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With the increasing demand for data transmission, fiber-optic communication systems face growing
challenges in security and real-time monitoring. To address limitations in spatial resolution and weak
anomaly detection, this study proposes a high-resolution intrusion detection framework integrating
enhanced Optical Low-Coherence Reflectometry (OLCR) and Long Short-Term Memory (LSTM)
networks. At the link layer, high-resolution interferometric signal detection and anomaly localization are
achieved through spectral shaping, polarization stabilization, and optical path difference modulation. At
the system layer, LSTM enables multi-dimensional feature fusion and temporal pattern recognition for
intelligent intrusion classification and adaptive defense. Experiments on a 10-km fiber link simulate
typical anomalies including breaks, splice faults, and bending eavesdropping, using NSL-KDD and
Polarization Mode Dispersion datasets for training and validation. Measured parameters cover
reflectivity, phase shift, and polarization angular velocity. Results demonstrate a spatial resolution of
11.15 m at 100 m, detection accuracy of 96.40%, and intrusion recognition rate of 95.60%,
outperforming existing methods. The fusion of improved OLCR and LSTM proves effective for high-
precision detection and dynamic protection in complex environments, offering a scalable intelligent
solution for secure fiber-optic systems.

Povzetek: Studija predstavi visoko natancen sistem, ki z izboljsano metodo OLCR in LSTM omogoca

ucinkovito zaznavanje in klasifikacijo anomalij v opticnih viaknih.

1 Introduction

Global data traffic is growing exponentially, making
information technology and network communication
essential infrastructure across all aspects of daily life [1].
As the backbone of modern information networks, optical
fiber communication supports key applications such as the
Internet, 5G, and data centers with advantages like high
bandwidth, low loss, and long-distance transmission [2].
However, despite its superior transmission performance,
optical fiber remains vulnerable in physical security.
Traditional encryption protects only data content and
cannot prevent physical intrusions, which may lead to data
leakage or service interruption without being detected in
real time by upper-layer security mechanisms [3-4].
Meanwhile, existing physical layer monitoring techniques
can locate faults but lack sufficient real-time performance,
sensitivity to weak disturbances, and precise localization,
falling short of high-security requirements [5]. Moreover,
current fiber security solutions still lack an integrated
approach combining high-precision detection, accurate
localization, and anomaly identification [6]. To address
these gaps, this study proposes a high-resolution intrusion
detection framework for optical networks based on

enhanced Optical Low-Coherence Reflectometry (OLCR)
and Long Short-Term Memory (LSTM) networks. At the
link layer, OLCR is optimized through spectral shaping,
polarization stabilization, and optical path difference
modulation to achieve high-resolution detection and
localization of anomalies such as splice defects and covert
eavesdropping. At the system layer, LSTM-based
temporal modeling enables intelligent identification and
classification of various intrusion types. The research aims
to establish a physical-layer security system integrating
high-precision detection, intelligent recognition, and
dynamic protection, providing technical support for next-
generation high-security optical fiber communication.

To systematically address key challenges in detection
accuracy and system-level protection in optical fiber
communication, the study formulates the following
research questions: RQ1: Can the improved OLCR
technique achieve sub-resolution anomaly detection and
precise localization in long-distance fiber links? RQ2: Can
multi-dimensional feature fusion and LSTM-based
temporal modeling effectively enhance recognition
accuracy and real-time response capability for diverse
intrusion events?
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2 Related work
With the rapid advancement of information technology
and network communications, data security and privacy
Table 1: Current research progress and limitations of optical communication security methods.
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protection have become core research areas [7].
Mohammed S H et al. proposed an RC4 cipher-based
secure optical communication system using dispersion-
compensating fiber to achieve long-distance secure
message transmission while addressing range limitations
[8]. Fadil E A et al. developed a hybrid secure system
employing optical chaos to overcome traditional
encryption limitations and signal degradation in chaotic
encryption [9]. Algahtani A S et al. introduced a
homomorphic encryption technique focused on data
owner, fog server, and consumer privacy, enhancing
security during storage operations and reducing
encryption length [10]. He J et al. designed a digital signal
processing-based physical layer security scheme using
two dispersion elements and a key-driven phase modulator
for low-cost, efficient, and high-level security in coherent
optical communication [11].

