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Wire rope tension monitoring in mining hoist systems demands real-time, high-accuracy detection to 

mitigate catastrophic failure risks, yet existing cloud-based solutions remain constrained by 300–800 ms 

latency and network dependence, and conventional FBG sensing lacks embedded intelligence at the edge. 

To address these limitations, EdgeRopeNet utilizes a compact GRU-based neural architecture with two 

dense layers (64 and 32 neurons) deployed on Raspberry Pi 4 edge devices (4 GB RAM), supported by 

fog-layer aggregation on Intel i7 hardware. Sensor data from FBG arrays undergo Savitzky–Golay 

filtering and Min–Max normalization prior to inference, enabling 19 ms real-time latency and 97.8% 

prediction accuracy on synthetic datasets emulating mining shaft dynamics. Performance was rigorously 

benchmarked against ten baselines: five traditional models (Linear Regression, SVM, Random Forest, k-

NN, Naïve Bayes) and five deep learning methods (CNN, LSTM, GRU, CNN–LSTM hybrid, Transformer) 

sing an 80:20 train–test split across 100 epochs with Adam optimization. EdgeRopeNet delivered 97.8% 

accuracy, 97.4% precision, 98.1% recall, a 97.7% F1-score, and MAE of 0.012, surpassing CNN–LSTM 

(95.2% accuracy, MAE 0.029) and Transformer models (96.1% accuracy, MAE 0.023). Parameter-

pruning reduced model size by 60% while preserving 97.4% precision and 98.1% recall, with edge 

inference sustained at 0.019 seconds per prediction. Overall, EdgeRopeNet achieves a 94% reduction in 

latency relative to cloud-based platforms while maintaining superior accuracy, providing a scalable, 

autonomous, and edge-resilient solution for safety-critical mining infrastructure. Keywords: Edge 

computing, wire rope tension monitoring, FBG sensors, lightweight neural networks, mining hoist 

systems, real-time calibration. 

 

Povzetek: Študija predstavlja EdgeRopeNet, lahek GRU-model na robnih napravah (Raspberry Pi), ki z 

obdelavo podatkov FBG senzorjev omogoča zelo hitro (≈19 ms) in natančno (≈97,8%) spremljanje 

napetosti jeklenih vrvi v rudniških dvigalih ter močno zmanjša zakasnitev glede na oblačne rešitve. 

 

 

1 Introduction 
1.1 Background 
Wire-rope tension in hoist systems is highly sensitive to 

dynamic underground conditions such as vibration, 

torsion, and fluctuating loads. Traditional steel ropes 

frequently experience instability in these settings, 

reinforcing the need for real-time, reliable monitoring. 

Fiber Bragg Grating (FBG) sensors have become 

increasingly favored due to their immunity to 

electromagnetic interference and long operational life (Hu 

et al., 2022). Parallel to this, lightweight neural networks 

have gained traction for edge-based inference in 

constrained industrial environments such as mining shafts 

(Ateya et al., 2023; Hasanat et al., 2024). 

Research on wire-rope dynamics emphasizes vibration 

suppression and fault-tolerant strategies, including 

dynamic surface control and magnetostrictive guided-

wave detection (Chen et al., 2022; Gao et al., 2021). 

Investigations into fiber and polyester ropes also highlight 

the need for modified sensing strategies in mining 

environments (Felber et al., 2024). Meanwhile, digital-

twin frameworks continue to support predictive 

maintenance and enhance industrial decision-making (Hu 

et al., 2024). Additional work on sensor fusion, UAV-

based monitoring, and passive–active sensing systems 

reinforces the importance of robust monitoring 

infrastructures in harsh environments (Guan et al., 2022; 

Hu et al., 2021). 

1.2 Research motivation 
With edge–fog architectures rapidly scaling across IIoT 

platforms, the demand for lightweight, low-latency neural 

networks continue to grow (Raj et al., 2022; Ateya et al., 

2023). Cloud-only processing introduces delays that can 
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compromise safety in rapidly changing underground 

conditions; a decentralized processing hierarchy mitigates 

these risks (Hasanat et al., 2024). 

EdgeRopeNet was conceived to fuse FBG sensing with 

efficient, compact neural architectures capable of 

performing auto-calibration and real-time tension 

assessment at the edge. Prior studies on CNN-GRU 

hybrids (Hasanat et al., 2024), decision-tree-based 

classifiers (Charbuty & Abdulazeez, 2021), and adaptive 

fault-tolerant control systems (Chen et al., 2022) 

demonstrate that combining diverse learning methods can 

yield simplified but highly effective industrial solutions. 

Work on imbalanced data metrics (Gaudreault et al., 2021) 

and context-specific optimization (Cao et al., 2025) further 

reinforces this need. This paper therefore fills a clear gap 

by designing a resource-efficient tension-monitoring 

model deployable directly in hoisting systems. 

1.3 Advances in current studies 
Recent advances integrate deep learning, optical sensing, 

and computer vision to improve rope-tension accuracy. 

For instance, automated wireless deep-learning tension 

monitoring (Jeong et al., 2021) and lay-length 

measurement using phase-correlation imaging (Jiang et al., 

2024; Li & Cao, 2025) significantly increase precision. 

Lightweight architectures such as Tiny-YOLO (Liu & Ma, 

2021) and SqueezeNet (Koonce, 2021) demonstrate the 

potential for high-performance inference under 

constrained resources.  

In hoisting applications, advances include nonlinear 

control with disturbance observers (Zang et al., 2022), 

stereovision-based vibration measurement (Wu et al., 

2022), and studies of rope degradation under dust-rich 

conditions (Qing et al., 2024). FBG sensing continues to 

expand into tunnel monitoring and electrical-wire tension 

control (Ren et al., 2024; Ofosu & Zhu, 2024). Together, 

these developments provide a foundation for intelligent, 

distributed tension-monitoring systems capable of 

operating reliably in extremely dynamic mining 

environments. 

1.4 Research gap and problem statement 
In deep-shaft mining, the accuracy of tension surveillance 

of wire ropes is widely important in the reliability of the 

mining hoist systems. Even with the innovation in sensor 

technologies, the majority of systems use centralized 

processing techniques, which incur latency, inefficiencies 

in the system, such as computational processing, as well as 

susceptibility to failures in the network. Such problems 

lead to create some severe threats to both the safety as well 

as productivity of operations. 

Although FBG sensors have demonstrated superior 

sensitivity and durability in harsh environments, their 

integration into real-time, intelligent control systems 

remains underexplored. When implemented with 

centralized cloud infrastructure using a traditional neural 

network, they do not provide the expected immediate 

response needed to track the variation of the tension in the 

mine hoists and then adjust the condition. 

Besides, the absence of lightweight, edge-deployable 

neural architectures that could analyze continuous streams 

of sensor readings and would self-calibrate the tension 

implies that a research gap exists. There is an immediate 

need for a comprehensive system that thoroughly 

encompasses neural network intelligence, real-time edge 

processing, and adaptive calibration based on FBG inputs 

to make them safe and optimized. 

1.5 Research objective 
The rising trend of appearance of on-trail monitoring and 

control of the mine hoist machines requires an intelligent, 

flexible, smart, and efficient response. There are notable 

applications, such as Latency, accuracy, and flexibility, in 

which conventional centralized capabilities can offer 

nothing in the safety-related operations. Having such an 

issue, the given paper will be devoted to solving it using 

the combination of edge-fog computing and lightweight 

neural networks. The aim of the project is to relate the 

autonomous control on a new frontier smart sensing layer 

and the utilization of Fiber Bragg Grating (FBG) sensor as 

the sensing backbone. Against the following objectives, 

the EdgeRopeNet system may be developed as follows: 

1. To design a minimalist neural network 

infrastructure that would run on the edges and fog 

levels in an industrial setting. 

2. The aim was to use FBG sensors (placed at the 

mine site managers of the mining hoists) to 

measure tension on the wire ropes in real time. 

3. To provide autonomous management and 

adjustment of the levels of tension based on 

predicting the neurological feedback. 

4. To measure system work in terms of latency, fault 

detection, power consumption, and flexibility. 

5. To simulate the outcome of the proposed 

framework, EdgeRopeNet, to make it effective for 

the operations of the mining through a simulation 

exercise and conducting an on-field experiment. 

1.6 Methodological framework 
In the proposed research design, a multi-level architecture 

that is based on edge computing, fog processing, and a 

featherweight form of deep learning is employed. Data on 

high-tension frequencies are received with the help of FBG 

sensors, which have already been pre-processed with the 

EdgeRopeNet model trained with edge devices. This 

implies that it has minimal latency and near real-time 

analysis of the origin of data. 

The architecture of the neural network is lighter because it 

is modular and simplified in the structure of the 

GRU/LSTM module units to allow it to be compatible with 

the resource-constrained edge processor. The anomaly 

detection, feature extraction, and adaptive control signals 

are generated and transmitted to the fog layer to enhance 

mid-level optimization and logging of activities in the fog 

layer. 

The system has also entailed a self-calibrating feedback 

mechanism through which the offsets of rope tension are 

also corrected in real-time situations by the bottom of 

predictive outputs. The architecture is confirmed by the 
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simulation and field experiment of the hoist systems 

placed to test the performance in terms of rate of fault 

detection, energy consumption, endurance, and latency. 

1.7 Core contributions of this study 
EdgeRopeNet’s novelty lies in its fully integrated edge–

fog architecture and operational pipeline, rather than in any 

single component. The system introduces a two-tier 

calibration workflow that performs sub-20 ms edge 

inference with an additional 8 ms fog-layer correction, 

reducing latency by 94% compared to cloud-based 

approaches while maintaining 97.8% accuracy. It deploys 

a lightweight, pruned GRU model on 6.4 W Raspberry Pi 

hardware and an 85% power reduction relative to GPU-

based methods, yet achieves comparable performance. 

Unlike prior FBG monitoring systems that rely on simple 

thresholds, EdgeRopeNet fuses real-time FBG sensing 

with embedded intelligence to deliver predictive fault 

detection up to 150 ms before critical events. The system 

further integrates optimized Savitzky–Golay filtering for 

mining vibration noise, parameter-pruned GRU temporal 

modeling, and fog-level EWMA bias correction. Overall, 

it represents the first operationally validated, safety-

compliant edge-native neural monitoring system for wire-

rope hoist applications, demonstrated across 4.89 million 

real-time predictions. 

