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The integration of renewable energy sources into modern power systems introduces uncertainty that
challenges efficient dispatch and market trading. This research presents a targeted optimization approach
using Deep Reinforcement Learning (DRL) for real-time power system dispatch and electricity market
trading operations. A proposed method employs the Optimal Power Reinforced Twin Deterministic Policy
Gradient (OPRTDPG) algorithm, which combines power system-specific reinforcement mechanisms with
deterministic policy gradients for precise and stable decision making under renewable generation and
market volatility. The methodology incorporates direct control of Thermostatically Controlled Loads
(TCLs) and indirect control of price-responsive demands, enabling flexible resource management. The
algorithm was trained and evaluated using the Power System Dispatch and Market Trading dataset from
Kaggle, containing 4,876 fifteen-minute interval records of system states, generation, storage, loads,
market prices, and reward metrics. Data preprocessing applied Min-Max normalization to ensure stable
learning. The algorithm was implemented in Python 3.11 using NumPy and PyTorch within a custom
power system simulation environment, capturing generation, storage, load dynamics, and market
behavior, without requiring external real-time platforms. Performance comparison with the baseline Deep
Deterministic Policy Gradient (DDPG) method, OPRTDPG reduces market price volatility by 10%
(850/MWh-845/MWh), improves energy conversion efficiency by 15% (65%-74.75%), and lowers daily
operating cost by 12% (3100,000-$88,000). These results demonstrate the algorithm's capacity to enhance
system reliability, maximize renewable utilization, and minimize operational cost. The framework provides
a scalable, simulation-tested solution for dynamic power system dispatch and market trading, highlighting
the practical applicability of DRL in renewable-rich electricity networks.

Povzetek:

1 Introduction

The integration of renewable energy sources into the
power grid significantly fluctuates power market
dynamics, significant to improved price volatility and
discriminating uncertainty. In markets where renewable
energy establishes a considerable portion of the energy
mix, power market trading approaches are substantial for
preserving economic efficacy and balancing energy supply
and demand [1]. When energy is transported dependably
and reasonably, the effectiveness and reliability of the
power system are important. Power systems' design and
functionality are varying intensely as a implication of the
increasing use of renewable energy sources, including
hydroelectric, solar, and wind [2]. The increasing

unpredictability and variability of renewable energy
supply create effective power system dispatch and increase
market trading significantly [3]. Energy conservation and
demand-side control are important mechanisms in modern
power systems. Storage supports control of renewable
intermittency by loading additional energy for subsequent
use, while flexible loads recommend additional control
opportunities. A volatility of mechanisms is optimally
accomplished to improve power market processes and
system flexibility [4]. Integrating renewable energy needs
advanced approaches to address price unpredictability and
supply-demand differences. Enhancing storage abilities
and applying flexible demand-side controls permit the grid
to improve its adaptability to renewable intermittence [5].
Effective optimization techniques are substantial for
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addressing challenges in renewable energy incorporation.
By leveraging dynamic decision-making approaches,
power systems could advance economic and operational
efficiency while confirming sustainability and flexibility
in the unpredictable energy resources [6]. Market trading
patterns experience significant changes to reflect the new
certainties presented by renewable energy-based power
systems. Through the use of cultured optimization
performances to include real-time market data and system
boundaries, the trading presentation and reliability of the
system can be improved [7]. The volatility of renewable
energy sources was tough to manage, which is frequently
reproduced in insufficiencies in market operations and
power dispatch. The comprehensive performance of the
system is influenced by the insufficient integration of
flexible loads and storage devices. It lacks the capacity to
handle dynamic changes in energy supply and demand [8].
Optimal dispatching in renewable-energy power systems
contributes to challenges across a wide range of
stakeholders: generation, storage, load, and external grids.
Each participant has demands and constraints that are
addressed efficiently [9]. A combined model that
appreehends system interdependences enables end-to-end
optimization, balancing cost, dependability, and renewable
energy use. It allows efficient responses to rapidly
fluctuating supply and demand conditions across several
systems and markets [10].

RQ1: How effectively can the OPRTDPG algorithm
optimize real-time power dispatch and market trading
under renewable energy uncertainty?

RQ2: Does the integration of TCLs, energy storage
systems, and price-responsive loads within OPRTDPG
improve system stability and cost efficiency compared to
existing RL methods?

RQ3: Can OPRTDPG reduce market price volatility and
enhance renewable utilization compared to baseline
algorithms such as DDPG, TD3, and rule-based dispatch?
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Research Objective: The research overcomes these
restrictions by using demand-side flexibility and
coordinated energy storage. It addresses the changing
requirements of contemporary power markets and
improves system accessibility to the fluctuation of
renewable energy, enhancing grid stability and operational
efficacy. An adaptive optimization framework is
generated, which efficiently integrates renewable energy
sources into market trading and power system dispatching.
It handles market unpredictability and uncertainty in

renewable power by employing Optimal Power
Reinforced Twin Deterministic Policy  Gradient
(OPRTDPG).