Additionally, Lema G G proposed a free-space optical
communication method to maximize visibility and

minimize bit error rate, improving link reliability under
various atmospheric conditions [12]. Singh P et al.
presented a unmanned aerial vehicle-assisted integrated
fiber-wireless system using a cognitive divergence angle
tracking algorithm to dynamically optimize beam
divergence and overcome traditional RF limitations [13].
Bekkali A et al. developed a full-duplex, all-optical free-
space transceiver to enhance capacity and reliability
against atmospheric turbulence and pointing errors [14].
Nevin J W et al. applied reinforcement learning with
invalid action masking and novel training to improve
routing and wavelength assignment efficiency in fixed-
grid optical networks [15].

In summary, significant progress has been made in
data/physical layer security, transmission optimization,
and intelligent management. However, real-time high-
precision intrusion detection and localization at the optical
fiber physical layer remain insufficient, as summarized in
Table 1.
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Based on this, the study proposes a high-resolution
intrusion detection framework for optical fiber networks
using improved OLCR and LSTM temporal analysis. It
innovatively integrates the physical layer detection
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capability of improved OLCR with deep learning-based
temporal modeling. This approach not only improves
sensitivity and localization accuracy for weak, concealed
disturbances but also enables intelligent classification of
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anomaly types and real-time response, establishing a
comprehensive optical fiber security system that combines
high-precision detection, intelligent identification, and
dynamic protection.

3 Methods and materials

3.1 Fiber optic link anomaly detection and
localization technology based on
improved OLCR

To address the limitations of traditional OLCR systems in
resolution, dynamic range, and weak anomaly detection,
this study proposes an improved OLCR-based technique
for optical fiber link anomaly detection and localization.
By employing spectral shaping, polarization self-
stabilization, and optical path difference modulation, the

improved OLCR system achieves higher resolution and
noise immunity. Combined with event point analysis for
feature extraction and multi-event separation of
interference signals, it enables precise identification and
sub-resolution localization of link anomalies. The
technical architecture is shown in Figure 1.

Figure 1 shows the fiber link anomaly detection and
localization technology based on improved OLCR.
Firstly, the traditional OLCR architecture is optimized,
and improvements are made in spectral shaping,
polarization self stabilization, and optical path difference
modulation to construct a detection system with higher
spatial resolution, larger dynamic range, and stronger
stability. The improved OLCR system is shown in Figure
2.

Figure 2 shows an improved OLCR system that
introduces a broad-spectrum light source with spectral
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shaping at the light source end, achieving sub ten micron
spatial resolution by compressing the self coherence
length. The axial spatial resolution improvement is shown
in equation (1) [16].
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Equation (1) indicates that the resolution is directly
proportional to the square of the center wavelength 2, of

the light source, and inversely proportional to the full
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Figure 3: A link anomaly location method integrating optical path difference modulation and event point analysis.

width at half maximum spectral bandwidth Al of the
light source and the group refractive index n of the fiber.
Among them, 4, and n are inherent parameters of the

system, while A4 is a key variable that can be directly
optimized through "spectral shaping” technology.
Increasing Al can effectively compress the coherence
length of the light source, thereby achieving high-
resolution detection at the sub ten micron level.

Adding a polarization self stabilization module to the
interference arm effectively reduces the impact of
polarization state fluctuations on the interference signal
and improves the long-term stability of the system
operation. The interference signal strength is shown in
equation (2) [17].

I, oc R(z)~cos(2kAI)-exp[—(2AI / Lc)z] (2

Equation (2) reveals the detection mechanism of the
OLCR system, whose amplitude is determined by the
reflectivity R(z) of the reflection point, and the cosine

cos(2kAl)

information caused by the optical path difference Al ,
where Kk is the wavenumber. The exponential envelope

term exp[—(ZAI/LC)Z} ensures that the effective

term contains the phase interference

interference signal only exists within a range of coherence
length L, near zero optical path difference. Equation (2)

indicates that by demodulating this signal and extracting
the envelope, the reflectance distribution R(z) curve of

the fiber optic link can be inverted.

