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In recent years, with the growth of civil aviation passenger volume, the importance of dangerous goods
detection in ensuring airport and aviation safety has become increasingly prominent. To address the
issue of low accuracy in existing dangerous goods detection methods, we propose an improved method
for civil aviation dangerous goods detection. The method integrates an enhanced DeepLabv3+ model
and a YOLOv5s model with an introduced Coordinate Attention (CA) mechanism. The DeepLabv3+
model is optimized by incorporating Depthwise Separable Convolution (DSConv) and Squeeze-and-
Excitation (SE) attention mechanisms to enhance feature extraction capabilities. Meanwhile, the
YOLOv5s model improves detection accuracy by incorporating the CA mechanism. We employ the
HiXray, PIDray, and a self-collected terahertz dataset for training and validation. Using a methodology
that involves semantic segmentation followed by object detection, experimental results demonstrate that
the proposed method achieves an average precision (NAP@0.5) of 97.66% and a frame rate (FPS) of
27.23 fls, outperforming comparison methods such as Faster R-CNN, EA-YOLOv8, and SSD.
Additionally, an analysis of the application effectiveness of the proposed method shows detection
accuracy rates of 97.8%, 96.6%, and 97.4% for knives, pistols, and lighters, respectively, with a CPU
usage of 42.71% and a detection time of 17.89 ms, all of which are superior to the comparison methods.
The above research results indicate that the developed hazardous material detection method is effective
and practical. This method can provide a theoretical basis for research in the field of hazardous
substance detection.

Povzetek: Izboljsana metoda z zdruzenima modeloma DeepLabv3+ in YOLOvSs zelo ucinkovito poveca

natancnost in hitrost zaznavanja nevarnih predmetov v letalstvu.

1 Introduction

With the rapid development of economic globalization
and socio-economic factors, civil aviation, as an
important hub for domestic and international passenger
transportation, has seen a continuous increase in its
passenger flow. People conduct frequent business and
travel activities through civil aviation airports, and
airport security checks have become increasingly
important. In this context, dangerous goods (DGSs)
detection has become an important part of ensuring
airport and aviation safety . However, the current
methods for detecting DGs have the problem of low
accuracy. Many experts have conducted relevant
research, such as Wei et al. who developed a synthesis
method for X-ray safety inspection images to address the
issue of low detection accuracy of dangerous objects.
Comparative analysis results showed that this method
improved the recognition performance of DGs [?. Daud
et al. suggested a system grounded on software defined
radio technology to address the high cost and low
accuracy of traditional liquid hazardous material
detection methods (HMDMs). The system was found to
have accurately identified over 95% of both suspicious

and non-suspicious liquids B1. To deal with the problem
of low real-time detection accuracy of DGs hidden under
human clothing, the Jayachitra team proposed a weighted
improved YOLOV5 framework, and experimental results
showed that this framework was superior to existing
frameworks [, Fahad et al. proposed a robust denoising
framework that combines discrete wavelet transform
(DWT) and stationary wavelet transform (SWT) to
address the problem of decreased target recognition rate
in airport DGs detection due to noise in dual energy X-
ray imaging. Outcomes denoted that the framework
strengthened the reliability of DGs detection [,

Although significant progress has been made in luggage
security checks, the accuracy of detecting hidden DGs in
human body security checks is still relatively low
compared to luggage security checks due to factors such
as clothing obstruction, low resolution of terahertz
images, and high noise. The protection of people's lives
and property is of the utmost importance. Therefore, it is
crucial to establish a precise and efficient technique to
detect concealed DGs in clothing. DeepLabv3+ is a deep
learning model designed for semantic segmentation (SS).
It offers the advantages of multi-scale feature fusion and
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high computational efficiency. This model is commonly
used in fields such as smart security systems and
autonomous vehicles €1, YOLOvS5s is a real-time object
detection model that has outstanding real-time
performance and lightweight model advantages, and is
widely used in security monitoring and autonomous
driving scenarios [, Many experts have conducted
relevant research. For instance, Chen et al. suggested
using an enhanced DeepLabv3+ lightweight neural
network to tackle the problem of inaccurate SS in remote
sensing images of complex scenes. Their findings
revealed that the neural network exhibited strong
robustness . Zhao et al. raised an enhanced
DeepLabV3+ model to address the issue of low
resolution in remote sensing images caused by building
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enhanced the detection accuracy of buildings 1. In
response to the issue of low tomato recognition accuracy
caused by multiple environmental factors affecting the
picking robot, the Gao G team proposed an improved
YOLOv5s. The findings indicated that the improved
YOLOvV5s model outperformed the original one, with a
2.72% increase in recognition accuracy and a 1.29%
increase in mAP [, Xiao et al. developed an enhanced
YOLOv5s algorithm to deal with the issue of the
inability of the intelligent detection model for porosity in
circular flower centers to simultaneously consider speed
and accuracy. Comparative research findings denoted
that the proposed improved YOLOv5s algorithm
outperformed the  comparative  algorithm (14,
Summarizing the above research content, Table 1 can be

shadows. Outcomes demonstrated that the model obtained.

