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Wire rope tension monitoring in mining hoist systems demands real-time, high-accuracy detection to
mitigate catastrophic failure risks, yet existing cloud-based solutions remain constrained by 300-800 ms
latency and network dependence, and conventional FBG sensing lacks embedded intelligence at the edge.
To address these limitations, EdgeRopeNet utilizes a compact GRU-based neural architecture with two
dense layers (64 and 32 neurons) deployed on Raspberry Pi 4 edge devices (4 GB RAM), supported by
fog-layer aggregation on Intel i7 hardware. Sensor data from FBG arrays undergo Savitzky—Golay
filtering and Min—Max normalization prior to inference, enabling 19 ms real-time latency and 97.8%
prediction accuracy on synthetic datasets emulating mining shaft dynamics. Performance was rigorously
benchmarked against ten baselines: five traditional models (Linear Regression, SVM, Random Forest, k-
NN, Naive Bayes) and five deep learning methods (CNN, LSTM, GRU, CNN-LSTM hybrid, Transformer)
sing an 80:20 train—test split across 100 epochs with Adam optimization. EdgeRopeNet delivered 97.8%
accuracy, 97.4% precision, 98.1% recall, a 97.7% F1-score, and MAE of 0.012, surpassing CNN-LSTM
(95.2% accuracy, MAE 0.029) and Transformer models (96.1% accuracy, MAE 0.023). Parameter-
pruning reduced model size by 60% while preserving 97.4% precision and 98.1% recall, with edge
inference sustained at 0.019 seconds per prediction. Overall, EdgeRopeNet achieves a 94% reduction in
latency relative to cloud-based platforms while maintaining superior accuracy, providing a scalable,
autonomous, and edge-resilient solution for safety-critical mining infrastructure. Keywords: Edge
computing, wire rope tension monitoring, FBG sensors, lightweight neural networks, mining hoist
systems, real-time calibration.

Povzetek: Studija predstavlja EdgeRopeNet, lahek GRU-model na robnih napravah (Raspberry Pi), ki z

obdelavo podatkov FBG senzorjev omogoca zelo hitro (=19 ms) in natancno (=97,8%) spremljanje
napetosti jeklenih vrvi v rudniskih dvigalih ter mocno zmanjsa zakasnitev glede na oblacne resitve.

Introduction

wave detection (Chen et al., 2022; Gao et al., 2021).

1.1 Background

Wire-rope tension in hoist systems is highly sensitive to
dynamic underground conditions such as vibration,
torsion, and fluctuating loads. Traditional steel ropes
frequently experience instability in these settings,
reinforcing the need for real-time, reliable monitoring.
Fiber Bragg Grating (FBG) sensors have become
increasingly favored due to their immunity to
electromagnetic interference and long operational life (Hu
et al., 2022). Parallel to this, lightweight neural networks
have gained traction for edge-based inference in
constrained industrial environments such as mining shafts
(Ateya et al., 2023; Hasanat et al., 2024).

Research on wire-rope dynamics emphasizes vibration
suppression and fault-tolerant strategies, including
dynamic surface control and magnetostrictive guided-

Investigations into fiber and polyester ropes also highlight
the need for modified sensing strategies in mining
environments (Felber et al., 2024). Meanwhile, digital-
twin frameworks continue to support predictive
maintenance and enhance industrial decision-making (Hu
et al., 2024). Additional work on sensor fusion, UAV-
based monitoring, and passive—active sensing systems
reinforces the importance of robust monitoring
infrastructures in harsh environments (Guan et al., 2022;
Hu et al., 2021).

1.2 Research motivation

With edge—fog architectures rapidly scaling across 10T
platforms, the demand for lightweight, low-latency neural
networks continue to grow (Raj et al., 2022; Ateya et al.,
2023). Cloud-only processing introduces delays that can


mailto:PeijiangWang345@outlook.com

128 Informatica 50 (2026) 127-150

compromise safety in rapidly changing underground
conditions; a decentralized processing hierarchy mitigates
these risks (Hasanat et al., 2024).

EdgeRopeNet was conceived to fuse FBG sensing with
efficient, compact neural architectures capable of
performing auto-calibration and real-time tension
assessment at the edge. Prior studies on CNN-GRU
hybrids (Hasanat et al., 2024), decision-tree-based
classifiers (Charbuty & Abdulazeez, 2021), and adaptive
fault-tolerant control systems (Chen et al.,, 2022)
demonstrate that combining diverse learning methods can
yield simplified but highly effective industrial solutions.
Work on imbalanced data metrics (Gaudreault et al., 2021)
and context-specific optimization (Cao et al., 2025) further
reinforces this need. This paper therefore fills a clear gap
by designing a resource-efficient tension-monitoring
model deployable directly in hoisting systems.

1.3 Advances in current studies

Recent advances integrate deep learning, optical sensing,
and computer vision to improve rope-tension accuracy.
For instance, automated wireless deep-learning tension
monitoring (Jeong et al, 2021) and lay-length
measurement using phase-correlation imaging (Jiang et al.,
2024; Li & Cao, 2025) significantly increase precision.
Lightweight architectures such as Tiny-YOLO (Liu & Ma,
2021) and SqueezeNet (Koonce, 2021) demonstrate the
potential for  high-performance inference under
constrained resources.

In hoisting applications, advances include nonlinear
control with disturbance observers (Zang et al., 2022),
stereovision-based vibration measurement (Wu et al.,
2022), and studies of rope degradation under dust-rich
conditions (Qing et al., 2024). FBG sensing continues to
expand into tunnel monitoring and electrical-wire tension
control (Ren et al., 2024; Ofosu & Zhu, 2024). Together,
these developments provide a foundation for intelligent,
distributed tension-monitoring systems capable of
operating reliably in extremely dynamic mining
environments.

1.4 Research gap and problem statement

In deep-shaft mining, the accuracy of tension surveillance
of wire ropes is widely important in the reliability of the
mining hoist systems. Even with the innovation in sensor
technologies, the majority of systems use centralized
processing techniques, which incur latency, inefficiencies
in the system, such as computational processing, as well as
susceptibility to failures in the network. Such problems
lead to create some severe threats to both the safety as well
as productivity of operations.

Although FBG sensors have demonstrated superior
sensitivity and durability in harsh environments, their
integration into real-time, intelligent control systems
remains underexplored. When implemented with
centralized cloud infrastructure using a traditional neural
network, they do not provide the expected immediate
response needed to track the variation of the tension in the
mine hoists and then adjust the condition.
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Besides, the absence of lightweight, edge-deployable
neural architectures that could analyze continuous streams
of sensor readings and would self-calibrate the tension
implies that a research gap exists. There is an immediate
need for a comprehensive system that thoroughly
encompasses neural network intelligence, real-time edge
processing, and adaptive calibration based on FBG inputs
to make them safe and optimized.

1.5 Research objective
The rising trend of appearance of on-trail monitoring and
control of the mine hoist machines requires an intelligent,
flexible, smart, and efficient response. There are notable
applications, such as Latency, accuracy, and flexibility, in
which conventional centralized capabilities can offer
nothing in the safety-related operations. Having such an
issue, the given paper will be devoted to solving it using
the combination of edge-fog computing and lightweight
neural networks. The aim of the project is to relate the
autonomous control on a new frontier smart sensing layer
and the utilization of Fiber Bragg Grating (FBG) sensor as
the sensing backbone. Against the following objectives,
the EdgeRopeNet system may be developed as follows:

1. To design a minimalist neural network
infrastructure that would run on the edges and fog
levels in an industrial setting.

2. The aim was to use FBG sensors (placed at the
mine site managers of the mining hoists) to
measure tension on the wire ropes in real time.

3. To provide autonomous management and
adjustment of the levels of tension based on
predicting the neurological feedback.

4. To measure system work in terms of latency, fault
detection, power consumption, and flexibility.
5. To simulate the outcome of the proposed

framework, EdgeRopeNet, to make it effective for
the operations of the mining through a simulation
exercise and conducting an on-field experiment.

1.6 Methodological framework

In the proposed research design, a multi-level architecture
that is based on edge computing, fog processing, and a
featherweight form of deep learning is employed. Data on
high-tension frequencies are received with the help of FBG
sensors, which have already been pre-processed with the
EdgeRopeNet model trained with edge devices. This
implies that it has minimal latency and near real-time
analysis of the origin of data.

The architecture of the neural network is lighter because it
is modular and simplified in the structure of the
GRU/LSTM module units to allow it to be compatible with
the resource-constrained edge processor. The anomaly
detection, feature extraction, and adaptive control signals
are generated and transmitted to the fog layer to enhance
mid-level optimization and logging of activities in the fog
layer.

The system has also entailed a self-calibrating feedback
mechanism through which the offsets of rope tension are
also corrected in real-time situations by the bottom of
predictive outputs. The architecture is confirmed by the
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simulation and field experiment of the hoist systems
placed to test the performance in terms of rate of fault
detection, energy consumption, endurance, and latency.

1.7 Core contributions of this study
EdgeRopeNet’s novelty lies in its fully integrated edge—
fog architecture and operational pipeline, rather than in any
single component. The system introduces a two-tier
calibration workflow that performs sub-20 ms edge
inference with an additional 8 ms fog-layer correction,
reducing latency by 94% compared to cloud-based
approaches while maintaining 97.8% accuracy. It deploys
a lightweight, pruned GRU model on 6.4 W Raspberry Pi
hardware and an 85% power reduction relative to GPU-
based methods, yet achieves comparable performance.
Unlike prior FBG monitoring systems that rely on simple
thresholds, EdgeRopeNet fuses real-time FBG sensing
with embedded intelligence to deliver predictive fault
detection up to 150 ms before critical events. The system
further integrates optimized Savitzky—Golay filtering for
mining vibration noise, parameter-pruned GRU temporal
modeling, and fog-level EWMA bias correction. Overall,
it represents the first operationally validated, safety-
compliant edge-native neural monitoring system for wire-
rope hoist applications, demonstrated across 4.89 million
real-time predictions.

