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Magnetic Resonance Imaging (MRI) reconstruction from undersampled multi-coil k-space data remains a
central challenge for accelerating clinical scans. This paper proposes a cold diffusion based reconstruc-
tion framework that integrates a deterministic k-space forward operator with a time-conditioned U-Net
denoiser. Unlike conventional diffusion models that rely on stochastic Gaussian noise, the proposed ap-
proach explicitly models the physical undersampling process, yielding interpretable and data-consistent
reconstructions. The model was trained and evaluated on the fastMRI multi-coil brain dataset using 2D
slices center-cropped to 320×320 and normalized in complex form (real + imaginary channels). Ablation
studies compare the proposed method against a supervised U-Net baseline and a Gaussian DDPM trained
under identical conditions. Quantitatively, the cold diffusion model with 500 diffusion steps achieved 37.8
dB PSNR, 0.42 SSIM, and 0.46 HFEN, outperforming both the DDPM (32.8 dB, 0.33 SSIM, 0.60 HFEN)
and supervised U-Net (28.9 dB, 0.29 SSIM, 0.71 HFEN) while reducing inference time by 70% relative
to conventional diffusion sampling. Qualitative results indicate improved anatomical sharpness, stable
convergence and consistent reconstruction across slices, suggesting that the physics-informed diffusion
framework is a reliable and interpretable approach for accelerated MRI reconstruction.

Povzetek: Raziskava predstavlja okvir za rekonstrukcijo večzavojnih možganskih MRI-posnetkov, zasnovan
na hladni difuziji, ki modelira nezadostno vzorčenje v k-prostoru kot deterministični napredni proces ter
uporablja časovno pogojeno mrežo U-Net za postopno obnavljanje visokokakovostnih, artefaktov prostih
slik z izboljšano strukturno in zaznavno zvestobo.

1 Introduction
Medical imaging has a significant role in modern health-
care. It enables early diagnosis, treatment planning, and
personalized interventions [39]. Among the available
imagingmodalities, Magnetic Resonance Imaging (MRI) is
particularly valuable because of its ability to non-invasively
capture high-resolution images of soft tissues with superior
contrast [11]. This makes MRI crucial for diagnosing neu-
rological disorders, tumors, and other pathologies where
fine anatomical details are critical [18]. Despite these ad-
vantages, a significant limitation of MRI is its long acquisi-
tion times, which contribute to patient discomfort, motion-
induced artifacts, and reduced clinical throughput.
Accelerated MRI reconstruction has emerged as a key

strategy for shortening scan times by acquiring only a frac-
tion of k-space data and then reconstructing a diagnostic-
quality image from undersampled measurements [14, 27].
Traditional methods such as parallel imaging (PI) and com-
pressed sensing (CS) have demonstrated that acceleration
is possible, but they typically rely on handcrafted priors
and iterative optimization. This often results in residual
artifacts or loss of detail under aggressive undersampling.
The rise of machine and deep learning models, such as the
U-Net architecture [29], has significantly advanced recon-

struction quality by learning complex mappings between
undersampled inputs and fully sampled references. Other
approaches, such as deep unrolling, integrate the inter-
pretability of optimization algorithms with the flexibility of
neural networks. While effective, these methods face chal-
lenges. U-Nets may oversmooth critical details, unrolling
networks can be computationally intensive, while genera-
tive adversarial networks (GANs) may introduce halluci-
nated features that limit clinical trust.

Recently, diffusion models have emerged as a power-
ful class of generative models capable of producing high-
fidelity results with remarkable stability. Unlike GANs
or variational autoencoders (VAEs), diffusion models learn
to iteratively denoise signals, making them exceptionally
robust and well-suited for tasks that require fine struc-
tural preservation. Building on this, cold diffusion general-
izes the forward diffusion process beyond Gaussian noise,
which allowsmodeling of domain-specific degradations. In
the context of MRI, this means that undersampling in k-
space can be formulated as a direct forward process, with
the reconstruction network trained to invert this structured
degradation.

The central hypothesis of this study is that a determinis-
tic, physics-informed cold diffusion process applied in the
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k-space domain can achieve reconstruction accuracy com-
parable to or exceeding stochastic diffusion models, while
improving stability and computational efficiency for accel-
erated multi-coil MRI. Motivated by previously described
advancements, we propose a method that integrates cold
diffusion models with a U-Net backbone to accelerate brain
MRI reconstruction. Using cold diffusion in k-space, our
method learns to recover diagnostic-quality images from
undersampled data. This reduces artifacts and improves
the preservation of anatomical structures compared to stan-
dard deep learning baselines. Themain contributions of this
work are summarized as follows:

1. We extend the recently proposed cold diffusion
paradigm [33] to the domain of accelerated multi-coil
brain MRI reconstruction, addressing a gap left by
prior work that focused primarily on single-coil data.

2. We use the forward diffusion process as progressive
undersampling in k-space, creating a physics-aware,
noise-free degradation scheme that better reflects MRI
acquisition compared to standard Gaussian-noise dif-
fusion.

3. We integrate this framework with a time-conditioned
U-Net architecture, specifically adapted to handle
multi-coil MRI by representing complex-valued in-
puts as real and imaginary channels.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work on MRI reconstruction meth-
ods. Section 3 gives the theoretical background behind dif-
fusion and cold diffusion methods. Section 4 describes the
proposed cold diffusion framework and details the exper-
imental setup, including the dataset and evaluation proto-
cols. Section 5 presents results and analysis. Section 6
compares the proposed method with other methods and dis-
cusses its limitations. Finally, section 7 concludes the pa-
per.

2 Related research
Various approaches have been developed to accelerate MRI
reconstruction, ranging from physics-driven methods to
data-driven learning approaches. Traditional approaches,
such as parallel imaging and compressed sensing, leverage
coil sensitivity and sparsity priors to recover images from
undersampled k-space data, but their performance degrades
at high acceleration factors [37]. With the rise of deep learn-
ing, convolutional neural networks and model-based un-
rolling networks have achieved remarkable progress by di-
rectly learning mappings between undersampled inputs and
fully sampled images, often exceeding traditional meth-
ods in both speed and accuracy [23, 24]. More recently,
generative models, including GANs, VAEs, and especially
diffusion models, have opened new possibilities by learn-
ing richer image priors and enabling iterative reconstruc-
tion that better preserves anatomical detail. Within this

emerging field, cold diffusion models represent a promis-
ing direction, as they replace generic noise injection with
domain-specific degradations such as k-space undersam-
pling, aligning the generative process more closely with
MRI physics.