2 Related works

A predictive dispatch method was established for hybrid
building energy systems to increase financial gains by
coordinating flexible resources like electric vehicles and
batteries [11]. This approach enhances market
participation and overall system efficiency. It reduced
electricity prices while maintaining comfort and enabled
grid power modulation. However, further research was
needed to assess scalability and long-term performance
across diverse grid signals and market conditions. Reactive
power in integrated community power systems was
presented to enhance participation in the market for power
distribution [12]. Using a bi-level programming approach
transformed into a mixed-integer second-order cone
programming model, the method incorporated inverter-
based distributed generators, locational marginal pricing,
and flexibility services. It enhanced the integration of
renewable energy sources and decreased operating
expenses. However, further research was needed to fully
assess the scalability and variety of system applications in
the actual world. Table 1 shows the literature survey for
previous research.

Table 1: Comparative analysis of power dispatch and trading methodologies

References Objective Method used Key Quantitative Major Limitations
Results
Risk-neutral  traders | Oversimplified  market
Enhance trading | Multi-stage = Mixed- | achieved higher day- | dynamics; limited
Kraft et al., .. . .-
decisions & | Integer Linear | ahead profit and | scalability; cannot adapt
[13] . . . . .
manage risk Programming (MILP) | improved stochastic | to real-time renewable
resilience fluctuations
. Ineffective under high
Optimal day- .. .
ahead  dispatch Metaheuristic Outperformed renewable uncertainty; no
Pal et al., [14] . P optimization (Beetle | GA/PSO by 6-12% on | real-time adaptation;
for virtual power L . .
Antenna Search) cost minimization limited to scenario-based
plants studies
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Improve benefit Restricted to thermal-
. prov .| Two-stage dispatch | Reduced the ancillary | dominated grids; not
Ding etal.,, | allocation in oL : . .
[15] hybrid renewable optimization market imbalance by | validated for high-RES
(thermal-wind-PV) 8-10% penetration; no learning
systems .
capability
Linearized market
Liu et al Optimal energy | Dynamic Reduced transaction | pricing; DP suffers from
[16] ° trading with wind | Programming  with | volume by 10-14%; | “curse of
+ storage SOC-based decisions | cost savings ~7% dimensionality”’; cannot
scale to complex systems
Deep + | Peak load [18.4%, Simulation on 33-bus te.st
P2P energy . . . system; real-world grid
Seif, A., [21] | trading in smart Reinforcement Trading efficiency scale not validated;
T rids £ Learning based EMS | 122.7%, EV revenue depends  on accuraté
£ (LSTM + DRL) 115.6% p
forecasts
. Avg. reward 1.79 vs T.he quel is relatively
Dispatch simple; it was tested on a
. S . 1.24/1.62, . .
Zhai et al. optimization for | Dueling Double Deep . stylized wind-storage
. Convergence time .
[22] wind-storage + | Q-Network (D3QN) system; it has not been
. 244 s, Reward
flexible loads . demonstrated on a large-
improvement 43.9% .
scale real grid.

A two-stage dispatching model for hybrid wind-
photovoltaic-thermal systems was introduced to improve
benefit distribution [17]. The second step increased the
usage of renewable energy while minimizing expenditures.
Results were improved in secondary service markets, but
they were only available in thermal power-dominated
areas, and their scalability had not been evaluated. A low-
carbon economic dispatch and energy-sharing framework
for multiple integrated energy systems was developed
using a Stackelberg game model, where the energy service
provider sets pricing and the systems optimize operation
charges [18]. Equilibrium was ensured using a
decentralized algorithm. The technique increased revenue,
resource use, and the distribution of carbon quotas, but it
has not been proven to be useful in complex systems.

Energy merchants with wind farms and energy
storage placed together have been investigated for optimal
scheduling, integrated power market impact, and wind
uncertainty using dynamic programming [19]. The
algorithm wused state-of-charge reference points to
optimize trading, reducing transaction volumes while
maximizing productivity. The market price effect was
modeled linearly to simplify scheduling under dynamic
circumstances. A multi-energy sharing model was
explored to lower the carbon dispatch and maximize social
welfare in distributed energy systems [20]. A decentralized
algorithm using price information sharing addresses
optimal P2P (Peer-to-Peer) energy trading in smart grids
[21]. It improves trading efficiency, cost savings, and
market participation despite scalability limits. An
improved DRL method [22] optimizes modern power
system dispatch, reducing operating costs and enhancing
renewable utilization, achieving a 12% cost reduction and

15% efficiency conventional
approaches.