By configuring a variable optical path delay line and
an optical path difference modulator in the reference arm,
combined with frequency domain analysis methods, not
only is the measurement dynamic range expanded, but the
masking of weak reflection event points by baseband
noise is also suppressed. The receiving end adopts
balanced detection and high-speed sampling, combined
with real-time digital signal processing, to extract the
envelope of the interference signal and separate multiple
event points. The event location is shown in equation (3).

z=Al/(2n) )

Equation (3) establishes a direct correspondence
between the optical path difference Al and the physical
position z. The core of equation (3) lies in the denominator
2n , which reflects the physical essence of light
undergoing "round-trip" propagation at the event point. By
accurately scanning and measuring the optical path
difference Al when interference occurs, the system can
calculate the precise location of the reflection event based
on equation (3).



A High-Resolution Intrusion Detection Framework for...

Through the above improvements, the system can
achieve stable detection and feature output of fiber optic
link anomalies while ensuring high resolution, providing
reliable data support for subsequent event point analysis
and anomaly localization.
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Subsequently, in response to possible device defects,
connection point losses, and bending eavesdropping
anomalies in the link, the study combined optical path

y

Spectral shaping

Polarization stabilization

Spatial domain
characteristics

Frequency domain
characteristics

Polarization domain
characteristics

I Multi-dimensional
l«—! feature construction

|
| Noise estimation and SNR
| evaluation

and fusion |

| LSTM Intrusion

! leentification module | '

Decision Fusion Engine

Figure 4: Optimal design of optical fiber secure communication system based on improved OLCR and LSTM.

difference modulation with event point analysis to
perform multi-event detection and feature extraction on
low coherence interference signals, extracting parameters
such as reflection intensity, phase shift, and polarization
disturbance, and achieving high-precision identification of
abnormal behavior. The link anomaly localization method
that integrates optical path difference modulation and
event point analysis is shown in Figure 3.

Figure 3 shows a link anomaly localization method
that combines optical path difference modulation and
event point analysis. The system maps spatial reflection
information in the fiber link to the frequency domain by
introducing small amplitude optical path difference
modulation in the reference arm, and effectively
suppresses baseband noise by combining short-time
Fourier transform (STFT) and frequency domain filtering,
thereby enhancing the detection ability of weak reflection
events. The optical path difference modulation function is
shown in equation (4).

Al(t) = l,+A, sin(2xf t) 4)
Equation (4) defines the dynamic variation of the
reference arm optical path, where |, is the basic optical

path difference set by the variable delay line, responsible
for large-scale scanning. A, is a small modulation

amplitude, much smaller than the coherence length to
ensure that the interference signal is not lost, and f_ isthe

modulation frequency. This modulation linearly maps
spatial reflection information to the high-frequency band,
effectively avoiding the low-frequency noise region of the
baseband, laying the core foundation for subsequent
frequency domain filtering and signal-to-noise ratio
improvement.

Subsequently, envelope extraction and multi event
analysis are performed on the interference signal to
achieve high-precision identification of event points

through peak detection, interpolation positioning, and
phase separation. The abnormal location is determined by
combining time delay distance conversion. By utilizing
polarization  perturbation and amplitude phase
information, different types of anomalies can be
distinguished. Finally, multi-resolution localization is
achieved through multi event correlation and local
refinement algorithms, outputting the location, type, and
confidence of anomalies, providing support for fiber optic
link safety monitoring and intelligent recognition. The
polarization disturbance discrimination factor is shown in
equation (5).

P, =ﬁildﬁs(i)/ d (5)

Equation (5) quantifies the jitter intensity of the
polarization state at the event point by calculating the
average absolute value of the polarization azimuth angle
change rate do, (i)/dt of N sampling points within the
time window. This factor can effectively distinguish
between stable device faults (low P, values) and dynamic
micro bending eavesdropping behavior (high P, values).

Through the design of "Improved System-Anomaly
Detection and Localization", high-resolution monitoring
and precise localization of physical layer anomalies in
fiber optic links are achieved, providing a solid foundation
for subsequent optimization of secure communication.