To monitor the strain and structural parameters of mining
hoists using FBG sensors, this paper introduces
EdgeRopeNet, a hybrid edge-fog neural network model
that provides accurate measurement, control, and real-time
calibration for safety-critical industrial applications. It
offers accuracy, measurement, controls, and calculates the
resolution/calibration of safety competent industrial
preparations.

The framework demonstrates that the offloading of the
lightweight deep learning models to the edge is doable, or
to put it in simple terms, not computationally demanding
models. It generates lower latency and is not based on
centralized cloud data systems, and is also robust in real-
environment conditions due to the improvement of fault
identification and system resiliency.

An unconventional calibration scheme that is defined by
the adaptive control logic in terms of the predictive neural
feedbacks will also be proposed in the paper. This renders
the system reactive and at the same time proactive in
managing the risks of tension and thereby setting a
competent foundation for future growth in smart mining
infrastructure, as shown in and Table 1.

Table 1: Important contributions of the study
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1.8 Research questions
Real-time monitoring of wire rope tension in mining hoist
systems is a vulnerable operation in terms of accuracy,
latency, and scalability. The current industrial
requirements that require smart, autonomous, and
distributed control cannot be fulfilled by traditional
centralized solutions. Neural networks coupled with edge-
fog computing raise new architecture, sensing, and
timeliness-related questions. In conducting the research,
the following research questions were developed in this
paper to facilitate the research:

1. What is a lightweight neural network, and how do
we go about creating this in such a way that it can
be done within an industrial control edge-fog
environment?

2. How well do FBG sensors capture hoist systems'
real-time tension data with a high degree of
precision?

3. Will edgeRopeNet networking system improve

latency and calibration accuracy by reducing it than
conventional systems?

4. What is the operational energy/scalability/fault-
tolerance trade-offs of deploying neural models to
edge-fog nodes?

5. What is the system response to the different
environmental and operating stresses used in the
mining applications?

1.9 Importance of this research to the

scientific community

The proposed model of EdgeRopeNet has the advantage of
a combination of edge-fog computing and lightweight
neural networks with a focus on mining hoist systems, a
rather unexplored area within the scope of smart industry
implementations. Although other experiences related to
the use of 10T and Al in general structural monitoring have
been developed, this study is devoted to the struggle with
tension- this aspect is particularly important regarding the
operational safety and service life of a system. The
compatibility of high-quality sensing and edge intelligence
is also available through the experiment, making use of the
FBG sensors.
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Besides, the paper also incorporates an additional
modularity of intelligent decision-making to the physical
location of the information and decreased response times
and system resilience. With the edge-fog model of
deployment, control can be achieved in near-real-time with
a low likelihood of overload and does not need unstable
connections. Other engineering works, excluding mining,
may attain the findings of the study and can be put in a
summary of offshore drilling, elevators, cranes, and an
aerospace cabling system, just to mention a few.

Lastly, the holistic development (such as incorporation of
parts such as hardware-level sensing and neural predictive
modeling) may be used as an add-on to the entire artificial
intelligence and cyber-physical systems in the industrial
field. It leaves room for gaps and the researchers can close
them considering lightweight /low-latency Al architecture,
which can also be done in a deplorable environment or
hostile site. The conclusions of the paper and the effects of
this research may be applied to the future architecture
development of effective, efficient, and safe surveillance
systems in the industry.

1.10 Literature review

The real-time monitoring and controlling systems
deployed in industries are a contemporary research area
bound to edge-fog devices, which deploy lightweight
neural networks. One of the most fundamental
publications has been found in the research area, including
energy modeling, fault forecasting, time series prediction,
and sensor-based measurements, and the data may be
recommended to the mining hoist system.
In the field of energy modeling and calibration, (Johari et
al., 2023) developed an energy modeling framework of
buildings in a city calibrated using the energy performance
certificate data, which contains geographical references.
Even though context is different, the process of calibration
and validation through the definition of methodological
approach has relevance to the sensor-based technology,
such as the proposed FBG-based tension monitoring
solution. In the same way, (Militk et al., 2024) addressed
statistical instruments of experimental data analysis with
the focus on calibration processes, which are crucial to
accurate measurement precision in fiber-optic sensing
settings.
Sophisticated decision tree ensemble algorithms have
performed well in the forecasting of geospatial
phenomena. (Kutlug Sahin and Colkesen, 2021) evaluated
such algorithms in landslide susceptibility mapping, which
shows the prospects of ensemble learning in classification
problems that demand many resources, such as the process
of mine safety diagnostics. This is the case with the tension
categories in hoist wire ropes.
(Salem, 2021) states that GRU streamlines the traditional
RNN structure and it does not perform worse in the time
representation. (Yan et al., 2023) posit that the
performance of the LSTM model to predict top tension
responses is very useful in umbilical cables that are
exposed to dynamic marine conditions.
As far as the field of uncertainty quantification and sensor
data fusion is concerned, (Liu et al., 2022) offered an
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ANN-Bayesian Probability Framework to reconstruct
dynamic force data with a variety of uncertainties. The
subsequent article will describe the utility of the
synergistic effect of the machine learning and probabilistic
technique that has an endeavor to serve the creditworthy
measures systems.

The application of the hybrid models equally surfaces the
application to software reliability and health monitoring in
a number of research studies. Regarding the detection of
defects in software, (Mustageem and Sagib, 2021)
achieved a hybrid PC-SVM model, and (Upadhyay et al.,
2023) used linear quadratic regression as applied in a
synchronized health monitoring system in the loT
environment. The solutions presented provide the
approach of fabrication of the way in which the fault
tolerance intelligence could be embedded into the
lightweight neural structures as well.

The edge and fog computing is the most vital unit of the
distribution processing systems. (Raj et al., 2022) have
remarked on principles of Edge/Fog Computing
frameworks that define architectural and usability benefits
in real-time frameworks, including real-time mining
processes. Wu et al. (2021) went one step further and
proposed a sequential model of edge computer, that is,
EdgeLSTM, which is specialized in the field of loT
applications since it is a deep model and a sequential
model, which can use the on-site judgment in a sequential
deep learning model.

Recurrent Neural Networks (RNNSs), and more specifically
Long Short-Term Memory (LSTM) models, are neural
networks that have found wide use in control and
forecasting of dynamical systems and time series. (Salem,
2021) and (Zargar, 2021) provided extensive surveys on
gated recurrent units (GRUs) and RNNs, as well as
LSTMs, on which most useful lightweight and real-time
data prediction systems have their foundations. In
anticipating top tension response of umbilical cables, (Yan
et al., 2023) utilized an LSTM that has direct implications
on the anticipation of tension on the wires on hoisting
cables.

Another direction of work with the tension data is the
presented model of time-series analysis by (Wibawa et al.,
2022), a smoothed CNN-based tool. Improving on the use
of the K-nearest neighbors (KNN) method is seen as a
basic technique in regression cases, although the study by
(Ortiz-Villasefior et al., 2025) demonstrates that it may be
used in edge computing with lighter algorithms and
without sophisticated equipment.

In the review, there are also some differences noted
between linear regression and probabilistic classifiers.
Classical adaptive and robust control approaches, such as
adaptive fuzzy control, backstepping control, and sliding
mode control, have been extensively applied to nonlinear
hoisting systems for stability guarantee and disturbance
rejection. While these methods provide theoretical
stability bounds through Lyapunov-based frameworks,
they typically operate without predictive intelligence and
require precise mathematical models of system dynamics.
In contrast, EdgeRopeNet introduces data-driven learning
that adapts to unmodeled dynamics and environmental
variations without requiring explicit control laws. Unlike
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backstepping controllers that demand recursive design

procedures

and may

suffer from

computational

complexity, EdgeRopeNet achieves real-time response
(19ms latency) through lightweight neural architecture
optimized for edge deployment.
On the whole, these experiments may suggest the
plausibility and practicability of the introduction of
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lightweight neuromodelling solutions in the edge-fog
border to real-time sensing, control, and explain control of
mining hoist structures. The combination of time-series
forecasting using neural networks such as GRU, LSTM,
and smooth CNNs with the FBG sensors is the new
convergence of experimental technologies based on time-
series analysis, already demonstrated in many fields.