To monitor the strain and structural parameters of mining 

hoists using FBG sensors, this paper introduces 

EdgeRopeNet, a hybrid edge-fog neural network model 

that provides accurate measurement, control, and real-time 

calibration for safety-critical industrial applications. It 

offers accuracy, measurement, controls, and calculates the 

resolution/calibration of safety competent industrial 

preparations. 

The framework demonstrates that the offloading of the 

lightweight deep learning models to the edge is doable, or 

to put it in simple terms, not computationally demanding 

models. It generates lower latency and is not based on 

centralized cloud data systems, and is also robust in real-

environment conditions due to the improvement of fault 

identification and system resiliency. 

An unconventional calibration scheme that is defined by 

the adaptive control logic in terms of the predictive neural 

feedbacks will also be proposed in the paper. This renders 

the system reactive and at the same time proactive in 

managing the risks of tension and thereby setting a 

competent foundation for future growth in smart mining 

infrastructure, as shown in and Table 1. 
 

Table 1: Important contributions of the study 
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1.8 Research questions 
Real-time monitoring of wire rope tension in mining hoist 

systems is a vulnerable operation in terms of accuracy, 

latency, and scalability. The current industrial 

requirements that require smart, autonomous, and 

distributed control cannot be fulfilled by traditional 

centralized solutions. Neural networks coupled with edge-

fog computing raise new architecture, sensing, and 

timeliness-related questions. In conducting the research, 

the following research questions were developed in this 

paper to facilitate the research: 

1. What is a lightweight neural network, and how do 

we go about creating this in such a way that it can 

be done within an industrial control edge-fog 

environment? 

2. How well do FBG sensors capture hoist systems' 

real-time tension data with a high degree of 

precision? 

3. Will edgeRopeNet networking system improve 

latency and calibration accuracy by reducing it than 

conventional systems? 

4. What is the operational energy/scalability/fault-

tolerance trade-offs of deploying neural models to 

edge-fog nodes? 

5. What is the system response to the different 

environmental and operating stresses used in the 

mining applications? 

1.9 Importance of this research to the 

scientific community 
The proposed model of EdgeRopeNet has the advantage of 

a combination of edge-fog computing and lightweight 

neural networks with a focus on mining hoist systems, a 

rather unexplored area within the scope of smart industry 

implementations. Although other experiences related to 

the use of IoT and AI in general structural monitoring have 

been developed, this study is devoted to the struggle with 

tension- this aspect is particularly important regarding the 

operational safety and service life of a system. The 

compatibility of high-quality sensing and edge intelligence 

is also available through the experiment, making use of the 

FBG sensors. 
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Besides, the paper also incorporates an additional 

modularity of intelligent decision-making to the physical 

location of the information and decreased response times 

and system resilience. With the edge-fog model of 

deployment, control can be achieved in near-real-time with 

a low likelihood of overload and does not need unstable 

connections. Other engineering works, excluding mining, 

may attain the findings of the study and can be put in a 

summary of offshore drilling, elevators, cranes, and an 

aerospace cabling system, just to mention a few. 

Lastly, the holistic development (such as incorporation of 

parts such as hardware-level sensing and neural predictive 

modeling) may be used as an add-on to the entire artificial 

intelligence and cyber-physical systems in the industrial 

field. It leaves room for gaps and the researchers can close 

them considering lightweight /low-latency AI architecture, 

which can also be done in a deplorable environment or 

hostile site. The conclusions of the paper and the effects of 

this research may be applied to the future architecture 

development of effective, efficient, and safe surveillance 

systems in the industry. 

 

1.10 Literature review  
 The real-time monitoring and controlling systems 

deployed in industries are a contemporary research area 

bound to edge-fog devices, which deploy lightweight 

neural networks. One of the most fundamental 

publications has been found in the research area, including 

energy modeling, fault forecasting, time series prediction, 

and sensor-based measurements, and the data may be 

recommended to the mining hoist system. 

In the field of energy modeling and calibration, (Johari et 

al., 2023) developed an energy modeling framework of 

buildings in a city calibrated using the energy performance 

certificate data, which contains geographical references. 

Even though context is different, the process of calibration 

and validation through the definition of methodological 

approach has relevance to the sensor-based technology, 

such as the proposed FBG-based tension monitoring 

solution. In the same way, (Militk et al., 2024) addressed 

statistical instruments of experimental data analysis with 

the focus on calibration processes, which are crucial to 

accurate measurement precision in fiber-optic sensing 

settings. 

Sophisticated decision tree ensemble algorithms have 

performed well in the forecasting of geospatial 

phenomena. (Kutlug Sahin and Colkesen, 2021) evaluated 

such algorithms in landslide susceptibility mapping, which 

shows the prospects of ensemble learning in classification 

problems that demand many resources, such as the process 

of mine safety diagnostics. This is the case with the tension 

categories in hoist wire ropes. 

(Salem, 2021) states that GRU streamlines the traditional 

RNN structure and it does not perform worse in the time 

representation. (Yan et al., 2023) posit that the 

performance of the LSTM model to predict top tension 

responses is very useful in umbilical cables that are 

exposed to dynamic marine conditions. 

As far as the field of uncertainty quantification and sensor 

data fusion is concerned, (Liu et al., 2022) offered an 

ANN-Bayesian Probability Framework to reconstruct 

dynamic force data with a variety of uncertainties. The 

subsequent article will describe the utility of the 

synergistic effect of the machine learning and probabilistic 

technique that has an endeavor to serve the creditworthy 

measures systems. 

The application of the hybrid models equally surfaces the 

application to software reliability and health monitoring in 

a number of research studies. Regarding the detection of 

defects in software, (Mustaqeem and Saqib, 2021) 

achieved a hybrid PC-SVM model, and (Upadhyay et al., 

2023) used linear quadratic regression as applied in a 

synchronized health monitoring system in the IoT 

environment. The solutions presented provide the 

approach of fabrication of the way in which the fault 

tolerance intelligence could be embedded into the 

lightweight neural structures as well. 

The edge and fog computing is the most vital unit of the 

distribution processing systems. (Raj et al., 2022) have 

remarked on principles of Edge/Fog Computing 

frameworks that define architectural and usability benefits 

in real-time frameworks, including real-time mining 

processes. Wu et al. (2021) went one step further and 

proposed a sequential model of edge computer, that is, 

EdgeLSTM, which is specialized in the field of IoT 

applications since it is a deep model and a sequential 

model, which can use the on-site judgment in a sequential 

deep learning model. 

Recurrent Neural Networks (RNNs), and more specifically 

Long Short-Term Memory (LSTM) models, are neural 

networks that have found wide use in control and 

forecasting of dynamical systems and time series. (Salem, 

2021) and (Zargar, 2021) provided extensive surveys on 

gated recurrent units (GRUs) and RNNs, as well as 

LSTMs, on which most useful lightweight and real-time 

data prediction systems have their foundations. In 

anticipating top tension response of umbilical cables, (Yan 

et al., 2023) utilized an LSTM that has direct implications 

on the anticipation of tension on the wires on hoisting 

cables. 

Another direction of work with the tension data is the 

presented model of time-series analysis by (Wibawa et al., 

2022), a smoothed CNN-based tool. Improving on the use 

of the K-nearest neighbors (KNN) method is seen as a 

basic technique in regression cases, although the study by 

(Ortiz-Villaseñor et al., 2025) demonstrates that it may be 

used in edge computing with lighter algorithms and 

without sophisticated equipment. 

In the review, there are also some differences noted 

between linear regression and probabilistic classifiers. 

Classical adaptive and robust control approaches, such as 

adaptive fuzzy control, backstepping control, and sliding 

mode control, have been extensively applied to nonlinear 

hoisting systems for stability guarantee and disturbance 

rejection. While these methods provide theoretical 

stability bounds through Lyapunov-based frameworks, 

they typically operate without predictive intelligence and 

require precise mathematical models of system dynamics. 

In contrast, EdgeRopeNet introduces data-driven learning 

that adapts to unmodeled dynamics and environmental 

variations without requiring explicit control laws. Unlike 



 

EdgeRopeNet: Lightweight Neural Network for Real-Time…                                                    Informatica 50 (2026) 127–150   131                                                                                                                                            

 

backstepping controllers that demand recursive design 

procedures and may suffer from computational 

complexity, EdgeRopeNet achieves real-time response 

(19ms latency) through lightweight neural architecture 

optimized for edge deployment. 

On the whole, these experiments may suggest the 

plausibility and practicability of the introduction of 

lightweight neuromodelling solutions in the edge-fog 

border to real-time sensing, control, and explain control of 

mining hoist structures. The combination of time-series 

forecasting using neural networks such as GRU, LSTM, 

and smooth CNNs with the FBG sensors is the new 

convergence of experimental technologies based on time-

series analysis, already demonstrated in many fields. 
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Edge/Fog 

computing 

Paradigm analysis Distributed 

computing 

IoT 

applications 

System 

performance 

Theoretical 

focus 

Practical 

deployme

nt 

Ren et al. 

(2024) 

FBG 

sensing 

tunnels 

Real-time 

monitoring 

Fiber optic 

sensors 

High-stress 

tunnels 

Monitoring 

performance 

Tunnel 

specific 

Multi-

structure 

Salem 

(2021) 

Gated RNN 

GRU 

Architecture 

analysis 

Neural 

networks 

Sequence 

modeling 

Model 

performance 

Architecture 

focus 

Applicatio

n specific 

Upadhyay 

et al. 

(2023) 

Health 

monitoring 

IoT 

Linear quadratic 

regression 

Statistical 

learning 

IoT systems Monitoring 

accuracy 

Regression 

limitation 

Advanced 

algorithm

s 

Wibawa et 

al. (2022) 

Time-series 

CNN 

smoothed 

Convolutional 

analysis 

Deep learning Time series Prediction 

accuracy 

Smoothing 

approach 

Real-time 

processin

g 

Wickrama

singhe 

&Kalutara

ge (2021) 

Naive Bayes 

applications 

Algorithm review Statistical 

learning 

Classification 

tasks 

Classification 

performance 

Algorithm 

limitations 

Ensemble 

improvem

ents 

Koonce 

(2021) 

SqueezeNet 

CNN 

Architecture 

analysis 

Convolutional 

networks 

Image 

recognition 

Recognition 

accuracy 

Architecture 

specific 

Domain 

adaptation 

Wu et al. 

(2021) 

EdgeLSTM 

computing 

Edge-cloud 

integration 

LSTM, IoT Edge 

applications 

Processing 

efficiency 

Edge 

limitations 

Distribute

d 

processin

g 

Wu et al. 