3.2 Design of a high-resolution intrusion
detection framework for fiber optic
networks based on improved OLCR
and LSTM time series analysis

The improved OLCR technique achieves high-resolution
detection and localization of anomalies such as breaks,
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splice faults, and bending eavesdropping. To address
challenges in modeling multi-dimensional anomalies,
strong intrusion concealment, and lack of adaptive
protection in optical fiber systems, this study proposes a

B. Zhang

high-resolution intrusion detection framework combining
improved OLCR and LSTM. It fuses multi-dimensional
features from OLCR with LSTM's temporal modeling
capability for intelligent anomaly classification. Result
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feedback drives adaptive adjustment of transmission
scheduling and OLCR scanning, establishing a closed-
loop mechanism integrating physical layer detection and
system protection. The intrusion detection framework is
shown in Figure 4.

Figure 4 presents the high-resolution intrusion
detection framework integrating improved OLCR and
LSTM temporal analysis. Using improved OLCR as the
core sensing unit, it outputs high-resolution
multidimensional features including reflection intensity,
phase shift, and polarization angular velocity. These
features are normalized and fused into unified vectors for
the deep learning model. The multidimensional feature
fusion and covert transmission strategy based on improved
OLCR are shown in Figure 5.

Figure 5 illustrates the multidimensional feature
fusion and covert transmission strategy using improved
OLCR. The system first acquires multi-dimensional link
characteristics in real time. To improve LSTM recognition
accuracy, six features are selected as inputs: reflection
intensity, phase shift, polarization angular velocity, power
spectral density, noise energy distribution, and delay
gradient, covering major physical disturbances in optical
links. Correlation analysis shows an average feature
redundancy of only 0.21, ensuring input independence and
validity. A confidence-weighted fusion mechanism is
employed, where initial weights are set based on feature-
label correlations and dynamically adjusted during
training via gradient feedback to maximize validation
accuracy. The weighted fusion vector is given by equation

(6) [18]. -
Ffused = ;Wi ’ i _IUFI (6)

Of

Equation (6) normalizes the i th original feature F
using Z-score, subtracts the mean . and divides it by the

standard deviation o, to eliminate dimensional

differences, multiplies it by its corresponding confidence
level w., and finally sums up all weighted standard

features to generate a comprehensive fused feature value.

Building on this, a covert transmission strategy is
proposed. Utilizing a physical layer perturbation
embedding mechanism, it dynamically senses link state
changes and maps them to feature perturbations,
employing controlled phase shifts and polarization
variations as steganographic carriers for secure implicit
transmission of data and keys. The transmitter embeds
perturbation information through synchronized spectral
shaping and phase modulation control, while the receiver
recovers it via polarization reference signals and phase
correction channels. This enhances transmission stealth
and anti-eavesdropping capability while maintaining data
integrity and interference resistance. The perturbation
mapping function for covert transmission is given by
equation (7) [19].

1

Equation (7) uses a Sigmoid function to convert the
comparison result between the fused feature value F

fused
and threshold T into a smooth adjustment coefficient
between 0 and 1. This coefficient is then multiplied by the
disturbance amplitude gain G and the covert message
M(t) to generate the final physical layer parameter

disturbance value AP To ensure scientific and
reproducible threshold T selection, the study employed
ROC curve analysis. Extensive baseline data was
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collected from a 10km test link under normal operation,
alongside simulated intrusion signals including
microbending, vibration, and connector disturbances.
Analysis determined that setting the threshold at 0.82
maximizes the Youden index, achieving an optimal

/

— Improved the OLCR system /»;
L
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balance with 98.80% detection rate while maintaining a
2.10% false alarm rate.

The LSTM-based temporal recognition module
effectively  captures dynamic patterns in link
characteristics over time. Combined with polarization
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Figure 6: Intelligent intrusion recognition method combining polarization state angular velocity and LSTM.

angular velocity, it enables precise identification and
classification of various anomalies including device
defects, environmental disturbances, and eavesdropping
attacks, while outputting anomaly types and confidence
levels. The intelligent intrusion recognition architecture
integrating polarization angular velocity with LSTM is
shown in Figure 6.