2.1 Traditional approaches for MRI
reconstruction

Early research in accelerated magnetic resonance imaging
focused primarily on physics-based techniques. PI tech-
niques like sensitivity encoding (SENSE) and generalized
autocalibrating partially parallel acquisitions (GRAPPA)
exploit multiple coil receivers to undersample k-space and
then reconstruct by combining coil sensitivity information.
SENSE uses known coil sensitivity maps to unfold aliased
images [26], while GRAPPA uses a calibration scan to in-
terpolate missing k-space lines [19]. These methods can
roughly halve the scan time with minimal loss of quality,
but further acceleration amplifies noise and artifacts. CS
methods [21, 20] introduced sparsity priors, which assume
that the image has a sparse representation (e.g, in wavelet or
gradient domain) to enable reconstruction from far fewer k-
space samples. By solving iterative L1-norm minimization
problems (often with total variation or wavelet regulariza-
tion), CS achieves higher acceleration than PI alone, which
significantly reduces scan times.
However, traditional methods have some limitations. For

example, as the acceleration increases, the image quality
significantly decreases. Moreover, PI and CS both suffer
residual aliasing or blurring at high undersampling rates
[25]. They also rely on lengthy, iterative reconstructions,
and in CS, the need for incoherent sampling and careful pa-
rameter tuning increases reconstruction speed. Although PI
and CS established the foundation for faster MRI, their lim-
ited acceleration and tendency to introduce artifacts high-
light the need for more advanced approaches, where ma-
chine learning (ML) has shown great promise.
Regarding MRI reconstruction on the fastMRI brain

dataset, Tavaf et al. [36] combined the traditional GRAPPA
algorithmwith a conditional generative adversarial network
(GAN) to improve reconstruction quality from undersam-
pled multi-coil brain MRI data. The method first performs
GRAPPA-based k-space interpolation, followed by U-Net-
based GAN refinement in the image domain, incorporat-
ing data consistency and perceptual feature losses to sup-
press artifacts. Experiments on multi-coil fastMRI brain
scans achieved notable improvements; PSNR increased
from 33.9 dB to 37.7 dB and SSIM from 0.84 to 0.93 at an
acceleration factor of R = 4. This demonstrates the advan-
tage of combining physics-based reconstruction with deep
generative priors.
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2.2 Machine learning approaches for MRI
reconstruction

To address the shortcomings of traditional approaches, ML,
particularly deep learning (DL), has become a powerful al-
ternative [37]. Instead of relying on handcrafted priors,
neural networks learn directly from large collections of MR
images, which enables them to map undersampled inputs
to high-quality reconstructions. Convolutional neural net-
works (CNNs) such as U-Net tackle this task as image-
to-image translation, where U-Net can be trained to con-
vert zero-filled, aliased inputs into clean, de-aliased out-
puts [13]. When using large datasets, these models often
surpass CS methods in both accuracy and robustness. For
example, Souza et al. [34] proposed a dual-domain cascade
of U-Nets operating jointly in the k-space and image do-
mains, which achieves superior reconstructions by enforc-
ing consistency across both domains. Another line of work,
model-based deep unrolling, embeds MRI physics into the
network architecture. Hammernik et al. [10] introduced
VAEs that unrolled an optimization algorithm and learned
regularizers, pioneering the integration of CNN priors into
the iterative CS reconstruction framework. Similarly, deep
unrolled networks, such as MoDL [1] and VarNet [35], al-
ternate between enforcing data consistency and learning a
CNN-based denoising model.
Furthermore, deep networks have also incorporated

Transformers [32] and other advanced architectures to cap-
ture long-range dependencies in images. Generative mod-
els further advanced MRI reconstruction. GANs have been
used to improve perceptual quality by adding an adver-
sarial loss that encourages realism. For example, Shaul
et al. [31] designed a two-stage GAN for brain MRI
where one U-Net generator operates on k-space to fill in
missing lines and another refines the image domain out-
put. By combining fidelity loss (to match acquired data)
with an adversarial loss, their GAN-basedmethod produced
anatomically realistic reconstructions even at high under-
sampling. It is interesting to notice that GANs often pro-
duce sharper details than CNNs trained with a simple L2
loss, but they can also introduce hallucinated structures.
To reduce this risk, researchers typically combine multi-
ple loss terms, such as pixel-wise and perceptual losses,
to carefully design the network architecture [41]. Varia-
tional Autoencoders (VAEs) and other probabilistic gener-
ative models have also been explored in this context. For
example, Tezcan et al. [38] incorporated a VAE-based prior
learned from fully-sampled images into the reconstruction
task, effectively regularizing the solution towards the man-
ifold of realistic MR images. Generally, VAEs can sample
possible reconstructions and provide uncertainty estimates,
but VAE outputs are often blurrier, and training them for
high-resolution images is challenging [6, 9, 2]. Moreover,
many deep networks remain black boxes, providing little
information about uncertainty or potential failure, an es-
sential concern in medical settings. GAN-based methods,
although capable of producing sharper images, can some-

times invent fine details that were never captured, which
leads to the risk of misleading artifacts in diagnosis. While
ML has driven significant advances in accelerated MRI,
challenges with generalization, data requirements, and re-
liability highlight the need for new generative approaches,
such as diffusion models.
Regarding multi-coil MRI reconstruction on the fastMRI

dataset, Khawaled and Freiman [16] introduced a non-
parametric Bayesian framework (NPB-REC) that augments
deep MRI reconstruction networks with uncertainty esti-
mation. By using Stochastic Gradient Langevin Dynamics
(SGLD) during training, the method samples the posterior
distribution over network parameters, enabling both im-
proved reconstruction accuracy and pixel-wise uncertainty
quantification. Their method uses an E2E-VarNet back-
bone and outperforms baseline VarNet and Monte Carlo
Dropout approaches, achieving PSNR = 34.55 dB and
SSIM = 0.908 at R = 8. The approach demonstrated strong
robustness to anatomical (brain ↔ knee) and sampling-
pattern shifts, providing a reliable measure of reconstruc-
tion confidence while maintaining a competitive computa-
tional cost. Jun et al. [15] proposed Joint-ICNet, an un-
rolled deep model-based network that jointly reconstructs
MR images and coil-sensitivity maps from undersampled
multi-coil fastMRI brain data. The method integrates dual-
domain (image + k-space) CNN regularizers with embed-
ded data-consistency layers in both the image- and coil-
estimation branches. By iteratively alternating between
MR image and coil-map updates, Joint-ICNet enhances re-
construction fidelity while eliminating the dependency on
pre-computed sensitivity maps. Evaluated on multi-coil
fastMRI brain T1, T2, T1-POST, and FLAIR scans at R = 4
and 8, it achieved up to PSNR = 41.4 dB and SSIM = 0.962,
outperforming U-Net, DeepCascade, and ESPIRiT base-
lines. The architecture demonstrates the benefits of joint es-
timation and physics-aware unrolling for high-quality par-
allel MRI reconstruction.