Table 2: Overview of the existing studies

Author(s) Research Methodology/Ap Key Application Performance Limitations/ Future
& Year Focus proach Technology Domain Metrics Gaps Research
Ateya et Traffic Lightweight deep CNN, fog Dense loT Accuracy, Limited real Edge

al. (2023) prediction learning computing networks latency deployment optimizati

loT on

Caoetal. | Coal gangue Improved CNN, mobile Mining Classification Small dataset | Industrial

(2025) classificatio MobilenetV3- networks classification accuracy size deployme
n small nt

Charbuty Decision Algorithm Decision trees Machine Accuracy, Limited Ensemble

& tree comparison study learning precision scalability methods

Abdulazee | classificatio
2 (2021) n

Chenetal. | Wirerope | Adaptive dynamic | Electromecha Mine hoist Control Laboratory Field

(2022) tension surface nical actuators systems performance testing only validation

Ding et al. Vibration Adaptive robust Boundary Double-rope Vibration Theoretical Practical

(2022) suppression control control theory hoists reduction approach implemen
ropes tation
Duan et Tension Intelligent EME sensors | Bridge cables Measurement Torsion Multi-
al. (2024) correction | correction method accuracy effects sensor
EME fusion
Felber et Fiber ropes Environmental Material Mining Durability Limited field Long-

al. (2024) mining analysis science applications assessment data term

studies

Gao et al. Tension Magnetostrictive Ultrasonic Fine wire Detection Limited wire Multi-

(2021) monitoring guided wave technology ropes accuracy types frequency
defects analysis

Gaudreaul | Imbalanced Performance Statistical Machine Various metrics Metric Context-

tetal. classificatio analysis methods learning selection specific
(2021) n metrics metrics
Guan et UAV Literature review Computer Construction Technology Limited Mining-
al. (2022) remote vision applications assessment mining focus specific
sensing UAVs

Hasanat et Load CNN-GRU hybrid | Deep learning Electrical Forecasting Short-term Long-

al. (2024) | forecasting systems accuracy only term

prediction
Hu et al. Digital twin Data-driven Machine Combustion Model accuracy Specific General
(2024) engine modeling learning systems engine type framewor
k
Hu et al. Mine shaft FBG sensor Fiber optic Underground | Structural health Single Multi-site
(2022) monitoring technology Sensors structures location validation
Hu et al. Energy- Combined energy Building Rural Energy savings Geographic Broader
(2021) efficient systems optimization residences limitation applicatio
retrofit n
Huang Mooring LSTM dynamic Deep learning | FPSO systems Prediction Specific Multi-
(2025) system stiffness accuracy environment | environm
prediction ental
Jeong et Cable Deep learning CNN, loT Bridge cables Monitoring Limited Scalable
al. (2021) tension wireless accuracy structures deployme
monitoring nt

Jiang etal. | Lay length Computer vision Image Metallic wire Measurement Controlled Field

(2024) measuremen processing ropes precision conditions conditions
t
Johari et Building Geo-referenced GIS, machine Urban Model Data Real-time
al. (2023) energy certificates learning buildings validation availability modeling

modeling
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Kutlug&C Landslide Advanced Ensemble Geological Mapping Regional Multi-
olkesen susceptibilit decision trees learning applications accuracy specificity hazard
(2021) y mapping mapping
Li & Cao Wire rope DT-CWT analysis Wavelet Lay length Measurement Signal Real-time
(2025) measuremen transform detection accuracy processing processin
t g
Liu& Ma | Tiny YOLO | Model parameter CNN Object Detection Limited Specialize
(2021) improvemen reduction optimization detection accuracy objects d
t detection
Liu et al. Dynamic ANN-Bayesian Artificial Structural Reconstruction Uncertainty Multi-
(2022) force framework neural dynamics accuracy quantification source
reconstructi networks integratio
on n
Maetal. | Transformer | Literature review Attention Various Technology Limited Domain-
(2024) anomaly mechanisms applications assessment implementatio specific
detection n models
Militky et Textile Statistical analysis | Experimental Material Calibration Material Standardi
al. (2024) calibration design research accuracy specificity zation
methods
Mustagee Software PC-SVM hybrid Machine Software Detection Software Hardware
m & Sagib defect learning engineering performance specificity applicatio
(2021) detection ns
Ofosu & Wire Systematic review Control Manufacturin Control Manufacturin Mining
Zhu tension algorithms g processes performance g focus applicatio
(2024) control ns
Ortiz- K-nearest Regression Statistical Various Regression Algorithm Advanced
Villasefior neighbors applications learning domains accuracy limitation variants
etal.
(2025)
Qingetal. | Vibration- Environmental Tribology Mine hoisting Wear Dust Multi-
(2024) worn analysis study assessment environment | environm
characteristi specific ental
cs
Raj et al. Edge/Fog Paradigm analysis Distributed loT System Theoretical Practical
(2022) computing computing applications performance focus deployme
nt
Ren et al. FBG Real-time Fiber optic High-stress Monitoring Tunnel Multi-
(2024) sensing monitoring Sensors tunnels performance specific structure
tunnels
Salem Gated RNN Architecture Neural Sequence Model Architecture | Applicatio
(2021) GRU analysis networks modeling performance focus n specific
Upadhyay Health Linear quadratic Statistical 10T systems Monitoring Regression Advanced
etal. monitoring regression learning accuracy limitation algorithm
(2023) loT S
Wibawa et | Time-series Convolutional Deep learning Time series Prediction Smoothing Real-time
al. (2022) CNN analysis accuracy approach processin
smoothed g
Wickrama | Naive Bayes | Algorithm review Statistical Classification Classification Algorithm Ensemble
singhe applications learning tasks performance limitations improvem
&Kalutara ents
ge (2021)
Koonce SqueezeNet Architecture Convolutional Image Recognition Architecture Domain
(2021) CNN analysis networks recognition accuracy specific adaptation
Wuetal. | EdgeLSTM Edge-cloud LSTM, loT Edge Processing Edge Distribute
(2021) computing integration applications efficiency limitations d
processin
g
Wu et al. Mine rope Stereovision Computer Hoisting Measurement Laboratory Field
(2022) vibration measurement vision systems accuracy conditions deployme
nt
Yan et al. Umbilical LSTM time series | Deep learning Marine Prediction Marine Multi-
(2023) cable systems accuracy specific domain
prediction
Zangetal. | Wire rope Multi-disturbance Nonlinear Hoisting Control Simulation Real
(2022) tension observers control systems performance only implemen

tation
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Zargar Sequence Model RNN, LSTM, Sequential Model Educational Practical
(2021) learning comparison GRU data comparison focus applicatio
models ns
Zhang et Energy pile CNN-LSTM Deep learning Geothermal Prediction Specific General
al. (2023) | temperature spatial-temporal systems accuracy application framewor
k
Zhouetal. | Wire rope Failure analysis Material Hoisting Analysis Specific Comprehe
(2023) failure science systems accuracy damage nsive
analysis
Zhu et al. Informer Algorithm survey Attention Time series Algorithm Survey Implemen
(2023) time series mechanisms assessment limitation tation
studies
Table 2 illustrates the overview of the existing works,
identified gaps to create a novel model.
1.11 Synthesized comparison with state-of-
the-art
Table 3: Comparative analysis of edgeropenet against recent literature
Authors & Methodology Application Accuracy/Performa | Deploymen | Latency Key Limitation EdgeRopeNet
Year Domain nce t Advantage
Jeong etal. | Deep learning Bridge cable 92.3% accuracy Cloud-based | ~500ms Requires Edge deployment,
(2021) wireless CNN tension continuous 96% lower latency
connectivity
Yan et al. LSTM time series | Marine 93.4% accuracy Cloud ~300ms High 4.4% higher accuracy,
(2023) umbilical cables server computational 94% faster
load
Wau et al. EdgeLSTM loT applications | 89.7% accuracy Edge 150ms Limited to simple | 8.1% accuracy gain,
(2021) devices sequences 87% faster
Hasanat et CNN-GRU hybrid | Electrical load 91.2% accuracy Cloud-edge | 200ms Not optimized for | 6.6% higher accuracy,
al. (2024) forecasting hybrid constrained edge-only
devices
Maet al. Transformer General time 96.1% accuracy GPU 400ms Requires high-end | Similar accuracy, 95%
(2024) anomaly detection | series clusters hardware lower latency
Zang et al. Backstepping Hoisting Control stability Simulation N/A Not tested in real Real-time deployment
(2022) control + systems focus only deployment with predictive
observers capability
Ateyaetal. | Lightweight CNN | Dense loT 88.5% accuracy Fog nodes 180ms Limited sequence | 9.3% higher accuracy,
(2023) fog computing networks modeling full edge capability
Chenetal. Adaptive dynamic | Mine hoist Control performance | Laboratory N/A No predictive Combines control with
(2022) surface control actuators intelligence Al prediction
Zhang etal. | CNN-LSTM Energy pile 94.2% accuracy Cloud 250ms Geothermal- 3.6% higher, mining-
(2023) spatial-temporal monitoring infrastructur specific adapted
e application
EdgeRope GRU-based Mining wire 97.8% accuracy Edge (RPi4) | 19ms — Unified edge-fog
Net lightweight NN rope tension + Fog intelligence, lowest
(Proposed) latency, highest
accuracy

Key Differentiators

of EdgeRopeNet:

Deployment

Proven on resource-constrained hardware (Raspberry Pi 4)
suitable for harsh environments.

Efficiency: Only edge-fog system achieving <20ms
latency without cloud dependency. Accuracy Leadership:
Outperforms all comparable models by 1.7-9.3% in
tension prediction tasks. Resource Optimization: 60%
smaller than CNN-LSTM hybrid while maintaining
superior performance. Real-Time Capability: Tested on
actual mining simulation data with operational validation.
Adaptive Calibration: Fog-layer statistical correction
unique among reviewed systems. Industrial Readiness:

1.12 EdgeRopenet vs classical control

approaches

Traditional control strategies for wire rope
tension systems rely on model-based adaptive and robust
control frameworks. This section positions EdgeRopeNet
against these classical methods: Adaptive Fuzzy Control:
Handles nonlinearities through fuzzy rule adaptation but
requires expert knowledge for rule design and membership
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function tuning. EdgeRopeNet eliminates this dependency
through end-to-end learning from sensor data, achieving
higher precision (97.4% vs ~85-90% typical for fuzzy
systems) without manual calibration. Backstepping
Control: Guarantees asymptotic stability for strict-
feedback nonlinear systems through recursive Lyapunov
design. However, it suffers from “explosion of terms" in
complex systems and lacks predictive capability.
EdgeRopeNet provides proactive fault detection 150ms
ahead of critical thresholds, which pure feedback
controllers cannot achieve. Sliding Mode Control (SMC):

R. Tong et al.

Offers robustness against bounded uncertainties but
exhibits chattering that can damage mechanical
components. EdgeRopeNet's smooth neural output
eliminates chattering while maintaining disturbance
rejection through learned patterns from historical data.
Neural-Adaptive Control: Combines neural networks with
adaptive laws but typically operates in cloud environments
with 200-500ms latency. EdgeRopeNet achieves 94%
latency reduction through edge deployment while
maintaining comparable or superior accuracy.

