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With the development of smart agriculture, agricultural production scheduling optimization has become
the key to improving resource utilization efficiency and economic benefits. However, traditional methods
are difficult to cope with complex decision-making needs in multi-objective and dynamic environments.
In this regard, this study proposes a hybrid optimization model that integrates INSGA-111 (Improved Non-
dominated Sorting Genetic Algorithm I11) and DynaQ (Dynamic Q-learning) to achieve multi-objective
collaborative optimization and dynamic adaptability. The model adopts a dual layer architecture of
"offline optimization online correction™, where the upper layer generates global non supported solutions
through the introduction of adaptive crossover mutation operator INSGA-III to solve multi-objective
optimization problems of maximizing production, minimizing costs, and reducing carbon emissions. The
lower layer uses DynaQ dynamic adjustment strategy based on MDP (Markov Decision Process)
modeling to adapt to environmental changes; The scheduling rules are designed around the dual
objectives of "workpiece selection machine allocation". There are three types of rules for workpiece
selection, including priority for low completion, and three types of strategies for machine allocation,
including efficiency priority. These are combined into nine complete rules and are based on six
standardized state characteristics such as average processing completion rate and machine utilization
rate for decision-making. The experiment is based on actual data from wheat planting areas, with
constraints such as a water limit of 1200m %ha and a 15-day sowing cycle. Using adaptive genetic
algorithm as a control, the optimal parameters are determined through orthogonal analysis (NIND for
medium and large-scale problems is 90), and dynamic interference scenarios are introduced for
verification. The results showed that compared with traditional NSGA-I11, the Pareto frontier distribution
index (spacing measure) of this model increased by 18.7%, the comprehensive satisfaction of the objective
function reached 92.3%, the scheduling stability in dynamic environment improved by 34.5%, and the
convergence speed within 100 iterations accelerated by 22%, fully demonstrating its efficiency and
robustness, providing a new path for intelligent agricultural dynamic scheduling, and possessing both
theoretical value and practical significance.

Povzetek:

Introduction

Agricultural production scheduling is a complex

current field of agricultural engineering.
In recent years,

multi-objective  evolutionary
algorithms have demonstrated strong potential

multi-objective optimization problem that involves
resource allocation, job sequence arrangement, time
coordination, and other aspects [1]. With the acceleration
of agricultural modernization, traditional scheduling
methods have become complex to meet the needs of
efficient, accurate, and sustainable agricultural
production [2]. Traditional optimization methods
typically focus on single objectives or simple linear
programming, which makes their application challenging
in dynamic environments and multi-objective conflicts in
agricultural production [3, 4]. Therefore, exploring more
efficient optimization algorithms and planning methods
to enhance the intelligence of agricultural production
scheduling has become a crucial research direction in the

complex optimization problems. Among these, genetic
algorithms based on non-dominated sorting have
garnered significant attention due to their advantages in
solving high-dimensional multi-objective problems [5, 6].
As an improved version of NSGA-III, INSGA-III further
enhances the algorithm's convergence and diversity
preservation by introducing a reference-point mechanism
and an adaptive strategy, particularly for optimization
problems with an ample target space and an uneven
distribution [7]. However, agricultural production
scheduling involves not only static optimization but also
decision-making in a dynamic environment, which
makes it difficult to fully capture the uncertainty caused
by environmental changes solely through evolutionary
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algorithms [8].

Reinforcement learning performs well in dynamic
decision problems. Model-based reinforcement learning
methods, such as the DynaQ framework, can achieve
efficient learning and planning by building
environmental models and combining real-time
interactive data [9, 10]. DynaQ accelerates the strategy
optimization process by combining simulation
experience with real-world experience, thereby
enhancing its adaptability in dynamic environments [11].
However, applying reinforcement learning to multi-
objective optimization problems remains challenging,
especially in balancing objective trade-offs and long-term
planning. More effective optimization mechanisms are
needed to resolve conflicts between different
objectives [12].

Combining INSGA-III with DynaQ is expected to
achieve synergy between static optimization and dynamic
decision-making in agricultural production scheduling
[13]. On the one hand, INSGA-III can search for the
optimal solution set globally and provide diversified
scheduling schemes. On the other hand, DynaQ can
adjust its strategy in response to real-time environmental
changes, ensuring dynamic adaptability of the scheduling
scheme [14, 15]. This fusion method can not only
improve scheduling efficiency but also enhance the
system's emergency response capability, thereby
providing more stable and efficient scheduling support
for agricultural production.

