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With the development of smart agriculture, agricultural production scheduling optimization has become 

the key to improving resource utilization efficiency and economic benefits. However, traditional methods 

are difficult to cope with complex decision-making needs in multi-objective and dynamic environments. 

In this regard, this study proposes a hybrid optimization model that integrates INSGA-III (Improved Non-

dominated Sorting Genetic Algorithm III) and DynaQ (Dynamic Q-learning) to achieve multi-objective 

collaborative optimization and dynamic adaptability. The model adopts a dual layer architecture of 

"offline optimization online correction", where the upper layer generates global non supported solutions 

through the introduction of adaptive crossover mutation operator INSGA-III to solve multi-objective 

optimization problems of maximizing production, minimizing costs, and reducing carbon emissions. The 

lower layer uses DynaQ dynamic adjustment strategy based on MDP (Markov Decision Process) 

modeling to adapt to environmental changes; The scheduling rules are designed around the dual 

objectives of "workpiece selection machine allocation". There are three types of rules for workpiece 

selection, including priority for low completion, and three types of strategies for machine allocation, 

including efficiency priority. These are combined into nine complete rules and are based on six 

standardized state characteristics such as average processing completion rate and machine utilization 

rate for decision-making. The experiment is based on actual data from wheat planting areas, with 

constraints such as a water limit of 1200m ³/ha and a 15-day sowing cycle. Using adaptive genetic 

algorithm as a control, the optimal parameters are determined through orthogonal analysis (NIND for 

medium and large-scale problems is 90), and dynamic interference scenarios are introduced for 

verification. The results showed that compared with traditional NSGA-III, the Pareto frontier distribution 

index (spacing measure) of this model increased by 18.7%, the comprehensive satisfaction of the objective 

function reached 92.3%, the scheduling stability in dynamic environment improved by 34.5%, and the 

convergence speed within 100 iterations accelerated by 22%, fully demonstrating its efficiency and 

robustness, providing a new path for intelligent agricultural dynamic scheduling, and possessing both 

theoretical value and practical significance. 

Povzetek: 

 

1 Introduction 
Agricultural production scheduling is a complex 

multi-objective optimization problem that involves 

resource allocation, job sequence arrangement, time 

coordination, and other aspects [1]. With the acceleration 

of agricultural modernization, traditional scheduling 

methods have become complex to meet the needs of 

efficient, accurate, and sustainable agricultural 

production [2]. Traditional optimization methods 

typically focus on single objectives or simple linear 

programming, which makes their application challenging 

in dynamic environments and multi-objective conflicts in 

agricultural production [3, 4]. Therefore, exploring more 

efficient optimization algorithms and planning methods 

to enhance the intelligence of agricultural production 

scheduling has become a crucial research direction in the  

 

current field of agricultural engineering. 

In recent years, multi-objective evolutionary 

algorithms have demonstrated strong potential in 

complex optimization problems. Among these, genetic 

algorithms based on non-dominated sorting have 

garnered significant attention due to their advantages in 

solving high-dimensional multi-objective problems [5, 6]. 

As an improved version of NSGA-III, INSGA-III further 

enhances the algorithm's convergence and diversity 

preservation by introducing a reference-point mechanism 

and an adaptive strategy, particularly for optimization 

problems with an ample target space and an uneven 

distribution [7]. However, agricultural production 

scheduling involves not only static optimization but also 

decision-making in a dynamic environment, which 

makes it difficult to fully capture the uncertainty caused 

by environmental changes solely through evolutionary 
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algorithms [8]. 

Reinforcement learning performs well in dynamic 

decision problems. Model-based reinforcement learning 

methods, such as the DynaQ framework, can achieve 

efficient learning and planning by building 

environmental models and combining real-time 

interactive data [9, 10]. DynaQ accelerates the strategy 

optimization process by combining simulation 

experience with real-world experience, thereby 

enhancing its adaptability in dynamic environments [11]. 

However, applying reinforcement learning to multi-

objective optimization problems remains challenging, 

especially in balancing objective trade-offs and long-term 

planning. More effective optimization mechanisms are 

needed to resolve conflicts between different 

objectives [12]. 

Combining INSGA-III with DynaQ is expected to 

achieve synergy between static optimization and dynamic 

decision-making in agricultural production scheduling 

[13]. On the one hand, INSGA-III can search for the 

optimal solution set globally and provide diversified 

scheduling schemes. On the other hand, DynaQ can 

adjust its strategy in response to real-time environmental 

changes, ensuring dynamic adaptability of the scheduling 

scheme [14, 15]. This fusion method can not only 

improve scheduling efficiency but also enhance the 

system's emergency response capability, thereby 

providing more stable and efficient scheduling support 

for agricultural production. 

