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The integration of renewable energy sources into modern power systems introduces uncertainty that 

challenges efficient dispatch and market trading. This research presents a targeted optimization approach 

using Deep Reinforcement Learning (DRL) for real-time power system dispatch and electricity market 

trading operations. A proposed method employs the Optimal Power Reinforced Twin Deterministic Policy 

Gradient (OPRTDPG) algorithm, which combines power system-specific reinforcement mechanisms with 

deterministic policy gradients for precise and stable decision making under renewable generation and 

market volatility. The methodology incorporates direct control of Thermostatically Controlled Loads 

(TCLs) and indirect control of price-responsive demands, enabling flexible resource management. The 

algorithm was trained and evaluated using the Power System Dispatch and Market Trading dataset from 

Kaggle, containing 4,876 fifteen-minute interval records of system states, generation, storage, loads, 

market prices, and reward metrics. Data preprocessing applied Min-Max normalization to ensure stable 

learning. The algorithm was implemented in Python 3.11 using NumPy and PyTorch within a custom 

power system simulation environment, capturing generation, storage, load dynamics, and market 

behavior, without requiring external real-time platforms. Performance comparison with the baseline Deep 

Deterministic Policy Gradient (DDPG) method, OPRTDPG reduces market price volatility by 10% 

($50/MWh-$45/MWh), improves energy conversion efficiency by 15% (65%-74.75%), and lowers daily 

operating cost by 12% ($100,000-$88,000). These results demonstrate the algorithm’s capacity to enhance 

system reliability, maximize renewable utilization, and minimize operational cost. The framework provides 

a scalable, simulation-tested solution for dynamic power system dispatch and market trading, highlighting 

the practical applicability of DRL in renewable-rich electricity networks. 

Povzetek:  

 

1 Introduction 

The integration of renewable energy sources into the 

power grid significantly fluctuates power market 

dynamics, significant to improved price volatility and 

discriminating uncertainty. In markets where renewable 

energy establishes a considerable portion of the energy 

mix, power market trading approaches are substantial for 

preserving economic efficacy and balancing energy supply 

and demand [1]. When energy is transported dependably 

and reasonably, the effectiveness and reliability of the 

power system are important. Power systems' design and 

functionality are varying intensely as a implication of the 

increasing use of renewable energy sources, including 

hydroelectric, solar, and wind [2]. The increasing 

unpredictability and variability of renewable energy 

supply create effective power system dispatch and increase 

market trading significantly [3]. Energy conservation and 

demand-side control are important mechanisms in modern 

power systems. Storage supports control of renewable 

intermittency by loading additional energy for subsequent 

use, while flexible loads recommend additional control 

opportunities. A volatility of mechanisms is optimally 

accomplished to improve power market processes and 

system flexibility [4]. Integrating renewable energy needs 

advanced approaches to address price unpredictability and 

supply-demand differences. Enhancing storage abilities 

and applying flexible demand-side controls permit the grid 

to improve its adaptability to renewable intermittence [5]. 

Effective optimization techniques are substantial for 
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addressing challenges in renewable energy incorporation. 

By leveraging dynamic decision-making approaches, 

power systems could advance economic and operational 

efficiency while confirming sustainability and flexibility 

in the unpredictable energy resources [6]. Market trading 

patterns experience significant changes to reflect the new 

certainties presented by renewable energy-based power 

systems. Through the use of cultured optimization 

performances to include real-time market data and system 

boundaries, the trading presentation and reliability of the 

system can be improved [7]. The volatility of renewable 

energy sources was tough to manage, which is frequently 

reproduced in insufficiencies in market operations and 

power dispatch. The comprehensive performance of the 

system is influenced by the insufficient integration of 

flexible loads and storage devices. It lacks the capacity to 

handle dynamic changes in energy supply and demand [8]. 

Optimal dispatching in renewable-energy power systems 

contributes to challenges across a wide range of 

stakeholders: generation, storage, load, and external grids. 

Each participant has demands and constraints that are 

addressed efficiently [9]. A combined model that 

appreehends system interdependences enables end-to-end 

optimization, balancing cost, dependability, and renewable 

energy use. It allows efficient responses to rapidly 

fluctuating supply and demand conditions across several 

systems and markets [10].  

RQ1: How effectively can the OPRTDPG algorithm 

optimize real-time power dispatch and market trading 

under renewable energy uncertainty? 

RQ2: Does the integration of TCLs, energy storage 

systems, and price-responsive loads within OPRTDPG 

improve system stability and cost efficiency compared to 

existing RL methods? 

RQ3: Can OPRTDPG reduce market price volatility and 

enhance renewable utilization compared to baseline 

algorithms such as DDPG, TD3, and rule-based dispatch? 

Research Objective: The research overcomes these 

restrictions by using demand-side flexibility and 

coordinated energy storage. It addresses the changing 

requirements of contemporary power markets and 

improves system accessibility to the fluctuation of 

renewable energy, enhancing grid stability and operational 

efficacy. An adaptive optimization framework is 

generated, which efficiently integrates renewable energy 

sources into market trading and power system dispatching. 

It handles market unpredictability and uncertainty in 

renewable power by employing Optimal Power 

Reinforced Twin Deterministic Policy Gradient 

(OPRTDPG).  