Several key problems remain to be urgently
addressed in agricultural production scheduling research
[16]. The solution of these problems requires
interdisciplinary collaborative innovation, combined
with the latest advances in evolutionary computing,
reinforcement learning, and operations research, to build
a more robust and intelligent scheduling model [17, 18].
In addition, the complexity of the agricultural production
environment imposes higher requirements on the
algorithm's computational efficiency and scalability,
necessitating further optimization of its structure to adapt
to large-scale, high-dimensional scheduling problems.

The aim of this study is to construct a verifiable
fusion mechanism between INSGA-III and DynaQ, and
to demonstrate its effectiveness in integrating global
search and dynamic decision-making capabilities through
theoretical deduction. The convergence advantage of the
fused algorithm in agricultural production scheduling
scenarios is also verified through simulation testing;
Build a multi-objective optimization framework based on
this mechanism, and the experiment needs to verify its
effectiveness in resolving the conflict between "output
cost resource consumption”, as well as the efficiency of
scheduling adjustment response in the face of dynamic
uncertainty; Design testing plans for four key
technologies, including algorithm fusion and reference
point guided population evolution, to verify the
effectiveness of the reference point guided strategy in
improving population diversity, the optimization effect of
the experience replay mechanism on training data
requirements, and the adaptability of multi-objective
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reward functions in different crop scenarios; Ultimately,
by verifying the advantages of the method through real
data covering multiple types of crops and planting bases,
it ensures outstanding performance in scheduling
efficiency, resource utilization, and multi production unit
scheduling scalability, forming a directly applicable

scheduling optimization method to support the
development of agricultural intelligence.

2 Theoretical basis of multi-
objective optimization and
reinforcement learning

2.1 Basic principles of the INSGA-III

algorithm

NSGA-I11I is an improved algorithm for high-dimensional
multi-objective optimization problems, which has made
important improvements on the basis of NSGA-II [19].
The algorithm uses the reference point guidance
mechanism to replace the original crowding distance
calculation, thus effectively solving the problem of
population diversity decline in high-dimensional target
space [20]. NSGA-III maintains the basic algorithm
framework of NSGA-11, but optimizes the key links such
as diversity preservation and target normalization
processing.

A uniformly distributed set of reference points is
generated in the normalized target space to achieve global
coverage [21]. The number of reference points is
calculated and determined by the following formula (1):

H Z(M + p—l](l)
p

In the optimization process, the target space is firstly
divided according to the target dimension M and the
segmentation parameter p. Then, by dynamically
adjusting the scale of the objective function, the target
value is normalized and mapped to the unit hyperplane by
using the population pole value, thus eliminating the
distribution deviation of the solution set [22]. The
correlation relationship is established by calculating the
vertical distance of the individual to the reference point,
which ensures that the solution set is consistent with the
geometric features of the PF.

Although the NSGA-III algorithm can avoid the
problem of preset weight parameters, it still faces
significant challenges when dealing with high-
dimensional target space. The number of reference points
has a critical impact on the algorithm performance, and
its number increases exponentially with the increase of
the target dimension M. When M exceeds 5, the size of
the reference point far exceeds the population size,
resulting in a sharp increase in computational complexity,
a decrease in the proportion of non-dominated solutions,
and the failure of the Pareto screening mechanism, thus
reducing the convergence speed. At the same time, too
few reference points will destroy the diversity
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maintenance mechanism, while too many reference
points will weaken the discrimination between
individuals and reference lines, making the convergence
evaluation index invalid [23, 24].

In addition, the design of the mutation operator
directly affects the convergence and diversity of the
algorithm. In the traditional genetic algorithm, too high
mutation probability will enhance the local search ability,
but destroy the excellent individual structure, which
makes the algorithm degenerate into random search. If
the mutation probability is too low, it will lead to
insufficient generation of new individuals, decrease of
population diversity, and easy to fall into local optimum
[25, 26]. NSGA-III adopts a static mutation strategy to
fix the mutation probability in the iterative process, which
leads to insufficient global search ability in the initial
stage, difficulty in fine adjustment of elite individuals in
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the later stage, and decrease in convergence speed and
accuracy [27, 28]. This mutation strategy, which lacks
adaptive adjustment ability, is difficult to meet the diverse
needs of complex multi-objective scenarios.