Several key problems remain to be urgently 

addressed in agricultural production scheduling research 

[16]. The solution of these problems requires 

interdisciplinary collaborative innovation, combined 

with the latest advances in evolutionary computing, 

reinforcement learning, and operations research, to build 

a more robust and intelligent scheduling model [17, 18]. 

In addition, the complexity of the agricultural production 

environment imposes higher requirements on the 

algorithm's computational efficiency and scalability, 

necessitating further optimization of its structure to adapt 

to large-scale, high-dimensional scheduling problems. 

The aim of this study is to construct a verifiable 

fusion mechanism between INSGA-III and DynaQ, and 

to demonstrate its effectiveness in integrating global 

search and dynamic decision-making capabilities through 

theoretical deduction. The convergence advantage of the 

fused algorithm in agricultural production scheduling 

scenarios is also verified through simulation testing; 

Build a multi-objective optimization framework based on 

this mechanism, and the experiment needs to verify its 

effectiveness in resolving the conflict between "output 

cost resource consumption", as well as the efficiency of 

scheduling adjustment response in the face of dynamic 

uncertainty; Design testing plans for four key 

technologies, including algorithm fusion and reference 

point guided population evolution, to verify the 

effectiveness of the reference point guided strategy in 

improving population diversity, the optimization effect of 

the experience replay mechanism on training data 

requirements, and the adaptability of multi-objective 

reward functions in different crop scenarios; Ultimately, 

by verifying the advantages of the method through real 

data covering multiple types of crops and planting bases, 

it ensures outstanding performance in scheduling 

efficiency, resource utilization, and multi production unit 

scheduling scalability, forming a directly applicable 

scheduling optimization method to support the 

development of agricultural intelligence. 

2 Theoretical basis of multi-

objective optimization and 

reinforcement learning 

2.1 Basic principles of the INSGA-III 

algorithm 

NSGA-III is an improved algorithm for high-dimensional 

multi-objective optimization problems, which has made 

important improvements on the basis of NSGA-II [19]. 

The algorithm uses the reference point guidance 

mechanism to replace the original crowding distance 

calculation, thus effectively solving the problem of 

population diversity decline in high-dimensional target 

space [20]. NSGA-III maintains the basic algorithm 

framework of NSGA-II, but optimizes the key links such 

as diversity preservation and target normalization 

processing. 

A uniformly distributed set of reference points is 

generated in the normalized target space to achieve global 

coverage [21]. The number of reference points is 

calculated and determined by the following formula (1): 

 

1M p
H

p

+ − 
=  
 

(1) 

 

In the optimization process, the target space is firstly 

divided according to the target dimension M and the 

segmentation parameter p. Then, by dynamically 

adjusting the scale of the objective function, the target 

value is normalized and mapped to the unit hyperplane by 

using the population pole value, thus eliminating the 

distribution deviation of the solution set [22]. The 

correlation relationship is established by calculating the 

vertical distance of the individual to the reference point, 

which ensures that the solution set is consistent with the 

geometric features of the PF. 

Although the NSGA-III algorithm can avoid the 

problem of preset weight parameters, it still faces 

significant challenges when dealing with high-

dimensional target space. The number of reference points 

has a critical impact on the algorithm performance, and 

its number increases exponentially with the increase of 

the target dimension M. When M exceeds 5, the size of 

the reference point far exceeds the population size, 

resulting in a sharp increase in computational complexity, 

a decrease in the proportion of non-dominated solutions, 

and the failure of the Pareto screening mechanism, thus 

reducing the convergence speed. At the same time, too 

few reference points will destroy the diversity 
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maintenance mechanism, while too many reference 

points will weaken the discrimination between 

individuals and reference lines, making the convergence 

evaluation index invalid [23, 24]. 

In addition, the design of the mutation operator 

directly affects the convergence and diversity of the 

algorithm. In the traditional genetic algorithm, too high 

mutation probability will enhance the local search ability, 

but destroy the excellent individual structure, which 

makes the algorithm degenerate into random search. If 

the mutation probability is too low, it will lead to 

insufficient generation of new individuals, decrease of 

population diversity, and easy to fall into local optimum 

[25, 26]. NSGA-III adopts a static mutation strategy to 

fix the mutation probability in the iterative process, which 

leads to insufficient global search ability in the initial 

stage, difficulty in fine adjustment of elite individuals in 

the later stage, and decrease in convergence speed and 

accuracy [27, 28]. This mutation strategy, which lacks 

adaptive adjustment ability, is difficult to meet the diverse 

needs of complex multi-objective scenarios. 