 

2   Related works 

 
A predictive dispatch method was established for hybrid 

building energy systems to increase financial gains by 

coordinating flexible resources like electric vehicles and 

batteries [11]. This approach enhances market 

participation and overall system efficiency. It reduced 

electricity prices while maintaining comfort and enabled 

grid power modulation. However, further research was 

needed to assess scalability and long-term performance 

across diverse grid signals and market conditions. Reactive 

power in integrated community power systems was 

presented to enhance participation in the market for power 

distribution [12]. Using a bi-level programming approach 

transformed into a mixed-integer second-order cone 

programming model, the method incorporated inverter-

based distributed generators, locational marginal pricing, 

and flexibility services. It enhanced the integration of 

renewable energy sources and decreased operating 

expenses. However, further research was needed to fully 

assess the scalability and variety of system applications in 

the actual world. Table 1 shows the literature survey for 

previous research.  

 

Table 1: Comparative analysis of power dispatch and trading methodologies 

 

References Objective Method used 
Key Quantitative 

Results 
Major Limitations 

Kraft et al., 

[13] 

Enhance trading 

decisions & 

manage risk 

Multi-stage Mixed-

Integer Linear 

Programming (MILP) 

Risk-neutral traders 

achieved higher day-

ahead profit and 

improved stochastic 

resilience 

Oversimplified market 

dynamics; limited 

scalability; cannot adapt 

to real-time renewable 

fluctuations 

Pal et al., [14] 

Optimal day-

ahead dispatch 

for virtual power 

plants 

Metaheuristic 

optimization (Beetle 

Antenna Search) 

Outperformed 

GA/PSO by 6–12% on 

cost minimization 

Ineffective under high 

renewable uncertainty; no 

real-time adaptation; 

limited to scenario-based 

studies 
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Ding et al., 

[15] 

Improve benefit 

allocation in 

hybrid renewable 

systems 

Two-stage dispatch 

optimization 

(thermal–wind–PV) 

Reduced the ancillary 

market imbalance by 

8–10% 

Restricted to thermal-

dominated grids; not 

validated for high-RES 

penetration; no learning 

capability 

Liu et al., 

[16] 

Optimal energy 

trading with wind 

+ storage 

Dynamic 

Programming with 

SOC-based decisions 

Reduced transaction 

volume by 10–14%; 

cost savings ~7% 

Linearized market 

pricing; DP suffers from 

“curse of 

dimensionality”; cannot 

scale to complex systems 

Seif, A., [21] 

P2P energy 

trading in smart 

grids 

Deep + 

Reinforcement 

Learning based EMS 

(LSTM + DRL) 

Peak load ↓18.4%, 

Trading efficiency 

↑22.7%, EV revenue 

↑15.6% 

Simulation on 33-bus test 

system; real-world grid 

scale not validated; 

depends on accurate 

forecasts 

Zhai et al. 

[22] 

Dispatch 

optimization for 

wind-storage + 

flexible loads 

Dueling Double Deep 

Q-Network (D3QN) 

Avg. reward 1.79 vs 

1.24/1.62, 

Convergence time 

244 s, Reward 

improvement 43.9% 

The model is relatively 

simple; it was tested on a 

stylized wind-storage 

system; it has not been 

demonstrated on a large-

scale real grid. 

A two-stage dispatching model for hybrid wind-

photovoltaic-thermal systems was introduced to improve 

benefit distribution [17]. The second step increased the 

usage of renewable energy while minimizing expenditures. 

Results were improved in secondary service markets, but 

they were only available in thermal power-dominated 

areas, and their scalability had not been evaluated. A low-

carbon economic dispatch and energy-sharing framework 

for multiple integrated energy systems was developed 

using a Stackelberg game model, where the energy service 

provider sets pricing and the systems optimize operation 

charges [18]. Equilibrium was ensured using a 

decentralized algorithm. The technique increased revenue, 

resource use, and the distribution of carbon quotas, but it 

has not been proven to be useful in complex systems. 

Energy merchants with wind farms and energy 

storage placed together have been investigated for optimal 

scheduling, integrated power market impact, and wind 

uncertainty using dynamic programming [19]. The 

algorithm used state-of-charge reference points to 

optimize trading, reducing transaction volumes while 

maximizing productivity. The market price effect was 

modeled linearly to simplify scheduling under dynamic 

circumstances. A multi-energy sharing model was 

explored to lower the carbon dispatch and maximize social 

welfare in distributed energy systems [20]. A decentralized 

algorithm using price information sharing addresses 

optimal P2P (Peer-to-Peer) energy trading in smart grids 

[21]. It improves trading efficiency, cost savings, and 

market participation despite scalability limits. An 

improved DRL method [22] optimizes modern power 

system dispatch, reducing operating costs and enhancing 

renewable utilization, achieving a 12% cost reduction and 

15% efficiency improvement over conventional 

approaches. 

Research Gap  

The main disadvantage of existing approaches, such as the 

predictive dispatch method for hybrid systems (e.g., [11]) 

and bi-level programming for reactive power optimization 

(e.g., [12]), is their limited ability to handle varying grid 

signals and dynamic market conditions. These methods 

often lack scalability and flexibility when applied to 

diverse scenarios. Moreover, models like multi-stage 

Mixed Integer Linear Programming [13] and Beetle 

Antenna Search [14], while promising, tend to overlook 

critical market dynamics and large system concepts, 

restricting their practical application in real-world power 

system operation and planning. The growing requirement 

for renewable sources such as wind and solar has improved 

volatility in modern power networks. It complicates grid 

constancy, market efficacy, and cost decrease. Real-time 

pricing and renewable unpredictability further challenge 

optimization tactics, highlighting inadequacies. Further, 

policy decisions are deficient in incorporating energy 

storage and price-responsive demand, and restrictive 

complete system efficiency. The OPRTDPG algorithm 

offers an intelligent and stable solution for optimizing real-

time market trading and power dispatch utilizing deep 

reinforcement learning. 