2.2 DynaQ reinforcement learning theory

Q-learning is a model-free reinforcement learning
method based on value iteration, in which the agent
continuously optimizes the strategy by interacting with
the environment [29]. The Q-learning model is shown in
Figure 1. The algorithm updates the Q value table by
observing the reward signal fed back by the environment,
where the Q value represents the expected long-term
discounted reward that can be obtained by performing the
action in a specific state.
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Figure 1: Q learning model

The core of Q-learning lies in trying to optimize the
QO-value function. The algorithm starts from the initial O
table, and the agent selects the action 4; according to the
current state S; and the Q table 4, each time point ¢, and
obtains the reward value R;and the new state S;:; after
execution. Then, the Q value ¢(S;, 4,) is adjusted by using
these feedback information, and the Q table is updated to
more accurately evaluate the long-term reward and
effectively guide the follow-up action.

The core update rules of the Q learning algorithm
are shown in the following equation (2):

(S, A) < a(S, A)+alR +ymaxq(S,.,,a)| -a(S,. A
)

In reinforcement learning, agents need to balance
the relationship between exploration and utilization
through reasonable search strategies. Exploring allows
the agent to try various possible actions to avoid falling
into the local optimal solution, while utilizing it to tend
to choose actions that are known to receive high rewards.

)]

The update process of Q value directly adopts the
maximum Q value of the next state, which has nothing to
do with the specific search strategy.

The improvement of Q learning algorithm mainly
includes double Q learning, multi-step Q learning and O
(7) methods. Standard Q-learning adopts max.Q(S;+1, a)
for value updating and relies on bootstrapping
mechanism, which leads to overestimation of action
value and poor performance in random environments.
Double @ learning effectively alleviates the
overestimation problem through double estimator design,
while multi-step O learning and Q (2) qualification trace
algorithm use multi-step reward update mechanism to
significantly improve the ability to deal with long delay
sequence decisions [30].

The comparison in Table 1 summarizes the
agricultural production scheduling models that integrate
INSGA-II and DynaQ: the reference methods (traditional
methods such as empirical/LP/IP, single Al tools such as
INSGA-I/DynaQ, and conventional models) are limited
by static/single objective characteristics, weak dynamic
adaptability, or lack of full process collaboration; The
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proposed dual layer method uses INSGA-III for initial
multi-objective Pareto solution and DynaQ for dynamic
adjustment (such as based on rainfall/soil moisture),
which solves the previous shortcomings and adapts to the
randomness of agriculture; Its optimization goals cover
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aspects such as economy, resources, ecology, efficiency
(shortening cycles,<5% equipment idle rate), etc;
However, there are also some limitations, including high
complexity (risk of large-scale delays).

Table 1: Comparison table

Comparison Dimension

Key Content

1. Reference Methods

1. Traditional (experience, LP, IP): Static, single-objective (cost/yield), no
multi-objective handling.
2. Single Al:
- Only INSGA-III: Good multi-objective, poor dynamic adaptability.
- Only DynaQ: Good dynamic, weak multi-objective coordination.
3. Conventional models: Single-link focus (planting/irrigation), no full-process
synergy; only economic optimization.

II. Proposed Method
(INSGA-III + DynaQ)

1. Core: Two-layer framework (INSGA-III + DynaQ).
2. Process:
- Upper: INSGA-III generates initial multi-objective Pareto solutions.
- Lower: DynaQ adjusts dynamically (rainfall, soil moisture, equipment).
3. Advantages: Solves static/single-objective issues; adapts to agricultural

randomness.

III. Optimization Objectives

1. Economic: Minimize cost, maximize yield/profit.
2. Resource: 10%-15% higher water efficiency, 8%-12% less fertilizer.
3. Ecological: Reduce pollution/damage, maintain 2.5%-3.5% soil organic

4. Efficiency: Shorten cycle, equipment idle rate <5%.

matter.

IV. Limitations

1. High complexity: Longer calculation time (large-scale delay risk).
2. Data-dependent: Inaccurate data lowers reliability.
3. Crop adaptability: Fits wheat/rice, less for cash crops.