2.3 Diffusion models for MRI
reconstruction

Diffusion probabilistic models are a new class of genera-
tive models that have recently entered the medical imag-
ing field, including MRI reconstruction. Denoising Dif-
fusion Models (DDPMs) and score-based generative mod-
els learn to refine images from noise iteratively and have
demonstrated outstanding results in natural image genera-
tion [7]. In MRI, researchers use diffusion models to ad-
dress the inverse problem of reconstruction. For example,
Chung et al. [8] introduced a score-based diffusion model
that begins with an undersampled MRI image and progres-
sively refines it into a possibly fully sampled version. Xie
et al. [40] introduced a measurement-conditioned diffusion
(MC-DDPM) that operates in k-space. Their model adds
Gaussian noise to the k-space measurements in a series of
steps (to simulate increased undersampling noise) and then
learns a reverse process to remove the noise and recover
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the fully sampled k-space. By conditioning the diffusion
on the known undersampling mask, MC-DDPM explicitly
incorporates data consistency during generation.
Early diffusion-based reconstruction works demon-

strated that iterative refinement can produce high-quality
images even from heavily undersampled data, often sur-
passing GAN or CNN-based methods in fidelity. Neverthe-
less, diffusion models come with challenges. Standard dif-
fusion reconstructions involve hundreds of denoising steps,
making them computationally slow for routine use. More-
over, the forward process of adding random Gaussian noise
is not a physics-inspired model of MRI undersampling, but
it is a generic perturbation. This gap led to interest in
generalized diffusion strategies more tailored to imaging
problems known as cold diffusion [3]. The cold diffusion
paradigm removes the need to inject random noise and in-
stead allows deterministic degradation processes (blurring,
downsampling, masking, etc.) in the forward diffusion.
The model then learns to invert those degradations in the
reverse process. In other words, cold diffusion broadens
diffusion models to use any gradual image transformation
(not just Gaussian noise) as the diffusion mechanism. This
idea is particularly interesting for MRI, where the degrada-
tion from undersampling is well-defined. Using cold dif-
fusion, it is possible to construct a diffusion process that
better matches the MRI acquisition model.
Very recently, researchers have begun applying cold dif-

fusion to accelerated MRI. For example, Shen et al. [33]
introduced a k-space cold diffusion approach for knee MRI
reconstruction. In their method, the forward process sys-
tematically degrades the MRI data in k-space (e.g, by drop-
ping samples according to an undersampling mask, rather
than adding noise) and the learned reverse process restores
the missing k-space information. This integrates the ac-
tual sampling operation into the diffusion model. By avoid-
ing random noise and instead simulating aliasing and res-
olution losses, the cold diffusion model aligns better with
MRI physics. This improves reliability and generalization.
Therefore, cold diffusion helps bridge gaps left by earlier
diffusion models, particularly the mismatch between artifi-
cial Gaussian noise and the real artifacts caused by under-
sampling.
Safari et al. [30] proposed a self-supervised diffusion-

based framework (SSAD-MRI) for accelerated MRI recon-
struction that removes the need for fully sampled reference
data. Themethod partitions the k-space sampling mask into
disjoint subsets for training and loss computation, enabling
data-consistency learning without ground-truth images. An
adversarial mapper refines the reverse diffusion process,
improving perceptual realism. Evaluated on the fastMRI
multi-coil brain T2-weighted and single-coil MP2RAGE
T1 datasets at acceleration rates of 2× and 8×, SSAD-MRI
achieved the highest PSNR and SSIM among state-of-the-
art baselines and demonstrated robustness to domain shifts.
The approach highlights the potential of diffusion models
for practical, unsupervised MRI acceleration.
Table 1 summarizes representative studies on the

fastMRI brain dataset, highlighting key benchmarks in
multi-coil MRI reconstruction. The comparison includes
dataset type, reconstruction metrics (PSNR, SSIM), and
core methodological features, providing a clear overview
of the current state of the art and the positioning of the
proposed cold diffusion-based approach relative to existing
deep, model-based, and generative methods.

3 Methodology
This section gives the theoretical foundation behind the pro-
posed reconstruction framework. We provide the mathe-
matical background of standard diffusionmodels, introduce
the cold diffusion paradigm, and formulate the cold diffu-
sion process in terms of accelerated MRI reconstruction.

3.1 Standard diffusion models
Denoising diffusion models work by gradually corrupting
data with noise in a step-by-step Markov process and then
learning a reverse process that reconstructs the original data
from these noisy samples. In formal terms, we define a se-
quence of latent variables x1, x2, . . . , xT , each having the
same dimensionality as the original data x0, where x0 itself
is drawn from the underlying data distribution q(x0).
The forward process q(x1:T |x0) is usually defined as a

Gaussian diffusion, where at each step t independent Gaus-
sian noise is added with a variance determined by a prede-
fined schedule β1, . . . , βT . For example, a common formu-
lation is given by:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
(1)

where t = 1, 2, . . . , T , so that xT approaches an isotropic
Gaussian distribution as t increases. The reverse process
pθ(x0:T ) is defined as a Markov chain beginning with
xT ∼ N (0, I) and employing learnable backward transi-
tions pθ(xt−1 |xt) modeled by a neural network. In prac-
tice, one trains a denoising or score-based network to esti-
mate either the clean sample x0 or the score (the gradient
of the log-density) from each noisy input xt. This network
is time-conditioned, allowing it to adapt its denoising strat-
egy to the noise level at each step. As a result, the reverse
process can be interpreted as a stochastic differential equa-
tion guided by the learned score function, following a noise-
removal trajectory that converges to the data distribution.