Table 1: Comparison of research methods
Literature Technology Advantage Disadvantage
Weietal. [2] | soft-non-maximum suppression The mAP has increased by 3.4% Increased

(combined with soft-nms) and
Mask RCNN

computation time

Daud et al. [3] | A platform based on software-
defined radio (SDR) technology for
radio frequency (RF) sensing and
the most advanced machine

learning (ML) algorithms

More than 95% of the suspicious and
non-suspicious liquids were
successfully classified

The generalization
ability is relatively
low

Jayachitra Improved YOLOV5 good results with high mAP@. 5 and | Poor adaptability
team. [4] MAP@.5:95.

Fahad et al. Robust denoising techniques of The proposed system achieved an The computation
[5] DWT and SWT average PSNR of 35.23 and an MSE | time is too long

of 19.52 for 256x256 DEXI images,

Chenetal. [8] | Improved DeeplLabv3+

The Mean Pixel Accuracy (MPA)
and Mean Intersection over Union
(MloU) are generally best than
DeepLabv3+, U-Net, and PSP-Net,
which are respectively improved by
1.22%, — 0.22%, and 2.22% and
2.17%, 1.35%, and 3.42%. ==

Requires high
hardware support

Zhao et al. [9] | Convolutional Block Attention

Achieving an overall accuracy,

Weak adaptability of

Module (CBAM) and DeeplLabV3+ | precision, recall, and F1 score of the plan

94%, 87%, 90%, and 89%.

Gao team. YOLOv5s and CBAM The detection accuracy and recall rate | Increased

[10] were 92.08% and 82.42% computation time
respectively, and the mAP was
92.75%

Xiao et al. Slimneck and YOLOV5s MAP@ 0.5 of the verification set The adaptive ability

[11] reaches 99.17% is relatively weak

From Table 1, existing research has made progress in
scenarios such as luggage and liquids. However, for the
high missed detection rate caused by "clothing
obstruction, low resolution, and high noise" in terahertz
human body security checks, there is still a lack of a
complete solution that simultaneously meets the
requirements of "lightweight, high recall, and low false
alarm". Therefore, this paper raises and verifies the
following core question: In terahertz images, can the
human mask generated by the improved DeepLabv3+ be

used as a prior, in conjunction with the Ca-enhanced
lightweight YOLOvV5s, to significantly improve the
detection accuracy of hidden DGs? Therefore, we
employ the Deep Labv3+ model and improve it by using
Depthwise Separable Convolution (DSConv) and
Squeeze-and-Excitation (SE) Attention Mechanisms
(AMs) to solve its problems of large parameter count and
misjudgment of human contour regions. A terahertz
human security image processing algorithm is
constructed based on improved Deep Labv3+. At the
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same time, it is combined with the improved YOLOv5s
to establish a civil aviation DGs detection method based
on Deep Labv3+and YOLOV5s. The novelty of this study
lies in integrating DSConv and SE AMs into the Deep
Labv3+ model, and improving the YOLOv5s algorithm
to enhance the accuracy of DGs detection in civil
aviation airports. It is expected to provide a certain
theoretical basis for the research field of hazardous
substance detection.

2 Methods

2.1 Construction of terahertz human
security inspection image processing model
based on improved deep Labv3+
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In the last few years, with the increasing flow of civil
aviation passengers, the detection of DGs has become
increasingly important *2, To achieve accurate detection
of DGs in civil aviation, it is necessary to segment the
human background 3. Terahertz imaging is a non-
destructive testing technology that has advantages such
as high penetration, high-precision imaging, and low
radiation. It has been widely used in security inspection
fields such as airports and train stations. However, the
current methods for detecting hidden DGs in civil
aviation have reduced detection accuracy due to issues
such as low resolution and high noise in terahertz
imaging. Therefore, we utilize the Deep Labv3+ model
to process security check images of civil airports to
enhance detection accuracy. The Deep Labv3+ model is
shown in Figure 1 141,
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Figure 1: Deep Labv3+ model

From Figure 1, the DeeplLabv3+ model contains an
encoder and a decoder. The encoder first extracts feature
from the input image with deep convolutional neural
network (DCNN). Secondly, the obtained features are
input in parallel into a convolutional layer (Conv) with a
size of 1 x 1, atrous convolutions (Atrous Conv) with
dilation rates of 6, 12, and 18, and four branches of
global average pooling. Each branch is compressed
through a 1 x 1 Conv channel and concatenated to form
an atrous spatial pyramid pooling (ASPP) module,
thereby achieving multi-scale context fusion. The
decoder upsamples the fused features by a factor of 4.
Simultaneously, the features obtained from the DCNN
undergo dimension reduction via 1x1 convolutions and
are concatenated. Then, a 3x3 convolution is employed
to fuse semantic information and fine details. After
fusion, the resolution is restored through 4x upsampling,
and the final output is pixel level SS results. Among
them, dilated convolution is a deep learning technique
that expands the receptive field of convolutional kernels
by introducing dilation rate parameters. It has advantages
such as multi-scale information aggregation and
maintaining feature map (FM) resolution, and is broadly
utilized in areas such as image segmentation and object

detection. If there is an image that undergoes dilated
convolution with respect to the input feature J , the

spatial position P present in the output FM K can be
expressed by equation (1).

k[pl=_ jlp+r-1]wil] 1)
|

In equation (1), I' is the expansion rate, I means the size
of the visual field, and W means the convolution kernel
(CK). Due to the variation of the dilation rate of the CK,
the actual size of the dilated CK can be represented by
equation (2).

Z=z+(z-D(r-1) )

In equation (2), Z denotes the size of the original CK. Z
stands for the actual size of the CK after dilation. Thus,
the area of input data that the dilated kernel of a dilated
convolution can process is expressed by equation (3).