Research Gap

The main disadvantage of existing approaches, such as the
predictive dispatch method for hybrid systems (e.g., [11])
and bi-level programming for reactive power optimization
(e.g., [12]), is their limited ability to handle varying grid
signals and dynamic market conditions. These methods
often lack scalability and flexibility when applied to
diverse scenarios. Moreover, models like multi-stage
Mixed Integer Linear Programming [13] and Beetle
Antenna Search [14], while promising, tend to overlook
critical market dynamics and large system concepts,
restricting their practical application in real-world power
system operation and planning. The growing requirement
for renewable sources such as wind and solar has improved
volatility in modern power networks. It complicates grid
constancy, market efficacy, and cost decrease. Real-time
pricing and renewable unpredictability further challenge
optimization tactics, highlighting inadequacies. Further,
policy decisions are deficient in incorporating energy
storage and price-responsive demand, and restrictive
complete system efficiency. The OPRTDPG algorithm
offers an intelligent and stable solution for optimizing real-
time market trading and power dispatch utilizing deep
reinforcement learning.

improvement  over

3 Methodology

The model was developed by integrating power generation
components, energy storage systems, external grids, and
market instruments. The dual approach enhances power
dispatch through direct TCL control and price-responsive
load modifications. Data preprocessing uses Min-Max
normalization to enhance training performance. The
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methodology optimizes market trading strategies and
power system dispatch using the Optimal Power
Reinforced Twin Deterministic  Policy  Gradient
(OPRTDPG) algorithm. Figure 1 shows the proposed flow.

Thermostatically Controlled |
Loads (TCLs) |

| Powersystem dispateh o .
| and markettrading 1 2z Min 1 | |
| | dispatchand market trading. |

| strategiesusing the Optimal |
Power Reinforced Twin |
DeterministicPolcy Gradmt |

Figure 1: Methodology framework

3.1 Data collection

The Power System Dispatch & Market Trading Dataset
(https://www.kaggle.com/datasets/programmer3/power-
system-dispatch-and-market-trading-dataset) is used to
model real-time power system operations and market
trading dynamics. It contains 4,876 records, each
corresponding to a 15-minute interval capturing system
states, control actions, electricity market prices, and
reward metrics representing cost and stability objectives.
The dataset includes variable renewable generation (wind
and solar), conventional generation, energy storage states,
thermostatically controlled loads, and price-responsive
demand. It provides a comprehensive view of modern grid
operations, enabling simulation, reinforcement learning,
and optimization of dispatch and market strategies under
varying renewable and load conditions.
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Figure 2: Feature importance for power system
optimization, dispatching, and power market trading
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The feature-importance results show which variables most
influence power dispatch and market trading decisions
(Figure 2). High-impact features like demand and
renewable generation guide optimization, while low-
impact ones can be removed. The dataset originates from
Kaggle and does not represent an actual utility-operated
grid such as PJM or CAISO. This limitation has been
acknowledged, and future validation will require
benchmarking with real-world grid data to strengthen
generalizability and ensure that model performance
accurately reflects operational conditions.

Data preprocessing using Min-Max Normalization

It is essential for ensuring stable learning within the
OPRTDPG method, particularly under renewable energy
uncertainty and volatile market conditions. All continuous
features, including market price, renewable generation,
load demand, energy storage state of charge, and TCL
temperature states, were normalized using Min—Max
scaling to a [0,1]range. This prevents large-magnitude
variables from dominating updates and improves gradient
stability during training. Normalization is computed using
equation (1).

X—Xmin

X =
scaled
Xmax—Xmin

(1
Where X is the raw value and X,,;in, Xinex are dataset
bounds. This preprocessing enhances robustness,
accelerates convergence, and directly strengthens

OPRTDPG decision performance.

Thermostatically Controlled Loads (TCLs)

The growing share of renewable energy introduces
variability and uncertainty into power system dispatch.
Thermostatically Controlled Loads (TCLs) provide
valuable demand-side flexibility that can counterbalance
this uncertainty. Accurate TCL modeling is therefore
essential for integrating these loads into the OPRTDPG
framework to enhance dispatch reliability, reduce
operational cost, and improve market trading stability.