 

3   Methodology 
The model was developed by integrating power generation 

components, energy storage systems, external grids, and 

market instruments. The dual approach enhances power 

dispatch through direct TCL control and price-responsive 

load modifications. Data preprocessing uses Min-Max 

normalization to enhance training performance. The 
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methodology optimizes market trading strategies and 

power system dispatch using the Optimal Power 

Reinforced Twin Deterministic Policy Gradient 

(OPRTDPG) algorithm. Figure 1 shows the proposed flow. 

 

 
 

Figure 1: Methodology framework 

 

3.1  Data collection 
The Power System Dispatch & Market Trading Dataset 

(https://www.kaggle.com/datasets/programmer3/power-

system-dispatch-and-market-trading-dataset) is used to 

model real-time power system operations and market 

trading dynamics. It contains 4,876 records, each 

corresponding to a 15-minute interval capturing system 

states, control actions, electricity market prices, and 

reward metrics representing cost and stability objectives. 

The dataset includes variable renewable generation (wind 

and solar), conventional generation, energy storage states, 

thermostatically controlled loads, and price-responsive 

demand. It provides a comprehensive view of modern grid 

operations, enabling simulation, reinforcement learning, 

and optimization of dispatch and market strategies under 

varying renewable and load conditions. 

 

 
Figure 2: Feature importance for power system 

optimization, dispatching, and power market trading 

 

 

The feature-importance results show which variables most 

influence power dispatch and market trading decisions 

(Figure 2). High-impact features like demand and 

renewable generation guide optimization, while low-

impact ones can be removed. The dataset originates from 

Kaggle and does not represent an actual utility-operated 

grid such as PJM or CAISO. This limitation has been 

acknowledged, and future validation will require 

benchmarking with real-world grid data to strengthen 

generalizability and ensure that model performance 

accurately reflects operational conditions. 

Data preprocessing using Min-Max Normalization 

It is essential for ensuring stable learning within the 

OPRTDPG method, particularly under renewable energy 

uncertainty and volatile market conditions. All continuous 

features, including market price, renewable generation, 

load demand, energy storage state of charge, and TCL 

temperature states, were normalized using Min–Max 

scaling to a [0,1]range. This prevents large-magnitude 

variables from dominating updates and improves gradient 

stability during training. Normalization is computed using 

equation (1). 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    

                                                                      

   (1) 

 

Where 𝑋 is the raw value and 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥  are dataset 

bounds. This preprocessing enhances robustness, 

accelerates convergence, and directly strengthens 

OPRTDPG decision performance. 

Thermostatically Controlled Loads (TCLs) 

The growing share of renewable energy introduces 

variability and uncertainty into power system dispatch. 

Thermostatically Controlled Loads (TCLs) provide 

valuable demand-side flexibility that can counterbalance 

this uncertainty. Accurate TCL modeling is therefore 

essential for integrating these loads into the OPRTDPG 

framework to enhance dispatch reliability, reduce 

operational cost, and improve market trading stability. 

 

Domestic refrigerators 

A household refrigerator consists of a cooling 

compartment, freezer compartment, and internal thermal 

mass. Heat transfer between compartments and the 

external environment is illustrated in Figure 3. The 

temperatures of the air in each compartment are 

represented by 𝑇𝑎, 𝑇𝑏 , 𝑇𝑐, and 𝑇𝑑, while 𝑇𝑒denotes room 

temperature. 
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Figure 3: Block diagram of the domestic refrigerators' 

thermal model  

 

Heat-transfer parameters include thermal conductance 𝑈𝑥,𝑦, 

heat-exchange area 𝐴𝑥,𝑦, mass 𝑚𝑥, and specific heat 

capacity 𝑆𝑥. Cooling power is allocated using 𝛾𝑎 = 𝜂𝑎𝛾and 

𝛾𝑏 = 𝜂𝑏𝛾, where 𝜂𝑎and 𝜂𝑏represent the fraction of cooling 

delivered to each compartment. The following equations 

(2), (3), and (4) describe the dynamics of temperature: 

 

𝑇𝑎 =
𝑈𝑎,𝑏𝐴𝑎,𝑏

𝑚𝑎𝑆𝑎
(𝑇𝑎 − 𝑇𝑏) +

𝑈𝑎,𝑐𝐴𝑎,𝑐

𝑚𝑎𝑆𝑎
(𝑇𝑎 − 𝑇𝑐) +

𝑈𝑎,𝑒𝐴𝑎,𝑒

𝑚𝑎𝑆𝑎
(𝑇𝑎 − 𝑇𝑒) −

𝛾𝑎𝑞𝑃 𝑛𝑜𝑚

𝑚𝑎𝑆𝑎
  (2) 

 