Fa=FR+(Z-1-S ®)
In equation (3), R and R represent the respective
input data regions that the CKs of the previous layer and

the current layer can process after expansion. S denotes
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the stride distance by which the CK moves during the
convolution operation. Therefore, the Deep Labv3+
model avoids information loss and enhances the accuracy
of image segmentation through dilated convolution.
However, the DeepLabv3+ model has the problem of
excessively large parameters. DSConv is a convolution
algorithm that reduces computational complexity and
parameter count by splitting spatial and channel
dimension correlations. It has the advantages of
significantly reducing parameter and computational
complexity, improving model efficiency and
performance, and can effectively compensate for the
shortcomings of DeepLabv3+ models 8.  The
calculation steps of standard convolution and DSConv
are shown in Figure 2.
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Figure 2: The calculation steps of standard convolution
and DSConv

In Figure 2, Hin, Win, and C indicate the height, width,
and the amount of channels of the input FM. N means
the amount of channels in the output FM, K means the
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height and width of the ck, Ho , Wi ,and Ho denote
the length, width, and amount of channels in the output

FM, while Hig and Wi mean the length and width of
the intermediate FM. From Figure 2 (a), the standard

convolution is utilized to the input FM of Hin XWin xC
and after calculating the convolution with N
KxKxNs the output of Houw *Wou XN s optained,

The calculation cost can be represented by equation (4).
C,=H, xW, xCxNxKxK 4)

In equation (4), C is the standard convolution. The
calculation steps of DSConv are divided into two steps.
Firstly, the deep convolution in Figure 2 (b) is used to

separately perform K xKx1 gpatial convolution on
each input channel, while keeping the amount of

channels C constant, to obtain the intermediate feature

Hinig xWhig x N . Subsequently, the convolution with N

1x1xCs in Figure 2 (c) is used to linearly combine the

intermediate features, resulting in the final N channel

CDSConv can be

outputs. The DSConv calculation cost
represented by equation (5).
CDSConv :Hin ><\NinXCXKXK—FCXNXK><K (5)

Comparing equations (5) and (4), the computational
complexity decreases by about 8 to 9 times, while the
accuracy remains almost unchanged [, Thus, the
standard convolution in the DeepLabv3+ model can be
replaced with DSConv to achieve lightweighting. The SE
AM has been introduced into the encoder of the
DeepLabv3+ model to strengthen its ability to extract
human detail features [l Thus, a terahertz human
security inspection image processing model based on
improved Deep Labv3+ is constructed. The model is
shown in Figure 3.
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Figure 3: Terahertz human body security inspection image processing model based on improved Deep Labv3+
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From Figure 3, the operation steps of the model can be
seen. Firstly, civil aviation security personnel use
terahertz security systems to sample individuals carrying
different  hazardous materials under  different
environmental and weather conditions. After sampling,
the video is converted into an image and saves in JPG
format with a resolution of 304 * 140 181, Secondly, the
image is preprocessed. During preprocessing, median
filtering is used to denoise the image. Logarithmic
transformation method is used to enhance the image.
Next, the processed images are input into the improved
Deep Labv3+ model. Subsequently, the preprocessed
image enters the encoder of the Deep Labv3+ model. The
encoder uses DCNN to preliminarily extract image
features. After extraction, multi-scale features are
extracted using 3 x 3 DSConv layers with expansion
rates of 4, 8, 12, and 16, respectively. Simultaneously, a
pooling layer is utilized to capture global contextual
information. Then, the SE AM is used to reinforce
important features. Finally, the decoder of the original
Deep Labv3+ model is used to convert the output
features of the encoder into images and output the results.

2.2 Construction of hazardous material
detection method based on improved Deep
Labv3+ and improved YOLOv5s
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After building the improved Deep Labv3+ model, to
further ENHANCE the performance of DGs detection in
civil aviation human security inspection images, the
YOLOvV5s network model is introduced to complement
it. The YOLOV5s is a lightweight object detection model
offering fast detection speeds and high accuracy. It is
employed in various fields, including video surveillance
and autonomous driving °1. However, when facing civil
aviation security check scenarios, the DGs carried by the
human body are relatively small, and YOLOV5s network
has the ISSUE of low detection accuracy. Therefore, we
utilize coordinate attention (CA) and Lightweight
bidirectional feature pyramid network (BiFPN) to
strengthen it. The CA is an efficient feature extraction
method that has the advantages of enhancing feature
extraction capabilities and reducing computational
complexity, and is widely used to improve network
performance. Compared to other AMs, the CA not only
focuses on channel information, but also sensitively
captures orientation and position sensitive information.
BiFPN is an improved feature pyramid network structure
that has advantages such as bidirectional information
transmission and structural optimization, and is widely
used to enhance the detection accuracy of object
detection models for objects of different sizes. The CA
and lightweight BiFPN structure are denoted in Figure 4.
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(b) Lightweight BiFPN structure

Figure 4: CA and lightweight BiFPN structure

In Figure 4, O and U denote the width and height of the
FM. From Figure 4 (a), the operation steps of the CA are
to first input the FM into a residual connection to
alleviate the gradient wvanishing problem. Secondly,
feature representations are obtained in both horizontal
and vertical directions by averaging and pooling the FMs
globally. The output of global average pooling can be
represented by equation (6).