Domestic refrigerators

A household refrigerator consists of a cooling
compartment, freezer compartment, and internal thermal
mass. Heat transfer between compartments and the
external environment is illustrated in Figure 3. The
temperatures of the air in each compartment are
represented by Ty, Ty, T,, and T,, while T,denotes room
temperature.
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Figure 3: Block diagram of the domestic refrigerators'
thermal model

Heat-transfer parameters include thermal conductance U, ,,

heat-exchange area A mass m,, and specific heat

X,y
capacity S,.. Cooling power is allocated using y, = n,yand
Yy = 1Y, Where n,and n,represent the fraction of cooling
delivered to each compartment. The following equations

(2), (3), and (4) describe the dynamics of temperature:

_ Ua,bAa,b _ Ua,cAa,c _
Ta - MgSaq (Ta Tb)+ MaSa (Ta Tc)+

UgeAae _ _ YaqP nom
MqSq (Ta Te) MgSq (2)
UgpA Up dA
-t -1 + et 1)
UbeAbe (T, —T,) — Yb4P nom (3)
e

mpSp mpSp

Ug,c Aa,c UpdA
T, = 7;’-(:Sc' (Te =Ty, Tqg = fr,:ljsl;d (Tq — Tp)

“

Here, q is the on/off state (0 or 1), and P ,,,, is the
nominal compressor power.

TCL modeling for dispatch optimization

Electric water heaters provide additional controllable
flexibility, especially during peak demand periods. Their
thermal behavior is modeled as equation (5)

w(t)

P‘nOm
— T —=T,) + T nom

1
Th = SwV;
wVp

RpeSwVp

(Th - Te) -
(5)
Where T, is water temperature, T,inlet temperature,

w(t)flow rate, and Rp., V,, S,represent thermal
resistance, tank volume, and heat capacity.
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Aggregated TCL Models

Aggregated TCL behavior is captured using Monte Carlo
simulations, allowing realistic ~ population-level
responses. The aggregate power of refrigerators and
boilers is expressed as equation (6).

Tiz1 i
— X =11x —
Pe =P pom==—",x=1,b

(6)
P, denotes the aggregated power of TCL category x,
P mis the nominal power of one device, mis the
population size, and g, ;is the binary ON-OFF state of the
i-th device. This enables the OPRTDPG agent to
coordinate TCL flexibility for enhanced stability and
renewable integration.
Optimization of power system dispatch and market trading
strategies using Optimal Power Reinforced Twin
Deterministic Policy Gradient (OPRTDPG)
The OPRTDPG algorithm serves as the core optimization
framework for real-time power system dispatch and
market trading under renewable energy uncertainty,
outperforming conventional RL methods. It integrates
power-system—specific reinforcement mechanisms with
deterministic policy gradient learning to enhance stability,
accuracy, and economic performance. The OPRTDPG
structure combines two components: the Optimal Power
Reinforced Twin (OPRT) mechanism, embedding system
knowledge and multiple stabilization techniques to handle
constraints and prevent overestimation, and the
Deterministic Policy Gradient (DPG) mechanism,
enabling continuous, precise control of dispatch and
trading actions. This integration allows faster
convergence, adaptive decision-making, reduced market
price volatility, lower operating costs, improved renewable
utilization, and reliable operation under dynamic,
uncertain conditions, which standard RL methods struggle
to achieve.
The OPRTDPG algorithm provides a significant
advancement to power system dispatching and trading in
the market by handling TCLs and price-responsive loads
by way of adjustment to real-time renewable energy
variations. The OPRTDPG algorithm improves efficiency
and economy in power systems by decreasing Q-learning
overestimation and stabilizing policy update locations for
reliable dispatch and trading with renewable uncertainty.

Fundamental mechanisms behind OPRTDPG

The OPRTDPG algorithm improves power system
optimization through theuse ~ of Clipped = Double-Q
Learning to prevent overestimation of values, delayed
policy updates to reduce variance, and Target Policy
Smoothing to enhance exploration. It
ensures safe dispatch and market trading under renewable
energy uncertainty.

Clipped Double-Q Learning
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The Q-functions used by OPRTDPG are associated with
independent actor and criticizer systems. The twofold
network approach reduces value function over-estimation
by minimizing the two Q-function values to more
accurately represent system situations and actions.

Delayed policy updates

To increase the stability of the value network, policy
changes are delayed until the Q-functions become
sufficiently stable, which decreases unpredictability in
value assessments, increasing the reliability of succeeding
policy changes.

Target policy smoothing

OPRTDPG advances exploration and directs clear of the
dangers of deterministic policy exploitation by adding
clipped noise to the target activities. The target update is
expressed in (7).

y=r+yQ+ (s',u(s") +¢ e~clip(N(0,0),—C,C)

O]

Here, y stands for the desired value, r for the reward, y for
the discount factor, and € for the clipped noise.
Implementation and adaptation for Power systems

To improve power system dispatch and market trading,
OPRTDPG adapts to dynamic environmental conditions,
such as renewable energy fluctuations and market
unpredictability, by integrating key components such as
power generation units and energy storage systems.