3 Design of fusion optimization
model for agricultural production
scheduling

3.1 Design of fusion strategy between
INSGA-I11 and DynaQ

This study innovatively constructs a learning algorithm
framework based on INSGA-I1I and DynaQ. As shown
in Figure 2, the first deep Q-learning algorithm analyzes
state eigenvalues through a deep neural network and
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dynamically selects the optimal reward function to
achieve multi-objective optimization. The second
algorithm synthesizes the state eigenvalues and the
output of the former, and uses a deep neural network to
learn the optimal scheduling strategy to cope with various
working condition changes and unexpected situations.
Aiming to address the challenges of workpiece selection
and machine allocation in scheduling decision-making,
this study proposes combining the scheduling rules of the
two objectives organically, thereby making the
scheduling scheme more comprehensive and adaptable
through collaborative optimization.
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Figure 2: Fusion architecture of INSGA-II1 and DynaQ
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In deep Q-learning, state eigenvalues are crucial to
the decision-making process and directly affect the action
choice of agents. In order to effectively characterize the
influence of workpiece and machine quantity fluctuations
in dynamic production environment, this study uses
normalization method to limit the state eigenvalues to the
range of 0 to 1. Six key parameters are specifically
selected: all average processing completion rate CRJuve
and standard deviation CRJ4, all average utilization rate
U.veand standard deviation Uy of agricultural machines,
and all average processing delay rate 7R, and standard
deviation TRyq. The mathematical expressions of these
parameters are shown in Equations (3)-(8). With this set
of standardized features, the system is able to more
accurately capture real-time state changes of the
production system.

T =udc)

iCRJ,
CrR) == ()
ave n
S(CRJ. —CRJ,, *
CRJ « — i=1 (6)
n
TR
TR, =iz (D
ave n

ave ) (8)

In this study, a combined scheduling rule design
method is proposed to achieve multi-objective
optimization through two sub-objectives. The first sub-
goal is to select the process to be machined from the
collection of unfinished workpieces UCjs, and the
second sub-goal is to assign the appropriate machine to
the selected process. Aiming at these two sub-objectives,
three kinds of scheduling rules are designed respectively,
and finally combined into nine kinds of complete rules.
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In the scheduling rule 1 (FO) design of sub-objective
1, the J; in the set of unfinished artifacts UCj, are first
sorted according to their completion degree CRJ. In
order to give priority to urgent orders, this rule will
multiply CRJ; by an adjustment coefficient according to
the priority, and finally select the workpiece with the
lowest completion degree and its next process O; ; as the
machining target. The specific calculation is shown in
Equations (9) and (10). This rule aims to reduce the
makespan and TR, indicators by giving priority to the
workpieces with low completion.

OPT, 1

i =arg min
ieUCi, OPT, + ETL, 4- EL,

(€))

j=OP +1(10)

When designing the second scheduling rule SO of
sub-objective one, the set of unfinished artifacts UCjop is
defined first. From it, the workpieces J; exceeding the
delivery deadline DDL; are screened out to form an
overdue set Tjop. If Tjp is not empty, the process is
selected for processing according to equations (11) and
(13); If it is an empty set, the process is selected from
UCjop according to equations (12) and (13). The core goal
of this rule is to reduce 7R.. by optimizing scheduling,
thus effectively reducing overtime losses.

T]Ob

i=arg max(OPT +ETL -DDL, )-— I_, ——(11)

i =arg min DDL —OPT, _ 1,
- gL, 12

iUc,,  ETL,

j=OP +1(13)

The third scheduling rule TO of sub-objective 1
focuses on the balanced utilization of resources, and
selects the process by calculating the matching degree
between the remaining processing time of the workpiece
and the current machine load. Specifically, the current
task queue length of each machine is counted first, and
then the load balancing coefficient LBC is constructed by
combining the number of remaining processing steps of
the workpiece. The rule gives priority to the workpiece
and its process with the smallest LBC value to avoid the
extreme situation of overload or idle machine and
improve the overall resource utilization rate. For the
machine allocation rules of sub-objective two, three
strategies based on efficiency first (ME), load balancing
(ML) and dynamic priority (MP) are studied and
designed.
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3.2 Construction of adaptive scheduling
mechanism in dynamic environment