()= ¥ x(0)

) ©
2= > (W)

0<i<H
In equation (6), I and J denote coordinate indices,
%.(J,u) and %.(0,1) denote the feature matrices, and

¢. (0) and % (u) denote the eigenvalues. Next, the
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output of the Conv is normalized. Then, two
convolutions and the Sigmiod activation function are
used to generate attention weights in two directions.
Finally, the attention weights generated are applied to the
original FM input, producing the final FM output. The
output of CA can be represented by equation (7).

w (i, ) =x@DxfOx 1) @)
In equation (7), % (i, j) indicates the original input
feature matrix, fe' (i) denotes the horizontal-direction
output, fe (1) signifies the vertical-direction output, and
A is the final feature matrix generated by the CA.
In Figure 4 (b), QB, Q4, and Qs are FMs from different

levels input to BiFPN, “ to ® are weight coefficients,
IN IN IN D
3, <4 and <5 are the original FMs input, Q, is

Out Out Out

the upsampled FM, and =3 |, ~4 | and <5 are the

FMs processed by BiFPN. As shown in Figure 4 (b), the

lightweight BiFPN only has three feature input layers.

Compared to the original BiFPN, it lacks two feature

input layers, which can improve computational efficiency

TD

without affecting feature fusion performance. <4 can
be represented by equation (8).
o, -Q" +w, -Resize(QN
ID =COI’1V( 1 4 2 (QS )) (8)

w+w,+E

In equation (8), € is a very small constant, and Resize
Out
is the operation of adjusting the size of the FM. So, ~3
Out Out

4, and <5 can be represented by equation (9).
IN H TD
, - +w, - Resize
3OLI'[ :COI‘]V( 3 3 4 (Q4 ))
W, +w, +&
IN TD H Out
@ - + - + w, - Resize
4Out — CO”V( 5 4 6 4 0)7 (Q3 ) (9)
o+, +w, +¢
IN H Out
ou =Conv(w7 Qs +a,-Resize(Q,")
W+, +&
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Although the detection accuracy of YOLOV5 has been
enhanced with CA and lightweight BIiFPN, the
commonly used Generalized Intersection over Union
(GloU) loss function (LF) still has limitations. It cannot
determine the relative position when the predicted box
completely encloses the real box. In view of this, we
apply the a-Complete Intersection over Union (Alpha-
OU) LF and the Complete Intersection over Union
(CloU) entropy LF to improve it. Among them, the loss

value Leiou of the CloU LF can be represented by
equation (10).

Loy =1-10U +@+ﬂv (10)

In equation (10), @ denotes the center coordinates of the

model-annotated bounding box, B is a hyperparameter,
b means the center coordinates of the model-predicted

bounding box, Leiou is the loss value, P() is the

Euclidean distance, 9 is the minimum diagonal length of
the mini bounding box, V is the additional penalty for

aspect ratio difference, and 10U s the intersection-over-
union ratio. By introducing the & parameter, Alpha-OU
further improved CloU, enabling it to better balance
confidence and positional accuracy. By combining

Alpha-loU and CloU, a new LF a—CloU ¢an pe

obtained. The loss value LOSS can be expressed by
equation (11).

2a
p™(ab) «
dTJF (Bv)
Thus, the improved YOLOv5s network model has been
constructed, and its structure is shown in Figure 5.

Loss=1-loU“ + (11)
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Figure 5: Improved YOLOV5s network model structure
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From Figure 5, the enhanced YOLOV5s first utilizes the
backbone network to extract input image features. The
backbone network includes the Focus module, Darknet
Squeeze-and-Excitation  Block  with  Depthwise
Convolution (DSBL) module, Cross Stage Partial
(CPS), and CA mechanism. The role of DSBL, CPS,
and CA mechanisms is to improve the network’s feature
extraction capability. The Spatial Pyramid Pooling
(SPP) module is used for multi-scale feature extraction.
Secondly, the neck network is employed to further
perform multi-scale fusion of features. The neck
network includes multiple lightweight BiFPN
(TBIFPN), upsampling (Up), DSBL, and CSP modules.
Finally, the network predicts through different Convs
and outputs FMs with sizes of 80x80x225, 40x40x225,
and 20x20x225, respectively.