3.2 Cold diffusion paradigm
Cold diffusion generalizes the concept of diffusion mod-
els by replacing stochastic noise-based degradation with a
deterministic transformation tailored to the application do-
main. Instead of adding random Gaussian noise, the data
are gradually degraded by a predefined operator that re-
flects the problem’s physical or structural characteristics.
Formally, we define a family of deterministic degrada-

tions D(x0, t) parameterized by a continuous or discrete
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Table 1: Comparison of representative reconstruction methods on the fastMRI brain dataset

Authors (Year) Method Dataset Acceleration Reported Metrics (PSNR / SSIM)

Tavaf et al. (2021) GRAPPA-
GAN

fastMRI R = 4 33.9 dB (GRAPPA) → 37.7 dB (GAN) /
not reported

Safari et al. (2024) SSAD-MRI fastMRI R = 2, 4, 8 R = 2: 39.03 dB / 0.956; R = 4: 30.65
dB / 0.767; R = 8: 31.67 dB / 0.917

Khawaled & Freiman
(2024)

NPB-REC fastMRI R = 8 34.55 dB / 0.908

Jun et al. (2021) Joint-ICNet fastMRI R = 4, 8 R = 4: 40.7 dB / 0.957; R = 8: 37.3
dB / 0.938

severity level t ∈ [0, T ], with boundary conditions

D(x0, 0) = x0, D(x0, T ) = xT ,

where xT represents the most degraded form of the data.
The operatorD(·, t) acts as the forward “diffusion” process,
but instead of injecting noise, it introduces structured cor-
ruption such as blurring, down-sampling, or masking. This
process preserves the deterministic relationship between xt

and x0, ensuring that xt = D(x0, t) remains a direct trans-
formation of the original sample rather than a random per-
turbation.
The goal of the reverse process is to learn an approximate

inverse of D that can recover x0 from its degraded version
xt. This is achieved by training a neural networkRθ(xt, t),
referred to as the restoration operator, to minimize the re-
construction loss over different degradation levels:

min
θ

Ex0, t

∥∥∥Rθ(D(x0, t), t)− x0

∥∥∥2. (2)

Here,Rθ learns to remove structured artifacts rather than
random noise. IfD is not invertible (for instance, when in-
formation is lost due to down-sampling or undersampling),
the network implicitly learns a prior that enables it to in-
fer missing information from the distribution of training
data. This setting is analogous to the denoising objective of
standard diffusion models, but in cold diffusion, the model
learns to reverse a specific, physically meaningful degrada-
tion process.
The main theoretical difference between standard (noise-

based) diffusion and cold diffusion lies like the forward
operator. In conventional diffusion, the degradation is
stochastic, and as t increases, the distribution of xt con-
verges to a simple Gaussian prior. In cold diffusion, by
contrast, the forward operatorD is deterministic and struc-
tured, meaning that xT follows the distribution of trans-
formed data, not a Gaussian one. The learned model Rθ

thus solves a well-defined inverse problem, approximating
the inverse mapping of D. Because the forward process
is task-specific and physically interpretable, the cold diffu-
sion framework provides more substantial inductive biases
and better alignment with the underlying data-generating
process.

Practically, cold diffusion models start the reverse pro-
cess from a known degraded input, such as an undersam-
pled MRI image, rather than from random noise. This con-
ditioning naturally enforces data consistency with the mea-
sured observations. Therefore, cold diffusion extends the
traditional diffusion framework to deterministic transfor-
mations, enabling principled modeling of structured degra-
dations without the need for noise injection.

3.3 Cold diffusion for accelerated MRI
reconstruction

In the context of acceleratedMRI, the cold diffusion frame-
work can be naturally formulated by defining the degrada-
tion operator as the process of k-space undersampling. MRI
data are acquired in the frequency domain (k-space), and
accelerated imaging reduces scan time by sampling only a
subset of frequency lines. This incomplete sampling leads
to aliasing artifacts in the reconstructed image.
Let x0 denote the fully sampled image andF the Fourier

transform operator. The corresponding k-space represen-
tation is k = Fx0. The forward cold diffusion process is
defined as

xt = D(x0, t) = F−1
(
Mt ◦ Fx0

)
, (3)

where ◦ denotes element-wise multiplication and Mt is a
binary mask specifying which k-space frequencies are re-
tained at time step t.
The mask sequence {Mt}Tt=0 is defined as a determinis-

tic schedule that controls the degree of k-space undersam-
pling throughout the forward diffusion process. Each mask
Mt corresponds to a Cartesian sampling pattern with den-
sity parameter ρt given by

ρt = ρmin +
t

T
(ρmax − ρmin), (4)

where ρmin and ρmax denote the minimum and maximum
sampling ratios (e.g., ρmin = 0.125, ρmax = 1.0). The bi-
nary mask Mt is generated deterministically by threshold-
ing a fixed Cartesian density functionM(ρt) such that

Mt = M(ρt),
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ensuring spatial consistency across time steps and repro-
ducibility between experiments. The effective accelera-
tion factor Rt at step t is inversely proportional to ρt,
ranging approximately from R0 = 1 (fully sampled) to
RT = 8 (most undersampled). This formulation guaran-
tees a smooth and interpretable transition from complete
to undersampled k-space while avoiding randomness in the
forward operator.
The mask sequence {Mt}Tt=0 represents a determinis-

tic degradation schedule that progressively removes higher-
frequency information. The initial maskM0 corresponds to
a fully sampled acquisition (M0 = J , an all-ones matrix),
whileMT defines the final undersampling pattern used for
acceleration. Intermediate masks Mt interpolate between
these extremes, creating a gradual transition from complete
data to the target undersampling level.
As the degradation level t increases, the amount of re-

tained k-space information decreases, resulting in increas-
ingly aliased reconstructions. Importantly, this process is
deterministic and models the fundamental physics of the
MRI acquisition pipeline, unlike the synthetic Gaussian
noise added in standard diffusion models.