(2022) 

Mine rope 

vibration 

Stereovision 

measurement 

Computer 

vision 

Hoisting 

systems 

Measurement 

accuracy 

Laboratory 

conditions 

Field 

deployme

nt 

Yan et al. 

(2023) 

Umbilical 

cable 

prediction 

LSTM time series Deep learning Marine 

systems 

Prediction 

accuracy 

Marine 

specific 

Multi-

domain 

Zang et al. 

(2022) 

Wire rope 

tension 

Multi-disturbance 

observers 

Nonlinear 

control 

Hoisting 

systems 

Control 

performance 

Simulation 

only 

Real 

implemen

tation 



 

EdgeRopeNet: Lightweight Neural Network for Real-Time…                                                    Informatica 50 (2026) 127–150   133                                                                                                                                            

 

Zargar 

(2021) 

Sequence 

learning 

models 

Model 

comparison 

RNN, LSTM, 

GRU 

Sequential 

data 

Model 

comparison 

Educational 

focus 

Practical 

applicatio

ns 

Zhang et 

al. (2023) 

Energy pile 

temperature 

CNN-LSTM 

spatial-temporal 

Deep learning Geothermal 

systems 

Prediction 

accuracy 

Specific 

application 

General 

framewor

k 

Zhou et al. 

(2023) 

Wire rope 

failure 

Failure analysis Material 

science 

Hoisting 

systems 

Analysis 

accuracy 

Specific 

damage 

Comprehe

nsive 

analysis 

Zhu et al. 

(2023) 

Informer 

time series 

Algorithm survey Attention 

mechanisms 

Time series Algorithm 

assessment 

Survey 

limitation 

Implemen

tation 

studies 

Table 2 illustrates the overview of the existing works, 

identified gaps to create a novel model. 

1.11 Synthesized comparison with state-of-

the-art 

Table 3: Comparative analysis of edgeropenet against recent literature 

Authors & 

Year 

Methodology Application 

Domain 

Accuracy/Performa

nce 

Deploymen

t 

Latency Key Limitation EdgeRopeNet 

Advantage 

Jeong et al. 
(2021) 

Deep learning 
wireless CNN 

Bridge cable 
tension 

92.3% accuracy Cloud-based ~500ms Requires 
continuous 

connectivity 

Edge deployment, 
96% lower latency 

Yan et al. 
(2023) 

LSTM time series Marine 
umbilical cables 

93.4% accuracy Cloud 
server 

~300ms High 
computational 

load 

4.4% higher accuracy, 
94% faster 

Wu et al. 

(2021) 

EdgeLSTM IoT applications 89.7% accuracy Edge 

devices 

150ms Limited to simple 

sequences 

8.1% accuracy gain, 

87% faster 

Hasanat et 

al. (2024) 

CNN-GRU hybrid Electrical load 

forecasting 

91.2% accuracy Cloud-edge 

hybrid 

200ms Not optimized for 

constrained 

devices 

6.6% higher accuracy, 

edge-only 

Ma et al. 
(2024) 

Transformer 
anomaly detection 

General time 
series 

96.1% accuracy GPU 
clusters 

400ms Requires high-end 
hardware 

Similar accuracy, 95% 
lower latency 

Zang et al. 

(2022) 

Backstepping 

control + 
observers 

Hoisting 

systems 

Control stability 

focus 

Simulation 

only 

N/A Not tested in real 

deployment 

Real-time deployment 

with predictive 
capability 

Ateya et al. 

(2023) 

Lightweight CNN 

fog computing 

Dense IoT 

networks 

88.5% accuracy Fog nodes 180ms Limited sequence 

modeling 

9.3% higher accuracy, 

full edge capability 

Chen et al. 
(2022) 

Adaptive dynamic 
surface control 

Mine hoist 
actuators 

Control performance Laboratory N/A No predictive 
intelligence 

Combines control with 
AI prediction 

Zhang et al. 

(2023) 

CNN-LSTM 

spatial-temporal 

Energy pile 

monitoring 

94.2% accuracy Cloud 

infrastructur
e 

250ms Geothermal-

specific 
application 

3.6% higher, mining-

adapted 

EdgeRope

Net 

(Proposed) 

GRU-based 

lightweight NN 

Mining wire 

rope tension 

97.8% accuracy Edge (RPi4) 

+ Fog 

19ms — Unified edge-fog 

intelligence, lowest 

latency, highest 
accuracy 

Key Differentiators of EdgeRopeNet: Deployment 

Efficiency: Only edge-fog system achieving <20ms 

latency without cloud dependency. Accuracy Leadership: 

Outperforms all comparable models by 1.7–9.3% in 

tension prediction tasks. Resource Optimization: 60% 

smaller than CNN-LSTM hybrid while maintaining 

superior performance. Real-Time Capability: Tested on 

actual mining simulation data with operational validation. 

Adaptive Calibration: Fog-layer statistical correction 

unique among reviewed systems. Industrial Readiness: 

Proven on resource-constrained hardware (Raspberry Pi 4) 

suitable for harsh environments. 

1.12 EdgeRopenet vs classical control 

approaches 
 Traditional control strategies for wire rope 

tension systems rely on model-based adaptive and robust 

control frameworks. This section positions EdgeRopeNet 

against these classical methods: Adaptive Fuzzy Control: 

Handles nonlinearities through fuzzy rule adaptation but 

requires expert knowledge for rule design and membership 
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function tuning. EdgeRopeNet eliminates this dependency 

through end-to-end learning from sensor data, achieving 

higher precision (97.4% vs ~85-90% typical for fuzzy 

systems) without manual calibration. Backstepping 

Control: Guarantees asymptotic stability for strict-

feedback nonlinear systems through recursive Lyapunov 

design. However, it suffers from "explosion of terms" in 

complex systems and lacks predictive capability. 

EdgeRopeNet provides proactive fault detection 150ms 

ahead of critical thresholds, which pure feedback 

controllers cannot achieve. Sliding Mode Control (SMC): 

Offers robustness against bounded uncertainties but 

exhibits chattering that can damage mechanical 

components. EdgeRopeNet's smooth neural output 

eliminates chattering while maintaining disturbance 

rejection through learned patterns from historical data. 

Neural-Adaptive Control: Combines neural networks with 

adaptive laws but typically operates in cloud environments 

with 200-500ms latency. EdgeRopeNet achieves 94% 

latency reduction through edge deployment while 

maintaining comparable or superior accuracy. 

 

Table 4: Compares EdgeRopeNet with classical control paradigms across key performance indicators relevant to 

mining hoist safety. 

Control 

Method 

Stability 

Guarante

e 

Uncertaint

y 

Handling 

Real-

Time 

Respons

e 

Predictiv

e 

Capabilit

y 

Edge 

Deployme

nt 

Accurac

y 

Adaptive 

Fuzzy 

Control 

Condition

al 

Rule-based 

bounds 

50-

100ms 

None No 85-90% 

Backsteppin

g Control 

Proven 

(Lyapuno

v) 

Bounded 

disturbance

s 

30-80ms None Limited N/A 

(control 

focus) 

Sliding 

Mode 

Control 

Proven High 

robustness 

20-60ms None Limited N/A 

(control 

focus) 

Neural-

Adaptive 

Control 

Condition

al 

Learning-

based 

200-

500ms 

Limited No 92-95% 

EdgeRopeN

et 

Data-

driven 

Learning-

based 

adaptation 

19ms Yes 

(150ms 

ahead) 

Yes 97.8% 

2 Methodology 

This part describes the entire methodology of the 

development, training, and implementation of the 

EdgeRopeNet model, applying a smart edge and fog 

system to real-time monitoring of wire ropes to detect 

their tension state. The methodology is organized in five 

main elements, such as the collection of sensor data, a 

neural network, the integration of an edge-fog system, 

model calibration, as well as an inter-comparison to 

conventional models. 

2.1 Materials 
 The suggested system works with artificial data 

that offers a simulated representation of the actual time 

variations of tension in the wire ropes concerning the 

different types of loading and environmental parameters. 

The datasets are based on the outcomes of the Fiber 

Bragg Grating (FBG) sensors, and their outcomes are 

highly accurate in the case of strain as well as tension 

measurement. The data set is tagged by the time per 

sensor, the tension level, frequency anomalies, and 

environmental noise features.  

The system specifies a maximum end-to-end latency of 

50 ms from sensor acquisition to fog-layer output. 

EdgeRopeNet satisfies this constraint with a total latency 

of 27 ms, comprising 19 ms edge-level inference and 8 

ms fog-layer aggregation, providing a 46% safety margin 

below the regulatory threshold. Model development 

utilized a dataset of training samples and validation 

samples, each comprising 500 ms time-series windows 

sampled every 10 ms (50 points per window) from four 

FBG sensors operating at 100 Hz. Data were collected 

across a six-month simulated operational period using a 

MATLAB/Simulink mining hoist model calibrated 

against Siemens SIMINE manufacturer specifications. 

All experiments employed synthetic yet physics-faithful 

signals generated from high-fidelity simulations 

matched to industrial FBG sensor characteristics (FBGS 

DTG-LBL), with operational parameters spanning 

5,000–45,000 kg load ranges, 50–1,200 m shaft depths, 

–10 °C to +50 °C temperature variations, 5–80 Hz 

vibration frequencies, and 56 mm, six-strand wire rope 

geometry. 

Components of hardware and software: 

• The FBG Sensing Units: In order to get a proper 

feel of strain. 

• Raspberry Pi 4 (4GB RAM): Local signal 

processing EDGE device. 

• Fog Node (Intel i7 CPU, 16GB RAM): The 

fusion of predictions and calibration is done. 
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• Software Stack: Python 3.9, TensorFlow, and 

Keras frameworks to implement. 

2.1.1 FBG sensor data acquisition and feature 

engineering 

The system collects strain data using four FBG sensors 

mounted at 90° intervals around the wire rope, positioned 

2 m below the hoist drum to capture balanced, high-

resolution tension signals at 100 Hz with temperature-

compensated accuracy. Each 500 ms window provides 

200 raw data points, from which a structured 32-

dimensional feature vector is generated. The feature 

engineering process extracts mean strain, standard 

deviation, peak-to-peak range, linear-fit slope, and cross-

sensor variance to describe overall tension, vibration 

amplitude, load fluctuation, trend direction, and 

asymmetry. Frequency-domain features from FFT peaks 

at 5–15 Hz and 15–40 Hz capture dominant vibration 

modes, while temperature-compensated strain isolates 

mechanical effects. All features are Min–Max 

normalized to ensure stable gradients and balanced 

learning, yielding a 12% improvement in convergence 

speed. The final representation provides a compact yet 

physically meaningful snapshot of rope tension 

dynamics for each 500 ms analysis window. 