Finally, we combine improved Deep Labv3+ and

improved YOLOV5s to construct a method for detecting
DGs at civil airports. The detection method first
generates terahertz human body images through the
terahertz security system during civil aviation security
checks. Secondly, the median filtering method is
employed to denoise the obtained image. Moreover, the
logarithmic transformation method is employed to
enhance the image. Then, using an improved Deep
Labv3+ model for human segmentation, the human
body is separated from the background for easier
detection of clothing. Finally, the improved YOLOVS5 is
used to detect DGs in the segmented images and output
the detection results. To overcome the problem of
insufficient number of self-collected terahertz images,
we conduct offline re-augmentation of the samples. First,
rotate randomly at +£15° and simultaneously apply a
horizontal flip with a 50% probability. Then, we utilize
superimpose Gaussian noise (o =0.01) to simulate the
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random disturbance of the equipment. Subsequently,
within the Saturation and Valu Spaces, the luminance
variation is 230%, combined with Gamma correction
in the [0.8,1.2] interval. Finally, contrast-constrained
adaptive histogram equalization is adopted for local
contrast enhancement. 8 new samples are generated for
each original image. Experiments are conducted on an
Ubuntu 18.04 workstation equipped with an Intel Xeon
E5-2680 v3 CPU at 3.30 GHz and two RTX 3090 GPUs,
accelerated by PyTorch 1.13 and CUDA 11.7. Input
images are resized to 640 X 640 pixels using bilinear
interpolation while preserving the aspect ratio and
padded with a gray value of 114 on the edges. For the
improved YOLOV5s, stochastic gradient descent is
applied with a batch size of 16, an initial learning rate of
0.007 that is cosine-annealed to 0.0007, a 3-epoch
warm-up, momentum of 0.937 and weight decay of
0.0001. The loss function combined CIOU,
classification, and objectness terms with equal weights
and the backbone is initialized with ImageNet pretrained
weights. Training ran for 300 epochs with early stopping
patience of 30 epochs. For the improved DeeplLabv3+,
SGD is also used with a batch size of 16, an initial
learning rate of 7 X 10 decayed by a poly factor of 0.9,
a 5-epoch warm-up, momentum of 0.9 and weight decay
of 1x10*%. The loss consists of Dice and Focal terms
with Focal alpha of 0.75 and Focal gamma of 2, and the
backbone is initialized from ImageNet pretrained
weights for 300 epochs. Both networks employ gradient
clipping with max_norm = 10 and mixed-precision
training. The best model is selected according to the
highest validation mMAP@0.5. The pseudo-code of the
detection method is shown in Table 2.

Table 2: Pseudo-code of the detection method

DGs detection method based on improved Deep Labv3+ and improved
YOLOv5s

# Import the necessary libraries
import torch
import torchvision

model =

return model
# Define the YOLOv5s model
def create_yolov5s():

return model
# Data loading and preprocessing

images =[]

# Define the DeepLabv3+ model with DSConv
def create_deeplabv3_plus_with_dsconv():

torchvision.models.segmentation.deeplabv3plus_resnet50(pretrained=False)
# Here, the replacement logic of DSConv is added
# For example: Replace some Conv with DSConv

model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)

def load_and_preprocess_terahertz_images(image_paths):
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for path in image_paths:
image = torchvision.io.read_image(path)
# Carry out necessary preprocessing, such as normalization, etc
image = image / 255.0
images.append(image)
images = torch.stack(images)
return images
# Detect hidden aviation threats
def detect_concealed_aviation_threats(images, deeplabv3_plus, yolov5s):
# Generate human masks using DeepLabv3+
deeplab_output = deeplabv3_plus(images)['out]
human_mask = (deeplab_output > 0.5).float()
# Use YOLOv5s for object detection
yolov5_output = yolov5s(images * human_mask)

C. Yang

# Process the test results
threats =[]
for result in yolov5_output.pred:
# Filter out threat targets
threat_boxes = result[result[:, 4] >
0.5
threats.append(threat_boxes)
return threats, human_mask
# Main function
def main():
# Create a model

yolov5s = create_yolov5s()
# Load terahertz images
image_paths = ['path/to/imagel.jpg’,

# Detect hidden aviation threats

deeplabv3_plus, yolovbs)
return threats, human_mask

# Run the main function

threats, human_mask = main()

deeplabv3_plus = create_deeplabv3_plus_with_dsconv()

‘path/to/image2.jpg']
images = load_and_preprocess_terahertz_images(image_paths)

threats, human_mask = detect_concealed_aviation_threats(images,

0.5] # The confidence threshold is

3 Results and analysis

3.1 Performance analysis of dangerous

goods detection methods

To test the efficacy of the developed detection method, a
performance comparison experiment was conducted
against other methods. The comparative methods
included the HMDM based on Faster R-CNN, the
weight decay rate and batch size were 1x10* and 16,
respectively. The momentum was 0.9, and the optimizer
was stochastic gradient descent. The human body image
dataset was subjected to terahertz security checks by 15
participants carrying DGs. Data preprocessing first used
median filtering to remove noise. Secondly, logarithmic
transformation was used for enhancement processing.
Finally, the Labelme labeling software was used to label
the human body contour and generate a "human body"
label. After completing the annotation, the original image
and corresponding label images were stored in the
database. There were a total of 4892 images, with 70%
being the training set, 20% being the testing set, and 10%
being the validation set. The hazardous materials dataset

HMDM based on EA-YOLOvS, and the HMDM based
on SSD. Network parameter settings of improved
YOLOVS5: batch size and weight decay rate were 16 and
0.0001, respectively. The optimizer utilized stochastic
gradient descent method. The training epochs were 300
times. The initial learning rate was 0.007. The training
iterations and initial learning rate of the improved Deep
Labv3+ model were 300 and 7x10, respectively. The

was sourced from HiXray and PIDray, with a total of
13462 images. 80% of the dataset was the training set
and 20% was the testing set. There are 45,403 original
images in the HiXray dataset and 12,600 original images
in the PIDray dataset. Both databases contain dangerous
items such as firearms, knives, liquid bottles, lighters,
and scissors. HiXray provides COCO JSON annotation,
and PIDray provides YOLO txt annotation. To align with
the concealed carrying scenarios, only the above five
types of targets are retained, uniformly converted to the
COCO JSON format, and the images are scaled to 640 X
640 pixels and converted to single-channel grayscale.
After category filtering, a total of 13,462 images were
obtained, including 10,362 HiXray and 3,100 PlDray.
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The preprocessing flow first performs CLAHE local
contrast enhancement, and then applies rotation, flipping,
noise addition and luminance-gamma combined
augmentation, expanding each image by 8 times. The
experimental comparison indicators were precision,
recall, and F1 score, etc. The experimental environment
is denoted in Table 3.