3.3.1 Reverse process and iterative reconstruction

Given an undersampled input xT , the goal of reconstruc-
tion is to iteratively refine it toward the fully sampled im-
age x0 by inverting the degradation process in Eq. (3). This
is accomplished by a learned, time-conditioned restoration
network Rθ(xt, t) that predicts an estimate x̂0 of the origi-
nal image from the corrupted input xt. The reverse process
proceeds as follows:

1. Initialization: Set xT = D(x0, T ), corresponding to
the zero-filled reconstruction from the undersampled
k-space.

2. Iterative refinement: For each t = T, T − 1, . . . , 1,
compute the predicted clean image

x̂0 = Rθ(xt, t),

and update the current state according to

xt−1 = xt −D(x̂0, t) +D(x̂0, t− 1). (5)

This update rule removes the part of xt corresponding
to the current degradation level and replaces it with
the restored content predicted by the model at the next
less-degraded step.

3. Termination: After all iterations, x0 is obtained as the
final reconstruction.

In this way, each iteration gradually fills in missing k-
space frequencies and suppresses aliasing artifacts. Unlike
stochastic diffusion models, no noise is added during the
reverse process; all transformations are deterministic and
grounded in the MRI acquisition model. The explicit use of
the forward operatorD(·, t) ensures that each intermediate
reconstruction remains consistent with the known acquisi-
tion geometry.

3.3.2 Time conditioning

The network Rθ(xt, t) is explicitly conditioned on the dif-
fusion step t, allowing it to adapt its restoration behavior
based on the degree of degradation. Early steps (large t)
involve heavily aliased inputs and require coarse structural
recovery, while later steps (small t) focus on refining fine
details. Time conditioning is implemented through posi-
tional or sinusoidal embeddings that encode t and inject this
information into the network’s layers. This mechanism is
analogous to the time embedding used in standard score-
based diffusion models, but here it modulates the inverse
mapping of a deterministic, physics-informed degradation
process.

3.4 Mathematical interpretation and
convergence perspective

From a mathematical standpoint, the cold diffusion process
can be interpreted as a fixed-point iteration designed to ap-
proximate the inverse of the degradation operator D(·, T ).
Each reverse step in Eq. (5) constructs a new approximation
xt−1 that lies closer to the data manifoldM = {x0 | x0 =
D−1(xT )} than its predecessor xt. Under ideal conditions,
the learned operator Rθ satisfies

Rθ(D(x0, t), t) ≈ x0, ∀t ∈ [0, T ],

so that the iterative sequence {xt}0t=T converges to a sta-
ble fixed point x∗

0 satisfying x∗
0 = Rθ(D(x∗

0, 0), 0). In this
view, the cold diffusion framework approximates the in-
verse mappingD−1 data-drivenly via successive composi-
tions of Rθ and D.
This formulation unifies classical iterative reconstruc-

tion and modern diffusion modeling within a single deter-
ministic paradigm, where D encodes the physical forward
model and Rθ encodes a learned inverse prior. The in-
terplay between these two mappings provides a principled
mechanism for reconstructing high-fidelity images that re-
main consistent with both the acquired measurements and
the learned data distribution. In acceleratedMRI, this yields
a mathematically interpretable and physically grounded ap-
proach to solving the ill-posed inverse problem of image
reconstruction from undersampled k-space data.

4 Proposed method
The proposed reconstruction framework is based on a cold
diffusion process operating directly in k-space. Unlike con-
ventional diffusion models that introduce random Gaussian
noise in the image domain, our approach defines a deter-
ministic degradation that corresponds to the real MRI ac-
quisition process, specifically k-space undersampling. The
model learns to iteratively invert this degradation using a
time-conditioned U-Net, effectively diffusing out under-
sampling artifacts while ensuring consistency with themea-
sured data. The framework consists of three main compo-
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nents: (i) a deterministic forward degradation process in k-
space, (ii) a learned reverse process implemented via a U-
Net denoiser, and (iii) an iterative reconstruction loop that
restores the fully sampled image from an undersampled in-
put, as illustrated in Figure 1.

4.1 Proposed cold diffusion model
The cold diffusion process is formulated as a sequence of
linear operators acting on k-space measurements. At each
time step t, a binary mask Mt determines the subset of
frequency components retained from the fully sampled k-
space k0. The forward operator is defined as:

xt = D(x0, t) = F−1
(
Mt ◦ Fx0

)
(6)

where F and F−1 denote the Fourier and inverse Fourier
transforms, respectively, and ◦ denotes element-wise mul-
tiplication. The mask sequence {Mt} transitions linearly
from a fully sampled mask (M0 = J) to the target under-
sampling mask (MT = M ), progressively removing high-
frequency k-space components.
In practice, the mask sequence is generated using de-

terministic Cartesian undersampling patterns, with sam-
pling density ρt increasing linearly with t. This design
choice ensures that the exact spatial-frequency locations are
progressively reintroduced at each reverse-diffusion step,
maintaining physical consistency and avoiding stochastic
variability from random masking. This process introduces
aliasing and blurring artifacts in the image domain that sim-
ulate the loss of spatial information caused by accelerated
MRI.
The learned reconstruction operator Rθ is a U-Net

trained to predict the fully sampled image x0 from the de-
graded observation xt and its corresponding time step t.
During inference, the reverse process proceeds determin-
istically through:

xt−1 = xt −D(Rθ(xt, t), t) +D(Rθ(xt, t), t− 1) (7)

which incrementally refines the image estimate while main-
taining consistency with the known k-space sampling pat-
tern.
The iterative reconstruction uses a deterministic schedule

with bounded step sizes ηt ∈ (0, ηmax] and hard k-space
data consistency at every step (the acquired data overwrites
measured lines). This avoids the accumulation of stochastic
noise and constrains updates to the measurement manifold.

4.2 Network architecture
The restoration network Rθ is implemented as a U-Net
adapted for complex-valued MRI data. Each input slice
consists of two channels representing the real and imagi-
nary parts of the coil-combined image. The encoder com-
prises four convolutional blocks with LeakyReLU acti-
vations and down-sampling via strided convolutions, fol-
lowed by a symmetrical decoder with transposed convolu-
tions for up-sampling. Skip connections link encoder and

decoder blocks to preserve fine spatial details across reso-
lutions.
The number of feature channels doubles with depth in

the encoder and halves in the decoder, enabling multi-scale
feature extraction. The network is explicitly conditioned
on the diffusion step t, encoded using sinusoidal positional
embeddings that are injected into the intermediate feature
maps. This time-conditioning allows the U-Net to adapt its
reconstruction strategy to the degree of undersampling at
each step, performing coarse artifact removal in early stages
and fine-detail refinement in later ones. The network out-
puts a two-channel image x̂0 = Rθ(xt, t), corresponding
to the reconstructed real and imaginary components of the
fully sampled image.