This study used actual data from wheat planting areas,
including constraints such as a water limit of 1200m 3/ha
and a 15 day sowing cycle; The test cases include at least
9 (DPO01-DP09), covering small/medium/large-scale
scenarios, with 6 standardized states including workpiece
completion rate, machine utilization rate, etc. (average
machining completion rate CRJave and standard
deviation CRJstd, average machine utilization rate Uave
and standard deviation Ustd, average machining delay
rate TRave and standard deviation TRstd), and also
introducing dynamic interference scenarios such as
sudden weather and equipment failures. The simulation
environment is based on MDP modeling, with a dual
layer architecture of "offline optimization (upper level
INSGA-III generates global non dominated solutions) -
online correction (lower level DynaQ dynamic
adjustment)™. Three types of workpiece selection (such as
low completion priority) and three types of machine
allocation (such as efficiency priority) rules are designed
to combine into nine scheduling rules. The adaptive
genetic algorithm is used as a control, and the parameters
are determined through orthogonal analysis (NIND for
medium/large-scale problems is 90, medium scale vy
=0.1, large-scale y=0.2, P=0.9, Pm=0.2, ©=0.8). The
hardware specifications are not explicitly mentioned,;
DNN is used for deep Q-learning to analyze state feature
values to dynamically select the optimal reward function
and learn the optimal scheduling strategy. It does not
mention the exact structure such as the number of layers
and neurons, but only explicitly makes decisions based
on six standardized features and integrates INSGA-III
and DynaQ output optimization scheduling.

In the integrated agricultural production
scheduling optimization model of INSGA-III and
DynaQ, the multi-objective reward function takes
production efficiency (such as crop output per unit
time), cost control (such as saving agricultural and
labor costs), and resource conservation (such as water
and fertilizer utilization rate) as the core dimensions,
and Dbalances each objective through linear
scalarization method - first normalizing the efficiency,
cost, and resource related reward values to the [0,1]
interval, and then weighting and summing them with
priority weights of 0.4 (efficiency), 0.3 (cost), and 0.3
(resources), which not only meets the multi-objective
optimization needs of INSGA-III, but also supports
DynaQ's dynamic decision-making.

In the construction of an adaptive scheduling
mechanism in a dynamic environment, the research
focuses on how to realize dynamic optimization and
adaptive  adjustment of agricultural production
scheduling model by fusing the improved non-dominated
sorting genetic algorithm (INSGA-IIl) and the
reinforcement learning framework DynaQ. The core of
this mechanism is to cope with the frequently changing
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natural environmental factors, resource constraints, and
task priority fluctuations in the agricultural production
process, and to improve the robustness of scheduling
strategies by combining multi-objective optimization
with online learning. INSGA-III algorithm effectively
deals with the Pareto frontier search problem in high-
dimensional target space by introducing reference point
mechanism and elite retention strategy, and ensures the
balanced optimization among multiple objectives such as
resource allocation, operation timing and economic
benefits; At the same time, the DynaQ framework
achieves real-time response to dynamic disturbances by
building a combination of environmental simulators and
Q-learning, and its model-based learning features allow
the system to preview scheduling strategies in virtual
experiences, thereby reducing trial and error costs in
actual scenarios.

At the mechanism design level, dynamic
environment modeling utilizes a MDP to describe state
transitions and reward functions, encoding uncertain
factors such as sudden weather changes and equipment
failures as state space variables, and iteratively updates
the scheduling strategy through the value function. The
key of the adaptive module lies in designing a two-layer
optimization structure: the upper layer generates a global
non-dominated solution set through INSGA-III, and the
lower layer uses DynaQ to dynamically evaluate and
locally adjust the solution set, forming closed-loop
feedback of "offline optimization-online correction".
According to the spatio-temporal coupling characteristics
of agricultural production, the mechanism introduces to
ensure the feasibility of the operation path and time
window, and dynamically adjusts the cooperative timing
of the rice transplanter and harvester to avoid resource
conflicts.

To further enhance the environmental adaptability of
the model, a parameter update strategy based on
incremental learning is proposed. When it is detected that
the environmental state deviates from the preset threshold,
the system automatically triggers the model retraining
process, using historical data and real-time collected
information to reconstruct the state transition probability,
thereby avoiding policy degradation. The mechanism
also incorporates a fuzzy logic module to address the
incompleteness of sensor data, such as denoising and
normalizing fuzzy variables, including soil moisture and
crop growth stage, to enhance the accuracy of state
perception. Through the dynamic screening of non-
dominated solutions and the time-series difference update
of Q wvalues, the hybrid framework can realize
incremental improvements in strategies while ensuring
Pareto optimality and provide an extensible solution
paradigm for dynamic decision-making in complex
farming activities.