𝑇𝑏 =
𝑈𝑎,𝑏 𝐴𝑎,𝑏

𝑚𝑏𝑆𝑏
(𝑇𝑏 − 𝑇𝑎) +

𝑈𝑏,𝑑𝐴𝑏,𝑑

𝑚𝑏𝑆𝑏
(𝑇𝑏 − 𝑇𝑑) +

𝑈𝑏,𝑒𝐴𝑏,𝑒

𝑚𝑏𝑆𝑏
(𝑇𝑏 − 𝑇𝑒) −

𝛾𝑏𝑞𝑃 𝑛𝑜𝑚

𝑚𝑏𝑆𝑏
  (3) 

 

𝑇𝑐 =
𝑈𝑎,𝑐 𝐴𝑎,𝑐

𝑚𝑐𝑆𝑐
(𝑇𝑐 − 𝑇𝑎), 𝑇𝑑 =

𝑈𝑏,𝑑𝐴𝑏,𝑑

𝑚𝑑𝑆𝑑
(𝑇𝑑 − 𝑇𝑏) 

      

     (4) 

 

Here, 𝑞 is the on/off state (0 or 1), and 𝑃 𝑛𝑜𝑚 is the 

nominal compressor power. 

 

TCL modeling for dispatch optimization 

Electric water heaters provide additional controllable 

flexibility, especially during peak demand periods. Their 

thermal behavior is modeled as equation (5) 

 

𝑇ℎ =
1

𝑅ℎ,𝑒𝑆𝜔𝑉𝑝
(𝑇ℎ − 𝑇𝑒) −

𝜔(𝑡)

𝑉
(𝑇ℎ − 𝑇𝑜) +

𝜂𝑞𝑃𝑛𝑜𝑚

𝑆𝜔𝑉𝑝
 

      (5) 

 

Where 𝑇ℎ is water temperature, 𝑇𝑜inlet temperature, 

𝜔(𝑡)flow rate, and 𝑅ℎ,𝑒, 𝑉𝑝, 𝑆𝜔represent thermal 

resistance, tank volume, and heat capacity. 

Aggregated TCL Models 

Aggregated TCL behavior is captured using Monte Carlo 

simulations, allowing realistic population-level 

responses. The aggregate power of refrigerators and 

boilers is expressed as equation (6). 

 

 𝑃𝑥 = 𝑃 𝑥
𝑛𝑜𝑚

∑ 𝑞𝑥,𝑖
𝑚
𝑖=1

𝑚
, 𝑥 = 𝑟, 𝑏   

      (6) 

𝑃𝑥 denotes the aggregated power of TCL category 𝑥, 

𝑃𝑛𝑜𝑚
𝑥 is the nominal power of one device, 𝑚is the 

population size, and 𝑞𝑥,𝑖is the binary ON–OFF state of the 

𝑖-th device. This enables the OPRTDPG agent to 

coordinate TCL flexibility for enhanced stability and 

renewable integration. 

Optimization of power system dispatch and market trading 

strategies using Optimal Power Reinforced Twin 

Deterministic Policy Gradient (OPRTDPG) 

The OPRTDPG algorithm serves as the core optimization 

framework for real-time power system dispatch and 

market trading under renewable energy uncertainty, 

outperforming conventional RL methods. It integrates 

power-system–specific reinforcement mechanisms with 

deterministic policy gradient learning to enhance stability, 

accuracy, and economic performance. The OPRTDPG 

structure combines two components: the Optimal Power 

Reinforced Twin (OPRT) mechanism, embedding system 

knowledge and multiple stabilization techniques to handle 

constraints and prevent overestimation, and the 

Deterministic Policy Gradient (DPG) mechanism, 

enabling continuous, precise control of dispatch and 

trading actions. This integration allows faster 

convergence, adaptive decision-making, reduced market 

price volatility, lower operating costs, improved renewable 

utilization, and reliable operation under dynamic, 

uncertain conditions, which standard RL methods struggle 

to achieve. 

The OPRTDPG algorithm provides a significant 

advancement to power system dispatching and trading in 

the market by handling TCLs and price-responsive loads 

by way of adjustment to real-time renewable energy 

variations. The OPRTDPG algorithm improves efficiency 

and economy in power systems by decreasing Q-learning 

overestimation and stabilizing policy update locations for 

reliable dispatch and trading with renewable uncertainty. 

 

Fundamental mechanisms behind OPRTDPG 

The OPRTDPG algorithm improves power system 

optimization through the use of Clipped Double-Q 

Learning to prevent overestimation of values, delayed 

policy updates to reduce variance, and Target Policy 

Smoothing to enhance exploration. It 

ensures safe dispatch and market trading under renewable 

energy uncertainty. 

Clipped Double-Q Learning 
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The Q-functions used by OPRTDPG are associated with 

independent actor and criticizer systems. The twofold 

network approach reduces value function over-estimation 

by minimizing the two Q-function values to more 

accurately represent system situations and actions. 

 

Delayed policy updates 

To increase the stability of the value network, policy 

changes are delayed until the Q-functions become 

sufficiently stable, which decreases unpredictability in 

value assessments, increasing the reliability of succeeding 

policy changes. 

 

Target policy smoothing 

OPRTDPG advances exploration and directs clear of the 

dangers of deterministic policy exploitation by adding 

clipped noise to the target activities. The target update is 

expressed in (7). 

 

𝑦 = 𝑟 + 𝛾𝑄 + (𝑠′, 𝜇(𝑠′) + 𝜖, 𝜖~𝑐𝑙𝑖𝑝(𝑁(0, 𝜎), −𝐶, 𝐶)

      

   (7) 

 

Here, 𝑦 stands for the desired value, 𝑟 for the reward, 𝛾 for 

the discount factor, and 𝜖 for the clipped noise. 