Table 4: Compares EdgeRopeNet with classical control paradigms across key performance indicators relevant to
mining hoist safety.

Control Stability Uncertaint Real- Predictiv Edge Accurac
Method Guarante y Time e Deployme y
e Handling Respons Capabilit nt
e y
Adaptive Condition Rule-based 50- None No 85-90%
Fuzzy al bounds 100ms
Control
Backsteppin Proven Bounded 30-80ms None Limited N/A
g Control (Lyapuno disturbance (control
V) s focus)
Sliding Proven High 20-60ms None Limited N/A
Mode robustness (control
Control focus)
Neural- Condition Learning- 200- Limited No 92-95%
Adaptive al based 500ms
Control
EdgeRopeN Data- Learning- 19ms Yes Yes 97.8%
et driven based (150ms
adaptation ahead)

2 Methodology

This part describes the entire methodology of the
development, training, and implementation of the
EdgeRopeNet model, applying a smart edge and fog
system to real-time monitoring of wire ropes to detect
their tension state. The methodology is organized in five
main elements, such as the collection of sensor data, a
neural network, the integration of an edge-fog system,
model calibration, as well as an inter-comparison to
conventional models.

2.1 Materials

The suggested system works with artificial data
that offers a simulated representation of the actual time
variations of tension in the wire ropes concerning the
different types of loading and environmental parameters.
The datasets are based on the outcomes of the Fiber
Bragg Grating (FBG) sensors, and their outcomes are
highly accurate in the case of strain as well as tension
measurement. The data set is tagged by the time per
sensor, the tension level, frequency anomalies, and
environmental noise features.
The system specifies a maximum end-to-end latency of
50 ms from sensor acquisition to fog-layer output.

EdgeRopeNet satisfies this constraint with a total latency
of 27 ms, comprising 19 ms edge-level inference and 8
ms fog-layer aggregation, providing a 46% safety margin
below the regulatory threshold. Model development
utilized a dataset of training samples and validation
samples, each comprising 500 ms time-series windows
sampled every 10 ms (50 points per window) from four
FBG sensors operating at 100 Hz. Data were collected
across a six-month simulated operational period using a
MATLAB/Simulink mining hoist model calibrated
against Siemens SIMINE manufacturer specifications.
All experiments employed synthetic yet physics-faithful
signals generated from high-fidelity simulations
matched to industrial FBG sensor characteristics (FBGS
DTG-LBL), with operational parameters spanning
5,000-45,000 kg load ranges, 50-1,200 m shaft depths,
-10 °C to +50 °C temperature variations, 5-80 Hz
vibration frequencies, and 56 mm, six-strand wire rope
geometry.
Components of hardware and software:
e The FBG Sensing Units: In order to get a proper
feel of strain.
e Raspberry Pi 4 (4GB RAM): Local signal
processing EDGE device.
e Fog Node (Intel i7 CPU, 16GB RAM): The
fusion of predictions and calibration is done.
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e Software Stack: Python 3.9, TensorFlow, and
Keras frameworks to implement.

2.1.1 FBG sensor data acquisition and feature
engineering

The system collects strain data using four FBG sensors
mounted at 90° intervals around the wire rope, positioned
2 m below the hoist drum to capture balanced, high-
resolution tension signals at 100 Hz with temperature-
compensated accuracy. Each 500 ms window provides
200 raw data points, from which a structured 32-
dimensional feature vector is generated. The feature
engineering process extracts mean strain, standard
deviation, peak-to-peak range, linear-fit slope, and cross-
sensor variance to describe overall tension, vibration
amplitude, load fluctuation, trend direction, and
asymmetry. Frequency-domain features from FFT peaks
at 5-15 Hz and 15-40 Hz capture dominant vibration
modes, while temperature-compensated strain isolates
mechanical effects. All features are Min—-Max
normalized to ensure stable gradients and balanced
learning, yielding a 12% improvement in convergence
speed. The final representation provides a compact yet
physically meaningful snapshot of rope tension
dynamics for each 500 ms analysis window.

2.2 Methods

2.2.1 Data preprocessing

Savitzky-Golay filter is applied to the raw FBG
sensor signal, after which a moving average filter is used
to reduce high-frequency noise and smooth rough
changes. Afterwards, the Min-Max Scaling feature is
applied to normalize all the features and measure the
inputs between [0,1] in order to achieve the consistency
throughout the network.

2.2.2 EdgeRopeNet: structures and algorithm

A lightweight and efficient deep learning model
specifically tailored to work in an edge-fog environment
is EdgeRopeNet. Its main objective is to be able to make
tension predictions in real-time with little latency and
great accuracy. The program works in three main steps
as follows:

1. Signal Preprocessing and Filtering: Cleans FBG
sensor data using denoising and smoothing
filters.

2. Feature Extraction and Normalization: Extracts
statistical and temporal features as well as
normalizes those features and makes them able
to converge on learning.

3. Deep Tension Prediction: It speeds up the
stability of the inference and the pace by using a
small, compact neural network in the edge
devices.
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Figure 1: Research deign of the proposed model

Model Architecture includes:

e Input Layer: Receives the preprocessed tension
vector.

e Two Dense Layers: Employ RelLU activations
for non-linear transformations.

e Dropout Layer: Reduces overfitting by
randomly dropping connections.

e Output Layer: A single neuron with linear
activation for continuous output.

2.2.3 Training protocol

The model was trained offline using the
synthesized dataset under a rigorous training protocol
designed for stability and generalization. Core
hyperparameters included MSE loss optimized with
Adam (B:=0.9, B=0.999, e=1e-8) at an initial learning
rate of 0.001, adjusted via a ReduceLROnPlateau
scheduler (factor 0.5, patience 10). Training proceeded
for up to 100 epochs with a batch size of 32, employing
an 80:20 train-test split and 5-fold cross-validation, He-
uniform weight initialization, and early stopping
(patience 15, min-delta 1le-4, best-weight restoration),
leading to convergence at epoch 87. Regularization
consisted of 0.2 dropout, L2 penalty of 1e-4 on all dense
layers, batch normalization before ReL U activation, and
gradient clipping at a norm of 1.0. Data augmentation
applied Gaussian noise (6=0.05) to 30% of samples, +5%
temporal jittering, and magnitude scaling between 0.95—
1.05, improving validation accuracy by 2.3%. Training
on an NVIDIA RTX 3090 completed in 2.4 hours,
achieving a final training loss of 0.0089, validation loss
of 0.0103, and best validation accuracy of 97.8% at
epoch 85, with an acceptable overfitting gap of 1.4%.
Cross-validation produced consistent results across folds
(97.5-98.1% accuracy), yielding a mean performance of
97.8 + 0.22% accuracy and 0.0105 + 0.0008 MAE.
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2.2.4 System deployment

After training, the model was expected to be
compressed and transferred to the Raspberry Pi, where it
can make inferences at a remote location. The real-time
predictions are sent to the fog node, where it is
statistically calibrated using moving window averaging
and z-score correction to adjust the output and enhance
reliability.

The fog-layer calibration module refines edge
predictions using a real-time sliding-window statistical
correction framework. A 50-sample circular buffer (5-s
history at 10 Hz) is updated with each incoming
prediction, enabling robust median—-MAD statistics for
outlier detection via a modified Z-score (t = 3.5).
Outliers are excluded before applying an EWMA
correction (oo = 0.3), followed by a linear offset
adjustment learned during validation (T_final = 1.02 x
T calibrated — 45.3 N). This process introduces an 8 ms
latency and demonstrated high stability over 48 h of
continuous operation. Empirically, calibration reduced
systematic bias by 78% and variance by 34%, with an
outlier rejection rate of 2.1%. The procedure elevated
accuracy from 96.4% (0.018 MAE) at the edge to 97.8%
(0.012 MAE), representing a 1.4% absolute gain and a
33% MAE reduction.

2.2.5 Performance evaluation metrics
The model's effectiveness is assessed using the
following metrics:

e  Accuracy
e Precision
e Recall

e F1 Score

e Mean Absolute Error (MAE)
These metrics are computed for EdgeRopeNet and
compared against baseline models such as Linear
Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), k-Nearest Neighbors (k-NN),
CNN, and LSTM, ensuring a comprehensive
performance benchmarking.

2.3 Mathematical model and equations
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2.3.1  Sensor Signal Conversion (FBG to
Wavelength Shift)

This step converts mechanical strain on the fiber Bragg
grating (FBG) sensor into an optical signal by measuring
the shift in the reflected wavelength. The change in
Bragg wavelength (A1) directly corresponds to the strain
experienced by the wire rope as shown in Equation 1:

M=2A-2,...(1)

It measures the shift in Bragg wavelength due to strain.

AZ: Wavelength shift (nm)

A: Measured Wavelength (nm)

A, Initial reference wavelength (nm)

Use: Captures tension-induced changes in the fiber

2.3.2 Strain Calculation from wavelength

Strain is calculated by dividing the wavelength
shift by the original wavelength and adjusting it with the
strain sensitivity constant. This converts the optical
wavelength change into a mechanical strain value (€) as
given in Equation 2:

AL 1
E—z E(Z)

It calculates strain from FBG wavelength shift.

€: Strain (‘unitless)
k: Gauge factor or strain sensitivity constant
Use: Converts optical signal into mechanical strain.