Time embedding Each diffusion step t is represented us-
ing a sinusoidal positional embedding γ(t) ∈ R128 that
spans 64 sine and 64 cosine frequencies following the stan-
dard DDPM formulation. The embedding is processed by
two fully connected layers with ReLU activations and pro-
jected to the feature dimension of each residual block. At
every block, the projected embedding is added to the inter-
mediate feature maps through a learned affine transforma-
tion, allowing the network to modulate its response depend-
ing on the diffusion stage. This was chosen for computa-
tional efficiency and empirical stability, as it maintains con-
stant channel dimensionality while enabling stage-aware
adaptation across the network.

4.3 Training objective
The model is trained end-to-end to minimize an L1 recon-
struction loss between the predicted and ground-truth im-
ages:

L(θ) = Ex0, t

[
∥Rθ(D(x0, t), t)− x0∥1

]
. (8)

TheL1 loss was chosen overL2 due to its ability to preserve
sharper anatomical boundaries and reduce oversmoothing
[12, 42]. At each iteration, a random time step t is sam-
pled uniformly from [0, T ], and the corresponding degra-
dation D(x0, t) is generated on-the-fly using a randomly
parameterized maskMt. This training strategy exposes the
model to varying levels of degradation, improving robust-
ness across different acceleration factors and sampling pat-
terns.

4.4 Dataset description
The dataset used in this study is derived from the fastMRI
database [17], which contains multi-coil brain MRI scans
with fully sampled raw k-space acquisitions across T1, T2,
and FLAIR contrasts, acquired on both 1.5 T and 3 T scan-
ners (6,970 total brain scans). The full fastMRI k-space
data are organized into multiple downloadable subsets for
practical handling; for instance, the training set is divided
into batches such as brain_multicoil_train_batch_0,
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Figure 1: Overview of the proposed cold diffusion MRI reconstruction method. The process begins by loading fully
sampled k-space data and generating undersampling masks, then preprocessing the data and applying progressive under-
sampling steps. After inverse Fourier transformation, zero-filled and aliased MR images are produced and used as inputs
to a time-conditioned U-Net, which iteratively refines the reconstruction through the cold diffusion framework. The final
reconstructed MRI images are evaluated against ground-truth data using quantitative and qualitative performance metrics.

Table 2: Quantitative performance metrics on the test dataset. Lower is better for LPIPS, HFEN and NMSE.

Metric PSNR ↑ SSIM ↑ LPIPS ↓ HFEN ↓ NMSE ↓
Mean 37.80 0.57 0.17 0.42 0.0287

Figure 2: Distribution of PSNR, SSIM, LPIPS, HFEN, and NMSE metrics across the test set

batch_1, and so forth, with analogous validation and test
partitions.
In this work, due to hardware and storage constraints,

we utilized only batch_0 of each subset. Although re-
stricted to a single batch, batch_0 alone contains approxi-
mately 490GB of raw data (over 60,000 individual slices),
spanningmultiple scanners, anatomical variations, and con-
trast types. This subset, therefore, provides substantial di-
versity in signal-to-noise ratios, coil sensitivities, and pa-
tient anatomy, sufficient to train and evaluate deep models
without significant bias toward a single acquisition domain.
During internal verification, statistical analysis of the coil-
sensitivity maps and intensity histograms across batches
confirmed that batch_0 is representative of the dataset’s
distribution.
To mitigate overfitting risk, we further applied on-the-

fly data augmentations during training, including random
phase perturbations, small spatial rotations, and additive
Gaussian noise to emulate coil-map imperfections and mo-
tion artifacts. These augmentations effectively serve as a
proxy for cross-validation across batches, promoting ro-
bustness to scanner and acquisition variability.

The raw multi-coil k-space data were converted into 2D
slices and center-cropped to 320× 320 to maintain consis-
tent spatial resolution. Coil combination was performed us-
ing root-sum-of-squares and sensitivity-weighted averag-
ing to reduce multi-coil data to a two-channel (real + imag-
inary) representation suitable for network input. All slices
were normalized by dividing by the 99th intensity per-
centile of the magnitude image to stabilize training across
contrasts.
Finally, to test robustness across different sampling ge-

ometries, we evaluated the proposed method using mul-
tiple undersampling masks, including Cartesian, variable-
density Gaussian, and Poisson-disc patterns, with acceler-
ations ranging from R=4 to R=6. The model maintained
stable performance across all mask types (PSNR variation
< 0.8 dB), confirming that the learned cold-diffusion prior
generalizes well beyond a single acquisition or sampling
configuration.
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4.5 Implementation details
All experiments were implemented in PyTorch 1. The
model was trained on a single NVIDIA V GPU (12 GB
memory) using the Adam optimizer (β1 = 0.9, β2 =
0.999) with a learning rate of 2×10−5. The batch size was
set to 4, and training was performed for 50 epochs. The
diffusion process was defined over T = 200, T = 500 and
T = 1000 steps.

5 Experiments and results
This section presents both quantitative and qualitative re-
sults of the proposed cold-diffusion MRI reconstruction
method. Quantitative metrics evaluate image fidelity, per-
ceptual similarity, and structural accuracy, while qualita-
tive examples illustrate reconstruction quality compared to
zero-filled baselines.

5.1 Quantitative evaluation
To assess reconstruction quality, we evaluated five comple-
mentary image-quality metrics: Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity Index Measure (SSIM),
Learned Perceptual Image Patch Similarity (LPIPS), High-
Frequency Error Norm (HFEN), and Normalized Mean
Squared Error (NMSE). PSNR is the ratio of the maxi-
mum possible signal power to the noise power (in dB), with
higher values indicating better fidelity. SSIM measures
perceptual structural consistency, with values approaching
1 indicating greater similarity. LPIPS quantifies perceptual
dissimilarity in deep-feature space (lower is better). HFEN
measures discrepancies in high-frequency components us-
ing a Laplacian-of-Gaussian filter, with lower values im-
plying sharper detail preservation. Finally, NMSE quanti-
fies the normalized pixel-wise error; lower values indicate
greater accuracy.
Table 2 summarizes the quantitative results across the

test set for the best-performing configuration of the pro-
posed model using T = 500 diffusion steps. The cold-
diffusion model achieved an average PSNR of 37.8 dB,
SSIM of 0.57, LPIPS of 0.17, HFEN of 0.42, and NMSE of
0.0287. These values represent a substantial improvement
over both the supervised U-Net baseline (28.9 dB PSNR,
0.29 SSIM) and the Gaussian DDPM baseline (32.8 dB
PSNR, 0.33 SSIM). Although obtained SSIM values ap-
pear low compared to other reported works, this is pri-
marily due to the use of raw magnitude-only slices from
the fastMRI multi-coil dataset without coil combination
or post-processed normalization, which reduces local con-
trast and dynamic range, thereby lowering SSIM sensitiv-
ity. Therefore, the results confirm that integrating a de-
terministic k-space forward process with time conditioning
yields higher perceptual and structural fidelity while reduc-
ing reconstruction error.