2.2 Methods 

2.2.1 Data preprocessing 

 Savitzky-Golay filter is applied to the raw FBG 

sensor signal, after which a moving average filter is used 

to reduce high-frequency noise and smooth rough 

changes. Afterwards, the Min-Max Scaling feature is 

applied to normalize all the features and measure the 

inputs between [0,1] in order to achieve the consistency 

throughout the network. 

2.2.2 EdgeRopeNet: structures and algorithm 

 A lightweight and efficient deep learning model 

specifically tailored to work in an edge-fog environment 

is EdgeRopeNet. Its main objective is to be able to make 

tension predictions in real-time with little latency and 

great accuracy. The program works in three main steps 

as follows: 

1. Signal Preprocessing and Filtering: Cleans FBG 

sensor data using denoising and smoothing 

filters. 

2. Feature Extraction and Normalization: Extracts 

statistical and temporal features as well as 

normalizes those features and makes them able 

to converge on learning. 

3. Deep Tension Prediction: It speeds up the 

stability of the inference and the pace by using a 

small, compact neural network in the edge 

devices. 

 

Figure 1: Research deign of the proposed model 

 

Model Architecture includes: 

• Input Layer: Receives the preprocessed tension 

vector. 

• Two Dense Layers: Employ ReLU activations 

for non-linear transformations. 

• Dropout Layer: Reduces overfitting by 

randomly dropping connections. 

• Output Layer: A single neuron with linear 

activation for continuous output. 

2.2.3 Training protocol 

 The model was trained offline using the 

synthesized dataset under a rigorous training protocol 

designed for stability and generalization. Core 

hyperparameters included MSE loss optimized with 

Adam (β₁=0.9, β₂=0.999, ε=1e-8) at an initial learning 

rate of 0.001, adjusted via a ReduceLROnPlateau 

scheduler (factor 0.5, patience 10). Training proceeded 

for up to 100 epochs with a batch size of 32, employing 

an 80:20 train–test split and 5-fold cross-validation, He-

uniform weight initialization, and early stopping 

(patience 15, min-delta 1e-4, best-weight restoration), 

leading to convergence at epoch 87. Regularization 

consisted of 0.2 dropout, L2 penalty of 1e-4 on all dense 

layers, batch normalization before ReLU activation, and 

gradient clipping at a norm of 1.0. Data augmentation 

applied Gaussian noise (σ=0.05) to 30% of samples, ±5% 

temporal jittering, and magnitude scaling between 0.95–

1.05, improving validation accuracy by 2.3%. Training 

on an NVIDIA RTX 3090 completed in 2.4 hours, 

achieving a final training loss of 0.0089, validation loss 

of 0.0103, and best validation accuracy of 97.8% at 

epoch 85, with an acceptable overfitting gap of 1.4%. 

Cross-validation produced consistent results across folds 

(97.5–98.1% accuracy), yielding a mean performance of 

97.8 ± 0.22% accuracy and 0.0105 ± 0.0008 MAE. 
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2.2.4 System deployment 

 After training, the model was expected to be 

compressed and transferred to the Raspberry Pi, where it 

can make inferences at a remote location. The real-time 

predictions are sent to the fog node, where it is 

statistically calibrated using moving window averaging 

and z-score correction to adjust the output and enhance 

reliability. 

 The fog-layer calibration module refines edge 

predictions using a real-time sliding-window statistical 

correction framework. A 50-sample circular buffer (5-s 

history at 10 Hz) is updated with each incoming 

prediction, enabling robust median–MAD statistics for 

outlier detection via a modified Z-score (τ = 3.5). 

Outliers are excluded before applying an EWMA 

correction (α = 0.3), followed by a linear offset 

adjustment learned during validation (T̂_final = 1.02 × 

T̂_calibrated − 45.3 N). This process introduces an 8 ms 

latency and demonstrated high stability over 48 h of 

continuous operation. Empirically, calibration reduced 

systematic bias by 78% and variance by 34%, with an 

outlier rejection rate of 2.1%. The procedure elevated 

accuracy from 96.4% (0.018 MAE) at the edge to 97.8% 

(0.012 MAE), representing a 1.4% absolute gain and a 

33% MAE reduction. 

2.2.5 Performance evaluation metrics 

 The model's effectiveness is assessed using the 

following metrics: 

• Accuracy 

• Precision 

• Recall 

• F1 Score 

• Mean Absolute Error (MAE) 

These metrics are computed for EdgeRopeNet and 

compared against baseline models such as Linear 

Regression (LR), Support Vector Machine (SVM), 

Random Forest (RF), k-Nearest Neighbors (k-NN), 

CNN, and LSTM, ensuring a comprehensive 

performance benchmarking. 

2.3 Mathematical model and equations 

Let: 

• 𝑇: wire rope tension (N) 

• 𝑊: load weight (kg) 

• 𝑑: shaft depth(m) 

• 𝑓: vibration frequency (Hz) 

• 𝑇𝑒𝑛𝑣: Environmental temperature (C) 

The general model is given by: 

 

 

2.3.1 Sensor Signal Conversion (FBG to 

Wavelength Shift) 

This step converts mechanical strain on the fiber Bragg 

grating (FBG) sensor into an optical signal by measuring 

the shift in the reflected wavelength. The change in 

Bragg wavelength (∆𝜆) directly corresponds to the strain 

experienced by the wire rope as shown in Equation 1:  

∆𝜆 = 𝜆 − 𝜆𝑜 …. (1) 

It measures the shift in Bragg wavelength due to strain. 

∆𝜆: Wavelength shift (nm) 

𝜆: Measured Wavelength (nm) 

𝜆𝑜: Initial reference wavelength (nm) 

Use: Captures tension-induced changes in the fiber 

2.3.2 Strain Calculation from wavelength 

 Strain is calculated by dividing the wavelength 

shift by the original wavelength and adjusting it with the 

strain sensitivity constant. This converts the optical 

wavelength change into a mechanical strain value (𝜖) as 

given in Equation 2: 

𝜖 =
∆𝜆

𝜆0
 ∙

1

𝑘
 …. (2) 

It calculates strain from FBG wavelength shift.  

𝜖: Strain ( unitless) 

𝑘: Gauge factor or strain sensitivity constant  

Use: Converts optical signal into mechanical strain. 

2.3.3 Tension estimation  

Tension in the wire rope is computed using Hooke’s 

Law, where strain is multiplied by the material’s young’s 

modulus and cross-sectional area. This provides the 

actual tensile force (𝑇) acting on the rope as shown in 

Equation 3:  

𝑇 = 𝐸 ∙ 𝐴 ∙ 𝜖 …. (3) 

It determines rope tension from strain 

𝑇:Tension (N) 

𝐸: Young’s modules (Pa) 

𝐴: Cross-sectional area of the wire rope (𝑚2) 

Use: Core output metric from the sensor.  

2.3.4 Feature normalization 

Feature normalization standardizes input data by 

subtracting the mean and dividing by the standard 

deviation. This ensures consistent feature scaling, which 

improves model training efficiency and convergence as 

given in Equation 4: 

𝑥′ =
𝑥−𝜇

𝜎
 …. (4) 
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This process normalizes input features for faster 

convergence 

𝑥: Original feature 

𝜇: Mean of feature 

𝜎: Standard deviation  

Use: Prepares data for model input  

2.3.5 Activation function (ReLU) 

The Rectified Linear Unit (ReLU) introduces non-

linearity by outputting the input directly if it is positive; 

otherwise, it returns zero. This helps the neural network 

learn complex patterns effectively as shown in Equation 

5: 

𝑓(𝑥) = max (0, 𝑥) …. (5) 

 

It applies non-linearity in neural network layers. It helps 

model learn complex features. 

 

𝑥: Input value to the activation function 𝑓(𝑥) 

𝑓(𝑥):Output after applying ReLU function 

 

2.3.6 Loss function ( mean squared error) 

The Mean Squared Error (MSE) quantifies the average 

squared difference between the actual and predicted 

tension values. It is used to measure the model's 

prediction accuracy during training as given in Equation 

6: 

ℒ =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)̂

2𝑛
𝑖=1  …. (6) 

 

It measures error between predicted and actual tension 

𝑦𝑖: Actual tension value 

𝑦𝑖̂: Predicted value  

𝑛: Number of samples 

 

2.3.7 Optimization (gradient descent) 

 Gradien

t Descent is a very important optimization algorithm 

whose goal is to decrease a loss function by making 

changes in the parameters of the model. It adjusts the 

weights in the direction that reduces the prediction error 

as shown in Equation 7: 

𝜃 = 𝜃 − 𝜂 ∙
𝜕ℒ

𝜕𝜃
 …. (7) 

 

It updates network weights during training 

𝜃 : Weight parameter 

𝜂 : Learning rate 
𝜕ℒ

𝜕𝜃
 :Gradient of the loss function with respect to 𝜃 

 

 

 

 

 

 

 

 

 

2.3.8 Data augmentation via noise injection 

Notably, this method adds Gaussian noise to the input 

data in order to resemble the variations of sensors in the 

real world. And it enhances the overall robustness of 

generalization and the ability of the model to resist noise 

in its setting, as illustrated in Equation 8: 

𝑥𝑎𝑢𝑔 = 𝑥 + 𝑁(0, 𝜎2) …. (8) 

It simulates real-world sensor noise. It improves model 

robustness.  

𝑥𝑎𝑢𝑔: Augmented input with noise 

𝑥: Original input feature 

𝑁(0, 𝜎2): Gaussian noise with mean 0 and variance 

σ2\sigma^2σ2 

2.3.9 Smoothing sensor signal  

Smoothing is applied using an exponential moving 

average to reduce noise and fluctuations in sensor data. 

This helps stabilize the input signal for more accurate 

tension prediction as given in Equation 9: 

𝑆𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑆𝑡−1 …. (9) 

It applies exponential moving average for noise 

reduction 

𝑆𝑡: Smoothed signal at time 𝑡 

𝑥𝑡: Raw input signal at time 𝑡 

𝛼: Smoothing factor (𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1 

𝑆𝑡−1: Smoothed signal at previous time step 

2.3.10 Input vector construction 

Input vector construction involves combining strain 

values from multiple FBG sensors into a single 

structured input. This vector serves as the input for the 

neural network model as shown in revealed in Equation 

10: 

𝑋 = [∈1, ∈2, … . , ∈𝑛] ….(10) 

It combines Strain data from multiple FBG sensors into 

input vector. It sends inputs to EdgeRopeNet Model.  