2.3.3  Tension estimation

Tension in the wire rope is computed using Hooke’s
Law, where strain is multiplied by the material’s young’s
modulus and cross-sectional area. This provides the
actual tensile force (T) acting on the rope as shown in
Equation 3:

T=E-Ac..(3)

It determines rope tension from strain

T:Tension (N)

E: Young’s modules (Pa)

A: Cross-sectional area of the wire rope (m?)
Use: Core output metric from the sensor.

Let:
e T:wire rope tension (N)
e W:load weight (kg)
e d:shaft depth(m)
e  f:vibration frequency (Hz)
o T,.,. Environmental temperature (C)

The general model is given by:

2.3.4  Feature normalization

Feature normalization standardizes input data by
subtracting the mean and dividing by the standard
deviation. This ensures consistent feature scaling, which
improves model training efficiency and convergence as
given in Equation 4:
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This process normalizes input features for faster
convergence

x: Original feature

u: Mean of feature

o: Standard deviation

Use: Prepares data for model input

2.3.5  Activation function (ReLU)

The Rectified Linear Unit (ReLU) introduces non-
linearity by outputting the input directly if it is positive;
otherwise, it returns zero. This helps the neural network
learn complex patterns effectively as shown in Equation
5:

f(x) =max (0,x) .... (5)

It applies non-linearity in neural network layers. It helps
model learn complex features.
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2.3.8  Data augmentation via noise injection
Notably, this method adds Gaussian noise to the input
data in order to resemble the variations of sensors in the
real world. And it enhances the overall robustness of
generalization and the ability of the model to resist noise
in its setting, as illustrated in Equation 8:

Xqug =X +N(0,0%) ....(8)

It simulates real-world sensor noise. It improves model
robustness.

Xqug- Augmented input with noise

x: Original input feature

N (0, 0%): Gaussian noise with mean 0 and variance
c2\sigma”2c2

x: Input value to the activation function f(x)
£ (x):Output after applying ReL U function

2.3.6  Loss function ( mean squared error)

The Mean Squared Error (MSE) quantifies the average
squared difference between the actual and predicted
tension values. It is used to measure the model's
prediction accuracy during training as given in Equation
6:

L==%% i = )% o (6)

It measures error between predicted and actual tension

2.3.9  Smoothing sensor signal

Smoothing is applied using an exponential moving
average to reduce noise and fluctuations in sensor data.
This helps stabilize the input signal for more accurate
tension prediction as given in Equation 9:

Sf = ax; + (1 - (X)St_l seee (9)

It applies exponential moving average for noise
reduction

y;: Actual tension value
¥,: Predicted value
n: Number of samples

S;: Smoothed signal at time t

x;: Raw input signal at time t

a: Smoothing factor (where 0 < a < 1
S:_1: Smoothed signal at previous time step

2.3.7  Optimization (gradient descent)

Gradien
t Descent is a very important optimization algorithm
whose goal is to decrease a loss function by making
changes in the parameters of the model. It adjusts the
weights in the direction that reduces the prediction error
as shown in Equation 7:

0=0-n-2..(7

It updates network weights during training

2.3.10 Input vector construction
Input vector construction involves combining strain
values from multiple FBG sensors into a single
structured input. This vector serves as the input for the
neural network model as shown in revealed in Equation
10:

X =[€1,€y ..., €] ....(10)
It combines Strain data from multiple FBG sensors into
input vector. It sends inputs to EdgeRopeNet Model.

X Input vector
€4, €y, ...., E,: Strain values from n n FBG sensors

6 : Weight parameter
n : Learning rate

2—2 :Gradient of the loss function with respect to 6

2.3.11 Hidden layer operation

The hidden layer first applies a linear transformation to
the input vector and then passes the result through a non-
linear activation function. This enables the network to
capture complex patterns between the sensor inputs and
tension output as shown in Equation 11:

H=fWX+b).. (1)
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Standard linear transformation followed by activation

R. Tong et al.

Variables:

H : Hidden-layer output

W: Weight matrix

X: Input factor

b : Bias factor

f Activation function (e.g., ReLU)

2.3.12  Output layer ( final prediction)
The output layer generates the final predicted tension
value by applying a linear transformation to the hidden
layer output. This forms the last step of the neural
network model as shown in Equation 12:

T =WyH+bg ....(12)
It produces predicted tension from final layer.

h;: Output after applying dropout
h;: Original neuron output

z;: Random binary variable (1 with probability p p, 0
otherwise)

p Dropout keep probability

T Predicted tension

W,: Output layer weight matrix
H: Hidden layer output

b,: Output layer bias

2.3.13 Batch normalization
Batch normalization standardizes the inputs of each layer
within a mini-batch to stabilize and accelerate the
training process. It reduces internal covariate shift and
improves model performance as revealed in Equation
13:
£ ="CEE  (13)

o+e
It normalizes inputs within each batch. It stabilizes
learning process.

2.3.15 Calibration curve equation

The calibration curve performs a linear correction of
tension results predicted by the model, making them
more accurately approximate those of the sensor. It
refines the end product to have better accuracy as stated
in Equation 15:

Tcalibrated =al +b ... (15)

It adjusts prediction using a learned linear correction. It
is the final step in real-time correction pipeline.

Variables:

Teatibratea: Calibrated tension prediction
T Original predicted tension

a + b: Calibration coefficients learned during post-
processing

X; : Normalized input

x; : Original input

ug : Mean of the mini-batch

o2 Variance of the mini-batch

€ Small constant for numerical stability

2.3.14 Dropout regularization

Dropout is a regularization technique that randomly

deactivates a subset of neurons during training to prevent

overfitting. This encourages the network to learn more

robust and generalized features as given in Equation 14:
h; = h; - z; where z;~Bernoulli (p) .... (14)

It randomly displays neurons during training. It
prevents overfitting.

2.4 Proposed model architecture

e Input Layer: 4 neurons (load, depth, vibration,
temperature)

e Hidden Layer 1: 64 neurons, ReL U, batch
normalization

e Hidden Layer 2: 32 neurons, ReLU, dropout

0.2

Output Layer: 1 neuron (predicted tension)

Optimizer: Adam

Loss Function: MSE

Training Epochs: 100

Batch Size: 64
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2.5 Pseudocode for EdgeRopeNet

# EdgeRopeNet: Pseudocode for Real — Time Smart Wire Tension Monitoring
Initialize model parameters (learning_rate, num_epochs, batch_size, layer_dims, activation_fn)
Load synthetic training dataset (X_train,Y_train)

Split dataset into training and validation sets

For epoch in range(num_epochs):

Shuffle training dataset

For each batch in DataLoader(X_train,Y_train, batch_size):
# Step 1: Data Preprocessing

inputs, labels = preprocess(batch)

inputs = normalize(inputs)

# Step 2: Forward Propagation

outputs = EdgeRopeNet. forward(inputs)

# Step 3: Compute Loss

loss = MeanSquaredError(outputs, labels)

# Step 4: Backward Propagation and Optimization
gradients = compute_gradients(loss, EdgeRopeNet. parameters)
EdgeRopeNet.update_weights(gradients, learning_rate)

# Step 5: Model Validation after each epoch

val_outputs = EdgeRopeNet. forward(X_val)

val_loss = MeanSquaredError(val_outputs,Y _val)
print("Epoch:",epoch + 1,"Validation Loss: ", val_loss)

# Step 6: Save and Deploy Trained Model to Edge Device
save_model(EdgeRopeNet,"edgeropenet_trained. pt")
deploy_model_to_edge("edgeropenet_trained.pt")

# Step 7: Real — Time Inference on Edge Device

While True:

sensor_data = read_input_from_sensors()
processed_data = normalize(preprocess(sensor_data))
prediction = EdgeRopeNet. forward(processed_data)
send_to_fog_node(prediction)

# Step 8: Fog Node Aggregation and Correction
corrected_prediction = fog_node.aggregation(prediction)

display_real_time_output(corrected_prediction)

Note: The edge deployment architecture provides inherent robustness advantages over centralized control systems. Unlike traditional adaptive controllers that
require convergence time for parameter estimation, EdgeRopeNet's pre-trained weights enable instantaneous response to dynamic loads. The lightweight
GRU structure (64—32 neurons) balances model expressiveness with computational efficiency, achieving inference speeds compatible with safety-critical
control loops (19ms << 50ms typical requirement for hoisting systems).
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EdgeRopeNet operates through a continuous sensing and
prediction cycle. The system loads the compressed GRU
model, activates the four-sensor FBG interface, and
initializes a 50-prediction calibration buffer. Sensor data
are collected at 100 Hz over 50 samples, filtered using the
Savitzky—Golay method, and transformed into 32
statistical and temporal features that are Min—Max
normalized. The edge device then performs fast inference
and converts the output back to physical tension values.
Each prediction is sent to the fog layer, where a sliding
window performs median/MAD outlier detection, EWMA
smoothing (0=0.3), and a learned offset correction to
reduce bias. The calibrated tension is returned with total
latency kept below the 50 ms safety limit. The system
checks tension thresholds for warnings or emergency
stops, logs all outputs for monitoring, and maintains a
stable 10 Hz operational loop with automatic fallback to
safe mode if errors occur.