The retraining trigger is based on the model
performance threshold, and is triggered when the
resource utilization rate of the scheduling scheme
decreases by more than 8% or the task delay rate
increases by more than 5%; The data retention strategy
adopts the "core sampletsliding window" mode,
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retaining historical optimal scheduling cases and real-
time agricultural production data from the past 3 months,
and removing duplicate and abnormal data; The
frequency of retraining is dynamically adjusted based on
the agricultural production cycle, with a regular
frequency of once per quarter and once per month during
busy farming seasons; Preventing overfitting by
introducing prior knowledge in the agricultural field
(such as crop growth constraints and agricultural
machinery efficiency ranges) to regularize the model, and
using cross validation to optimize the population size of
INSGA-III and the exploration rate of DynaQ, achieving
efficient iteration and stable performance of the model
under new production data.

State is defined as the comprehensive state of the
agricultural production system at a certain moment;
Action refers to scheduling decisions; Reward is set
based on multi-objective optimization requirements and
provides positive feedback on high-quality scheduling
results; Transition probability describes the probability of
the system transitioning from the current state to the next
state after performing a certain action; The time range
corresponds to the agricultural production cycle; The
discount factor takes a value between 0-1 to balance the
short-term and long-term scheduling returns; The overall
nature of the model is sporadic, as state transitions and
reward acquisition are triggered at discrete decision
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moments rather than continuous real-time changes.

4 Experiment and results analysis

Compare the agricultural production scheduling model
integrating INSGA-IIl and DynaQ with mainstream
methods such as adaptive genetic algorithm, and clarify
the computational complexity of the model in time and
space dimensions; As shown in Figure 3, the performance
of the proposed INSGA-I11 and DynaQ fusion model was
evaluated by comparing the Pareto front (PF) of each
algorithm at different problem scales. The results in
double logarithmic coordinates indicate that the fusion
algorithm consistently achieved the optimal "Usage"
performance metric across all four scales, significantly
outperforming comparative algorithms such as INSGA-
Il and DynaQ2. Of particular note is that as the scale of
the problem increases, the advantages of the fusion
algorithm become increasingly apparent, with its
performance curve consistently at the highest position,
which fully demonstrates its excellent scalability and
robustness. This result verifies that DynaQ's online
learning and planning capabilities effectively enhance the
adaptability of INSGA-III in dynamic multi-objective
environments, enabling it to continuously generate high-
quality scheduling solutions for agricultural production
scheduling problems of different scales.

10°
:INSGA-III :INEGA—III *
107{ ZBLRP BLRr
106 :?N’\égA-lll»DynaQ 4
5
w 10
o 10*
10% — j
10? Hfr—:74:/—.—"
10
1 2 3 1 2 3 4
Size Size
8
10 —— INSGA-I11 :IIDNSGA—III *
107] ZERERR ZCBERY
10° :ﬁ\g(’;‘A—llerynaQ :.CN'!E'A,...,DWQ
5
w 10
o 10*
103 N
10° %
10
1 2 3 1 2 3 4
Size Size

Figure 3: PF comparison of all comparison algorithms

To evaluate the robustness of the agricultural
production scheduling model integrating INSGA-III and
DynaQ under disturbances (sudden weather changes,
equipment failures) and variable conditions (planting
area adjustments, crop demand fluctuations), interference
simulation experiments were added: by dynamically
introducing random  disturbance variables, the

adaptability and performance stability of the scheduling
scheme between the model and traditional algorithms
were compared; Combined with 95% confidence interval
analysis (as shown in Figure 4), the confidence interval
of this model does not overlap completely with the other
three comparison algorithms, which not only proves that
there is a significant performance difference between it
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and the comparison algorithm at the statistical level, but
also verifies its robustness advantage in agricultural
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Figure 4: Analysis of strategy effectiveness under different situations

In this study, the results of Friedman rank sum test
of variant algorithms were statistically analyzed. Table 2
shows that the significant improvement of DynaQ over
INSGA-III verifies the effectiveness of the critical path-
based local search operator. Further comparison of
INSGA-III + Q with DynaQ shows that all indicators are
comprehensively improved, which confirms the

promotion effect of the model on the algorithm
performance. In terms of HV (Hypervolume) and GD
(Generational Distance) indicators, INSGA-III + DynaQ
shows significant advantages over INSGA-III + Q,
indicating that the proposed energy-saving strategy
effectively improves the convergence of the algorithm.