Figure 6 shows the intelligent intrusion recognition
method combining polarization angular velocity and
LSTM. By utilizing an improved OLCR system to
simultaneously acquire link reflection amplitude-phase
and polarization state timing data, the polarization state
angular velocity characteristics are extracted through first-
order differential calculation of the Stokes vector. This
approach sensitively detects intrusive behaviors such as
micro-bending and local perturbations. The angular
velocity of its polarization state is shown in equation (8)
[20].

w, (t) = %(% arctan [22—((:))}]

Equation (8) quantifies the instantaneous jitter
intensity of the polarization state in the fiber by calculating

®)

the rate of change % of the polarization azimuth angle

over time defined by the normalized Stokes parameters

S,(t) and S,(t) . This physical quantity is highly
sensitive to mechanical disturbances such as micro
bending and compression, and can effectively amplify and
capture weak intrusion signals that are difficult to detect
by static parameters.

Subsequently, the angular velocity is fused with
features such as reflection intensity and phase shift, and a
sliding window is used to construct a time-series sequence
for input into LSTM, capturing the dynamic patterns of
intrusion events and achieving accurate identification of
normal fluctuations, device failures, and eavesdropping
attacks. The LSTM status update is shown in equation (9).

¢ =flc,+i0G ©)

Equation (9) achieves precise regulation of long-term
memory c, through the forget gate f, (controlling the

degree of retention of the previous state c, ,), input gate
i, (controlling the degree of writing of candidate state ¢,

), and their element wise multiplication.

The recognition results are output to the system
monitoring and security scheduling module after threshold
determination and confidence correction, which can
provide real-time alarms and drive OLCR scanning and
adaptive adjustment of transmission parameters, thus
forming a closed loop between physical layer detection
and intelligent analysis, and improving system security.
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The output of multi-category abnormal decisions is shown
in equation (10).

K
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Equation (10) converts the original score z, output
by the LSTM network into the probability distribution of
category k (such as normal, faulty, eavesdropping) using
the Softmax function. Equation (10) normalizes the
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Figure 7: Link anomaly detection performance comparison.
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scores of k categories exponentially, so that the total
output probability is 1, thereby intuitively representing the
confidence of the model in the anomaly type to which the
input sequence k belongs.

4 Results

4.1 Link detection and localization
performance verification of the
improved OLCR

To validate the improved OLCR's link detection and
localization performance, an experimental platform was
constructed containing a broadband source, spectral
shaper, polarization stabilizer, optical path difference
modulator, variable delay line, coupler, reference/test
fibers, balanced detector, and high-speed acquisition card.
Using 10 km SMF-28 fiber (0.2 dB/km attenuation) at 25
+1°C with vibration isolation, anomalies included breaks

(-40 dB reflection), splice defects (0.3-0.5 dB loss), and
microbending eavesdropping (2-5 mm radius). The
broadband signal was spectrally shaped and split into
interferometer arms. Polarization stabilization suppressed
fluctuations while the reference arm enabled dynamic
scanning. Interference signals were captured, processed
for envelope extraction, event point separation, and noise
suppression, ultimately extracting multidimensional
features (reflectivity, phase shift, polarization disturbance)
for sub-resolution localization. Comparative experiments
against conventional OTDR, basic OLCR, and hybrid
OTDR-OLCR used 10 repeated trials. The experimental
results are shown in Figure 7.

As shown in Figure 7, the improved OLCR achieved
a spatial resolution of 11.15 + 0.36 um (95% CI: 10.88-
11.42) at 100m, improving approximately 1lpm over
basic OLCR's 22.30 + 1.07 um (Cl: 21.53-23.07).

Detection sensitivity reached 0.0022 + 0.0002% (ClI:
0.0021-0.0023) versus basic OLCR's 0.012 + 0.0011%
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(Cl:  0.011-0.013), demonstrating about 0.01%
improvement. All  comparisons showed p<0.01,
confirming statistical significance. Subsequent event
localization and noise suppression tests compared basic
OLCR, frequency-domain OLCR, and STFT methods
using 10 repeated trials, with results shown in Figure 8.
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Figure 8 shows the improved OLCR achieved a
detection probability of 92.70% + 2.78% (95% CI: 90.77-
94.63) for -80dB weak events, outperforming
unmodulated OLCR, FFT-processed, and STFT methods

O I-OLCR+LSTM OSimple splicing
A Amplitude characteristics O PCA

50
= o)
S 40 | o)
& o
8 30 o) A
s A2 O
3 20+ o 5 2 ©
= 5]
£ g =
2 10+ o
i B

0 N 1 1 1 1 ]

1 2 3 4 5 6
The number of feature dimensions
(b) Comparison of feature redundancy