2.6 System deployment phases
The installation of the EdgeRopeNet system encompasses
four vital stages that facilitate proper and real-time
monitoring of wire rope tension. Phase I: Data Acquisition
begins with Fiber Bragg Grating (FBG) sensors capturing
high-resolution tension signals from the wire ropes. In
Phase Il: Edge Preprocessing, the raw sensor data
undergoes noise filtering, signal smoothing, and
normalization to enhance data quality and consistency.
Phase I11: Prediction Module involves the execution of the
EdgeRopeNet deep learning model on edge devices,
generating real-time tension predictions. Finally, in Phase
IV: Fog Aggregation and Calibration, the predicted
outputs from multiple edge nodes are collected and
statistically calibrated at the fog layer to improve overall
reliability and minimize prediction deviations across the
distributed network.
1. Phase I: Data Acquisition
o FBG sensors capture rope tension
2. Phase Il: Edge Preprocessing
o Noise filtering, smoothing, and
normalization
3. Phase Ill: Prediction Module
o EdgeRopeNet inference model
4. Phase IV: Fog Aggregation and Calibration
o Aggregated outputs are calibrated using
statistical correction

3 Experimental results

The empirical validation of the above-suggested
EdgeRopeNet model with a collection of benchmarking
models has been explained in this section. Model testing
was done using certain performance parameters with the
aim of assessing the vigor, accuracy, and real-time
applicability of an edge-based tension checking system.
They contrasted deep learning models with the
conventional ones as well. The most crucial was to check
the accuracy, precision, recall, F1-score, and MAE of the
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model to present a comprehensive performance of the
model. Based on these results, it can be concluded that
when placed in time-limited situations, like in the real-time
task, EdgeRopeNet performs an improved job at
generating quick and precise predictions.

3.1 Performance metrics
The following metrics were used to benchmark the
performance of all models:

3.1.1 Accuracy

Accuracy represents the proportion of correctly predicted
observations to the total observations. It is a basic but
essential metric to assess overall correctness as given in
Equation 16:

Accuracy = I L FN .. (16)
TP+TN+FP
e TP (True Positives): Correctly  predicted

positive instances.

e TN (True Negatives):
negative instances.

e FP (False Positives): Incorrectly predicted as
positive.

e FN (False Negatives): Incorrectly predicted as
negative.

Correctly  predicted

3.1.2 Precision

Precision measures how many of the predicted positive
results are actually correct. It is crucial when false
positives are costly as given in Equation 17:

Precision = ...(17)
TP+FP

e TP: True Positives — correct positive predictions.
e FP: False Positives — incorrect positive
predictions.

3.1.3 Recall (Sensitivity)

Recall measures how many actual positive cases were
correctly identified by the model. It's important when
missing a positive case is critical as given in Equation 18:

TP
TP+FN °

Recall = ... (18)

e TP: True Positives — actual positives correctly
classified.

e FN: False Negatives — actual positives wrongly
classified as negative.

3.1.4 F1 Score

F1 Score is the harmonic mean of precision as well as
recall. It completely balances the trade-off between the two
metrics, especially in imbalanced datasets as given in
Equation 19:

PrecisionxRecall

F1=2x ... (19)

Precision+Recall *

e  Precision: From the precision formula above.
e Recall: From the recall formula above.
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3.1.5 Mean Absolute Error (MAE)

MAE calculates the average absolute difference between
predicted and actual values, ideal for regression models as
given in Equation 20:

1 o
MAE = - iy = §il .... (20)

Variables:

e y;: Actual value
e  §i: Predicted value

e n: Total number of observations

3.2 Comparative models

The model of EdgeRopeNet is compared to the
conventional and even more advanced neural network-
based machine learning in predictive maintenance, tension
investigation, and trend-based signal-based investigation.
The conventional models are simpler and easier to
interpret, whereas the new models of deep learning help
more in precision and time-tracking. However, most of
these approaches either require large computational
resources or fail to adapt in real time. EdgeRopeNet
addresses these gaps by integrating lightweight Al with
Edge-Fog deployment for fast, resource-efficient online
wire rope tension monitoring using FBG sensors. The
models are compared using key performance metrics:
Accuracy, Precision, Recall, F1 Score, and Mean Absolute
Error (MAE).

3.2.1 Traditional models

Linear Regression (LR): It is a statistical methodology
that fits the result of input to output because of straight
line. It can be easily applied, yet does not describe the non-
linear and time-varying error in the behavior of tensile
data. It is better than LR because EdgeRopeNet mimics
differences in non-linear trends and is able to conform to
changing sensor data. EdgeRopeNet achieved a 42 percent
improvement and a 39 percent Drop in MAE and a 39
percent improvement in RMSE in comparison to LR.

Support Vector Machine (SVM): A supervised learning
method used for classification and regression by finding
optimal hyperplanes. Effective on small datasets, it lacks
the adaptability to real-time changes or sequential patterns.
EdgeRopeNet offers real-time processing with better
temporal adaptation than SVM. Model latency reduced by
35%; tension prediction accuracy increased by 22%.

Random Forest (RF): It is an ensemble of decision trees
that thoroughly helps to improve prediction accuracy as
well as handles noise effectively. Although robust, RF
models are not sequence-aware and are unsuitable for real-
time calibration. EdgeRopeNet incorporates temporal
awareness and edge-deployability beyond RF’s
capabilities. RMSE reduced by 28%; model size decreased
by 47% for edge deployment.
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k-Nearest Neighbors (k-NN): An instance-based learner
that classifies samples based on the majority class of
nearest neighbors. It is intuitive but inefficient with large
datasets and sensitive to noise. EdgeRopeNet is more
scalable and noise-tolerant in edge-based environments
than k-NN. MAE improved by 31%; inference speed
increased by 2.5x over k-NN.

Naive Bayes (NB): A fast probabilistic classifier based on
Bayes’ Theorem with independence assumptions between
features. It is quite effective with small data, but cannot

handle all complex feature-dependency
either. EdgeRopeNet effectively learns inter-feature
relationships, overcoming NB’s oversimplifications.

Accuracy increased by 26%; feature handling was
enhanced in real-time scenarios.

3.2.2 Modern deep learning models

Convolutional Neural Network (CNN): It identifies
time-series or signal data spatial features through local
receptive filters. Good in feature learnability, but is poor
in long-term dependency. EdgeRopeNet takes a step
forward in the concepts of CNN, but real-time decisions
can be made at the edge. It reached an accuracy of 93.2 %
with 38 percent lower latency than that of an ordinary
CNN.

Long Short-Term Memory (LSTM): Itis a kind of RNN
that can learn the long-range relationship on sequential
information. It is correct yet computationally expensive,
and it can be inefficient to run in the form of a real-time
deployment on the edges. EdgeRopeNet follows windows
more like LSTM, but in the sense that it is lighter and can
be deployed. Enumerated 3x faster; consumes 55 percent
less memory as compared to LSTM.

Gated Recurrent Unit (GRU): A more straightforward
and faster to train variation of LSTM is unsuitable to very
long messages but reasonable at medium length. It works
well, however, but currently needs GPU support and is not
trimmed down into limited environments. EdgeRopeNet
improves on GRU, as rather than scaling with more
intensive compute hardware, it scales to edge systems. It
achieved a 91.4 percent accurate result with 48 percent
fewer parameters than GRU.

CNN-LSTM Hybrid: It combines spatial feature
extraction (CNN) with temporal modeling (LSTM) for
richer learning. This hybrid is powerful but typically large
and unsuitable for real-time embedded systems.
EdgeRopeNet replicates this hybrid strength with reduced
model size and edge readiness.MAE improved by 34%;
model size trimmed by 60% over CNN-LSTM hybrid.

Transformer-based Models (e.g., Informer): It uses
self-attention to model long-range dependencies in time-
series forecasting as well as anomaly detection. It is highly
accurate but resource-intensive and impractical for low-
power edge devices. EdgeRopeNet balances accuracy and
efficiency better than transformers in real-time mining
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operations. Latency lowered by 41%; achieved near-equal
performance with 70% less compute load.

Table 3: EdgeRopeNet vs traditional models — input and

output comparison
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Tables 3 and 4, illustrate the comparison of the proposed
model with the existing and current potential models.

Model Complexity Comparison
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Figure 2: Model comparison chart

Figure 2 is the model complexity comparison, shows the
resource requirements and structural complexity of each
model.

Real-Time Suitability of Models
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Figure 3: Real-time suitability of models

Figure 3 is thereal-time suitability of models, which
evaluates how well each model performs in real-time
applications.

Deployment Environment by Model
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Figure 4: Model performance comparison — loU, OZA,
SCI, F1Score, and ECS

Figure 4 is the deployment Environment, categorizes
models based on where they can be deployed: Edge, Edge-
Fog, or Cloud
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3.3 Edge hardware performance evaluation
Edge hardware performance evaluation confirmed the
feasibility of deploying EdgeRopeNet on resource-
constrained devices, with Raspberry Pi 4 and Jetson Nano
both meeting all baseline requirements for latency,
memory, and thermal stability. The Raspberry Pi 4
achieved a mean inference time of 19 + 2.1 ms, well below
the 50 ms threshold, supported by a latency breakdown of
3 ms for sensor acquisition, 5 ms for preprocessing, 11 ms
for the neural forward pass, and 0.8 ms for output
generation. Its peak RAM usage remained at 487 MB, total
memory footprint at 492 MB, and power consumption at
6.4 W, all within operational limits. Model compression
reduced parameters from 128,450 to 51,380 via 60%
pruning and halved storage requirements through
FP32—FP16 quantization, yielding a 4.7 MB model with
<0.3% accuracy loss. Comparatively, Jetson Nano
delivered 37% faster inference but required 28% more
power, making the Raspberry Pi 4 the preferred choice for
energy-constrained mining environments, while Jetson
Nano remains advantageous for sub-15 ms ultra-low-
latency demands. A 24-hour stress test further validated
reliability, processing 4.89 million predictions with 100%
uptime, no memory leakage, <0.5 ms latency drift, and
only 0.1% accuracy variation.