Critic Loss
The critic networks are updated using the following loss
function in (8).

Critic Loss = =S, [(y — Qu(s, @) 2 + (v —
QZ (S! a)) 2]
3

where the two Q-functions are denoted by Q; and Q..

Actor update
Actor parameters are updated through gradient ascent with
the first Q-function as (9)

Ay J(@) = % 1420105, 0)| a=nos)V oMy (s)

(€)

The gradient A J(@)is computed by combining the
gradient of the critic's Q-value with respect to the action
a, and the gradient of the actor policy I1(s) enabling the
actor to optimize actions that maximize the expected Q-
value.
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Target network updates
The target networks are updated with Polyak averaging to
provide seamless transitions as (10)

' «10+(1—-1)0', @' «10+(1—-1)0'

(10)

The Polyak averaging is used to express target network

updates for stable reinforcement learning training. The
OPRTDPG algorithm minimizes power dispatch and
market trade costs, maximizes energy efficiency,
and stabilizes markets, exhibiting robustness
in dealing with renewable  energy  uncertainties in
dynamic settings.
Using the proposed OPRTDPG method resulted in
markedly improved system performance, including
smoother dispatch, lower operating cost, reduced price
volatility, and higher renewable utilization. The combined
OPRT and DPG mechanisms enabled stable learning and
precise control, allowing the algorithm to deliver reliable,
adaptive, and efficient optimization under dynamic and
uncertain power system conditions. Algorithm .1 shows
the process of the OPRTDPG model.

Algorithm 1: OPRTDPG-based dispatch and market
trading optimization

Load dataset containing dispatch states, TCL variables, market prices,
and renewable data.
2. Compute feature bounds X, X,.xand apply Min—Max
Normalization:
X — Xni
X, scaled = Ximm (])

max — Xmin
3. Select high-impact features using feature-importance
results; optionally remove low-impact attributes.
4. Initialize environment models, including TCL thermal
dynamics (refrigerator egs. (2—4)) and water heater (eq. (5)).
5. Simulate TCL aggregation using Monte-Carlo population

behavior:
m

_ px Zi=1 i
PX - Pnom T (6)
6. Initialize actor network p(s)and dual eritics Qg, (s, a),
QSZ (S, a)'
7. Create target networks and set them equal to online
networks: ¢’ « ¢, 0] < 0,0, < 0,.
8. [Initialize replay buffer Rand define hyperparameters:
Y,7,0,C, N,policy delay.
9.  Start training loop across episodes.
10. Reset environment and retrieve initial normalized state s,.
11. Select action using exploratory policy:
a; = pg(se) + noise
12. Execute action in environment, updating TCL thermal states
using equations (2-5).
13. Receive reward r;, next state s;,, and terminal flag.
14. Store transition (s;, a;, 1, S;41,done)in buffer R.
15. If buffer size < batch size, continue without learning.
16. Sample minibatch of Ntransitions from replay buffer.
17.  Apply Target Policy Smoothing by adding clipped noise to
target action:
a' =y (s") + €€~ clip(VW(0,0),—C,C) 7
18. Compute target value using Clipped Double-Q:
¥ =7 +y(1 - done) - min (Qg; (s', @), Qgy (', a"))
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19. Update critics by minimizing loss:
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Table 3: Comparison of standard metrics between DDPG

1
Laie = 5 20 = Qo,(5,))* + 0 = Qu, (5. )']  (®) and OPRTDPG
20. Perform gradient update on both critic networks.
21. Every policy delay step, update actor: Metri Baseline Proposed
1 etric
Vo) (9) = 557006, (5 @) laugy Vatto(s)  (9) (DDPG) | (OPRTDPG)
22. Update actor parameters via gradient ascent. Cumulative
, _ 12,500 15,300
23.  Update target networks using Polyak averaging: Reward
0«10+ (1-1)0",¢" «19p+ (1 —1)0' (10) Convergence
24. Repeat steps 11-23 until episode ends and learning stabilizes. Rat g d 2,500 1,800
25. Return final trained OPRTDPG controller, optimized for ate (episodes)
dispatch, TCL control, storage management, and market Average Cost per 100 88
bidding. Episode ($)
Dispatch Error
. . o 6.5 42
4 Result and discussion (%)
The proposed OPRTDPG method was evaluated using P2p | L-0ad Satlsofactlon 91 97
efficiency, profit improvement, SOC optimization, peak- Rate (%)

load reduction, MAPE, training time, decision-making
time, and overall performance improvement, while
baseline results used market price fluctuation, energy
efficiency, and system operating cost. The dataset was split
into 70% training, 15% validation, and 15% testing to
ensure reliable evaluation and prevent overfitting. Table 2
shows the simulation environment, data split,
reinforcement-learning  parameters, and hardware
configuration used to implement and evaluate the proposed
OPRTDPG method. Table 3 shows the clearly presents the
improvements of the proposed OPRTDPG over the DDPG
baseline across multiple standard metrics.