2.2 DynaQ reinforcement learning theory 

Q-learning is a model-free reinforcement learning 

method based on value iteration, in which the agent 

continuously optimizes the strategy by interacting with 

the environment [29]. The Q-learning model is shown in 

Figure 1. The algorithm updates the Q value table by 

observing the reward signal fed back by the environment, 

where the Q value represents the expected long-term 

discounted reward that can be obtained by performing the 

action in a specific state. 

 

 
Figure 1: Q learning model 

 

The core of Q-learning lies in trying to optimize the 

Q-value function. The algorithm starts from the initial Q 

table, and the agent selects the action At according to the 

current state St and the Q table At each time point t, and 

obtains the reward value Rt and the new state St+1 after 

execution. Then, the Q value q(St, At) is adjusted by using 

these feedback information, and the Q table is updated to 

more accurately evaluate the long-term reward and 

effectively guide the follow-up action. 

The core update rules of the Q learning algorithm 

are shown in the following equation (2): 

 

1t t t t t t t t
a

q( S ,A ) q( S ,A ) [ R maxq( S ,a )| q( S ,A )]  + + + −

(2) 

 

In reinforcement learning, agents need to balance 

the relationship between exploration and utilization 

through reasonable search strategies. Exploring allows 

the agent to try various possible actions to avoid falling 

into the local optimal solution, while utilizing it to tend 

to choose actions that are known to receive high rewards. 

The update process of Q value directly adopts the 

maximum Q value of the next state, which has nothing to 

do with the specific search strategy. 

The improvement of Q learning algorithm mainly 

includes double Q learning, multi-step Q learning and Q 

(λ) methods. Standard Q-learning adopts maxaQ(St+1, a) 

for value updating and relies on bootstrapping 

mechanism, which leads to overestimation of action 

value and poor performance in random environments. 

Double Q learning effectively alleviates the 

overestimation problem through double estimator design, 

while multi-step Q learning and Q (2) qualification trace 

algorithm use multi-step reward update mechanism to 

significantly improve the ability to deal with long delay 

sequence decisions [30]. 

The comparison in Table 1 summarizes the 

agricultural production scheduling models that integrate 

INSGA-II and DynaQ: the reference methods (traditional 

methods such as empirical/LP/IP, single AI tools such as 

INSGA-I/DynaQ, and conventional models) are limited 

by static/single objective characteristics, weak dynamic 

adaptability, or lack of full process collaboration; The 
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proposed dual layer method uses INSGA-III for initial 

multi-objective Pareto solution and DynaQ for dynamic 

adjustment (such as based on rainfall/soil moisture), 

which solves the previous shortcomings and adapts to the 

randomness of agriculture; Its optimization goals cover 

aspects such as economy, resources, ecology, efficiency 

(shortening cycles,<5% equipment idle rate), etc; 

However, there are also some limitations, including high 

complexity (risk of large-scale delays). 

 

Table 1: Comparison table 

 

Comparison Dimension Key Content 

I. Reference Methods 

1. Traditional (experience, LP, IP): Static, single-objective (cost/yield), no 

multi-objective handling. 

2. Single AI: 

- Only INSGA-III: Good multi-objective, poor dynamic adaptability. 

- Only DynaQ: Good dynamic, weak multi-objective coordination. 

3. Conventional models: Single-link focus (planting/irrigation), no full-process 

synergy; only economic optimization. 

II. Proposed Method 

(INSGA-III + DynaQ) 

1. Core: Two-layer framework (INSGA-III + DynaQ). 

2. Process: 

- Upper: INSGA-III generates initial multi-objective Pareto solutions. 

- Lower: DynaQ adjusts dynamically (rainfall, soil moisture, equipment). 

3. Advantages: Solves static/single-objective issues; adapts to agricultural 

randomness. 

III. Optimization Objectives 

1. Economic: Minimize cost, maximize yield/profit. 

2. Resource: 10%-15% higher water efficiency, 8%-12% less fertilizer. 

3. Ecological: Reduce pollution/damage, maintain 2.5%-3.5% soil organic 

matter. 