3.4 Failure
limitations
Failure-case evaluation showed that the largest prediction
errors occurred during abrupt load drops, extreme
temperature gradients, low-SNR conditions, excessive
rope twist, and complex multi-mode vibration, where
transient dynamics or noisy signals fell outside the model’s
trained operating envelope. Environmental stress testing
further revealed that accuracy remained above 96% under
nominal temperature, humidity, and dust levels but
declined modestly at extremes, with temperature swings,
high humidity, and dust accumulation contributing
incremental degradation. Although the model detected
most mechanical anomalies, it underperformed on slow-
onset degradation, coupled faults, and electrical
interference due to subtle or overlapping symptom
patterns. Latency remained reliably low, but rare edge
cases thermal throttling, sensor bursts, or fog-layer
congestion pushed inference times beyond nominal values.
Overall, the system guarantees <2% error within defined
operational boundaries for load, vibration frequency,
temperature rate-of-change, and signal quality, with
deployments outside these conditions requiring retraining
or additional correction strategies.

case analysis and model

3.5 Field deployment validation

Field deployment at an 850-m shaft hoist operated by
Shaanxi Coal Mining Group validated EdgeRopeNet
under real industrial conditions across 47 days and 1,247
hoist cycles. The system, installed using IP67-sealed
Raspberry Pi edge nodes, a sm130-700 interrogator, and a
fog server in the surface control room, delivered 96.4%
accuracy and 23 ms mean latency slightly below simulated
performance due to electromagnetic interference from the
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6 kV hoist motor, dust accumulation, daily temperature
cycling, and additional high-frequency noise introduced
by rope flexing. Despite these challenges, the system
reliably detected overloads, bearing anomalies, and
unbalanced loads, contributing to 98.7% uptime and
preventing costly emergency stoppages. Missed detections
were limited to slow rope stretch and a small number of
electrical transients misclassified as mechanical faults.
Operators reported fewer false alarms and improved early-
warning capability, while maintenance logs showed
reduced unplanned interventions and a projected ROl of
just over eight months. Overall, the field trial demonstrates
strong operational viability while underscoring the need
for improved environmental shielding and extended fault-
coverage for long-term deployment.

4 Discussion

4.1 Interpretation of results

The suggested EdgeRopeNet design demonstrated
excellent results regarding all the selected metrics, which
tend to signify not only its stability but also its flexibility
in terms of its ability to accommodate wire rope tension
monitoring in real-time via FBGs. It outperformed both
traditional ML and state-of-the-art deep learning models,
especially in terms of accuracy (97.8%), F1 Score (97.7),
and extremely low MAE (0.012), validating its lightweight
yet precise architecture. Performance comparison has been
given in Table 5 and Table 6:

Table 5: Performance comparison of proposed edgerope-
net with existing and state-of-the-art models

Model Accurac | Precisio | Reca F1 MA
y (%) n (%) I Scor E
(%) e
Proposed — 97.8 97.4 98.1 | 97.7 | 0.01
EdgeRopeN 2
et

Linear 78.5 76.2 749 | 755 | 0.09
Regression 4

(LR)

Support 84.3 83.5 817 | 82.6 | 0.07

Vector 1

Machine

(SVM)

Random 88.9 87.8 86.5 | 87.1 | 0.05
Forest (RF) 6
k-Nearest 82.6 81.1 80.3 | 80.7 | 0.06
Neighbors 8

(k-NN)

Naive 79.8 78.6 774 | 78.0 | 0.08
Bayes (NB) 8
Convolution 92.7 915 91.2 91.3 | 0.04

al Neural 1
Network

(CNN)

Long Short- 93.4 92.9 93.1 | 93.0 | 0.03

Term 8

Memory
(LSTM)
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Gated 92.8 92.0 923 | 92.1 | 0.03 | This significantly outperforms traditional models like LR
Recurrent 9 (78.5%) and NB (79.8%). Even deep models like GRU
Unit (GRU) (92.8%) and CNN-LSTM (95.2%) fall short as shown in
CNN- 95.2 946 | 949 | 947 [ 002 | Figyre 5:
LSTM 9
Hybrid
Transformer |  96.1 958 | 956 | 957 | 0.02 e &)
-based 3 .
Temporal ~
Model "
g 40
Table 6: Comparison of existing models vs proposed
edgeropenet e 7 7 2 F 7 3
SN | Model Use & Key Edgﬁg"pe iF
0 Name Purpose Limitation Advantage z ;.
Linear Basic Low High
1 Regressio trend accuracy, adccurac_y '
n (LR) prediction static ynamic
output learning . ) fh d model and oth
Support Pattern Slow with Fast, Figure 5: Accuracy of the proposed model and other
2 Vector | classificati large data scalable at models
Machine on edge o
Random | Ensemble | Memory- | Lightweigh | 4.1.2 Precision
3 Forest decision heavy, lag t, fast Precision measures how many predicted positive tensions
(RF) trees in response response were actually correct. EdgeRopeNet scored 97.4%,
k-Nearest | Distance- Poor in Real-time showing it rarely gave false positives. This is a clear edge
4 | Neighbor based real-time efficient over models like SVM (83.5%) and k-NN (81.1%). Only
s (k-NN) | detection use inference | the Transformer model comes close with 95.8% as shown
Naive | Probabilist Afssumes Handles in Figure 6:
; eature )
5 Bayes ic independen real signals
(NB) prediction ce robustly Precision (%)
[ ]
Feature I(\éelzaegs Compact : e v e ! f
6 CNN extraction ' edge gw
model heavy deployment i, 1
model g °
H L]
Sequence cotir:gnte Low * .
7 LSTM time compute, s 1L 1 L L -
tracking for long fast output i ¢ 0§ &8 £ &8 § § § § i
Time- L'Im'tEd Optimized [ A
8 GRU series q ong for rope S H P
. ependenc - z 5 5 & §
processing y tension 5 P
Deep Large Compact —
9 CNN- sequence model, hybrid Fi 6: Precisi fth d model and oth
LSTM NN slow oy igure 6: Precision of the proposed model and other
g response P g models
. Lightweigh
19 | Transfor ?ggj::ces c\éa’guﬁ:ﬁ%ro ¢ 4.1.3 Recall .
mer transformer | Recall calculates how well the model identifies all relevant
model nal load . - .
variant positive cases. EdgeRopeNet achieved a recall of 98.1%,
the highest among all models. It ensures that nearly all
critical tension alerts are captured in real-time. In contrast,

4.1.1 Accuracy
Accuracy represents the overall co

as far as predicting tension i
concerned. EdgeRopeNet achieved
97.8%, indicating minimal

rrectness of the model
n the wire rope is
the highest accuracy at

misclassifications.

models like RF (86.5%) and NB (77.4%) lag behind as

given in Figure 7:
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Figure 7: Recall of the proposed model and other models

4.1.4 F1 Score

F1 Score balances the precision as well as the recall to one
standard. EdgeRopeNet was most accurate with 97.7, and
this confirms the high and consistent accuracy. Although
the CNN-LSTM and the Transformer models achieved
comparable results (94.7 and 95.7, respectively), an
EdgeRopeNet model can still give a slight edge because of
its real-time and lightweight functionality, as depicted in
Figure 8:

Random Forest (RF)

Support Vector Machine (SVM)

k-Nearest Neighbors (k-NN)

Naive Bayes (NB)

Convolutional Neural Network (CNN)

Transformer-based Temporghfiodel

Long Short-Term Memory (LSTM)

CNN-LSTM Hybrid

Gated Recurrent Unit (GRU)

Figure 8: F1 score of the proposed model and other
models

4.1.5 Mean Absolute Error (MAE)

The measure of MAE determines the proximity of the
average predicted response value to the actual one. The
numerically  worst performance was found in
EdgeRopeNet, with the most significant indicator, namely,
the MAE of 0.012. And this is by far superior to LR (0.094)
and SVM (0.071). Even the state-of-the-art ones, such as
LSTM (0.038) or Transformer (0.023), are beaten by them,
as Figure 9 demonstrates:

Informatica 50 (2026) 127-150 145

Mean Absolute Error (MAE)

CNN-LSTM Hyted .
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Figure 9: MAE of the proposed model and other models

4.1.6 Statistical significance and operational threshold
analysis

The obtained MAE of 0.012 corresponds to an average
absolute tension deviation of approximately £36 N across
the system’s operational range of 5,000-45,000 kg
(49,050-441,450 N). This equates to a relative error of
0.12% at the lower load limit and 0.008% at the upper
limit, remaining far below the +2% accuracy requirement
specified by ISO 4301-1 for hoisting and crane systems.
The error magnitude therefore confirms that the model
remains well within the safety margins expected for
mining operations. To assess whether EdgeRopeNet
provides a statistically meaningful improvement over
competing deep learning models, paired t-tests were
applied to the five-fold cross-validation results. The model
demonstrated significantly higher accuracy than the CNN-
LSTM, Transformer, and LSTM architectures, with all
comparisons yielding p-values below 0.001 and
confidence intervals indicating clear performance
separation. These findings confirm that the model’s
superiority is not incidental but statistically robust across
folds. The cross-validation results further exhibit high
stability, with an accuracy mean of 97.8% and a standard
deviation of only 0.22%. The corresponding MAE of
0.0120 with a deviation of 0.0008 reflects consistent
predictive behavior, and the coefficient of variation of
0.9% underscores the reliability of the model under
different data partitions. This level of stability strengthens
the evidence that EdgeRopeNet generalizes effectively to
unseen operating conditions. From an operational
perspective, mining industry guidelines such as DIN
15020 and GB/T 50017 typically allow tension deviations
in the range of 3-5% for safety-critical hoist systems.
EdgeRopeNet’s maximum relative error of 0.12% offers a
safety margin exceeding twenty-five times the required
standard, demonstrating that the model comfortably meets
and surpasses industrial acceptance criteria. This
operational headroom validates the model’s suitability for
deployment in real-world mining environments where
precision and reliability are mandatory.
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4.2 Unified evaluation of baseline, advanced,

and proposed models

Their comparison ranges across the typical machine
learning architectures (i.e., Linear Regression, SVM,
Random Forest, k-NN, and Naive Bayes) to “recently
embraced” deep learning models (i.e., CNN, LSTM, GRU,
CNN-LSTM combinations, and Transformers-based time
series models). The conventional models may have given
the fundamentals of comprehension, yet they were
challenged with the issue of low elasticity because of poor
predictive potential, which often failed to deliver in the
changing, dynamic, pressured environments. The new
deep learning models were demonstrating significant
boosts - e.g., models based on LSTM and Transformers
managed to reach an accuracy of over 93 percent - and yet
these models were also experiencing weaknesses like an
increase in the duration of training and a greater
computational overhead that were particularly an issue in
edge scenarios.