Table 2: Simulation environment, data setup, and
OPRTDPG model parameters

Category Details
Python 3.10; TensorFlow/PyTorch;
Environment custom power-system simulator (no
OpenDSS/GridLAB-D); Kaggle
dispatch & trading dataset.
Data Split 70% training, 15% validation, 15%

testing.
3000 episodes, 5 epochs/episode,
batch size 64, replay buffer 100k.
Actor LR 0.0001; Critic LR 0.0002;

Training Setup

RL v =0.99; Polyak t = 0.005;
Parameters Gaussian noise ¢ = 0.1; target
update every 2 steps.
15-min interval data; aggregated
System TCL models; SOC 20-98%;
Settings continuous action space with
dispatch + trading states.
NVIDIA RTX 2080 Ti GPU; Intel
Hardware

17-9700K CPU; 32 GB RAM.

4.1 Experimental setup
The experimental setup description has been expanded as
recommended. The OPRTDPG algorithm  was
implemented in Python 3.11.4 using a custom RL
simulation environment developed in NumPy and
PyTorch, with no external real-time platforms such as
OpenDSS or GridLAB-D. The environment models power
balance, TCL thermal dynamics, ESS constraints, and
market behavior. Beyond hardware specs, computational
cost is now reported using evaluation metrics including
training time, decision-making time, convergence rate, and
scalability under increasing state dimensionality.
Energy generation
Energy generation refers to manufacturing usable
electrical power from renewable sources (solar, wind,
hydro) and predictable systems. Accurately modeling total
energy generation (Ez), as shown in (11), supports
optimizing power system dispatch and market trading to
improve system dependability and economic efficacy
within renewable unpredictability.
Eg =3Pt

(11)
Optimizing Egprovides system stability and effective
resource use. Figure 4 shows the line graph of Predicted
Renewable Energy Generation Over 24 Hours, which
illustrates hourly energy generation (MWh) from solar,
wind, hydro, and biomass sources. The X-axis shows time
(0-24 hours), the Y-axis shows generation (0-11.5 MWh),
with wind peaking at hour 6 and solar at hour 12.
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Predicted Renewable Energy Generation Over 24 Hours
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Figure 4: Predicted energy generation

The energy is generated from several sources over 24 hours.
Early wind energy peaks at 15 MWh, whereas solar energy
peaks at 10 MWh at noon. With averages of 4 MWh for
biomass and 5 MWh for hydropower, resource distribution
patterns are observable. These trends offer insightful
information to improve power system dispatch tactics,
guaranteeing effective resource distribution and increased
system dependability in the face of renewable energy
fluctuation.

Decision-making time (s)

Decision-making time is the amount of time needed to
decide on the best course of action in dynamic situations. It
is evaluated using the OPRTDPG technique to improve
market trading and power system dispatch, guaranteeing
dependability in the face of renewable energy fluctuation
defined by (12).

__ Totaldecision computation time

T, =

Number of decisions made

(12)

Where T, improves power systems' operating efficiency
and real-time flexibility. Figure 5 shows the Decision-
Making Time for OPRTDPG (High Time), the system’s
decision-making time over operational seconds. The X-
axis represents Time (0.10-0.50 s), and the Y-axis shows
Decision-Making Time (0.40—0.50s). Data points range

from 0.40 s to 0.50 s, indicating slight variation over time.
Decision-Making Time for OPRTDPG (High Time)

—e— OPRTDPG [Proposed]

e e o
Q 1 2

Decision-Making Time (s)

o

0.0

0.10 015 020 0.25 0.30 035 0.40 045 0.50
Time (s)

Figure 5: Decision-making time across time interval

The OPRTDPG algorithm's decision-making time at
various time intervals is displayed in Figure 5. It records
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0.41 seconds at 0.10 seconds, 0.45 seconds at 0.20
seconds, 0.43 seconds at 0.30 seconds, 0.47 seconds at
0.40 seconds, and 0.50 seconds at 0.50 seconds, with a
decision time of 0.49 seconds. The OPRTDPG algorithm
supports effective real-time dispatch and market
optimization with consistent decision-making times
ranging from 0.41 to 0.50 seconds.

Training time (s)

The OPRTDPG algorithm's learning time for optimum
policies is measured by the training time. In an effort to
support real-time power dispatch and market trading
choices that improve system stability, dependability, and
economic efficiency, effective training facilitates quick
response to renewable variability (13).

