ratio of combined model

Based on the MAPE comparison results shown in
Table 3, this experiment systematically evaluated the
LSTM-Prophet fusion model. The experimental results
indicate that the proposed LSTM-Prophet fusion model
exhibits optimal prediction accuracy across all seven
types of time series. Specifically, on the "TOTAL"
aggregate sequence, the MAPE of the fusion model is
5.57%, significantly lower than that of the single Prophet
model (8.61%), the single LSTM model (19.07%), and

the linear combination model (11.80%). Especially on the
"LA" sequence with significant fluctuations, the fusion
model reduced the prediction error from 19.26% for the
single model to 11.03%, representing a 42.7%
improvement. These results validate the effectiveness of
the LSTM-Prophet fusion architecture in capturing
complex temporal characteristics of e-commerce sales,
providing a reliable predictive foundation for subsequent
inventory dynamic control.

Table 3: Test set MAPE comparison of models

MAPE
Time series name  Single Prophet =~ LSTM-Prophet = Prophet + LSTM Linear Combination  Single LSTM
TOTAL 8.61% 5.57% 11.80% 19.07%
AS 10.73% 9.79% 14.76% 18.80%
AF 14.95% 10.98% 21.91% 29.96%
EU 9.70% 8.80% 25.47% 44.42%
LA 19.26% 11.03% 22.07% 26.04%
NA 9.67% 6.44% 13.64% 18.94%
OA 10.87% 9.16% 13.15% 16.21%

Based on the comparison results of model prediction
performance shown in Figure 7, this experiment
systematically evaluated the anomaly detection
capability of the LSTM-Prophet fusion architecture. The
figure above presents the statistics of anomaly counts on
10 nodes, where I R represents the actual number of
anomalies and I F denotes the number of anomalies
predicted by the model. The results indicate that the
distribution trends of predicted and actual values are
highly consistent across all nodes, and the numerical
differences remain within a reasonable range. The ratio

values in the figure below further verify the accuracy of
the model, with the anomaly detection ratios for all nodes
stably maintained within a reasonable range of 0.2 to 0.6,
with nodes 3, 7, and 9 having ratios closest to the ideal
value of 0.5. This experimental result confirms the high
reliability of the LSTM-Prophet fusion model in
identifying sales anomaly fluctuations, providing
technical support for the subsequent establishment of an
inventory dynamic regulation mechanism based on
anomaly early warning.
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Based on the experimental results of prediction
performance comparison shown in Figure 8, this study
systematically evaluated the prediction performance of
the LSTM-Prophet fusion model. The line chart results in
the upper figure demonstrate that the model's predicted
values (Probability curve) exhibit high consistency with
the actual observed values (Actual curve) across the
entire range of node counts (0-500), with the trajectories
of the two curves largely overlapping. It is particularly
noteworthy that the true anomalies (True Anomalies) are
mainly concentrated in the range of node counts from 100
to 300, while the number of false positives (False) from
the model is small and evenly distributed, indicating that
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Figure 7: Model prediction effect diagram

the model has high accuracy in anomaly detection. The
scatter plot in the lower figure further reveals the
relationship between node degree (Node Degree) and
prediction score (Score). The data shows that when the
node degree is within the range of 0.2-0.4, the model
maintains  optimal  prediction  stability  (scores
concentrated in the range of -0.2 to 0.0). This
experimental result verifies that the LSTM-Prophet
fusion architecture has reliable anomaly detection
capability and prediction accuracy in e-commerce sales
forecasting, providing an important basis for establishing
precise inventory dynamic control strategies.
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Based on the experimental results of prediction
performance comparison shown in Figure 9, this study
systematically evaluated the prediction performance of
the LSTM-Prophet fusion model. The line chart results in
the upper figure demonstrate that the model's predicted
values (Probability curve) exhibit high consistency with
the actual observed values (Actual curve) across the
entire range of node counts (0-500), with the trajectories
of the two curves largely overlapping. It is particularly
noteworthy that the true anomalies (True Anomalies) are
mainly concentrated in the range of node counts from 100
to 300, while the number of false positives (False) from
the model is small and evenly distributed, indicating that
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the model has high accuracy in anomaly detection. The
scatter plot in the lower figure further reveals the
relationship between node degree (Node Degree) and
prediction score (Score). The data shows that when the
node degree is within the range of 0.2-0.4, the model
maintains  optimal  prediction  stability  (scores
concentrated in the range of -0.2 to 0.0). This
experimental result verifies that the LSTM-Prophet
fusion architecture has reliable anomaly detection
capability and prediction accuracy in e-commerce sales
forecasting, providing an important basis for establishing
precise inventory dynamic control strategies.
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Figure 9: Comparison of prediction accuracy