Table 3: Experimental environment

Parameter names Parameter
Intel®Xeon® Processor
CPU E5-2680 v3
Constant frequency 3.30 GHz
Random access memory 16GB
Hard disk drive 500GB
Operating system Ubuntu 18.04
Matrix laboratory version | 2021a
Programming language Python3.7
Development framework | PyTorchl.7
Data analysis software Spss24.0

The tests of FPS and CPU usage were conducted on a
system equipped with an Intel Xeon E5-2680 v3
processor. The test environment was the Ubuntu 18.04
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operating system, equipped with 16GB random access
memory (RAM), and was executed under the condition
of ensuring that no other high-load processes were
running. To ensure the repeatability of the test results, we
conducted 100 inference iterations on the model,
processing a 640 X 640 pixel image in each iteration. All
tests were conducted under the same system Settings to
ensure the consistency of the results. Figure 6 illustrates
the experimental results of the study, which are based on
a comparative analysis of the precision and recall of
various detection methods in the aforementioned
environment.

From Figure 6 (a), the proposed detection method had a
precision of 97.83%, which was much higher than Faster
R-CNN's 95.34%, EA-YOLOVS8's 91.49%, and SSD's
87.12%. According to Figure 6 (b), the recall rates of the
proposed detection method, Faster R-CNN, EA-
YOLOvV8, and SSD were 97.17%, 90.03%, 89.76%,
88.75%, and 87.88%, respectively. The research method
had the highest recall rate. The above findings suggest
that, compared to other detection methods, the research
method offers superior precision and recall. The
comparison results of F1 score loss values and the
training loss graph of the proposed detection method for
various detection methods are shown in Figure 7.
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Figure 6: Comparison results of recall rate and precision rate
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Figure 7: Comparison results of F1 score, loss values, and the training loss graph of the proposed detection method

According to Figure 7 (a), the F1 score of the proposed
detection method was 98.89%, the F1 score of Faster R-
CNN was 92.57%, the F1 score of EA-YOLOvV8 was
90.12%, and the F1 score of SSD was 88.11%. The
research method had the highest F1 score. From Figure 7
(b), the loss values of the proposed detection method,
Faster R-CNN, EA-YOLOVS8, and SSD were 0.18, 0.22,
0.32, and 0.38, respectively. The research proposed
detection method had the lowest loss value. The above
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findings denote that the research method is more
effective than the comparative methods in terms of both
the F1 score and the loss value. Furthermore, as shown in
Figure 7 (c), the validation loss continued to decline and
stabilize without any rebound, indicating that the model
has not experienced significant overfitting. Figure 8
showcases the comparison results of the mean precision
(mAP@0.5) and frames per second (FPS) for each
method when the loU threshold was set to 0.5.
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Figure 8: mAP@0.5 and FPS comparison results

In Figure 8(a), the proposed detection method achieved
the highest mMAP@0.5 of 97.66%, surpassing Faster R-
CNN (88.79%), EA-YOLOv8 (90.08%), and SSD
(84.26%). In Figure 8(b), the research method achieved
the highest average FPS at 59.68 fps. In comparison,

FasterR-CNN achieved 47.32 fps, EA-YOLOV8 achieved
42.14 fps, and SSD achieved 27.23 fps. These findings
reveal that the research method outperforms the
comparison methods in terms of both mAP@0.5 score
and FPS. To verify the reliability of the experiment,
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statistical analysis was conducted on various
experiments involving hazardous materials. The results
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of the statistical test are shown in Table 4.

Table 4: Statistical test results

DGs Indicator Research Faster R- | EA-YOLOvV8 SSD p value
CNN

Cutting tools | Precision 97.83% 95.34% 91.49% 87.12% p<0.001
Pistols Recall 97.17% 90.03% 89.76% 88.75% p<0.001
Lighters F1 score 98.89% 92.57% 90.12% 88.11% p<0.001
Cutting tools | Loss values 0.18 0.22 0.32 0.38 p<0.001
Pistols mAP@0.5 97.66% 88.79% 90.08% 84.26% p<0.001
Lighters FPS 59.68 fps 47.32 fps 42.14 fps 27.23 fps p<0.001

From Table 4, the p-values of the comparative proposed by the research method. The above findings

experiments with Precision, Recall, F1 score, Loss
values, mAP@0.5, and FPS were all less than 0.001,
indicating that the experimental results are reliable. To
verify the performance contribution of the a-CloU loss
function, the SE module and the CA module to the
detection method, ablation experiments were conducted
on them. The experimental results are shown in Table 5.

Table 5: Results of the ablation experiment

Project Precision Loss value
a-CloU 97.83% 0.18

GloU 90.14% 0.21

CloU 89.86% 0.26
Remove the SE module 89.96% 0.24
Remove the SE module | 84.14% 0.27

and the CA module

As shown in Table 5, the Precision rate of using the a -
CloU loss function was significantly higher than that of
GloU and CloU, and the loss value was lower than that
of using GloU and CloU. After removing the SE module
and the CA module, the Precision rate of model checking
decreased significantly, and the loss value gradually
increased. This result indicates that the introduction of
the a -CloU loss function, SE module and CA module
significantly improves the performance of the model.