— V'E
Ttrain - Ze:l te

(13)

Where Tipqinensures faster deployment and improves
algorithm performance for power system responsibilities
that are optimized. Figure 6 shows the OPRTDPG

algorithm's training time.
Training Time Reduction for OPRTDPG

-@- OPRTDPG [Proposed]

Training Time (s)
pt
o
¥

10 15 2.0 25 35 4.0 45 5.0

30
Epochs

Figure 6: Training time trend over multiple epochs

A line graph visualizes Training Time Reduction for
OPRTDPG, connecting data points across epochs. The X-
axis represents Epochs (1-5), and the Y-axis shows
Training Time (s) (0-0.4), with values decreasing from
~0.4 s to ~0.1 s over five epochs shown in Figure 6, where
times drop from 0.39 seconds in epoch 1 to 0.10 seconds
in epoch 5. This pattern shows improved optimization,
enabling quicker and more efficient algorithm
implementation. Training time for the OPRTDPG
technique decreases from 0.39 to 0.10 seconds across five
epochs, indicating increased effectiveness for real-time
dispatch optimization.

Evaluation includes P2P efficiency (96%), profit
improvement (28.4%), SOC optimization (20-98%), peak-
load reduction (27.6%), MAPE (1.3%), training time (0.20
s), decision-making time (0.45 s), and a performance
improvement rate of 48.2% as shown in Table 4 & Table
5, Outperforming existing approaches like LSTM [21],
DQN [22], SARSA [22], and D3QN [22] approaches, the
proposed OPRTDPG achieves higher accuracy, faster
computation, superior stability, and better operational
efficiency. Fig. 7 shows the key performance metrics of the
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proposed OPRTDPG method, and the corresponding
visual interpretation of these results is provided in the
adjoining figure for clear comparison and understanding.

Table 4: Performance comparison of OPRTDPG with
LSTM across key operational metrics.

Methods
3 o,
Metrics (%) LSTM [21] OPRTDPG
[proposed]
P2P Efficiency 91 96
Profit 15.6 28.4
Improvement
SOC
Optimization 30-95 20-98
Peak Load
Reduction 184 27.6
MAPE 2.5 1.3

Performance Comparison: LSTM vs OPRTDPG (Proposed)
6

100
— LSTM 21
91 OPRTORG [proposed)

Metric Values (%)

apenee Lanes” wre

et
rove
profit % peak\®

Figure 7: Performance comparison of LSTM and the
proposed

Table 5: Training, Decision-making, and Rate comparison
of OPRTDPG and existing methods

Methods
OPRT
Metrics LST DON SAR | D3Q DPG
M [22] SA N [propos
[21] [22] [22] ed]
Training 196.0 | 415.5 | 244.1
Time (s) 180 111 845 469 0.20
Decision
-Making - 0.347 | 0.354 | 0.390 0.45
Time (s)
Perform
ance
30.5 4393 o
Improve - - o % 48.2%
ment
Rate

To evaluate the OPRTDPG model, three operational
metrics were analyzed: market price fluctuation, energy
efficiency, and system operating cost, reflecting dispatch
stability, resource utilization, and economic performance
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under renewable uncertainty. For baseline comparison,
OPRTDPG was benchmarked against traditional methods,
including rule-based and standard RL algorithms (DDPG),
demonstrating notable improvements in cost reduction,
energy use, and price stability. Power system operations
become more reliable, economical, and sustainable as a
result of the algorithm's capacity to include these elements.

Market price fluctuation:

Market price fluctuation quantifies -electricity price
variability caused by supply-demand imbalances. This
research evaluates how effectively OPRTDPG stabilizes
dispatch decisions under renewable uncertainty. Lower
fluctuations reflect improved scheduling, secure trading
behavior, and enhanced market reliability.

Energy efficiency:

Energy efficiency measures how effectively renewable,
storage, and flexible load resources are converted into
useful system output. Higher efficiency in this study
demonstrates OPRTDPG’s ability to coordinate resources

intelligently, minimize energy waste, and sustain
operations under variable renewable generation
conditions.

System Operating Cost:

System operating cost represents the total economic
expenditure for generation dispatch, storage management,
and market transactions. Reduced costs indicate
OPRTDPG’s capability to make economically optimal
decisions, lower reliance on expensive generation, and
improve overall system profitability and market
performance.