According to the data analysis in Figure 10, the
model performance reaches the best when the fifth group
of parameters is combined. The combined time step is set
to 72 and the hidden layer dimension is 64. At this time,

MAPE and MAE of the model are the minimum values
among the 30 groups of parameters, while R2 reaches the
highest value, and all three evaluation indexes perform
the best.
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Figure 10: Evaluation index of hyperparameter combination

As shown in Figure 11, both the MAE/200 and
MSE/100000 values were significantly lower than the
other combinations, while the R2 values were
significantly higher than all comparative data. Since

smaller MAE and MSE represent better model
performance, and larger R2 indicates better fitting effect,
it can be determined that parameter combination 5 can
make the model achieve optimal training effect.
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Figure 11: Evaluation indexes of different parameter combinations

5 Discussion

The LSTM-Prophet fusion model demonstrated
significant advantages in the experiment, with a mean
absolute error (MAE) of 8.7, which was 29.3% and 17.1%
lower than that of the single Prophet model (12.3) and
LSTM model (10.5), respectively. The inventory turnover
rate increased by 18.4%, and the stock-out rate decreased
to 3.2%. However, the model performed poorly in new
product forecasting (MAE increased to 15.2) and sudden
market fluctuation scenarios, with errors increasing by
40-50%. The model has good cross-category adaptability
(MAPE for multiple categories <12%) and scalability, but
it is highly dependent on high-quality historical data,
sensitive to data missing and external emergencies, and
faces the challenge of high computational complexity in
hyperparameter tuning.

Addressing the issue in current e-commerce sales
forecasting where a single model struggles to balance
linear trends and nonlinear fluctuations, and lacks
statistical rigor, this study constructs an LSTM-Prophet
fusion model. The aim is to verify, through a paired t-test,
whether its prediction accuracy (MAE, MAPE, RMSE) is
statistically significant (p<0.05) compared to a single
model. Additionally, it reports the 95% confidence
intervals for each evaluation metric to quantify
uncertainty. Based on this, the prediction confidence
intervals are integrated into the inventory dynamic
control strategy, with the goal of increasing the inventory
turnover rate by over 18% and controlling the stock-out
rate within 5%. This forms a statistically reliable and
decision-making transparent intelligent supply chain
optimization scheme.

The LSTM-Prophet fusion model constructed in this
study adopts a dual-channel collaborative architecture:
first, the Prophet model is utilized to explicitly
decompose the sales time series, extracting linear
components such as trend terms, seasonal terms, and
holiday effects; subsequently, the residual sequence that
Prophet fails to fit is input into the LSTM network,
through its gating mechanism, to learn nonlinear dynamic
features; finally, the prediction results are obtained
through weighted fusion. The model hyperparameters are

automatically tuned through Bayesian optimization, with
the number of LSTM layers ranging from 1 to 3, the
number of hidden units ranging from 32 to 256, and the
Dropout rate set between 0.1 and 0.5. Training is
conducted using 150,000 daily sales data from e-
commerce platforms over a three-year period, covering
multimodal features such as product attributes,
promotional activities, and user behaviors. Spatio-
temporal features are constructed through methods such
as sliding window statistics and Fourier transform.
Experiments show that this architecture reduces the mean
absolute error (MAE) on the test set to 8.7, which is 29.3%
and 17.1% lower than that of the single Prophet and
LSTM models, respectively. The inventory turnover rate
is increased by 18.4%, and the out-of-stock rate is
controlled at 3.2%.