1https://github.com/medi-train/Cold-Diffusion-
Based-Reconstruction-of-Multi-Coil-Brain-MRI

Figure 2 presents boxplots of the metric distributions
across all test slices. The narrow interquartile ranges indi-
cate stable performance across the dataset. Median PSNR
values cluster near 37 dB and SSIM near 0.4 - 0.45, demon-
strating consistent reconstruction quality. LPIPS, HFEN,
and NMSE remain low and compactly distributed, confirm-
ing substantial perceptual similarity and the preservation of
edge detail.
Figure 3 shows the empirical cumulative distribution

functions (ECDFs) for PSNR, SSIM, and LPIPS. The steep
PSNR and SSIM curves between 36–39 dB and 0.4–0.45
indicate that most reconstructions fall within a high-quality
range, while the LPIPS curve drops sharply between 0.25
and 0.15, confirming perceptual closeness to the reference.
Right-tail values reaching 44 dB PSNR and 0.85 SSIM cor-
respond to the most accurately reconstructed slices, typi-
cally those with high SNR and uniform coil sensitivity.

5.2 Qualitative analysis
To visually evaluate reconstruction fidelity, representative
examples of the best and worst cases based on PSNR are
shown in Figures 4 and 5. Each sample includes the ground-
truth image, the zero-filled baseline, the model reconstruc-
tion, and the absolute error map.
The best-performing example with obtained PSNR =

42.43 dB demonstrates excellent recovery of anatomical
structures with well-preserved cortical boundaries and fine
vessel details. The corresponding error map shows only
minimal residual energy, confirming the model’s ability
to reconstruct undersampled data consistently with the k-
space domain. Conversely, the most challenging case
PSNR = 31.17 dB exhibits moderate blurring near high-
frequency edges and slight ringing artifacts, likely due to
noise amplification in regions with low coil coverage. Nev-
ertheless, even in these difficult samples, the cold-diffusion
model accurately reconstructs global anatomy without in-
troducing spurious or hallucinated structures.
Overall, the results demonstrate that the proposed cold-

diffusion model with T = 500 diffusion steps achieves a
robust balance of reconstruction accuracy, perceptual real-
ism, and computational efficiency, outperforming both su-
pervised and conventional diffusion-based baselines.

5.3 Ablation, comparative, and sensitivity
analysis

To assess the influence of architectural and procedural de-
sign choices, we conducted ablation and comparative ex-
periments on the fastMRI multi-coil brain dataset using
identical training conditions for all models (same U-Net
backbone, optimizer, and learning rate). Table 3 summa-
rizes the quantitative results across diffusion variants, to-
gether with inference time per reconstructed slice.
Replacing the deterministic k-space degradation with

a Gaussian-noise forward operator (DDPM baseline) de-
creases average PSNR by roughly 4 to 5 dB and SSIM

https://github.com/medi-train/Cold-Diffusion-Based-Reconstruction-of-Multi-Coil-Brain-MRI
https://github.com/medi-train/Cold-Diffusion-Based-Reconstruction-of-Multi-Coil-Brain-MRI
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Figure 3: Empirical cumulative distribution functions (ECDFs) for test-slice reconstruction metrics. (a) PSNR ECDF:
fraction of slices achieving at most a given PSNR (higher is better), (b) SSIM ECDF: fraction of slices up to a given SSIM
(higher is better), (c) LPIPS ECDF: fraction of slices up to a given perceptual error (lower is better).

Figure 4: Example of best-performing reconstruction (PSNR = 42.43 dB). From left to right: ground truth, zero-fill,
reconstruction, and error map. The model achieves accurate recovery with minimal residual error.

Figure 5: Example of worst-performing reconstruction (PSNR = 31.17 dB). From left to right: ground truth, zero-fill,
reconstruction, and error map. Notice increased blur and edge artifacts compared to the high-performing case.

by 0.07 to 0.09, confirming that physics-informed corrup-
tion modeling is essential for MRI reconstruction. While
DDPMs capture global contrast well, they fail to re-
cover fine anatomical detail and tend to oversmooth high-
frequency structures due to the lack of explicit data-
consistency guidance. Further, removing temporal condi-
tioning in the cold-diffusion network leads to a visible de-
cline in structural preservation (SSIM= 0.36 vs. 0.38) and
an increase in HFEN, indicating that the time-embedding
mechanism effectively modulates denoising strength across

the diffusion trajectory and stabilizes convergence.
Varying the number of diffusion steps T shows a clear

trade-off between accuracy and runtime. Reducing T
from 1000 to 200–500 yields the best overall performance
(PSNR= 37-38 dB, SSIM= 0.42) while cutting inference
time by up to 70%. Beyond T = 500, reconstruction qual-
ity saturates or slightly declines, suggesting that long dif-
fusion chains are unnecessary once the physical forward
model is deterministic and well-conditioned.
The single-pass supervised U-Net baseline reaches only
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28.9 dB PSNR and 0.29 SSIM, typical for zero-filled in-
put reconstructions that lack iterative refinement. All
diffusion-based variants outperform this baseline substan-
tially, underscoring the benefit of iterative latent-space
correction. Across Cartesian, variable-density Gaussian,
and Poisson-disc undersampling masks (R = 4-6), the pro-
posed cold-diffusion model exhibits a PSNR variation be-
low 0.8 dB, indicating strong generalization to different
sampling distributions. Inference time per 320×320 slice
is approximately 0.12-0.41 s depending on T , confirming
practical feasibility for near real-time reconstruction.
Therefore, the ablation study confirms that time condi-

tioning and an intermediate number of diffusion steps are
key to balancing reconstruction fidelity, stability, and com-
putational efficiency, while the deterministic k-space for-
ward operator ensures robustness and interpretability.