Figure 9: Performance testing of multi-dimensional feature fusion recognition.
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Figure 10: Robustness and sensitivity testing of research methods under environmental changes/link interference.

by approximately 80.20%, 57.50%, and 33.80%
respectively. Its event separation degree reached 0.88 +
0.04 (Cl: 0.85-0.91), significantly surpassing other
methods. One-way ANOVA confirmed p<0.01 for all
comparisons, validating the effectiveness of improved
OLCR in improving weak event detection and localization
precision.
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4.2 Validation of the effectiveness of the

improved OLCR and LSTM time-
series analysis framework for high-
resolution intrusion detection in fiber
optic networks
Following OLCR validation, a simulation platform was
established to evaluate the integrated OLCR-LSTM
intrusion detection framework. The environment used
NVIDIA RTX 3080 GPU, Python with TensorFlow 2.0,
Adam optimizer (learning rate 1 x10-3), 10 km fiber
length, 1 GS/s sampling rate, -80 dB to -30 dB noise, 2-
layer LSTM (64 units/layer), and 100 maximum iterations.
Datasets included NSL-KDD and Polarization Mode
Dispersion with characterized network connections and
fiber parameters. Tests on multidimensional feature fusion

B. Zhang

compared amplitude-only characteristics and simple
splicing using 10 repeated trials, with results shown in
Figure 9.

Figure 9 shows that the improved OLCR-LSTM with
6-dimensional features achieved 96.40%+1.93% anomaly

detection accuracy (95% Cl: 94.37-98.43), outperforming
amplitude-only characteristics, simple splicing, and PCA
by approximately 11.30%, 9.20%, and 5.30%
respectively. Its feature redundancy was 20.50%+2.05%
(CI: 19.08-21.92), significantly lower than other methods.
Statistical tests confirmed p<0.01 for all comparisons,
validating both improved accuracy and controlled
redundancy. Subsequent robustness tests under
environmental/link variations compared non-adaptive
fuzzy control, backstep control, and robust neural control
using 10 repeated trials, with results shown in Figure 10.

Table 2: Generates the music quality assessment data table.

Evaluation dimension Traditional I-OLCR LSTM I-OLCR+LSTM
Encryption
8530 * 341
. 92.50 + 278 98.80 + 0.99%*
. ;
Detection Rate (%) CI: [90.77, 94.23] EL . 0[182'93' 87.671 | 1. [98.10, 99.50]
— 8.70 x 087 | 620 = 062|210 * 0217
0,
False Positive Rate (%) Cl: [8.09, 9.31] Cl: [5.77, 6.63] Cl: [1.95, 2.25]
85.50 + 684 | 7230  + 578 | 3520 +  282%
Response Delay (ms) CI: [80.76, 90.24] Cl: [68.28, 76.32] Cl: [33.24, 37.16]
System Throughput Retention Rate é?p'oo EOO%OOO 88.90 + 356 | 9150  + 366 | 96.80 +  1.04%
%) Too00] 0% | cir[36.34, 91.46] CI- [88.84, 94.16] Cl: [95.43, 98.17]

Note: The symbol "**" indicates that this indicator is statistically due to other models (p < 0.01)
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Figure 11: The results of LSTM model training process loss and feature ablation experiments.

As shown in Figure 10, under interference level 5 (+
5°C temperature fluctuation + strong EMI), the proposed
method achieved 93.50% + 2.81% detection accuracy
(95% CI: 91.50-95.50), surpassing non-adaptive fuzzy
control, backstep control, and robust neural control by
27.70%, 16.60%, and 12.30% respectively. Its response
time was 52.90+3.17 ms (Cl: 50.70-55.10), outperforming
the others by 59.60 ms, 42.40 ms, and 23.90 ms. All
comparisons showed p<0.01, confirming robust
performance under extreme interference. Subsequent
system-level validation compared traditional encryption,
improved OLCR, and LSTM alone using metrics
including Detection Rate (true intrusions detected), False

Positive Rate (false alarms), Response Delay (detection-
to-response time), and Throughput Retention Rate
(protected vs. baseline throughput). Results from 10
repeated trials are shown in Table 2.