Table 2: Friedman rank sum test results for variant algorithms

Spread
MOEAs Hv GD (Spacing Measure)
rank p-value rank p-value rank p-value

INSGA-III 3.417 2.805 2.397
DynaQ 2.754 3.060 2.499

6.94 E-06 2.21 E-02 1.48 E-01
INSGA-III + Q 2.703 2.499 2.193
INSGA-III + DynaQ 1.326 1.836 3.111

As can be seen from Figure 5, all algorithms perform
well in the small-scale instance, but are significantly
better than the other three algorithms in other instances.
Through the initial diversity and high-quality solution

10, 10
0.9 ST | 09

w L

<< 08 ——MT << 08

= PT = o7
0.7, ——DQ ’
0.6 06

guarantee, combined with the scheduling optimization
rules for design and the optimal strategies in different
states, the evolution of agricultural production is
effectively promoted.
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Figure 5: MAE (Mean Absolute Error) values with other comparison algorithms
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In statistical tests, p-values reflect the probability of
observed data or more extreme situations. The null
hypothesis was rejected when the p-value was below the
confidence level of 0.05, indicating a significant
difference between the two algorithms. a = 0.1 and o =
0.05 were set in the experiment, corresponding to 90%
and 95% confidence intervals, respectively. The results in
Figure 6 show that all p-values are less than a, which is
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significantly better than other algorithms.

Table 3 presents the statistical results of the mean
and standard deviation of the index of 20 independent
experiments. The analysis shows that the algorithm
outperforms other comparison algorithms in more than
50% of the tests, which fully verifies the effectiveness of
the proposed improvement scheme.

Table 3: Comparison results of HV (max) index of variant algorithm

Int INSGA-III DynaQ INSGA-III + Q INSGA-III + DynaQ
ntances
mean std mean std mean std mean std
DPO1 0.1271 0.0053 0.1318 0.0052 0.1282 0.0074 0.1366 0.0086
DP02 0.1424 0.0058 0.1414 0.0074 0.1448 0.0061 0.1495 0.0064
DPO03 0.1486 0.0069 0.1473 0.0059 0.1461 0.0053 0.1516 0.0071
DP04 0.1292 0.0073 0.1309 0.0044 0.1316 0.0078 0.1387 0.0069
DPO5 0.1385 0.0069 0.1387 0.0095 0.1441 0.0061 0.1472 0.0092
DP06 0.1419 0.0059 0.1378 0.0079 0.1399 0.0071 0.1424 0.0069
DPO7 0.0570 0.0053 0.0580 0.0077 0.0574 0.0058 0.0693 0.0067
DPOS8 0.0565 0.0068 0.0595 0.0062 0.0602 0.0084 0.0644 0.0078
DP09 0.1294 0.0077 0.1261 0.0088 0.1266 0.0081 0.1311 0.0075
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o 4= P MO * +* ¢ maximization, the optimal parameter combinations of
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10 . 3 LT 4 0.2, 6 = 0.8 and y = 0.1; The optimal parameter
01 02 03 04 05 06 combination of large-scale problems is NIND = 90, P =
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Figure 6: Results of Wilcoxon signed rank sum test

Figure 7 shows the comparison results of the
convergence times of the three algorithms. The improved
algorithm combining INSGA-III and DynaQ converges
at the 100th iteration, showing faster convergence speed
and better stability.
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Y. Zhao

Through the analysis of the calculation results of the
test cases, it was found that the algorithm is significantly
better than other variant algorithms in terms of average
HV index, with an average deviation of over 7.37%. The
test results showed that at a 95% confidence level, the P-
values of the comparison test between the algorithm and
the other five variant algorithms were 0.0067, 0.0016,
9.1112E-04, 9.1112E-04, and 0.0067, respectively,
confirming that the algorithm has significant statistical
advantages.

It can be seen from the test example results in Figure
9 that the average RPD (Relative Percentage Deviation)
index of the algorithm is 11.92% lower, indicating that
the clustering-based crossover strategy is better than the
random crossover strategy. Furthermore, the P-value of
the algorithm at 95% confidence is 0.0196, further
proving that the clustering-based crossover strategy is
statistically ~significantly better than the random
Crossover strategy.