Implementation and adaptation for Power systems 

To improve power system dispatch and market trading, 

OPRTDPG adapts to dynamic environmental conditions, 

such as renewable energy fluctuations and market 

unpredictability, by integrating key components such as 

power generation units and energy storage systems. 

 

Critic Loss 

The critic networks are updated using the following loss 

function in (8). 

 

𝐶𝑟𝑖𝑡𝑖𝑐 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ [(𝑦 − 𝑄1(𝑠, 𝑎)) 2 + (𝑦 −𝑁

𝑖=1

𝑄2(𝑠, 𝑎)) 2]     

   (8) 

 

 where the two Q-functions are denoted by 𝑄1 and 𝑄2. 

 

Actor update 

Actor parameters are updated through gradient ascent with 

the first Q-function as (9) 

 

∆ ∅ 𝐽(∅) =
1

𝑁
∑ ∇𝑎

𝑁
𝑖=1 𝑄1(𝑠, 𝑎)| 𝑎=Π∅(𝑠)∇ ∅Π∅(𝑠) 

      

   (9) 

 

     The gradient ∆ ∅ 𝐽(∅) is computed by combining the 

gradient of the critic's 𝑄-value   with respect to the action 

𝑎, and the gradient of the actor policy Π∅(𝑠) enabling the 

actor to optimize actions that maximize the expected 𝑄-

value. 

Target network updates  

The target networks are updated with Polyak averaging to 

provide seamless transitions as (10) 

 

𝜃 ′ ← 𝜏𝜃 + (1 − 𝜏)𝜃 ′,    ∅ ′ ← 𝜏𝜃 + (1 − 𝜏)∅ ′  

                    

                                          (10) 

 

The Polyak averaging is used to express target network 

updates for stable reinforcement learning training. The 

OPRTDPG algorithm minimizes power dispatch and 

market trade costs, maximizes energy efficiency, 

and stabilizes markets, exhibiting robustness 

in dealing with renewable energy uncertainties in 

dynamic settings.  

Using the proposed OPRTDPG method resulted in 

markedly improved system performance, including 

smoother dispatch, lower operating cost, reduced price 

volatility, and higher renewable utilization. The combined 

OPRT and DPG mechanisms enabled stable learning and 

precise control, allowing the algorithm to deliver reliable, 

adaptive, and efficient optimization under dynamic and 

uncertain power system conditions. Algorithm .1 shows 

the process of the OPRTDPG model. 

 

Algorithm 1: OPRTDPG-based dispatch and market 

trading optimization 

1. Load dataset containing dispatch states, TCL variables, market prices, 

and renewable data. 

2. Compute feature bounds 𝑋min, 𝑋maxand apply Min–Max 

Normalization: 

𝑋scaled =
𝑋 − 𝑋min

𝑋max − 𝑋min

(1) 

3. Select high-impact features using feature-importance 

results; optionally remove low-impact attributes. 

4. Initialize environment models, including TCL thermal 

dynamics (refrigerator eqs. (2–4)) and water heater (eq. (5)). 

5. Simulate TCL aggregation using Monte-Carlo population 

behavior: 

𝑃𝑥 = 𝑃nom
𝑥

∑𝑚
𝑖=1 𝑞𝑥,𝑖

𝑚
(6) 

6. Initialize actor network 𝜇𝜙(𝑠)and dual critics 𝑄𝜃1
(𝑠, 𝑎), 

𝑄𝜃2
(𝑠, 𝑎). 

7. Create target networks and set them equal to online 

networks: 𝜙′ ← 𝜙, 𝜃1
′ ← 𝜃1, 𝜃2

′ ← 𝜃2. 

8. Initialize replay buffer 𝑅and define hyperparameters: 

𝛾, 𝜏, 𝜎, 𝐶, 𝑁,policy delay. 

9. Start training loop across episodes. 

10. Reset environment and retrieve initial normalized state 𝑠0. 

11. Select action using exploratory policy: 

𝑎𝑡 = 𝜇𝜙(𝑠𝑡) + noise 

12. Execute action in environment, updating TCL thermal states 

using equations (2–5). 

13. Receive reward 𝑟𝑡 , next state 𝑠𝑡+1, and terminal flag. 

14. Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡 , 𝑠𝑡+1,done)in buffer 𝑅. 

15. If buffer size < batch size, continue without learning. 

16. Sample minibatch of 𝑁transitions from replay buffer. 

17. Apply Target Policy Smoothing by adding clipped noise to 

target action: 

𝑎′ = 𝜇𝜙′(𝑠′) + 𝜖, 𝜖 ∼ clip(𝒩(0, 𝜎), −𝐶, 𝐶) (7) 

18. Compute target value using Clipped Double-Q: 

𝑦 = 𝑟 + 𝛾(1 − 𝑑𝑜𝑛𝑒) ⋅ min (𝑄𝜃1
′ (𝑠′, 𝑎′), 𝑄𝜃2

′ (𝑠′, 𝑎′)) 
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19. Update critics by minimizing loss: 

𝐿critic =
1

𝑁
∑[(𝑦 − 𝑄𝜃1

(𝑠, 𝑎))2 + (𝑦 − 𝑄𝜃2
(𝑠, 𝑎))2] (8) 

20. Perform gradient update on both critic networks. 

21. Every policy delay step, update actor: 

∇𝜙𝐽(𝜙) =
1

𝑁
∑∇𝑎𝑄𝜃1

(𝑠, 𝑎) ∣𝑎=𝜇𝜙(𝑠)⋅ ∇𝜙𝜇𝜙(𝑠) (9) 

22. Update actor parameters via gradient ascent. 

23. Update target networks using Polyak averaging: 

𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′, 𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′ (10) 

24. Repeat steps 11–23 until episode ends and learning stabilizes. 

25. Return final trained OPRTDPG controller, optimized for 

dispatch, TCL control, storage management, and market 

bidding. 