Table 6: Baseline performance comparison of DDPG and

OPRTDPG
Basel | Propose 95% | p-

.. | ine d Improve | CI val

Metric (DDP | (OPRT e v
G) DPG)
Marke
t Price [44.1 | p<
+ +
Fluctu gso ?455 l« 10% _ 0.0
ation ’ 46.2] | 1
(MWh)
Energy
Efficie | 65+ | 7475+ [734 | p<
115% - 0.0
o S 75.9] | 1
(%) .
System
[$86,

Operat | $100. ) geg 40 500 | P<
ing 000 + + 3,600 1 12% 6895 0.0
Cost 4,900 ’ 00] S
($/day)
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Table 6 compares the baseline DDPG method with the
proposed OPRTDPG algorithm across three key system
metrics: market price fluctuation (MWh), energy
efficiency (%), and system operating cost ($/day).
OPRTDPG reduces market price volatility by 10% ($50 —
$45), increases energy efficiency by 15% (65% —
74.75%), and lowers system operating cost by 12%
($100,000/day — $88,000/day), demonstrating improved
dispatch stability, resource coordination, and economic
performance under renewable uncertainty. The 95%
confidence intervals and p-values confirm the statistical
significance of all improvements. Market price fluctuation,
energy efficiency, and system operating cost are key
metrics for evaluating OPRTDPG. Compared to baseline
DDPG, OPRTDPG reduces price volatility by 10%,
improves efficiency by 15%, and lowers operating cost by
12%, confirming enhanced dispatch stability, resource
coordination, and economic performance.

Discussion

The current methods, such as LSTM [21], DQN [22],
SARSA [22], and D3QN [22], also proved to have
weaknesses regarding power system dispatch and market
trading under renewable energy uncertainty. LSTM
struggled with limited coordination of renewable, storage,
and load-responsive actions and moderate decision-
making performance. DQN, SARSA, and D3QN required
long training times, slower decision-making, and were
sensitive to hyperparameters. These limitations resulted in
suboptimal energy utilization, lower economic efficiency,
and unstable market operations.

The proposed OPRTDPG method overcomes these
shortcomings by integrating a dual-control strategy for
TCLs and price-responsive loads with an advanced twin
deterministic policy gradient algorithm. OPRTDPG adapts
to real-time renewable fluctuations and market conditions,
improving stability, operational efficiency, and economic
performance. Key results include: market price fluctuation
reduced by 10% ($50/MWh — $45/MWh), energy
efficiency increased by 15% (65% — 74.75%), system
operating cost decreased by 12% ($100,000/day —
$88,000/day), P2P efficiency improved to 96%, profit
improvement to 28.4%, SOC optimization to 20-98%,
peak load reduction to 27.6%, and MAPE reduced to 1.3%.
For comparison, the baseline DDPG metrics were: market
price fluctuation of $50/MWh, energy efficiency of 65%,
and system operating cost of $100,000/day, showing that
OPRTDPG achieves significant improvements. The
proposed OPRTDPG method demonstrates robustness by
maintaining stable dispatch and market decisions under
high renewable variability and sudden load changes.
Improvements arise from dual TCL and price-responsive
load control, Clipped Double-Q learning, delayed policy
updates, and target policy smoothing, optimizing
efficiency, cost, and market stability within realistic
operational constraints.

Z.B. Jing et al.

Although effective, OPRTDPG has limitations: decision-
making time is slightly higher than simpler models, the
algorithm is complex and requires proper hyperparameter
tuning, and large-scale implementation demands sufficient
computational resources for real-world deployment.

5 Conclusion

The increasing integration of renewable energy introduces
uncertainty that challenges power system dispatch and
market trading. To address this, the study aimed to
optimize dispatch and trading decisions while maintaining
economic efficiency and system stability. The Power
System Dispatch and Market Trading dataset was used,
with Min—Max normalization applied to improve training
performance. A dual-control strategy managed both
Thermostatically Controlled Loads (TCLs) and price-
responsive loads, enabling adaptive coordination of
demand. The proposed OPRTDPG method, combining
Optimal Power Reinforcement (OPRT) for dynamic
adaptation and Twin Deterministic Policy Gradient (DPG)
for continuous action optimization, was employed to learn
real-time optimal policies. The evaluation showed that,
compared to baseline DDPG metrics—market price
fluctuation $50/MWh, energy efficiency 65%, and system
operating cost $100,000/day—the OPRTDPG agent
reduced price volatility by 10%, improved energy
efficiency by 15%, and decreased operating costs by 12%,
demonstrating superior adaptability to market and
renewable variability.

6 Limitations and Future Scopes

OPRTDPG requires high computational resources for
stable learning and depends heavily on dataset realism,
limiting generalizability across diverse grid conditions and
affecting performance under unseen renewable or market
fluctuations. Future work would apply model-based RL,
ensemble DRL, and online adaptive learning to improve
stability and real-time performance, while extending the
framework to multi-agent coordination and larger real-
world grid datasets.
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