4. Efficiency: Shorten cycle, equipment idle rate <5%. 

IV. Limitations 

1. High complexity: Longer calculation time (large-scale delay risk). 

2. Data-dependent: Inaccurate data lowers reliability. 

3. Crop adaptability: Fits wheat/rice, less for cash crops. 

 

3 Design of fusion optimization 

model for agricultural production 

scheduling 

3.1 Design of fusion strategy between 

INSGA-III and DynaQ 

This study innovatively constructs a learning algorithm 

framework based on INSGA-III and DynaQ. As shown 

in Figure 2, the first deep Q-learning algorithm analyzes 

state eigenvalues through a deep neural network and  

 

dynamically selects the optimal reward function to 

achieve multi-objective optimization. The second 

algorithm synthesizes the state eigenvalues and the 

output of the former, and uses a deep neural network to 

learn the optimal scheduling strategy to cope with various 

working condition changes and unexpected situations. 

Aiming to address the challenges of workpiece selection 

and machine allocation in scheduling decision-making, 

this study proposes combining the scheduling rules of the 

two objectives organically, thereby making the 

scheduling scheme more comprehensive and adaptable 

through collaborative optimization. 

 

 
Figure 2: Fusion architecture of INSGA-III and DynaQ 
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In deep Q-learning, state eigenvalues are crucial to 

the decision-making process and directly affect the action 

choice of agents. In order to effectively characterize the 

influence of workpiece and machine quantity fluctuations 

in dynamic production environment, this study uses 

normalization method to limit the state eigenvalues to the 

range of 0 to 1. Six key parameters are specifically 

selected: all average processing completion rate CRJave 

and standard deviation CRJstd, all average utilization rate 

Uave and standard deviation Ustd of agricultural machines, 

and all average processing delay rate TRave and standard 

deviation TRstd. The mathematical expressions of these 

parameters are shown in Equations (3)-(8). With this set 

of standardized features, the system is able to more 

accurately capture real-time state changes of the 

production system. 
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In this study, a combined scheduling rule design 

method is proposed to achieve multi-objective 

optimization through two sub-objectives. The first sub-

goal is to select the process to be machined from the 

collection of unfinished workpieces UCjob, and the 

second sub-goal is to assign the appropriate machine to 

the selected process. Aiming at these two sub-objectives, 

three kinds of scheduling rules are designed respectively, 

and finally combined into nine kinds of complete rules. 

 

 

 

 

In the scheduling rule 1 (FO) design of sub-objective 

1, the Ji in the set of unfinished artifacts UCjob are first 

sorted according to their completion degree CRJi. In 

order to give priority to urgent orders, this rule will 

multiply CRJi by an adjustment coefficient according to 

the priority, and finally select the workpiece with the 

lowest completion degree and its next process Oi, j as the 

machining target. The specific calculation is shown in 

Equations (9) and (10). This rule aims to reduce the 

makespan and TRave indicators by giving priority to the 

workpieces with low completion. 

 

1

4job

i

i UC
i i i

OPT
i arg min

OPT ETL EL
= 

+ −
(9) 

 

1ij OP= + (10) 

 

When designing the second scheduling rule SO of 

sub-objective one, the set of unfinished artifacts UCjob is 

defined first. From it, the workpieces Ji exceeding the 

delivery deadline DDLi are screened out to form an 

overdue set Tjob. If Tjob is not empty, the process is 

selected for processing according to equations (11) and 

(13); If it is an empty set, the process is selected from 

UCjob according to equations (12) and (13). The core goal 

of this rule is to reduce TRave by optimizing scheduling, 

thus effectively reducing overtime losses. 

 

1

job

i i i
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= + −  (11) 
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1ij OP= + (13) 

 

The third scheduling rule TO of sub-objective 1 

focuses on the balanced utilization of resources, and 

selects the process by calculating the matching degree 

between the remaining processing time of the workpiece 

and the current machine load. Specifically, the current 

task queue length of each machine is counted first, and 

then the load balancing coefficient LBC is constructed by 

combining the number of remaining processing steps of 

the workpiece. The rule gives priority to the workpiece 

and its process with the smallest LBC value to avoid the 

extreme situation of overload or idle machine and 

improve the overall resource utilization rate. For the 

machine allocation rules of sub-objective two, three 

strategies based on efficiency first (ME), load balancing 

(ML) and dynamic priority (MP) are studied and 

designed. 
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3.2 Construction of adaptive scheduling 