 

4   Result and discussion 
The proposed OPRTDPG method was evaluated using P2P 

efficiency, profit improvement, SOC optimization, peak-

load reduction, MAPE, training time, decision-making 

time, and overall performance improvement, while 

baseline results used market price fluctuation, energy 

efficiency, and system operating cost. The dataset was split 

into 70% training, 15% validation, and 15% testing to 

ensure reliable evaluation and prevent overfitting. Table 2 

shows the simulation environment, data split, 

reinforcement-learning parameters, and hardware 

configuration used to implement and evaluate the proposed 

OPRTDPG method. Table 3 shows the clearly presents the 

improvements of the proposed OPRTDPG over the DDPG 

baseline across multiple standard metrics. 

 

Table 2: Simulation environment, data setup, and 

OPRTDPG model parameters 

 

Category Details 

Environment 

Python 3.10; TensorFlow/PyTorch; 

custom power-system simulator (no 

OpenDSS/GridLAB-D); Kaggle 

dispatch & trading dataset. 

Data Split 
70% training, 15% validation, 15% 

testing. 

Training Setup 
3000 episodes, 5 epochs/episode, 

batch size 64, replay buffer 100k. 

RL 

Parameters 

Actor LR 0.0001; Critic LR 0.0002; 

γ = 0.99; Polyak τ = 0.005; 

Gaussian noise σ = 0.1; target 

update every 2 steps. 

System 

Settings 

15-min interval data; aggregated 

TCL models; SOC 20–98%; 

continuous action space with 

dispatch + trading states. 

Hardware 
NVIDIA RTX 2080 Ti GPU; Intel 

i7-9700K CPU; 32 GB RAM. 

 

 

 

 

Table 3: Comparison of standard metrics between DDPG 

and OPRTDPG 

 

Metric 
Baseline 

(DDPG) 

Proposed 

(OPRTDPG) 

Cumulative 

Reward 
12,500 15,300 

Convergence 

Rate (episodes) 
2,500 1,800 

Average Cost per 

Episode ($) 
100 88 

Dispatch Error 

(%) 
6.5 4.2 

Load Satisfaction 

Rate (%) 
91 97 

 

4.1  Experimental setup 
The experimental setup description has been expanded as 

recommended. The OPRTDPG algorithm was 

implemented in Python 3.11.4 using a custom RL 

simulation environment developed in NumPy and 

PyTorch, with no external real-time platforms such as 

OpenDSS or GridLAB-D. The environment models power 

balance, TCL thermal dynamics, ESS constraints, and 

market behavior. Beyond hardware specs, computational 

cost is now reported using evaluation metrics including 

training time, decision-making time, convergence rate, and 

scalability under increasing state dimensionality. 

Energy generation 

Energy generation refers to manufacturing usable 

electrical power from renewable sources (solar, wind, 

hydro) and predictable systems. Accurately modeling total 

energy generation (𝐸𝑔), as shown in (11), supports 

optimizing power system dispatch and market trading to 

improve system dependability and economic efficacy 

within renewable unpredictability. 

 

𝐸𝑔 = ∑ 𝑃𝑖
𝑁
𝑖=1 ∙ 𝑡𝑖     

      

   (11) 

Optimizing  𝐸𝑔provides system stability and effective 

resource use. Figure 4 shows the line graph of Predicted 

Renewable Energy Generation Over 24 Hours, which 

illustrates hourly energy generation (MWh) from solar, 

wind, hydro, and biomass sources. The X-axis shows time 

(0–24 hours), the Y-axis shows generation (0–11.5 MWh), 

with wind peaking at hour 6 and solar at hour 12. 
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Figure 4: Predicted energy generation 

 

The energy is generated from several sources over 24 hours. 

Early wind energy peaks at 15 MWh, whereas solar energy 

peaks at 10 MWh at noon. With averages of 4 MWh for 

biomass and 5 MWh for hydropower, resource distribution 

patterns are observable. These trends offer insightful 

information to improve power system dispatch tactics, 

guaranteeing effective resource distribution and increased 

system dependability in the face of renewable energy 

fluctuation. 

Decision-making time (s) 

Decision-making time is the amount of time needed to 

decide on the best course of action in dynamic situations. It 

is evaluated using the OPRTDPG technique to improve 

market trading and power system dispatch, guaranteeing 

dependability in the face of renewable energy fluctuation 

defined by (12). 

 

𝑇𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
   

   (12) 

 

Where  𝑇𝑑 improves power systems' operating efficiency 

and real-time flexibility. Figure 5 shows the Decision-

Making Time for OPRTDPG (High Time), the system’s 

decision-making time over operational seconds. The X-

axis represents Time (0.10–0.50 s), and the Y-axis shows 

Decision-Making Time (0.40–0.50 s). Data points range 

from 0.40 s to 0.50 s, indicating slight variation over time. 