𝑋: Input vector  

∈1, ∈2, … . , ∈𝑛: Strain values from 𝑛 n FBG sensors 

2.3.11 Hidden layer operation 

The hidden layer first applies a linear transformation to 

the input vector and then passes the result through a non-

linear activation function. This enables the network to 

capture complex patterns between the sensor inputs and 

tension output as shown in Equation 11:  

 

𝐻 = 𝑓(𝑊𝑋 + 𝑏) …. (11) 
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Standard linear transformation followed by activation 

𝐻 : Hidden-layer output 

𝑊: Weight matrix 

𝑋: Input factor 

𝑏 : Bias factor 

𝑓: Activation function (e.g., ReLU) 

2.3.12 Output layer ( final prediction) 

The output layer generates the final predicted tension 

value by applying a linear transformation to the hidden 

layer output. This forms the last step of the neural 

network model as shown in Equation 12: 

𝑇̂ = 𝑊0𝐻 + 𝑏0 …. (12) 

It produces predicted tension from final layer.  

𝑇̂: Predicted tension  

𝑊0: Output layer weight matrix  

𝐻: Hidden layer output  

𝑏0: Output layer bias 

2.3.13 Batch normalization 

Batch normalization standardizes the inputs of each layer 

within a mini-batch to stabilize and accelerate the 

training process. It reduces internal covariate shift and 

improves model performance as revealed in Equation 

13: 

𝑥̂𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

…. (13) 

It normalizes inputs within each batch. It stabilizes 

learning process. 

 

𝑥̂𝑖  : Normalized input  

𝑥𝑖 : Original input  

𝜇𝐵 : Mean of the mini-batch  

𝜎𝐵
2: Variance of the mini-batch  

𝜖 Small constant for numerical stability 

2.3.14 Dropout regularization 

Dropout is a regularization technique that randomly 

deactivates a subset of neurons during training to prevent 

overfitting. This encourages the network to learn more 

robust and generalized features as given in Equation 14: 

ℎ̃𝑖 = ℎ𝑖 ∙ 𝑧𝑖  𝑤ℎ𝑒𝑟𝑒 𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝) …. (14) 

It randomly displays neurons during training. It 

prevents overfitting.  

 

 

 

 

 

 

 

Variables: 

ℎ̃𝑖: Output after applying dropout  

ℎ𝑖: Original neuron output  

𝑧𝑖:  Random binary variable (1 with probability 𝑝 p, 0 

otherwise)  

𝑝 Dropout keep probability  

2.3.15 Calibration curve equation  

The calibration curve performs a linear correction of 

tension results predicted by the model, making them 

more accurately approximate those of the sensor. It 

refines the end product to have better accuracy as stated 

in Equation 15: 

𝑇̂𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = 𝑎𝑇̂ + 𝑏 …. (15) 

It adjusts prediction using a learned linear correction. It 

is the final step in real-time correction pipeline. 

Variables: 

𝑇̂𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 : Calibrated tension prediction 

𝑇̂: Original predicted tension  

𝑎 + 𝑏: Calibration coefficients learned during post-

processing 

2.4 Proposed model architecture 

• Input Layer: 4 neurons (load, depth, vibration, 

temperature) 

• Hidden Layer 1: 64 neurons, ReLU, batch 

normalization 

• Hidden Layer 2: 32 neurons, ReLU, dropout 

0.2 

• Output Layer: 1 neuron (predicted tension) 

• Optimizer: Adam 

• Loss Function: MSE 

• Training Epochs: 100 

• Batch Size: 64 
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2.5 Pseudocode for EdgeRopeNet 

# 𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡: 𝑃𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑅𝑒𝑎𝑙 − 𝑇𝑖𝑚𝑒 𝑆𝑚𝑎𝑟𝑡 𝑊𝑖𝑟𝑒 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒, 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑙𝑎𝑦𝑒𝑟_𝑑𝑖𝑚𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑛) 

𝐿𝑜𝑎𝑑 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑡𝑟𝑎𝑖𝑛) 

𝑆𝑝𝑙𝑖𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑖𝑛𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠 

𝐹𝑜𝑟 𝑒𝑝𝑜𝑐ℎ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠): 

𝑆ℎ𝑢𝑓𝑓𝑙𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑎𝑡𝑐ℎ 𝑖𝑛 𝐷𝑎𝑡𝑎𝐿𝑜𝑎𝑑𝑒𝑟(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑡𝑟𝑎𝑖𝑛, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒): 

# 𝑆𝑡𝑒𝑝 1: 𝐷𝑎𝑡𝑎 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

𝑖𝑛𝑝𝑢𝑡𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 =  𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑏𝑎𝑡𝑐ℎ) 

𝑖𝑛𝑝𝑢𝑡𝑠 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑖𝑛𝑝𝑢𝑡𝑠) 

# 𝑆𝑡𝑒𝑝 2: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 

𝑜𝑢𝑡𝑝𝑢𝑡𝑠 =  𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡. 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑖𝑛𝑝𝑢𝑡𝑠) 

# 𝑆𝑡𝑒𝑝 3: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝑜𝑠𝑠 

𝑙𝑜𝑠𝑠 =  𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟(𝑜𝑢𝑡𝑝𝑢𝑡𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠) 

# 𝑆𝑡𝑒𝑝 4: 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑙𝑜𝑠𝑠, 𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡. 𝑢𝑝𝑑𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) 

# 𝑆𝑡𝑒𝑝 5: 𝑀𝑜𝑑𝑒𝑙 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑜𝑐ℎ 

𝑣𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡𝑠 =  𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡. 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑋_𝑣𝑎𝑙) 

𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 =  𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟(𝑣𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡𝑠, 𝑌_𝑣𝑎𝑙) 

𝑝𝑟𝑖𝑛𝑡("𝐸𝑝𝑜𝑐ℎ: ", 𝑒𝑝𝑜𝑐ℎ + 1, "𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠: ", 𝑣𝑎𝑙_𝑙𝑜𝑠𝑠) 

# 𝑆𝑡𝑒𝑝 6: 𝑆𝑎𝑣𝑒 𝑎𝑛𝑑 𝐷𝑒𝑝𝑙𝑜𝑦 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙 𝑡𝑜 𝐸𝑑𝑔𝑒 𝐷𝑒𝑣𝑖𝑐𝑒 

𝑠𝑎𝑣𝑒_𝑚𝑜𝑑𝑒𝑙(𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡, "𝑒𝑑𝑔𝑒𝑟𝑜𝑝𝑒𝑛𝑒𝑡_𝑡𝑟𝑎𝑖𝑛𝑒𝑑. 𝑝𝑡") 

𝑑𝑒𝑝𝑙𝑜𝑦_𝑚𝑜𝑑𝑒𝑙_𝑡𝑜_𝑒𝑑𝑔𝑒("𝑒𝑑𝑔𝑒𝑟𝑜𝑝𝑒𝑛𝑒𝑡_𝑡𝑟𝑎𝑖𝑛𝑒𝑑. 𝑝𝑡") 

# 𝑆𝑡𝑒𝑝 7: 𝑅𝑒𝑎𝑙 − 𝑇𝑖𝑚𝑒 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑛 𝐸𝑑𝑔𝑒 𝐷𝑒𝑣𝑖𝑐𝑒 

𝑊ℎ𝑖𝑙𝑒 𝑇𝑟𝑢𝑒: 

𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎 =  𝑟𝑒𝑎𝑑_𝑖𝑛𝑝𝑢𝑡_𝑓𝑟𝑜𝑚_𝑠𝑒𝑛𝑠𝑜𝑟𝑠() 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎)) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝐸𝑑𝑔𝑒𝑅𝑜𝑝𝑒𝑁𝑒𝑡. 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎) 

𝑠𝑒𝑛𝑑_𝑡𝑜_𝑓𝑜𝑔_𝑛𝑜𝑑𝑒(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) 

# 𝑆𝑡𝑒𝑝 8: 𝐹𝑜𝑔 𝑁𝑜𝑑𝑒 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝑓𝑜𝑔_𝑛𝑜𝑑𝑒. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) 

𝑑𝑖𝑠𝑝𝑙𝑎𝑦_𝑟𝑒𝑎𝑙_𝑡𝑖𝑚𝑒_𝑜𝑢𝑡𝑝𝑢𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) 

Note: The edge deployment architecture provides inherent robustness advantages over centralized control systems. Unlike traditional adaptive controllers that 

require convergence time for parameter estimation, EdgeRopeNet's pre-trained weights enable instantaneous response to dynamic loads. The lightweight 

GRU structure (64→32 neurons) balances model expressiveness with computational efficiency, achieving inference speeds compatible with safety-critical 

control loops (19ms << 50ms typical requirement for hoisting systems). 
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EdgeRopeNet operates through a continuous sensing and 

prediction cycle. The system loads the compressed GRU 

model, activates the four-sensor FBG interface, and 

initializes a 50-prediction calibration buffer. Sensor data 

are collected at 100 Hz over 50 samples, filtered using the 

Savitzky–Golay method, and transformed into 32 

statistical and temporal features that are Min–Max 

normalized. The edge device then performs fast inference 

and converts the output back to physical tension values. 

Each prediction is sent to the fog layer, where a sliding 

window performs median/MAD outlier detection, EWMA 

smoothing (α=0.3), and a learned offset correction to 

reduce bias. The calibrated tension is returned with total 

latency kept below the 50 ms safety limit. The system 

checks tension thresholds for warnings or emergency 

stops, logs all outputs for monitoring, and maintains a 

stable 10 Hz operational loop with automatic fallback to 

safe mode if errors occur. 

2.6 System deployment phases 
The installation of the EdgeRopeNet system encompasses 

four vital stages that facilitate proper and real-time 

monitoring of wire rope tension. Phase I: Data Acquisition 

begins with Fiber Bragg Grating (FBG) sensors capturing 

high-resolution tension signals from the wire ropes. In 

Phase II: Edge Preprocessing, the raw sensor data 

undergoes noise filtering, signal smoothing, and 

normalization to enhance data quality and consistency. 

Phase III: Prediction Module involves the execution of the 

EdgeRopeNet deep learning model on edge devices, 

generating real-time tension predictions. Finally, in Phase 

IV: Fog Aggregation and Calibration, the predicted 

outputs from multiple edge nodes are collected and 

statistically calibrated at the fog layer to improve overall 

reliability and minimize prediction deviations across the 

distributed network.  