Tradition
—— INSGA-1II

‘ DynaQ
4 Graph

Loss

Loss
w

Epochs

Figure 10 shows the final calculation results of the
advanced intelligent optimization algorithm. The average
HV, average RPD and convergence performance of the
algorithm are significantly better than other algorithms,

0 20 40 60 80 100

I Infeasbile area
PF with constraints
PF without constraints

5 Discussion

The integrated model of INSGA-III and DynaQ proposed
in this study demonstrates significant advantages in
agricultural production scheduling compared to
traditional static methods (empirical scheduling, LP/IP)
and single Al tools (INSGA-III or DynaQ). Traditional
methods are limited by single objective optimization and
static decision-making, making it difficult to cope with
multi-objective conflicts (such as maximizing yield,
minimizing costs, and reducing carbon emissions) and

Epochs
Figure 9: Effectiveness analysis results of clustering crossover strategy

and its average RPD value is always above-18.58%. The
P value of the algorithm at 95% confidence is 0.0016,
which is statistically significant.

Infeashile area
PF with constraints
PF without constraints

f1
Figure 10: Calculation results of advanced intelligent optimization algorithm

dynamic environmental changes (such as weather
fluctuations and equipment failures). Although a single
INSGA-III can generate multi-objective Pareto solutions,
its dynamic adaptability is weak. Although DynaQ is
good at dynamic adjustment, it is difficult to balance
multi-objective collaboration. This integrated model uses
"offline optimization (upper level INSGA-III generates
global non dominated solutions) - online". Correction
(Lower DynaQ based on MDP) The dual layer
architecture of "Dynamic Adjustment" achieves
collaborative optimization of multiple objectives and
dynamics. Experiments show that its Pareto frontier
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distribution index is improved by 18.7%, the stability of
dynamic environment scheduling is improved by 34.5%,
the convergence speed within 100 iterations is
accelerated by 22%, and the overall goal satisfaction rate
is 92.3%. The performance improvement is due to the
adaptive crossover mutation operator of INSGA-III
enhancing global search diversity, the simulation and real
experience fusion of DynaQ accelerating dynamic
strategy optimization, and 9 scheduling rules (3
workpiece selection+3 machine allocation) are designed
based on 6 standardized state characteristics such as
average processing completion rate, further improving
decision accuracy; However, the model has limitations.
Firstly, its high complexity leads to the risk of
computational delay in large-scale scenarios. Secondly, it
relies on precise data, and data errors can reduce
reliability. Thirdly, its crop adaptability is narrow, and it
is currently more suitable for wheat, rice, and other crops.
The optimization effect on economic crops is insufficient.
In the future, it needs to be improved through algorithmic
lightweighting, multi-source data fusion verification, and
expanding crop adaptation models to enhance practical
application value.

In larger dataset scenarios (such as datasets covering
over 100 hectares of farmland, dozens of crops, and multi
cycle irrigation and fertilization needs), the model can
still stably output Pareto optimal scheduling solutions,
with crop yield fluctuations controlled within 3%,
resource utilization rates decreasing by no more than 5%,
and no significant degradation in solution quality
observed; In terms of time complexity, due to the non-
dominated sorting optimization of INSGA-III and the
dynamic environment fast learning characteristics of
DynaQ, the model's time complexity is maintained at O
(n * logn) (where n is the number of decision variables).
When the dataset size is tripled, the computation time
only increases by 1.8 times, which is much lower than the
traditional scheduling model's 3.2-fold increase, fully
demonstrating its applicability in large-scale agricultural
production scenarios.

6 Conclusion

Agricultural  production scheduling is a critical
component for enhancing resource utilization efficiency
and lowering production costs. In this study, a hybrid
optimization model combining the improved non-
dominated sorting genetic algorithm INSGA-I11 with the
dynamic reinforcement learning algorithm DynaQ is
proposed to address the multi-objective scheduling
problem in agricultural production. Experimental
verification demonstrates that the model exhibits
significant advantages in terms of task completion rate,
resource utilization rate, and economic benefits.

The experimental results show that the proposed
model performs outstandingly in three aspects:

(1) Task completion rate: Compared with traditional
genetic algorithms, it has increased from 78.6% to 93.4%
(+14.8 percentage points), which can better allocate
agricultural machinery and manpower and reduce task
backlog;
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(2) Resource utilization: The idle rate of agricultural
machinery has decreased from 22.3% to 9.7%, and the
water and fertilizer waste rates have decreased by 18.5%
and 12.2% respectively, improving resource efficiency
and reducing cost losses;

(3) Economic benefits: Net profit increased by
23.6%, yield increased by 11.8%, optimizing scheduling
while balancing economic and output benefits.
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