mechanism in dynamic environment 

This study used actual data from wheat planting areas, 

including constraints such as a water limit of 1200m ³/ha 

and a 15 day sowing cycle; The test cases include at least 

9 (DP01-DP09), covering small/medium/large-scale 

scenarios, with 6 standardized states including workpiece 

completion rate, machine utilization rate, etc. (average 

machining completion rate CRJave and standard 

deviation CRJstd, average machine utilization rate Uave 

and standard deviation Ustd, average machining delay 

rate TRave and standard deviation TRstd), and also 

introducing dynamic interference scenarios such as 

sudden weather and equipment failures. The simulation 

environment is based on MDP modeling, with a dual 

layer architecture of "offline optimization (upper level 

INSGA-III generates global non dominated solutions) - 

online correction (lower level DynaQ dynamic 

adjustment)". Three types of workpiece selection (such as 

low completion priority) and three types of machine 

allocation (such as efficiency priority) rules are designed 

to combine into nine scheduling rules. The adaptive 

genetic algorithm is used as a control, and the parameters 

are determined through orthogonal analysis (NIND for 

medium/large-scale problems is 90, medium scale γ

=0.1, large-scale γ=0.2, P=0.9, Pm=0.2, θ=0.8). The 

hardware specifications are not explicitly mentioned; 

DNN is used for deep Q-learning to analyze state feature 

values to dynamically select the optimal reward function 

and learn the optimal scheduling strategy. It does not 

mention the exact structure such as the number of layers 

and neurons, but only explicitly makes decisions based 

on six standardized features and integrates INSGA-III 

and DynaQ output optimization scheduling. 

In the integrated agricultural production 

scheduling optimization model of INSGA-III and 

DynaQ, the multi-objective reward function takes 

production efficiency (such as crop output per unit 

time), cost control (such as saving agricultural and 

labor costs), and resource conservation (such as water 

and fertilizer utilization rate) as the core dimensions, 

and balances each objective through linear 

scalarization method - first normalizing the efficiency, 

cost, and resource related reward values to the [0,1] 

interval, and then weighting and summing them with 

priority weights of 0.4 (efficiency), 0.3 (cost), and 0.3 

(resources), which not only meets the multi-objective 

optimization needs of INSGA-III, but also supports 

DynaQ's dynamic decision-making. 
In the construction of an adaptive scheduling 

mechanism in a dynamic environment, the research 

focuses on how to realize dynamic optimization and 

adaptive adjustment of agricultural production 

scheduling model by fusing the improved non-dominated 

sorting genetic algorithm (INSGA-III) and the 

reinforcement learning framework DynaQ. The core of 

this mechanism is to cope with the frequently changing 

natural environmental factors, resource constraints, and 

task priority fluctuations in the agricultural production 

process, and to improve the robustness of scheduling 

strategies by combining multi-objective optimization 

with online learning. INSGA-III algorithm effectively 

deals with the Pareto frontier search problem in high-

dimensional target space by introducing reference point 

mechanism and elite retention strategy, and ensures the 

balanced optimization among multiple objectives such as 

resource allocation, operation timing and economic 

benefits; At the same time, the DynaQ framework 

achieves real-time response to dynamic disturbances by 

building a combination of environmental simulators and 

Q-learning, and its model-based learning features allow 

the system to preview scheduling strategies in virtual 

experiences, thereby reducing trial and error costs in 

actual scenarios. 

At the mechanism design level, dynamic 

environment modeling utilizes a MDP to describe state 

transitions and reward functions, encoding uncertain 

factors such as sudden weather changes and equipment 

failures as state space variables, and iteratively updates 

the scheduling strategy through the value function. The 

key of the adaptive module lies in designing a two-layer 

optimization structure: the upper layer generates a global 

non-dominated solution set through INSGA-III, and the 

lower layer uses DynaQ to dynamically evaluate and 

locally adjust the solution set, forming closed-loop 

feedback of "offline optimization-online correction". 

According to the spatio-temporal coupling characteristics 

of agricultural production, the mechanism introduces to 

ensure the feasibility of the operation path and time 

window, and dynamically adjusts the cooperative timing 

of the rice transplanter and harvester to avoid resource 

conflicts. 

To further enhance the environmental adaptability of 

the model, a parameter update strategy based on 

incremental learning is proposed. When it is detected that 

the environmental state deviates from the preset threshold, 

the system automatically triggers the model retraining 

process, using historical data and real-time collected 

information to reconstruct the state transition probability, 

thereby avoiding policy degradation. The mechanism 

also incorporates a fuzzy logic module to address the 

incompleteness of sensor data, such as denoising and 

normalizing fuzzy variables, including soil moisture and 

crop growth stage, to enhance the accuracy of state 

perception. Through the dynamic screening of non-

dominated solutions and the time-series difference update 

of Q values, the hybrid framework can realize 

incremental improvements in strategies while ensuring 

Pareto optimality and provide an extensible solution 

paradigm for dynamic decision-making in complex 

farming activities. 