Table 2 shows the improved OLCR+LSTM closed-
loop system achieved a detection rate of 98.80%+0.99%
(95% CI: 98.10-99.50), surpassing physical-layer-only
and intelligence-only methods by 6.30% and 13.50%
respectively. Its false positive rate was 2.10%+0.21% (ClI:
1.95-2.25), reduced by 6.60% and 4.10%, with a response
delay of 35.20+2.82 ms (Cl: 33.24-37.16) and throughput
retention of 96.80% + 1.94% (Cl: 95.43-98.17). All
comparisons showed p<0.01, confirming superior
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detection, security, and communication performance.
Finally, LSTM training loss and feature ablation studies
were conducted using 70%/15%/15% data splits, Random
Search optimization (Batch Size=64, Dropout=0.2).
Incremental ablation used reflection/amplitude (R-group)
as baseline, adding phase/dispersion (P-group) for R+P,
polarization/temporal (W-group) for R+W, and full
features (R+P+W), with results in Figure 11.

Figure 11(a) shows the LSTM's training loss
decreased from 0.85+0.043 (95% CI: 0.824-0.876) at
Epoch 20 to 0.25+0.013 (ClI: 0.242-0.258) at Epoch 100,
with validation loss dropping correspondingly from 0.82 +
0.041 (CI: 0.795-0.845) to 0.24+0.012 (CI: 0.233-0.247).
The overfitting ratio remained stable at 1.04-1.09. In

Figure 11(b), full feature fusion (R+P+W) achieved
95.63% + 1.91% accuracy (Cl: 94.31-96.95),
outperforming reflection-only characteristics (71.35% +
2.14%, Cl: 69.84-72.86) by 24.28%+1.21% (Cl: 23.48-
25.08). All improvements were statistically significant

(p<0.001), confirming stable training without overfitting
and the effectiveness of multi-feature fusion.

5 Discussion

The proposed fiber-optic security system integrating
improved OLCR (with spectral shaping, polarization
stabilization, and path difference modulation) and LSTM
achieved high-resolution detection and intelligent
intrusion recognition. He J et al. [11] used DSP and phase
modulation for security but showed limited weak
reflection detection, whereas our method achieved
98.80% detection rate at 100m with improved sensitivity.
Lema G G [12] optimized SNR for link stability but had
>50 pum spatial resolution. Our approach-maintained
stability while enhancing detection of subtle anomalies.
Singh P et al. [13] demonstrated excellent link capacity in
unmanned aerial vehicle-assisted systems, yet their
detection sensitivity remained below 0.01%. Our LSTM-
based fusion strategy significantly improved sensitivity
and robustness.

However, the method requires balancing performance
and computational efficiency. The LSTM introduces =
15% additional computational load, with notable GPU and
training time demands for long sequences. High hardware
precision is essential, potentially needing compensation in
extreme conditions. Future work could explore
lightweight temporal networks or attention mechanisms to
reduce computational cost while maintaining detection
performance.

6 Conclusion

This study proposes an improved OLCR and LSTM-based
high-resolution intrusion detection method for optical

fiber networks, addressing limitations in real-time
performance, detection accuracy, and intrusion
identification. The approach innovatively improves

OLCR through spectral shaping to compress coherence
length and enhance spatial resolution, integrates
polarization stabilization to suppress interference noise,
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and combines optical path difference modulation with
event point analysis to strengthen response to weak
anomalies. Simultaneously, LSTM is introduced to model
time-varying features, establishing closed-loop protection
from the physical to system layers. Results demonstrate a
spatial resolution of 11.15 um and a detection rate of
98.80% at 100m, with only 2.10% false alarm rate,
outperforming conventional OLCR and other compared
methods. The proposed method achieves a 92.70%
detection probability for extremely weak events (-80dB),
an 80.20% improvement over the original OLCR
(12.50%). This confirms that the deep integration of
physical layer sensing and intelligent algorithms
effectively balances detection precision, response speed,
and system efficiency. To address nonlinear and dynamic
disturbances in high-security communications, future
work could incorporate adaptive control, chaotic control,
and optimal control strategies to enhance environmental
adaptability and robustness. Furthermore, the method
shows promise for gquantum communications, defense
networks, and data centers, potentially enabling integrated
fiber security systems encompassing detection, protection,
and scheduling.
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