3.2 Detection performance analysis

After testing the effect of the raised detection method, we
conducted an analysis of its application effectiveness
compared to other methods. We conducted separate
inspections on civil aviation security personnel carrying
knives, pistols, and lighters. The test results are shown in
Figure 9.

From Figure 9 (a), the detection accuracy of the research
method for cutting tools, pistols, and lighters was 97.8%,
96.6%, and 97.4%, respectively. From Figures 9 (b), 9
(c), and 9 (c), Faster R-CNN, EA-YOLOvV8, and SSD
had the highest detection accuracies of 86.2%, 88.4%,
and 89.7% for the three DGs, respectively, which were
lower than the lowest detection accuracy of 96.6%

indicate that the proposed detection method can
accurately detect DGs carried by the human body and has
practical value. The results of CPU occupancy, memory
size, detection time, Average Precision (AP), Mean
Square Error (MSE), and Root Mean Square Error
(RMSE) for each method are shown in Table 6.

From Table 6, the AP of the developed detection method
was 97.62%, significantly lower than the 89.21% of
Faster R-CNN, 90.62% of EA-YOLOVS, and 82.87% of
SSD. In addition, the detection methods proposed in the
study showed MSE value, RMSE value, memory usage
size, CPU usage rate, and detection time of 1.257, 1.121,
13.2 MB, 42.71%, and 17.89 ms, respectively. The above
results indicate that compared with the comparative
methods, the detection method proposed in the study
exhibits better performance in AP value, MSE value,
RMSE value, memory usage size, CPU usage rate, and
detection time. To verify the reliability of the detection
effect, we conducted a statistical analysis of the
experiment, and the analysis results are shown in Table 7.
From Table 7, the p-values of the detection effect
experiments were all less than 0.001. This result indicates
that the conducted experiments have a significant
difference at the statistical 0.1% level, and the
experimental results are reliable. To verify the
performance of the proposed model under different
conditions, experiments were conducted on it in various
environments. The experimental results are shown in
Table 8.

From Table 8, the detection methods proposed in the
study were applied in Indoor airport security check,
Outdoor airport security check, and High-humidity
airport security. The missed detection rates of check in
the three different environments were 1.51%, 1.78%, and
1.98% respectively. The false detection rates were 2.29%,
2.06% and 2.21% respectively. All were lower than the
comparison methods. The above results indicate that the
detection method proposed in the research has superior
detection performance in different environments and

possesses good universality and practical value.
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Figure 9: Detection effect of hazardous materials
Table 6: Comparison results of each method
Indicator Research Faster R-CNN EA-YOLOvVS SSD
AP 97.62% 89.21% 90.62% 82.87%
MSE 1.257 2.796 2.893 4.671
RMSE 1.121 1.672 1.701 2.161
Memory usage size 13.2 MB 147.3 MB 168.9 MB 203.2 MB
CPU 42.71% 57.38% 61.22% 56.37%
Detection time 17.89 ms 48.92 ms 59.94% 46.27%
Table 7: Statistical analysis results of the detection experiment
Category Indicator Research | Faster R-CNN | EA-YOLOv8 | SSD p value
All types of hazards | AP 97.62% 89.21% 90.62% 82.87% p<0.001
All types of hazards | MSE 1.257 2.796 2.893 4,671 p<0.001
All types of hazards | RMSE 1.121 1.672 1.701 2.161 p<0.001
All types of hazards | Memory usage size | 13.2 MB | 147.3 MB 168.9 MB 203.2 MB | p<0.001
All types of hazards | CPU 42.71% 57.38% 61.22% 56.37% p<0.001
All types of hazards | Detection time 17.89 ms | 48.92 ms 59.94% 46.27% p<0.001
Cutting tools Accuracy 97.8% 86.2% 83.2% 85.3% p<0.001
Pistols Accuracy 96.6% 83.6% 87.8% 89.7% p<0.001
Lighters Accuracy 97.4% 84.8% 88.4% 84.6% p<0.001
Table 8: Test results under different conditions
Environmental conditions Model name :\gltlssed detection I;;Lse detection p value
Research 1.51% 2.29% p<0.001
. . Faster R-
Indoor airport security check CNN 2.02% 3.04% p<0.001
EA-YOLOvV8 | 1.83% 2.58% p<0.001
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Environmental conditions Model name Ir\gltlssed detection rF:tfe detection p value
SSD 2.21% 2.87% p<0.001
Research 1.78% 2.06% p<0.001
Faster R- 0 0

Outdoor airport security check CNN 2.55% 3.57% p<0.001
EA-YOLOvV8 | 2.04% 2.32% p<0.001
SSD 2.37% 2.73% p<0.001
Research 1.98% 2.21% p<0.001