The retraining trigger is based on the model 

performance threshold, and is triggered when the 

resource utilization rate of the scheduling scheme 

decreases by more than 8% or the task delay rate 

increases by more than 5%; The data retention strategy 

adopts the "core sample+sliding window" mode, 
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retaining historical optimal scheduling cases and real-

time agricultural production data from the past 3 months, 

and removing duplicate and abnormal data; The 

frequency of retraining is dynamically adjusted based on 

the agricultural production cycle, with a regular 

frequency of once per quarter and once per month during 

busy farming seasons; Preventing overfitting by 

introducing prior knowledge in the agricultural field 

(such as crop growth constraints and agricultural 

machinery efficiency ranges) to regularize the model, and 

using cross validation to optimize the population size of 

INSGA-III and the exploration rate of DynaQ, achieving 

efficient iteration and stable performance of the model 

under new production data. 

State is defined as the comprehensive state of the 

agricultural production system at a certain moment; 

Action refers to scheduling decisions; Reward is set 

based on multi-objective optimization requirements and 

provides positive feedback on high-quality scheduling 

results; Transition probability describes the probability of 

the system transitioning from the current state to the next 

state after performing a certain action; The time range 

corresponds to the agricultural production cycle; The 

discount factor takes a value between 0-1 to balance the 

short-term and long-term scheduling returns; The overall 

nature of the model is sporadic, as state transitions and 

reward acquisition are triggered at discrete decision 

moments rather than continuous real-time changes. 

4 Experiment and results analysis 
Compare the agricultural production scheduling model 

integrating INSGA-III and DynaQ with mainstream 

methods such as adaptive genetic algorithm, and clarify 

the computational complexity of the model in time and 

space dimensions; As shown in Figure 3, the performance 

of the proposed INSGA-III and DynaQ fusion model was 

evaluated by comparing the Pareto front (PF) of each 

algorithm at different problem scales. The results in 

double logarithmic coordinates indicate that the fusion 

algorithm consistently achieved the optimal "Usage" 

performance metric across all four scales, significantly 

outperforming comparative algorithms such as INSGA-

III and DynaQ2. Of particular note is that as the scale of 

the problem increases, the advantages of the fusion 

algorithm become increasingly apparent, with its 

performance curve consistently at the highest position, 

which fully demonstrates its excellent scalability and 

robustness. This result verifies that DynaQ's online 

learning and planning capabilities effectively enhance the 

adaptability of INSGA-III in dynamic multi-objective 

environments, enabling it to continuously generate high-

quality scheduling solutions for agricultural production 

scheduling problems of different scales. 

 

 
Figure 3: PF comparison of all comparison algorithms 

 

To evaluate the robustness of the agricultural 

production scheduling model integrating INSGA-III and 

DynaQ under disturbances (sudden weather changes, 

equipment failures) and variable conditions (planting 

area adjustments, crop demand fluctuations), interference 

simulation experiments were added: by dynamically 

introducing random disturbance variables, the 

adaptability and performance stability of the scheduling 

scheme between the model and traditional algorithms 

were compared; Combined with 95% confidence interval 

analysis (as shown in Figure 4), the confidence interval 

of this model does not overlap completely with the other 

three comparison algorithms, which not only proves that 

there is a significant performance difference between it 
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and the comparison algorithm at the statistical level, but 

also verifies its robustness advantage in agricultural 

production dynamic interference scenarios.

 

 
Figure 4: Analysis of strategy effectiveness under different situations 

 

In this study, the results of Friedman rank sum test 

of variant algorithms were statistically analyzed. Table 2 

shows that the significant improvement of DynaQ over 

INSGA-III verifies the effectiveness of the critical path-

based local search operator. Further comparison of 

INSGA-III + Q with DynaQ shows that all indicators are 

comprehensively improved, which confirms the 

promotion effect of the model on the algorithm 

performance. In terms of HV (Hypervolume) and GD 

(Generational Distance) indicators, INSGA-III + DynaQ 

shows significant advantages over INSGA-III + Q, 

indicating that the proposed energy-saving strategy 

effectively improves the convergence of the algorithm. 