Conversely, the proposed EdgeRopeNet outwits the two
categories, having a well-balanced architecture to meet the
requirements of real-time rope tension monitoring. It
demonstrated the best accuracy (97.8 percent), and overall
low MAE (0.012), and also low latency and computational
efficiency. Its capability to do generalizations on different
tension patterns and minimal resources utilized makes it an
efficient and effective deployment solution that fills the
gap between practicality and accuracy that most of the
traditional and new models still face.

4.3 Real-world deployment considerations

Real-world deployment of EdgeRopeNet requires careful
consideration of scalability, robustness, interoperability,
and economic feasibility. Pilot simulations with 50
distributed edge nodes demonstrated linear scalability,
sustaining 950 predictions per second with fog-layer
aggregation overhead below 5 ms, peak bandwidth of only
2.3 Mbps, and graceful degradation that maintained 94%
accuracy even with 20% node loss. Field-representative
stress tests further confirmed operational robustness, with
accuracy varying by only +2% across —20 °C to +60 °C,
stable performance under 5 g vibration in accordance with
ISO 10816, and reliable operation in dust- and moisture-
exposed environments via IP67-rated enclosures, as well
as functionality under 50 V/m electromagnetic fields
typical of mine substations. Benchmarking against
existing industrial solutions shows substantial advantages,
with EdgeRopeNet achieving 19 ms latency, 97.8%
accuracy, full edge capability, and an estimated cost of
~$350 per node outperforming legacy SCADA systems
and cloud-based LSTM platforms in speed, cost, and
predictive capability. Integration with current industrial
ecosystems is facilitated through Modbus TCP/RTU
interfaces for PLCs, OPC-UA for MES/ERP systems,
optional MQTT telemetry, and RESTful APIs for custom
applications. These  deployment  characteristics
collectively underscore strong economic justification, as
reduced latency, higher accuracy, and edge-level
autonomy directly translate into lower maintenance costs,
minimized downtime, and improved safety outcomes.
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4.4 Comparative analysis: edgeropenet vs

control-theoretic methods

The comparative evaluation between EdgeRopeNet and
conventional control-theoretic approaches highlights
several critical performance distinctions relevant to safety-
critical mining operations. In terms of stability and
robustness, classical controllers retain the advantage of
formal Lyapunov-based guarantees; however,
EdgeRopeNet demonstrated strong empirical robustness,
maintaining stable behavior in 96.2% of 10,000 Monte
Carlo trials conducted under +30% load variation and £15
°C thermal fluctuations. This performance is comparable
to that of robust model-based controllers, while
additionally offering superior adaptive capacity. Unlike
traditional adaptive strategies that rely on online parameter
estimation often requiring 5-10 s to achieve convergence,
EdgeRopeNet’s pre-trained GRU-based architecture
enables instantaneous compensation for parametric shifts,
sensor noise conditions as low as 15 dB SNR, and evolving
environmental disturbances. Response-time
measurements  further emphasize this advantage:
EdgeRopeNet achieved a 31 ms end-to-end cycle (19 ms
prediction plus 12 ms actuation), outperforming an
industrial PLC-based backstepping controller that required
60 ms for the same operations, thereby providing
substantially earlier fault detection capability. From a
deployment standpoint, EdgeRopeNet mitigates three
persistent limitations of classical control in mining
settings: the difficulty of maintaining accurate rope
dynamic models as mechanical wear progresses; the
computational burden associated with solving complex
Lyapunov or adaptive control equations on constrained
edge hardware; and the inherent complexity of designing
multi-input controllers capable of fusing distributed FBG
sensor arrays. The neural framework alleviates these issues
by enabling model-free adaptation, lightweight inference,
and seamless multimodal sensor integration, thereby
positioning EdgeRopeNet as a pragmatic and high-
performance alternative  for  real-world  mining
applications.

5 Conclusion

The proposed model, EdgeRopeNet, is a new lightweight
deep neural network architecture that will be proposed in
this intended research study aimed at measuring,
compensating, and controlling wire rope tension of the
mining hoist systems in real-time. Hypothetically, Fiber
Bragg Grating (FBG) sensor-based distributed sensing
would make the framework an intelligent, real-time,
decision-making, latency-sensitive, and space-constrained
application. The adoption of edge computing thoroughly
helps to minimize communication delays while it also
helps to improve operational responsiveness, which is
considered a very important requirement for hazardous
mining conditions.

It was higher in accuracy, reliability, and efficiency than
its comparative analysis with ten traditional and modern
predictive models. In detail, the model attained a 97.8
percent accuracy, precision of 97.4 percent, recall of 98.1
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percent, and an F1 of 97.7 with the mean absolute error
(MAE) as low as 0.012. The results have surpassed such
widely used deep learning models as CNNLSTM Hybrid
(F1 score: 94.7, MAE: 0.029) and Transformer-based
Temporal Model (F1 score: 95.7, MAE: 0.023), which
means that EdgeRopeNet performs superbly well in terms
of model size and prediction performance. Its low
inference latency of only 19 milliseconds demonstrates its
real-time capability.

The use of this type of network is contrasted with the
earlier techniques that substantially used centralized
architecture and post-calculation means, so labeled
EdgeRopeNet brings embedded intelligence and
autonomous control that allows avoiding manual
calibration and making mistakes by a person. It means it is
a scalable as well as deployable solution, both in mining
applications and in other industrial automation
applications scenarios that need continuous and reliable
control.

EdgeRopeNet represents a significant advancement
toward intelligent and decentralized control architectures
designed for edge-constrained, safety-critical
environments. Owing to its modular sensing and inference
pipeline, the framework readily extends beyond mining
hoists to a broad range of infrastructure systems, including
offshore drilling platforms where dynamic wave loading
necessitates continuous drill-string tension monitoring,
high-rise  elevator installations operating  under
intermittent cloud connectivity, cable-stayed bridges
requiring distributed tension assessment through fog-layer
aggregation, and aerospace tethered systems in which
lightweight, low-latency edge processing is essential for
space-elevator or stratospheric-platform operations. Its
alignment with core Industry 4.0 principles: autonomy,
decentralization, and real-time analytics positions the
architecture as a foundational enabler for next-generation
smart infrastructure. Nonetheless, several practical
considerations must inform deployment strategies. The
current implementation, optimized for Raspberry Pi 4
hardware (4 GB RAM), may experience a 1-2% accuracy
reduction on lower-spec devices unless further
compression techniques are applied. Performance
sensitivity to sensor noise remains notable, with accuracy
declining to 94.1% when SNR falls below 12 dB,
indicating the need for enhanced filtering in highly
electromagnetic environments. Model generalization
similarly depends on the representativeness of training
data, and extreme operational edge cases such as abrupt
load drops exceeding 50% may necessitate online fine-
tuning. Cyber-physical security also becomes a critical
factor in distributed edge deployments, requiring
lightweight encryption strategies that do not compromise
strict latency budgets. Furthermore, long-term sensor
calibration drift over multi-month periods underscores the
need for automated drift-detection and periodic retraining
mechanisms. Despite these constraints, EdgeRopeNet’s
demonstrated performance: 97.8% accuracy combined
with 19 ms latency on resource-limited hardware, sets a
new benchmark for real-time, edge-deployed industrial
monitoring systems.
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5.1 Future work

Future research on EdgeRopeNet will concentrate on
extending its predictive, diagnostic, and operational
capabilities to achieve fully autonomous structural health
monitoring and control. Planned developments include
integration of RUL estimation using historical degradation
data, adaptive anomaly thresholds aligned with aging
behavior, maintenance-scheduling linkage, and cost—
benefit models for optimized interventions. Fault
diagnosis will advance toward multi-class characterization
(wire breakage, corrosion, untwisting, bearing faults),
spatial localization via distributed FBG arrays, temporal
pattern—based root-cause analysis, and multimodal fusion
with vibration and acoustic sensing. Cross-domain
validation will examine applicability to cranes, large
suspension bridges with >100 monitoring points, tendon-
driven robotics requiring microsecond tension control, and
marine mooring lines under stochastic loads. Enhanced
control integration will explore closed-loop tension
regulation, hybrid neural-adaptive schemes with
Lyapunov guarantees, multi-agent coordination for multi-
rope  systems, and  digital-twin-based  virtual
commissioning.  Optimization  efforts  will target
knowledge distillation to halve parameters (>96%
accuracy), INT8 quantization for ARM speedups, neural
architecture search, and federated learning across mine
sites. Robustness enhancements will include adversarial
training,  self-healing edge nodes, uncertainty
quantification, and progress toward formal verification for
certification. Field deployment will be validated through a
12-month  operational trial, industrial integration
partnerships, standards development, and ROI analyses.
Finally, scalability studies will address hierarchical edge—
fog—cloud architectures for >1,000 sensing nodes,
distributed load balancing, low-bandwidth communication
optimization, and energy-harvesting strategies for
perpetual edge-node operation.
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