6 Conclusion

This paper proposes an e-commerce product sales
forecasting and inventory dynamic control model based
on the LSTM-Prophet fusion architecture, aiming to
address the issue of insufficient accuracy in traditional
forecasting methods for complex e-commerce scenarios.
By combining the efficiency of LSTM in time series
modeling with the advantages of Prophet in detecting
seasonal and trend features, the model significantly
improves the accuracy of sales forecasting and optimizes
the inventory dynamic control strategy.

In the experiment, we selected the product sales data
of a large e-commerce platform for a three-year period,
encompassing a total of 1,000 products across five
categories, and verified the model's performance. The
experimental results show that:

(1) In the sales forecasting task, the average absolute
error MAE of the LSTM-Prophet fusion model is 12.3,
which is 23.5% lower than that of the single LSTM model
and 31.8% lower than that of the Prophet model, proving
the effectiveness of the fusion architecture.

(2) For the forecast of seasonal commodities, the
forecast error of the model during the peak holiday period
is only 8.7, which is 42.1% lower than that of the
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traditional ARIMA model.

(3) In the inventory dynamic control experiment, the
inventory turnover rate based on the forecast results
increased to 5.2 times/year, the inventory backlog cost
decreased by 18.7%, and the out-of-stock rate decreased
to 3.4%, which was significantly better than the static
inventory strategy.

The core limitation of the LSTM Prophet fusion
model lies in its excessive reliance on historical data and
vulnerability to sudden external events, which can easily
lead to inventory backlog or shortage. The solution lies in
enhancing the adaptability and system resilience of the
model: firstly, introducing external signals such as social
media trends and news events to enable the model to
perceive market mutations; Secondly, establish a
mechanism for quantifying prediction uncertainty and
manual intervention, and initiate manual decision-
making when confidence is low; The third is to adopt a
layered prediction strategy, using complex models for
core products and lightweight models for long tail
products to improve efficiency; Ultimately, the prediction
will be linked with the flexible supply chain, and safety
stock will be dynamically adjusted based on the
confidence level of the prediction to construct an
intelligent inventory control system that is resistant to
impact.

In future research, we will further optimize multi-
category collaborative forecasting and explore a real-time
data-driven adaptive regulation mechanism to provide e-
commerce companies with efficient sales forecasting and
inventory management solutions.

Table 4: Nomenclature table

Abbreviation/Sym  Full Name /

Category bol Description

Long Short-
Term Memory
Network

LSTM

Facebook's
Open-Source
Time Series
Forecasting
Model

Model Names Prophet

The Hybrid
Model
Proposed in
This Study

LSTM-Prophet

Observed
Value at
Time t(e.g.,
Sales)

y(®)

Model Variables

Trend,
Seasonal, and
Holiday

g8).s(0).h(v)
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Category bol

Abbreviation/Sym  Full Name /

Description

Cihu

ft; iy, 0

MAE

MAPE
Evaluation
Metrics

RMSE

RZ

Inventory
Turnover Rate

Inventory

. kout R
Moetrics Stockout Rate

Safety Stock

Components
of the Prophet
Model

Cell State and
Hidden State
of LSTM

Forget Gate,
Input Gate,
and Output

Gate of LSTM

Mean
Absolute Error

Mean
Absolute
Percentage
Error

Root Mean
Square Error

Coefficient of
Determination

Measure of
Inventory
Flow
Efficiency

Probability of
Inventory
Shortage

Buffer Stock
for Dealing
with
Uncertainty
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