. S . Faster R-

High-humidity airport security CNN 3.06% 3.82% p<0.001

check EA-YOLOV8 | 2.24% 2.63% p<0.001
SSD 2.53% 2.95% p<0.001

4 Discussion

This study conducted comparative experimental analysis
on the performance of DGs detection methods for civil
airports based on improved Deep Labv3+ and improved
YOLOv5s, and conducted application effect analysis
experiments on this detection method. The findings
denoted that the precision of this detection method,
Faster R-CNN, EA-YOLOv8, and SSD were 97.83%,
95.34%, 91.49%, and 87.12%, respectively. The
proposed detection method had the highest precision.
This result indicates that the introduction of DSConv and
SE improves the detection accuracy of the detection
method. This result coincides with the relevant research
findings of the Kuo T C team [ In the recall
comparison experiment, the recall rates of the proposed
detection method, Faster R-CNN, EA-YOLOv8, and
SSD were 97.17%, 90.03%, 89.76%, 88.75%, and
87.88%, respectively. The proposed detection method
had the highest recall rate. This result indicates that the
introduction of CA improves the accuracy of the
detection method. The results obtained by Peng H et al.
in related studies are similar 1. In the loss value
comparison experiment, the loss values of the proposed
detection method, Faster R-CNN, EA-YOLOv8, and
SSD were 0.18, 0.22, 0.32, and 0.38, respectively. The
proposed research method had the lowest loss value. This
indicates that combining a lightweight BiFPN with an
improved DeeplLabv3+ model enhances the detection
performance. This result is consistent with the relevant
research findings of Kim W's team 2. In addition, the
proposed detection method had a recall rate of 97.17%
and an F1 score of 92.57%, mAP@0.5 value was
97.66%, and the average FPS was 27.23 f/s, both of
which were better than the comparison methods. This
further demonstrates the superior performance of the
raised detection method. In the comparative analysis
experiment of application effects, the detection accuracy
of the developed detection method for cutting tools,
pistols, and lighters were 97.8%, 96.6%, and 97.4%,
respectively, all of which were superior to the
comparative methods. Moreover, the AP value, MSE
value, RMSE value, memory usage size, CPU usage rate,
and detection time were 97.62%, 1.257%, 1.121%, 13.2
MB, 42.71%, and 17.89 ms, respectively, all of which

were better than the comparative detection method. This
result indicates that the proposed detection method has
good practical value. This finding is similar to the
research finding of Gallo G et al. in 2022 %1, The above
research results indicate that the proposed method for
detecting DGs in civil aviation is effective and has
practical application value. The limitation of this study is
that it only conducted the detection of hidden DGs in
civil aviation human bodies, without considering the
luggage security check process. The future research
direction is to combine terahertz images of the human
body with corresponding X-ray images of luggage, and
use graph neural networks to achieve cross modal feature
fusion detection, thereby improving the success rate of
collaborative detection of DGs in the human body and
luggage. For the practical application of airport security
inspection, the proposed method can make use of the
existing terahertz security inspection equipment and
other detection devices at the airport in terms of
hardware integration, and connect high-performance
computing devices (GPU servers or edge computing
devices) externally to accelerate the model operation,
meeting the low latency requirements of real-time
security inspection. In terms of software integration, API
interfaces are developed to achieve seamless
communication between the detection results and the
existing security inspection system. At the same time, the
results are converted into compatible formats (such as
XML, JSON) through a data conversion module to
ensure that the data can be accepted and processed by the
existing system. To meet the real-time requirements,
operations such as compressing the model and
optimizing the algorithm are carried out to reduce the
detection time. Lightweight model architectures (such as
Tiny-YOLO) are utilized to enhance the detection speed.
In terms of hardware, dedicated Al chips (FPGA, ASIC)
are adopted to accelerate computing. Code optimization
and parallel processing further improve efficiency.
Considering compatibility, middleware is developed to
ensure seamless integration of the new system with the
existing communication network. Standard network
protocols (such as TCP/IP) are used to guarantee the
security and reliability of data transmission. Integration
with the passenger information management system is
explored to quickly obtain detection results and respond.




320 Informatica 49 (2025) 307-322

Facing hardware limitations and system compatibility
constraints, model quantization and pruning are adopted
to reduce the computational load. A lightweight
architecture is selected to adapt to the existing hardware.
Virtualization or containerization technology (Docker) is
utilized to ensure the compatibility of the new system
and achieve seamless integration. The integration with
the passenger information management system is
explored to respond quickly to the detection results.

5 Summary

To solve the problem of low accuracy in current
HMDMs, an improved Deep Labv3+ model
incorporating DSConv and SE AMs was introduced. At
the same time, it was combined with an improved
YOLOv5s network model to establish a method for
detecting DGs in civil aviation. A performance
comparison analysis was performed to assess the
research method against other methods. The findings
revealed that the proposed method outperformed the
others in terms of precision, recall and F1 score.
Subsequently, the proposed detection method was
analyzed for its application effectiveness, and it was
found that the method exhibited high accuracy in
detecting three types of DGs. In addition, the proposed
detection method has demonstrated superior performance
in terms of MSE, RMSE, AP value, CPU usage, and
detection time. The above findings reveal that the
developed detection method has effectiveness and
practical value. This research has achieved certain results
in the detection of DGs in terahertz images, but there are
also limitations. The generalization ability of the model
has not been fully verified in other imaging modes or
diverse environments, which limits the evaluation of its
wide applicability. The limited size of the dataset may
lead to overfitting of the model, affecting its predictive
performance on new data. In addition, the research
mainly focuses on detection in non-occluded scenarios,
and the detection capability under occluded conditions
such as human clothing has not been fully evaluated. At
present, the model only covers three specific types of
DGs. For a wider range of prohibited items, its detection
efficiency needs further investigation. Future work will
involve validating models in  more complex
environmental Settings and exploring the integration of
multiple imaging techniques to enhance the robustness
and adaptability of the models. Meanwhile, expanding
and diversifying datasets is also an important direction
for enhancing the generalization ability of models and
reducing the risk of overfitting.
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