 
Figure 5: Decision-making time across time interval  

 

The OPRTDPG algorithm's decision-making time at 

various time intervals is displayed in Figure 5. It records 

0.41 seconds at 0.10 seconds, 0.45 seconds at 0.20 

seconds, 0.43 seconds at 0.30 seconds, 0.47 seconds at 

0.40 seconds, and 0.50 seconds at 0.50 seconds, with a 

decision time of 0.49 seconds. The OPRTDPG algorithm 

supports effective real-time dispatch and market 

optimization with consistent decision-making times 

ranging from 0.41 to 0.50 seconds. 

Training time (s) 

The OPRTDPG algorithm's learning time for optimum 

policies is measured by the training time. In an effort to 

support real-time power dispatch and market trading 

choices that improve system stability, dependability, and 

economic efficiency, effective training facilitates quick 

response to renewable variability (13).  

 

𝑇𝑡𝑟𝑎𝑖𝑛 = ∑ 𝑡𝑒
𝐸
𝑒=1      

   (13) 

 

 Where 𝑇𝑡𝑟𝑎𝑖𝑛ensures faster deployment and improves 

algorithm performance for power system responsibilities 

that are optimized. Figure 6 shows the OPRTDPG 

algorithm's training time. 

 
Figure 6: Training time trend over multiple epochs  

 

A line graph visualizes Training Time Reduction for 

OPRTDPG, connecting data points across epochs. The X-

axis represents Epochs (1–5), and the Y-axis shows 

Training Time (s) (0–0.4), with values decreasing from 

~0.4 s to ~0.1 s over five epochs shown in Figure 6, where 

times drop from 0.39 seconds in epoch 1 to 0.10 seconds 

in epoch 5. This pattern shows improved optimization, 

enabling quicker and more efficient algorithm 

implementation. Training time for the OPRTDPG 

technique decreases from 0.39 to 0.10 seconds across five 

epochs, indicating increased effectiveness for real-time 

dispatch optimization. 

Evaluation includes P2P efficiency (96%), profit 

improvement (28.4%), SOC optimization (20–98%), peak-

load reduction (27.6%), MAPE (1.3%), training time (0.20 

s), decision-making time (0.45 s), and a performance 

improvement rate of 48.2% as shown in Table 4 & Table 

5, Outperforming existing approaches like LSTM [21], 

DQN [22], SARSA [22], and D3QN [22] approaches, the 

proposed OPRTDPG achieves higher accuracy, faster 

computation, superior stability, and better operational 

efficiency. Fig. 7 shows the key performance metrics of the 
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proposed OPRTDPG method, and the corresponding 

visual interpretation of these results is provided in the 

adjoining figure for clear comparison and understanding. 

 

Table 4: Performance comparison of OPRTDPG with 

LSTM across key operational metrics. 

 

Metrics (%) 

Methods 

LSTM [21] 
OPRTDPG 

[proposed] 

P2P Efficiency 91 96 

Profit 

Improvement 
15.6 28.4 

SOC 

Optimization 
30-95 20-98 

Peak Load 

Reduction 
18.4 27.6 

MAPE 2.5 1.3 

 
Figure 7: Performance comparison of LSTM and the 

proposed 

 

Table 5: Training, Decision-making, and Rate comparison 

of OPRTDPG and existing methods 

 

Metrics 

Methods 

LST

M 

[21] 

DQN 

[22] 

SAR

SA 

[22] 

D3Q

N 

[22] 

OPRT

DPG 

[propos

ed] 

Training 

Time (s) 
180 

196.0

111 

415.5

845 

244.1

469 
0.20 

Decision

-Making 

Time (s) 

- 0.347 0.354 0.390 0.45 

Perform

ance 

Improve

ment 

Rate 

- - 
30.5

% 

43.93

% 
48.2% 

 

To evaluate the OPRTDPG model, three operational 

metrics were analyzed: market price fluctuation, energy 

efficiency, and system operating cost, reflecting dispatch 

stability, resource utilization, and economic performance 

under renewable uncertainty. For baseline comparison, 

OPRTDPG was benchmarked against traditional methods, 

including rule-based and standard RL algorithms (DDPG), 

demonstrating notable improvements in cost reduction, 

energy use, and price stability. Power system operations 

become more reliable, economical, and sustainable as a 

result of the algorithm's capacity to include these elements. 

 

Market price fluctuation:  
Market price fluctuation quantifies electricity price 

variability caused by supply-demand imbalances. This 

research evaluates how effectively OPRTDPG stabilizes 

dispatch decisions under renewable uncertainty. Lower 

fluctuations reflect improved scheduling, secure trading 

behavior, and enhanced market reliability. 

 

Energy efficiency:  
Energy efficiency measures how effectively renewable, 

storage, and flexible load resources are converted into 

useful system output. Higher efficiency in this study 

demonstrates OPRTDPG’s ability to coordinate resources 

intelligently, minimize energy waste, and sustain 

operations under variable renewable generation 

conditions. 

System Operating Cost:  

System operating cost represents the total economic 

expenditure for generation dispatch, storage management, 

and market transactions. Reduced costs indicate 

OPRTDPG’s capability to make economically optimal 

decisions, lower reliance on expensive generation, and 

improve overall system profitability and market 

performance. 