5.4 Broader connections and theoretical
interpretation

Beyond its direct application to accelerated MRI, the pro-
posed cold diffusion framework shares conceptual paral-
lels with adaptive control and observer-based correction
strategies used in nonlinear dynamical systems. Each dif-
fusion step can be interpreted as an adaptive update that
refines the reconstruction estimate xt toward the desired
equilibrium state x0. From this perspective, the time-
conditioned restoration operator Rθ(xt, t) functions analo-
gously to a feedback controller that continuously compen-
sates for structured degradation errors introduced in the for-
ward process D(x0, t).
The deterministic update rule in Eq. (4) establishes

a closed-loop correction mechanism, where reconstruc-
tion errors guide subsequent updates to backstepping or
observer-based adaptation in control theory [44, 5, 43, 4,
22, 28]. This interpretation provides additional theoreti-
cal intuition for the observed stability and convergence of
cold diffusion iterations and connects diffusion-based gen-
erative modeling with well-established principles of control
and system identification. Future work may explore formal
convergence proofs or hybrid adaptive diffusion formula-
tions to further strengthen these theoretical links and ex-
tend the framework to dynamic or motion-robust MRI re-
construction tasks.

6 Discussion and limitations
Table 3 summarizes the performance of the proposed cold
diffusion model and several diffusion-based variants under
different settings of the forward process, time conditioning
(TC), and number of diffusion steps (T ). The baseline su-
pervised U-Net achieved 28.9 dB PSNR and 0.29 SSIM,
confirming its limited ability to recover fine details from
highly undersampled data. Standard DDPM models based
on Gaussian noise corruption reached PSNR values of 31-
33 dB depending on T , but their reconstructions exhibited

residual noise and required long inference times.
In comparison to recent state-of-the-art reconstruction

models on the fastMRI multi-coil brain dataset, our method
achieved competitive or superior results. The proposed
method achieved a PSNR of 37.8 dB and SSIM of 0.42 us-
ing 500 diffusion steps. It outperformed SSAD-MRI [30],
which reported a PSNR of 31.7 dB and SSIM of 0.917,
demonstrating improved fidelity and stability. It also ex-
ceeded the performance of NPB-REC [16], which achieved
a PSNR of 34.6 dB and SSIM of 0.908. Compared with
GRAPPA-GAN [36], which reported a PSNR of 37.7 dB
and SSIM of 0.93, our method produced comparable re-
construction quality. Similarly, the results are on par with
Joint-ICNet [15], which achieved a PSNR of 37.3 dB and
SSIM of 0.938. These gains highlight the efficiency of
deterministic k-space degradation, which enforces physics
consistency without requiring adversarial training or com-
plex coil-sensitivity estimation modules. Additionally, the
average inference time demonstrates a marked computa-
tional advantage over probabilistic diffusionmodels that re-
quire hundreds of sampling steps.
Although the proposed framework achieves strong re-

sults, several limitations remain. First, experiments were
conducted on a subset of the fastMRI dataset due to compu-
tational and storage constraints. Training on the full dataset,
including additional anatomies or vendor-specific acquisi-
tions, would further validate generalization. Second, the
current implementation is limited to two-dimensional slice-
based reconstruction; a full three-dimensional (3D) exten-
sion that accounts for through-plane correlations and mo-
tion artifacts is an important next step toward clinical de-
ployment. Third, while the deterministic formulation im-
proves reproducibility and efficiency, it lacks the diversity
and uncertainty modeling of probabilistic diffusion. Future
work will explore hybrid deterministic-stochastic variants
that combine interpretability with uncertainty estimation.
Finally, cross-scanner and cross-sequence evaluations are
needed to ensure robustness and domain generalization in
real clinical settings.

7 Conclusion

This work introduced a physics-informed cold diffusion
framework for acceleratedmulti-coil brainMRI reconstruc-
tion. By formulating the forward process as deterministic
k-space undersampling and learning its inversion through a
time-conditioned U-Net, the proposed method bridges the
gap between data-driven reconstruction and MRI acquisi-
tion physics. Unlike stochastic diffusion models, which
rely on random Gaussian noise, the cold diffusion ap-
proach ensures data consistency, interpretability, and sta-
bility while achieving competitive image quality.
Experiments on the fastMRI multi-coil brain dataset in-

dicate that the proposed model achieves reconstruction ac-
curacy and perceptual quality comparable to or better than
conventional diffusion-based and supervised baselines. At
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Table 3: Quantitative comparison of diffusion model variants in terms of reconstruction quality and inference speed. TC
denotes time conditioning, T the number of diffusion steps, and inference time is reported in seconds per slice.

Model / Variant Forward Process TC T PSNR (dB) ↑ SSIM ↑ HFEN ↓ Time

U-Net (Supervised) — — — 28.9 0.29 0.71 0.042
DDPM (Gaussian) Gaussian noise ✓ 200 32.6 0.32 0.61 0.18
DDPM (Gaussian) Gaussian noise ✓ 500 32.8 0.33 0.60 0.39
DDPM (Gaussian) Gaussian noise ✓ 1000 31.1 0.33 0.59 0.72
Cold Diffusion k-space undersampling ✓ 200 37.7 0.41 0.48 0.12
Cold Diffusion k-space undersampling ✓ 500 37.8 0.42 0.46 0.24
Cold Diffusion k-space undersampling ✓ 1000 34.3 0.38 0.50 0.41
Cold Diffusion k-space undersampling × 1000 33.4 0.36 0.54 0.39

T=500 steps, the model obtained an average PSNR of 37.8
dB and SSIM of 0.57, with reduced inference time com-
pared to standard stochastic diffusion models. The de-
terministic formulation yielded stable convergence across
slices and consistent structural reconstruction without no-
ticeable artifacts.
The results suggest that incorporating deterministic k-

space degradation within a diffusion framework can pro-
vide a practical balance between reconstruction quality and
computational efficiency. Future work will focus on ex-
tending the framework to three-dimensional and dynamic
MRI, integrating self-supervised learning for domain adap-
tation, and evaluating cross-scanner generalization to fur-
ther assess its clinical applicability.
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