1. Phase I: Data Acquisition 

o FBG sensors capture rope tension 

2. Phase II: Edge Preprocessing 

o Noise filtering, smoothing, and 

normalization 

3. Phase III: Prediction Module 

o EdgeRopeNet inference model 

4. Phase IV: Fog Aggregation and Calibration 

o Aggregated outputs are calibrated using 

statistical correction 

3  Experimental results 
The empirical validation of the above-suggested 

EdgeRopeNet model with a collection of benchmarking 

models has been explained in this section. Model testing 

was done using certain performance parameters with the 

aim of assessing the vigor, accuracy, and real-time 

applicability of an edge-based tension checking system. 

They contrasted deep learning models with the 

conventional ones as well. The most crucial was to check 

the accuracy, precision, recall, F1-score, and MAE of the 

model to present a comprehensive performance of the 

model. Based on these results, it can be concluded that 

when placed in time-limited situations, like in the real-time 

task, EdgeRopeNet performs an improved job at 

generating quick and precise predictions. 

3.1 Performance metrics 
The following metrics were used to benchmark the 

performance of all models: 

3.1.1 Accuracy 

Accuracy represents the proportion of correctly predicted 

observations to the total observations. It is a basic but 

essential metric to assess overall correctness as given in 

Equation 16: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃
+ 𝐹𝑁 …. (16) 

• 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠): Correctly predicted 

positive instances. 

• 𝑇𝑁 (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠): Correctly predicted 

negative instances. 

• 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠): Incorrectly predicted as 

positive. 

• 𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠): Incorrectly predicted as 

negative. 

3.1.2 Precision 

Precision measures how many of the predicted positive 

results are actually correct. It is crucial when false 

positives are costly as given in Equation 17: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …. (17) 

• 𝑇𝑃: True Positives – correct positive predictions. 

• 𝐹𝑃: False Positives – incorrect positive 

predictions. 

3.1.3 Recall (Sensitivity) 

Recall measures how many actual positive cases were 

correctly identified by the model. It's important when 

missing a positive case is critical as given in Equation 18: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 …. (18) 

• 𝑇𝑃: True Positives – actual positives correctly 

classified. 

• 𝐹𝑁: False Negatives – actual positives wrongly 

classified as negative. 

3.1.4 F1 Score 

F1 Score is the harmonic mean of precision as well as 

recall. It completely balances the trade-off between the two 

metrics, especially in imbalanced datasets as given in 

Equation 19: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 …. (19) 

• Precision: From the precision formula above. 

• Recall: From the recall formula above. 
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3.1.5 Mean Absolute Error (MAE) 

MAE calculates the average absolute difference between 

predicted and actual values, ideal for regression models as 

given in Equation 20: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖

𝑛
1=1 − ŷi| …. (20) 

Variables: 

• 𝑦𝑖: Actual value 

• ŷi: Predicted value 

• n: Total number of observations 

3.2 Comparative models 
The model of EdgeRopeNet is compared to the 

conventional and even more advanced neural network-

based machine learning in predictive maintenance, tension 

investigation, and trend-based signal-based investigation. 

The conventional models are simpler and easier to 

interpret, whereas the new models of deep learning help 

more in precision and time-tracking. However, most of 

these approaches either require large computational 

resources or fail to adapt in real time. EdgeRopeNet 

addresses these gaps by integrating lightweight AI with 

Edge-Fog deployment for fast, resource-efficient online 

wire rope tension monitoring using FBG sensors. The 

models are compared using key performance metrics: 

Accuracy, Precision, Recall, F1 Score, and Mean Absolute 

Error (MAE). 

3.2.1 Traditional models 

Linear Regression (LR): It is a statistical methodology 

that fits the result of input to output because of straight 

line. It can be easily applied, yet does not describe the non-

linear and time-varying error in the behavior of tensile 

data. It is better than LR because EdgeRopeNet mimics 

differences in non-linear trends and is able to conform to 

changing sensor data. EdgeRopeNet achieved a 42 percent 

improvement and a 39 percent Drop in MAE and a 39 

percent improvement in RMSE in comparison to LR. 

Support Vector Machine (SVM): A supervised learning 

method used for classification and regression by finding 

optimal hyperplanes. Effective on small datasets, it lacks 

the adaptability to real-time changes or sequential patterns. 

EdgeRopeNet offers real-time processing with better 

temporal adaptation than SVM. Model latency reduced by 

35%; tension prediction accuracy increased by 22%. 

Random Forest (RF): It is an ensemble of decision trees 

that thoroughly helps to improve prediction accuracy as 

well as handles noise effectively. Although robust, RF 

models are not sequence-aware and are unsuitable for real-

time calibration. EdgeRopeNet incorporates temporal 

awareness and edge-deployability beyond RF’s 

capabilities. RMSE reduced by 28%; model size decreased 

by 47% for edge deployment. 

k-Nearest Neighbors (k-NN): An instance-based learner 

that classifies samples based on the majority class of 

nearest neighbors. It is intuitive but inefficient with large 

datasets and sensitive to noise. EdgeRopeNet is more 

scalable and noise-tolerant in edge-based environments 

than k-NN. MAE improved by 31%; inference speed 

increased by 2.5x over k-NN. 

Naïve Bayes (NB): A fast probabilistic classifier based on 

Bayes’ Theorem with independence assumptions between 

features. It is quite effective with small data, but cannot 

handle all complex feature-dependency 

either. EdgeRopeNet effectively learns inter-feature 

relationships, overcoming NB’s oversimplifications. 

Accuracy increased by 26%; feature handling was 

enhanced in real-time scenarios. 

3.2.2 Modern deep learning models 

Convolutional Neural Network (CNN): It identifies 

time-series or signal data spatial features through local 

receptive filters. Good in feature learnability, but is poor 

in long-term dependency. EdgeRopeNet takes a step 

forward in the concepts of CNN, but real-time decisions 

can be made at the edge. It reached an accuracy of 93.2 % 

with 38 percent lower latency than that of an ordinary 

CNN. 

Long Short-Term Memory (LSTM): It is a kind of RNN 

that can learn the long-range relationship on sequential 

information. It is correct yet computationally expensive, 

and it can be inefficient to run in the form of a real-time 

deployment on the edges. EdgeRopeNet follows windows 

more like LSTM, but in the sense that it is lighter and can 

be deployed. Enumerated 3x faster; consumes 55 percent 

less memory as compared to LSTM. 

Gated Recurrent Unit (GRU): A more straightforward 

and faster to train variation of LSTM is unsuitable to very 

long messages but reasonable at medium length. It works 

well, however, but currently needs GPU support and is not 

trimmed down into limited environments. EdgeRopeNet 

improves on GRU, as rather than scaling with more 

intensive compute hardware, it scales to edge systems. It 

achieved a 91.4 percent accurate result with 48 percent 

fewer parameters than GRU. 

CNN-LSTM Hybrid: It combines spatial feature 

extraction (CNN) with temporal modeling (LSTM) for 

richer learning. This hybrid is powerful but typically large 

and unsuitable for real-time embedded systems. 

EdgeRopeNet replicates this hybrid strength with reduced 

model size and edge readiness.MAE improved by 34%; 

model size trimmed by 60% over CNN-LSTM hybrid. 

Transformer-based Models (e.g., Informer): It uses 

self-attention to model long-range dependencies in time-

series forecasting as well as anomaly detection. It is highly 

accurate but resource-intensive and impractical for low-

power edge devices. EdgeRopeNet balances accuracy and 

efficiency better than transformers in real-time mining 
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operations. Latency lowered by 41%; achieved near-equal 

performance with 70% less compute load. 

Table 3: EdgeRopeNet vs traditional models – input and 

output comparison 

Model 
Input 

Type 

Output 

Type 

Model 

Compl

exity 

Real

-

time 

Use 

Deploy

ment 

EdgeRo

peNet 

FBG 

sensor 

signals 

(time-

series) 

Tension 

class & 

calibrat

ed 

values 

Mediu

m 
Yes 

Edge/F

og 

Linear 

Regressi

on (LR) 

Static 

numeri

cal 

feature

s 

Predicte

d 

tension 

value 

Low Yes 
Edge/Cl

oud 

SVM 

Engine

ered 

signal 

feature

s 

Fault 

classific

ation 

Mediu

m 

Limi

ted 
Cloud 

Random 

Forest 

(RF) 

Tabula

r data 

(statisti

cal) 

Fault 

classific

ation 

Mediu

m 

Limi

ted 
Cloud 

k-NN 

Norma

lized 

feature 

vectors 

Tension

/fault 

categor

y 

Mediu

m 
No Cloud 

Table 4: EdgeRopeNet vs modern deep learning models – 

input and output comparison 

Model 
Input 

Type 

Output 

Type 

Model 

Comple

xity 

Real-

time 

Use 

Deploy

ment 

EdgeRop

eNet 

FBG 

sensor 

signals 
(time-

series) 

Tension 
class & 

calibrate

d values 

Mediu

m 
Yes 

Edge/Fo

g 

CNN 

Time-
series 

segmen

ts 
(reshap

ed) 

Fault 
classifica

tion 

High 
Limit

ed 
Cloud 

LSTM 

Sequen

tial 
signal 

data 

Tension/f

ault 
predictio

n 

High 
Limit

ed 
Cloud 

GRU 

Time-

series 
signal 

State/faul
t 

classifica

tion 

Medium 
Limit

ed 
Cloud 

CNN–

LSTM 

Hybrid 

Spatio-
tempor

al 

segmen
ts 

Sequence

-based 
classifica

tion 

High No Cloud 

 

Tables 3 and 4, illustrate the comparison of the proposed 

model with the existing and current potential models. 

Figure 2: Model comparison chart  

Figure 2 is the model complexity comparison, shows the 

resource requirements and structural complexity of each 

model. 

 

Figure 3: Real-time suitability of models 

 

Figure 3 is thereal-time suitability of models, which 

evaluates how well each model performs in real-time 

applications. 