 

Table 6: Baseline performance comparison of DDPG and 

OPRTDPG 

 

Metric 

Basel

ine 

(DDP

G) 

Propose

d 

(OPRT

DPG) 

Improve

ment 

95% 

CI 

p-

val

ue 

Marke

t Price 

Fluctu

ation 

(MWh) 

$50 ± 

2 

$45 ± 

1.5 
↓ 10% 

[44.1 

– 

46.2] 

p < 

0.0

1 

Energy 

Efficie

ncy 

(%) 

65 ± 

1.9 

74.75 ± 

1.4 
↑ 15% 

[73.4 

– 

75.9] 

p < 

0.0

1 

System 

Operat

ing 

Cost 

($/day) 

$100,

000 ± 

4,900 

$88,000 

± 3,600 
↓ 12% 

[$86,

200 – 

$89,5

00] 

p < 

0.0

1 
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Table 6 compares the baseline DDPG method with the 

proposed OPRTDPG algorithm across three key system 

metrics: market price fluctuation (MWh), energy 

efficiency (%), and system operating cost ($/day). 

OPRTDPG reduces market price volatility by 10% ($50 → 

$45), increases energy efficiency by 15% (65% → 

74.75%), and lowers system operating cost by 12% 

($100,000/day → $88,000/day), demonstrating improved 

dispatch stability, resource coordination, and economic 

performance under renewable uncertainty. The 95% 

confidence intervals and p-values confirm the statistical 

significance of all improvements. Market price fluctuation, 

energy efficiency, and system operating cost are key 

metrics for evaluating OPRTDPG. Compared to baseline 

DDPG, OPRTDPG reduces price volatility by 10%, 

improves efficiency by 15%, and lowers operating cost by 

12%, confirming enhanced dispatch stability, resource 

coordination, and economic performance. 

Discussion 

The current methods, such as LSTM [21], DQN [22], 

SARSA [22], and D3QN [22], also proved to have 

weaknesses regarding power system dispatch and market 

trading under renewable energy uncertainty. LSTM 

struggled with limited coordination of renewable, storage, 

and load-responsive actions and moderate decision-

making performance. DQN, SARSA, and D3QN required 

long training times, slower decision-making, and were 

sensitive to hyperparameters. These limitations resulted in 

suboptimal energy utilization, lower economic efficiency, 

and unstable market operations. 

 

The proposed OPRTDPG method overcomes these 

shortcomings by integrating a dual-control strategy for 

TCLs and price-responsive loads with an advanced twin 

deterministic policy gradient algorithm. OPRTDPG adapts 

to real-time renewable fluctuations and market conditions, 

improving stability, operational efficiency, and economic 

performance. Key results include: market price fluctuation 

reduced by 10% ($50/MWh → $45/MWh), energy 

efficiency increased by 15% (65% → 74.75%), system 

operating cost decreased by 12% ($100,000/day → 

$88,000/day), P2P efficiency improved to 96%, profit 

improvement to 28.4%, SOC optimization to 20–98%, 

peak load reduction to 27.6%, and MAPE reduced to 1.3%. 

For comparison, the baseline DDPG metrics were: market 

price fluctuation of $50/MWh, energy efficiency of 65%, 

and system operating cost of $100,000/day, showing that 

OPRTDPG achieves significant improvements. The 

proposed OPRTDPG method demonstrates robustness by 

maintaining stable dispatch and market decisions under 

high renewable variability and sudden load changes. 

Improvements arise from dual TCL and price-responsive 

load control, Clipped Double-Q learning, delayed policy 

updates, and target policy smoothing, optimizing 

efficiency, cost, and market stability within realistic 

operational constraints. 

Although effective, OPRTDPG has limitations: decision-

making time is slightly higher than simpler models, the 

algorithm is complex and requires proper hyperparameter 

tuning, and large-scale implementation demands sufficient 

computational resources for real-world deployment. 

 

5  Conclusion  
The increasing integration of renewable energy introduces 

uncertainty that challenges power system dispatch and 

market trading. To address this, the study aimed to 

optimize dispatch and trading decisions while maintaining 

economic efficiency and system stability. The Power 

System Dispatch and Market Trading dataset was used, 

with Min–Max normalization applied to improve training 

performance. A dual-control strategy managed both 

Thermostatically Controlled Loads (TCLs) and price-

responsive loads, enabling adaptive coordination of 

demand. The proposed OPRTDPG method, combining 

Optimal Power Reinforcement (OPRT) for dynamic 

adaptation and Twin Deterministic Policy Gradient (DPG) 

for continuous action optimization, was employed to learn 

real-time optimal policies. The evaluation showed that, 

compared to baseline DDPG metrics—market price 

fluctuation $50/MWh, energy efficiency 65%, and system 

operating cost $100,000/day—the OPRTDPG agent 

reduced price volatility by 10%, improved energy 

efficiency by 15%, and decreased operating costs by 12%, 

demonstrating superior adaptability to market and 

renewable variability.  

 

6  Limitations and Future Scopes 
OPRTDPG requires high computational resources for 

stable learning and depends heavily on dataset realism, 

limiting generalizability across diverse grid conditions and 

affecting performance under unseen renewable or market 

fluctuations. Future work would apply model-based RL, 

ensemble DRL, and online adaptive learning to improve 

stability and real-time performance, while extending the 

framework to multi-agent coordination and larger real-

world grid datasets. 
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