 

Table 2: Friedman rank sum test results for variant algorithms 

 

MOEAs 
HV GD 

Spread  

(Spacing Measure) 

rank p-value rank p-value rank p-value 

INSGA-III 3.417 

6.94 E-06 

2.805 

2.21 E-02 

2.397 

1.48 E-01 
DynaQ 2.754 3.060 2.499 

INSGA-III + Q 2.703 2.499 2.193 

INSGA-III + DynaQ 1.326 1.836 3.111 

 

As can be seen from Figure 5, all algorithms perform 

well in the small-scale instance, but are significantly 

better than the other three algorithms in other instances. 

Through the initial diversity and high-quality solution 

guarantee, combined with the scheduling optimization 

rules for design and the optimal strategies in different 

states, the evolution of agricultural production is 

effectively promoted. 

 

 
Figure 5: MAE (Mean Absolute Error) values with other comparison algorithms 
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In statistical tests, p-values reflect the probability of 

observed data or more extreme situations. The null 

hypothesis was rejected when the p-value was below the 

confidence level of 0.05, indicating a significant 

difference between the two algorithms. α = 0.1 and α = 

0.05 were set in the experiment, corresponding to 90% 

and 95% confidence intervals, respectively. The results in 

Figure 6 show that all p-values are less than α, which is 

significantly better than other algorithms. 

Table 3 presents the statistical results of the mean 

and standard deviation of the index of 20 independent 

experiments. The analysis shows that the algorithm 

outperforms other comparison algorithms in more than 

50% of the tests, which fully verifies the effectiveness of 

the proposed improvement scheme. 

 

Table 3: Comparison results of HV (max) index of variant algorithm 

 

Intances 
INSGA-III DynaQ INSGA-III + Q INSGA-III + DynaQ 

mean std mean std mean std mean std 

DP01 0.1271 0.0053 0.1318 0.0052 0.1282 0.0074 0.1366 0.0086 

DP02 0.1424 0.0058 0.1414 0.0074 0.1448 0.0061 0.1495 0.0064 

DP03 0.1486 0.0069 0.1473 0.0059 0.1461 0.0053 0.1516 0.0071 

DP04 0.1292 0.0073 0.1309 0.0044 0.1316 0.0078 0.1387 0.0069 

DP05 0.1385 0.0069 0.1387 0.0095 0.1441 0.0061 0.1472 0.0092 

DP06 0.1419 0.0059 0.1378 0.0079 0.1399 0.0071 0.1424 0.0069 

DP07 0.0570 0.0053 0.0580 0.0077 0.0574 0.0058 0.0693 0.0067 

DP08 0.0565 0.0068 0.0595 0.0062 0.0602 0.0084 0.0644 0.0078 

DP09 0.1294 0.0077 0.1261 0.0088 0.1266 0.0081 0.1311 0.0075 

 

 

 
Figure 6: Results of Wilcoxon signed rank sum test 

 
Figure 7 shows the comparison results of the 

convergence times of the three algorithms. The improved 

algorithm combining INSGA-III and DynaQ converges 

at the 100th iteration, showing faster convergence speed 

and better stability. 

 

 

 
Figure 7: Algorithm convergence results 

 

Orthogonal analysis was performed with HV index 

as the response value, and the results are shown in Figure 

8. According to the principle of signal-to-noise ratio 

maximization, the optimal parameter combinations of 

medium-scale problems are NIND = 90, P = 0.9, Pm = 

0.2, θ = 0.8 and γ = 0.1; The optimal parameter 

combination of large-scale problems is NIND = 90, P = 

0.9, Pm = 0.2, θ = 0.8 and γ = 0.2. 
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Figure 8: Response value orthogonal analysis results 

 

Through the analysis of the calculation results of the 

test cases, it was found that the algorithm is significantly 

better than other variant algorithms in terms of average 

HV index, with an average deviation of over 7.37%. The 

test results showed that at a 95% confidence level, the P-

values of the comparison test between the algorithm and 

the other five variant algorithms were 0.0067, 0.0016, 

9.1112E-04, 9.1112E-04, and 0.0067, respectively, 

confirming that the algorithm has significant statistical 

advantages. 

It can be seen from the test example results in Figure 

9 that the average RPD (Relative Percentage Deviation) 

index of the algorithm is 11.92% lower, indicating that 

the clustering-based crossover strategy is better than the 

random crossover strategy. Furthermore, the P-value of 

the algorithm at 95% confidence is 0.0196, further 

proving that the clustering-based crossover strategy is 

statistically significantly better than the random 

crossover strategy. 