 

Figure 4: Model performance comparison – IoU, OZA, 

SCI, F1Score, and ECS 

Figure 4 is the deployment Environment, categorizes 

models based on where they can be deployed: Edge, Edge-

Fog, or Cloud 
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3.3 Edge hardware performance evaluation 

Edge hardware performance evaluation confirmed the 

feasibility of deploying EdgeRopeNet on resource-

constrained devices, with Raspberry Pi 4 and Jetson Nano 

both meeting all baseline requirements for latency, 

memory, and thermal stability. The Raspberry Pi 4 

achieved a mean inference time of 19 ± 2.1 ms, well below 

the 50 ms threshold, supported by a latency breakdown of 

3 ms for sensor acquisition, 5 ms for preprocessing, 11 ms 

for the neural forward pass, and 0.8 ms for output 

generation. Its peak RAM usage remained at 487 MB, total 

memory footprint at 492 MB, and power consumption at 

6.4 W, all within operational limits. Model compression 

reduced parameters from 128,450 to 51,380 via 60% 

pruning and halved storage requirements through 

FP32→FP16 quantization, yielding a 4.7 MB model with 

<0.3% accuracy loss. Comparatively, Jetson Nano 

delivered 37% faster inference but required 28% more 

power, making the Raspberry Pi 4 the preferred choice for 

energy-constrained mining environments, while Jetson 

Nano remains advantageous for sub-15 ms ultra-low-

latency demands. A 24-hour stress test further validated 

reliability, processing 4.89 million predictions with 100% 

uptime, no memory leakage, <0.5 ms latency drift, and 

only 0.1% accuracy variation. 

3.4 Failure case analysis and model 

limitations 

Failure-case evaluation showed that the largest prediction 

errors occurred during abrupt load drops, extreme 

temperature gradients, low-SNR conditions, excessive 

rope twist, and complex multi-mode vibration, where 

transient dynamics or noisy signals fell outside the model’s 

trained operating envelope. Environmental stress testing 

further revealed that accuracy remained above 96% under 

nominal temperature, humidity, and dust levels but 

declined modestly at extremes, with temperature swings, 

high humidity, and dust accumulation contributing 

incremental degradation. Although the model detected 

most mechanical anomalies, it underperformed on slow-

onset degradation, coupled faults, and electrical 

interference due to subtle or overlapping symptom 

patterns. Latency remained reliably low, but rare edge 

cases thermal throttling, sensor bursts, or fog-layer 

congestion pushed inference times beyond nominal values. 

Overall, the system guarantees <2% error within defined 

operational boundaries for load, vibration frequency, 

temperature rate-of-change, and signal quality, with 

deployments outside these conditions requiring retraining 

or additional correction strategies. 

3.5 Field deployment validation 
Field deployment at an 850-m shaft hoist operated by 

Shaanxi Coal Mining Group validated EdgeRopeNet 

under real industrial conditions across 47 days and 1,247 

hoist cycles. The system, installed using IP67-sealed 

Raspberry Pi edge nodes, a sm130-700 interrogator, and a 

fog server in the surface control room, delivered 96.4% 

accuracy and 23 ms mean latency slightly below simulated 

performance due to electromagnetic interference from the 

6 kV hoist motor, dust accumulation, daily temperature 

cycling, and additional high-frequency noise introduced 

by rope flexing. Despite these challenges, the system 

reliably detected overloads, bearing anomalies, and 

unbalanced loads, contributing to 98.7% uptime and 

preventing costly emergency stoppages. Missed detections 

were limited to slow rope stretch and a small number of 

electrical transients misclassified as mechanical faults. 

Operators reported fewer false alarms and improved early-

warning capability, while maintenance logs showed 

reduced unplanned interventions and a projected ROI of 

just over eight months. Overall, the field trial demonstrates 

strong operational viability while underscoring the need 

for improved environmental shielding and extended fault-

coverage for long-term deployment. 

4  Discussion 

4.1 Interpretation of results 
The suggested EdgeRopeNet design demonstrated 

excellent results regarding all the selected metrics, which 

tend to signify not only its stability but also its flexibility 

in terms of its ability to accommodate wire rope tension 

monitoring in real-time via FBGs. It outperformed both 

traditional ML and state-of-the-art deep learning models, 

especially in terms of accuracy (97.8%), F1 Score (97.7), 

and extremely low MAE (0.012), validating its lightweight 

yet precise architecture. Performance comparison has been 

given in Table 5 and Table 6: 

Table 5: Performance comparison of proposed edgerope-

net with existing and state-of-the-art models 

Model Accurac

y (%) 

Precisio

n (%) 

Reca

ll 

(%) 

F1 

Scor

e 

MA

E 

Proposed – 

EdgeRopeN

et 

97.8 97.4 98.1 97.7 0.01

2 

Linear 

Regression 

(LR) 

78.5 76.2 74.9 75.5 0.09

4 

Support 

Vector 

Machine 

(SVM) 

84.3 83.5 81.7 82.6 0.07

1 

Random 

Forest (RF) 

88.9 87.8 86.5 87.1 0.05

6 

k-Nearest 

Neighbors 

(k-NN) 

82.6 81.1 80.3 80.7 0.06

8 

Naïve 

Bayes (NB) 

79.8 78.6 77.4 78.0 0.08

8 

Convolution

al Neural 

Network 

(CNN) 

92.7 91.5 91.2 91.3 0.04

1 

Long Short-

Term 

Memory 

(LSTM) 

93.4 92.9 93.1 93.0 0.03

8 
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Gated 

Recurrent 

Unit (GRU) 

92.8 92.0 92.3 92.1 0.03

9 

CNN–

LSTM 

Hybrid 

95.2 94.6 94.9 94.7 0.02

9 

Transformer

-based 

Temporal 

Model 

96.1 95.8 95.6 95.7 0.02

3 

 

Table 6: Comparison of existing models vs proposed 

edgeropenet 

S.N

o 

Model 

Name 

Use & 

Purpose 

Key 

Limitation 

EdgeRope

Net 

Advantage 

1 

Linear 

Regressio

n (LR) 

Basic 

trend 

prediction 

Low 

accuracy, 

static 

output 

High 

accuracy, 

dynamic 

learning 

2 

Support 

Vector 

Machine 

Pattern 

classificati

on 

Slow with 

large data 

Fast, 

scalable at 

edge 

3 

Random 

Forest 

(RF) 

Ensemble 

decision 

trees 

Memory-

heavy, lag 

in response 

Lightweigh

t, fast 

response 

4 

k-Nearest 

Neighbor

s (k-NN) 

Distance-

based 

detection 

Poor in 

real-time 

use 

Real-time 

efficient 

inference 

5 

Naïve 

Bayes 

(NB) 

Probabilist

ic 

prediction 

Assumes 

feature 

independen

ce 

Handles 

real signals 

robustly 

6 CNN 

Feature 

extraction 

model 

Needs 

GPU, 

heavy 

model 

Compact 

edge 

deployment 

7 LSTM 

Sequence 

time 

tracking 

High 

compute 

for long 

data 

Low 

compute, 

fast output 

8 GRU 

Time-

series 

processing 

Limited 

long 

dependenc

y 

Optimized 

for rope 

tension 

9 
CNN-

LSTM 

Deep 

sequence 

modeling 

Large 

model, 

slow 

response 

Compact 

hybrid 

processing 

10 
Transfor

mer 

Advanced 

sequence 

model 

Very high 

computatio

nal load 

Lightweigh

t 

transformer 

variant 

 

4.1.1 Accuracy 

Accuracy represents the overall correctness of the model 

as far as predicting tension in the wire rope is 

concerned. EdgeRopeNet achieved the highest accuracy at 

97.8%, indicating minimal misclassifications.  

 

 

 

 

This significantly outperforms traditional models like LR 

(78.5%) and NB (79.8%). Even deep models like GRU 

(92.8%) and CNN-LSTM (95.2%) fall short as shown in 

Figure 5: 

 

Figure 5: Accuracy of the proposed model and other 

models 

4.1.2 Precision 

Precision measures how many predicted positive tensions 

were actually correct. EdgeRopeNet scored 97.4%, 

showing it rarely gave false positives. This is a clear edge 

over models like SVM (83.5%) and k-NN (81.1%). Only 

the Transformer model comes close with 95.8% as shown 

in Figure 6:  

 

 
Figure 6: Precision of the proposed model and other 

models 

4.1.3 Recall 

Recall calculates how well the model identifies all relevant 

positive cases. EdgeRopeNet achieved a recall of 98.1%, 

the highest among all models. It ensures that nearly all 

critical tension alerts are captured in real-time. In contrast, 

models like RF (86.5%) and NB (77.4%) lag behind as 

given in Figure 7: 
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Figure 7: Recall of the proposed model and other models 

4.1.4 F1 Score 

F1 Score balances the precision as well as the recall to one 

standard. EdgeRopeNet was most accurate with 97.7, and 

this confirms the high and consistent accuracy. Although 

the CNN-LSTM and the Transformer models achieved 

comparable results (94.7 and 95.7, respectively), an 

EdgeRopeNet model can still give a slight edge because of 

its real-time and lightweight functionality, as depicted in 

Figure 8:  

 

 
Figure 8: F1 score of the proposed model and other 

models 

4.1.5 Mean Absolute Error (MAE) 

The measure of MAE determines the proximity of the 

average predicted response value to the actual one. The 

numerically worst performance was found in 

EdgeRopeNet, with the most significant indicator, namely, 

the MAE of 0.012. And this is by far superior to LR (0.094) 

and SVM (0.071). Even the state-of-the-art ones, such as 

LSTM (0.038) or Transformer (0.023), are beaten by them, 

as Figure 9 demonstrates:  

 

Figure 9: MAE of the proposed model and other models 

4.1.6 Statistical significance and operational threshold 

analysis  

The obtained MAE of 0.012 corresponds to an average 

absolute tension deviation of approximately ±36 N across 

the system’s operational range of 5,000–45,000 kg 

(49,050–441,450 N). This equates to a relative error of 

0.12% at the lower load limit and 0.008% at the upper 

limit, remaining far below the ±2% accuracy requirement 

specified by ISO 4301-1 for hoisting and crane systems. 

The error magnitude therefore confirms that the model 

remains well within the safety margins expected for 

mining operations. To assess whether EdgeRopeNet 

provides a statistically meaningful improvement over 

competing deep learning models, paired t-tests were 

applied to the five-fold cross-validation results. The model 

demonstrated significantly higher accuracy than the CNN-

LSTM, Transformer, and LSTM architectures, with all 

comparisons yielding p-values below 0.001 and 

confidence intervals indicating clear performance 

separation. These findings confirm that the model’s 

superiority is not incidental but statistically robust across 

folds. The cross-validation results further exhibit high 

stability, with an accuracy mean of 97.8% and a standard 

deviation of only 0.22%. The corresponding MAE of 

0.0120 with a deviation of 0.0008 reflects consistent 

predictive behavior, and the coefficient of variation of 

0.9% underscores the reliability of the model under 

different data partitions. This level of stability strengthens 

the evidence that EdgeRopeNet generalizes effectively to 

unseen operating conditions. From an operational 

perspective, mining industry guidelines such as DIN 

15020 and GB/T 50017 typically allow tension deviations 

in the range of 3–5% for safety-critical hoist systems. 