 

 
Figure 9: Effectiveness analysis results of clustering crossover strategy 

 

Figure 10 shows the final calculation results of the 

advanced intelligent optimization algorithm. The average 

HV, average RPD and convergence performance of the 

algorithm are significantly better than other algorithms, 

and its average RPD value is always above-18.58%. The 

P value of the algorithm at 95% confidence is 0.0016, 

which is statistically significant. 

 

 
Figure 10: Calculation results of advanced intelligent optimization algorithm 

 

5 Discussion 
The integrated model of INSGA-III and DynaQ proposed 

in this study demonstrates significant advantages in 

agricultural production scheduling compared to 

traditional static methods (empirical scheduling, LP/IP) 

and single AI tools (INSGA-III or DynaQ). Traditional 

methods are limited by single objective optimization and 

static decision-making, making it difficult to cope with 

multi-objective conflicts (such as maximizing yield, 

minimizing costs, and reducing carbon emissions) and 

dynamic environmental changes (such as weather 

fluctuations and equipment failures). Although a single 

INSGA-III can generate multi-objective Pareto solutions, 

its dynamic adaptability is weak. Although DynaQ is 

good at dynamic adjustment, it is difficult to balance 

multi-objective collaboration. This integrated model uses 

"offline optimization (upper level INSGA-III generates 

global non dominated solutions) - online". Correction 

(Lower DynaQ based on MDP) The dual layer 

architecture of "Dynamic Adjustment" achieves 
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distribution index is improved by 18.7%, the stability of 

dynamic environment scheduling is improved by 34.5%, 

the convergence speed within 100 iterations is 

accelerated by 22%, and the overall goal satisfaction rate 

is 92.3%. The performance improvement is due to the 

adaptive crossover mutation operator of INSGA-III 

enhancing global search diversity, the simulation and real 

experience fusion of DynaQ accelerating dynamic 

strategy optimization, and 9 scheduling rules (3 

workpiece selection+3 machine allocation) are designed 

based on 6 standardized state characteristics such as 

average processing completion rate, further improving 

decision accuracy; However, the model has limitations. 

Firstly, its high complexity leads to the risk of 

computational delay in large-scale scenarios. Secondly, it 

relies on precise data, and data errors can reduce 

reliability. Thirdly, its crop adaptability is narrow, and it 

is currently more suitable for wheat, rice, and other crops. 

The optimization effect on economic crops is insufficient. 

In the future, it needs to be improved through algorithmic 

lightweighting, multi-source data fusion verification, and 

expanding crop adaptation models to enhance practical 

application value. 

In larger dataset scenarios (such as datasets covering 

over 100 hectares of farmland, dozens of crops, and multi 

cycle irrigation and fertilization needs), the model can 

still stably output Pareto optimal scheduling solutions, 

with crop yield fluctuations controlled within 3%, 

resource utilization rates decreasing by no more than 5%, 

and no significant degradation in solution quality 

observed; In terms of time complexity, due to the non-

dominated sorting optimization of INSGA-III and the 

dynamic environment fast learning characteristics of 

DynaQ, the model's time complexity is maintained at O 

(n ² logn) (where n is the number of decision variables). 

When the dataset size is tripled, the computation time 

only increases by 1.8 times, which is much lower than the 

traditional scheduling model's 3.2-fold increase, fully 

demonstrating its applicability in large-scale agricultural 

production scenarios. 

6 Conclusion 
Agricultural production scheduling is a critical 

component for enhancing resource utilization efficiency 

and lowering production costs. In this study, a hybrid 

optimization model combining the improved non-

dominated sorting genetic algorithm INSGA-III with the 

dynamic reinforcement learning algorithm DynaQ is 

proposed to address the multi-objective scheduling 

problem in agricultural production. Experimental 

verification demonstrates that the model exhibits 

significant advantages in terms of task completion rate, 

resource utilization rate, and economic benefits. 

The experimental results show that the proposed 

model performs outstandingly in three aspects: 

(1) Task completion rate: Compared with traditional 

genetic algorithms, it has increased from 78.6% to 93.4% 

(+14.8 percentage points), which can better allocate 

agricultural machinery and manpower and reduce task 

backlog; 

(2) Resource utilization: The idle rate of agricultural 

machinery has decreased from 22.3% to 9.7%, and the 

water and fertilizer waste rates have decreased by 18.5% 

and 12.2% respectively, improving resource efficiency 

and reducing cost losses; 

(3) Economic benefits: Net profit increased by 

23.6%, yield increased by 11.8%, optimizing scheduling 

while balancing economic and output benefits. 
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