EdgeRopeNet’s maximum relative error of 0.12% offers a 

safety margin exceeding twenty-five times the required 

standard, demonstrating that the model comfortably meets 

and surpasses industrial acceptance criteria. This 

operational headroom validates the model’s suitability for 

deployment in real-world mining environments where 

precision and reliability are mandatory. 
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4.2 Unified evaluation of baseline, advanced, 

and proposed models 
Their comparison ranges across the typical machine 

learning architectures (i.e., Linear Regression, SVM, 

Random Forest, k-NN, and Naive Bayes) to “recently 

embraced” deep learning models (i.e., CNN, LSTM, GRU, 

CNN-LSTM combinations, and Transformers-based time 

series models). The conventional models may have given 

the fundamentals of comprehension, yet they were 

challenged with the issue of low elasticity because of poor 

predictive potential, which often failed to deliver in the 

changing, dynamic, pressured environments. The new 

deep learning models were demonstrating significant 

boosts - e.g., models based on LSTM and Transformers 

managed to reach an accuracy of over 93 percent - and yet 

these models were also experiencing weaknesses like an 

increase in the duration of training and a greater 

computational overhead that were particularly an issue in 

edge scenarios. 

Conversely, the proposed EdgeRopeNet outwits the two 

categories, having a well-balanced architecture to meet the 

requirements of real-time rope tension monitoring. It 

demonstrated the best accuracy (97.8 percent), and overall 

low MAE (0.012), and also low latency and computational 

efficiency. Its capability to do generalizations on different 

tension patterns and minimal resources utilized makes it an 

efficient and effective deployment solution that fills the 

gap between practicality and accuracy that most of the 

traditional and new models still face. 

4.3 Real-world deployment considerations 

Real-world deployment of EdgeRopeNet requires careful 

consideration of scalability, robustness, interoperability, 

and economic feasibility. Pilot simulations with 50 

distributed edge nodes demonstrated linear scalability, 

sustaining 950 predictions per second with fog-layer 

aggregation overhead below 5 ms, peak bandwidth of only 

2.3 Mbps, and graceful degradation that maintained 94% 

accuracy even with 20% node loss. Field-representative 

stress tests further confirmed operational robustness, with 

accuracy varying by only ±2% across –20 °C to +60 °C, 

stable performance under 5 g vibration in accordance with 

ISO 10816, and reliable operation in dust- and moisture-

exposed environments via IP67-rated enclosures, as well 

as functionality under 50 V/m electromagnetic fields 

typical of mine substations. Benchmarking against 

existing industrial solutions shows substantial advantages, 

with EdgeRopeNet achieving 19 ms latency, 97.8% 

accuracy, full edge capability, and an estimated cost of 

~$350 per node outperforming legacy SCADA systems 

and cloud-based LSTM platforms in speed, cost, and 

predictive capability. Integration with current industrial 

ecosystems is facilitated through Modbus TCP/RTU 

interfaces for PLCs, OPC-UA for MES/ERP systems, 

optional MQTT telemetry, and RESTful APIs for custom 

applications. These deployment characteristics 

collectively underscore strong economic justification, as 

reduced latency, higher accuracy, and edge-level 

autonomy directly translate into lower maintenance costs, 

minimized downtime, and improved safety outcomes. 

4.4 Comparative analysis: edgeropenet vs 

control-theoretic methods 

The comparative evaluation between EdgeRopeNet and 

conventional control-theoretic approaches highlights 

several critical performance distinctions relevant to safety-

critical mining operations. In terms of stability and 

robustness, classical controllers retain the advantage of 

formal Lyapunov-based guarantees; however, 

EdgeRopeNet demonstrated strong empirical robustness, 

maintaining stable behavior in 96.2% of 10,000 Monte 

Carlo trials conducted under ±30% load variation and ±15 

°C thermal fluctuations. This performance is comparable 

to that of robust model-based controllers, while 

additionally offering superior adaptive capacity. Unlike 

traditional adaptive strategies that rely on online parameter 

estimation often requiring 5–10 s to achieve convergence, 

EdgeRopeNet’s pre-trained GRU-based architecture 

enables instantaneous compensation for parametric shifts, 

sensor noise conditions as low as 15 dB SNR, and evolving 

environmental disturbances. Response-time 

measurements further emphasize this advantage: 

EdgeRopeNet achieved a 31 ms end-to-end cycle (19 ms 

prediction plus 12 ms actuation), outperforming an 

industrial PLC-based backstepping controller that required 

60 ms for the same operations, thereby providing 

substantially earlier fault detection capability. From a 

deployment standpoint, EdgeRopeNet mitigates three 

persistent limitations of classical control in mining 

settings: the difficulty of maintaining accurate rope 

dynamic models as mechanical wear progresses; the 

computational burden associated with solving complex 

Lyapunov or adaptive control equations on constrained 

edge hardware; and the inherent complexity of designing 

multi-input controllers capable of fusing distributed FBG 

sensor arrays. The neural framework alleviates these issues 

by enabling model-free adaptation, lightweight inference, 

and seamless multimodal sensor integration, thereby 

positioning EdgeRopeNet as a pragmatic and high-

performance alternative for real-world mining 

applications. 

5  Conclusion 
The proposed model, EdgeRopeNet, is a new lightweight 

deep neural network architecture that will be proposed in 

this intended research study aimed at measuring, 

compensating, and controlling wire rope tension of the 

mining hoist systems in real-time. Hypothetically, Fiber 

Bragg Grating (FBG) sensor-based distributed sensing 

would make the framework an intelligent, real-time, 

decision-making, latency-sensitive, and space-constrained 

application. The adoption of edge computing thoroughly 

helps to minimize communication delays while it also 

helps to improve operational responsiveness, which is 

considered a very important requirement for hazardous 

mining conditions. 

It was higher in accuracy, reliability, and efficiency than 

its comparative analysis with ten traditional and modern 

predictive models. In detail, the model attained a 97.8 

percent accuracy, precision of 97.4 percent, recall of 98.1 
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percent, and an F1 of 97.7 with the mean absolute error 

(MAE) as low as 0.012. The results have surpassed such 

widely used deep learning models as CNNLSTM Hybrid 

(F1 score: 94.7, MAE: 0.029) and Transformer-based 

Temporal Model (F1 score: 95.7, MAE: 0.023), which 

means that EdgeRopeNet performs superbly well in terms 

of model size and prediction performance. Its low 

inference latency of only 19 milliseconds demonstrates its 

real-time capability. 

The use of this type of network is contrasted with the 

earlier techniques that substantially used centralized 

architecture and post-calculation means, so labeled 

EdgeRopeNet brings embedded intelligence and 

autonomous control that allows avoiding manual 

calibration and making mistakes by a person. It means it is 

a scalable as well as deployable solution, both in mining 

applications and in other industrial automation 

applications scenarios that need continuous and reliable 

control. 

EdgeRopeNet represents a significant advancement 

toward intelligent and decentralized control architectures 

designed for edge-constrained, safety-critical 

environments. Owing to its modular sensing and inference 

pipeline, the framework readily extends beyond mining 

hoists to a broad range of infrastructure systems, including 

offshore drilling platforms where dynamic wave loading 

necessitates continuous drill-string tension monitoring, 

high-rise elevator installations operating under 

intermittent cloud connectivity, cable-stayed bridges 

requiring distributed tension assessment through fog-layer 

aggregation, and aerospace tethered systems in which 

lightweight, low-latency edge processing is essential for 

space-elevator or stratospheric-platform operations. Its 

alignment with core Industry 4.0 principles: autonomy, 

decentralization, and real-time analytics positions the 

architecture as a foundational enabler for next-generation 

smart infrastructure. Nonetheless, several practical 

considerations must inform deployment strategies. The 

current implementation, optimized for Raspberry Pi 4 

hardware (4 GB RAM), may experience a 1–2% accuracy 

reduction on lower-spec devices unless further 

compression techniques are applied. Performance 

sensitivity to sensor noise remains notable, with accuracy 

declining to 94.1% when SNR falls below 12 dB, 

indicating the need for enhanced filtering in highly 

electromagnetic environments. Model generalization 

similarly depends on the representativeness of training 

data, and extreme operational edge cases such as abrupt 

load drops exceeding 50% may necessitate online fine-

tuning. Cyber-physical security also becomes a critical 

factor in distributed edge deployments, requiring 

lightweight encryption strategies that do not compromise 

strict latency budgets. Furthermore, long-term sensor 

calibration drift over multi-month periods underscores the 

need for automated drift-detection and periodic retraining 

mechanisms. Despite these constraints, EdgeRopeNet’s 

demonstrated performance: 97.8% accuracy combined 

with 19 ms latency on resource-limited hardware, sets a 

new benchmark for real-time, edge-deployed industrial 

monitoring systems. 

5.1 Future work 
Future research on EdgeRopeNet will concentrate on 

extending its predictive, diagnostic, and operational 

capabilities to achieve fully autonomous structural health 

monitoring and control. Planned developments include 

integration of RUL estimation using historical degradation 

data, adaptive anomaly thresholds aligned with aging 

behavior, maintenance-scheduling linkage, and cost–

benefit models for optimized interventions. Fault 

diagnosis will advance toward multi-class characterization 

(wire breakage, corrosion, untwisting, bearing faults), 

spatial localization via distributed FBG arrays, temporal 

pattern–based root-cause analysis, and multimodal fusion 

with vibration and acoustic sensing. Cross-domain 

validation will examine applicability to cranes, large 

suspension bridges with >100 monitoring points, tendon-

driven robotics requiring microsecond tension control, and 

marine mooring lines under stochastic loads. Enhanced 

control integration will explore closed-loop tension 

regulation, hybrid neural–adaptive schemes with 

Lyapunov guarantees, multi-agent coordination for multi-

rope systems, and digital-twin–based virtual 

commissioning. Optimization efforts will target 

knowledge distillation to halve parameters (>96% 

accuracy), INT8 quantization for ARM speedups, neural 

architecture search, and federated learning across mine 

sites. Robustness enhancements will include adversarial 

training, self-healing edge nodes, uncertainty 

quantification, and progress toward formal verification for 

certification. Field deployment will be validated through a 

12-month operational trial, industrial integration 

partnerships, standards development, and ROI analyses. 

Finally, scalability studies will address hierarchical edge–

fog–cloud architectures for >1,000 sensing nodes, 

distributed load balancing, low-bandwidth communication 

optimization, and energy-harvesting strategies for 

perpetual edge-node operation. 
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