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In recent years, with the growth of civil aviation passenger volume, the importance of dangerous goods 

detection in ensuring airport and aviation safety has become increasingly prominent. To address the 

issue of low accuracy in existing dangerous goods detection methods, we propose an improved method 

for civil aviation dangerous goods detection. The method integrates an enhanced DeepLabv3+ model 

and a YOLOv5s model with an introduced Coordinate Attention (CA) mechanism. The DeepLabv3+ 

model is optimized by incorporating Depthwise Separable Convolution (DSConv) and Squeeze-and-

Excitation (SE) attention mechanisms to enhance feature extraction capabilities. Meanwhile, the 

YOLOv5s model improves detection accuracy by incorporating the CA mechanism. We employ the 

HiXray, PIDray, and a self-collected terahertz dataset for training and validation. Using a methodology 

that involves semantic segmentation followed by object detection, experimental results demonstrate that 

the proposed method achieves an average precision (mAP@0.5) of 97.66% and a frame rate (FPS) of 

27.23 f/s, outperforming comparison methods such as Faster R-CNN, EA-YOLOv8, and SSD. 

Additionally, an analysis of the application effectiveness of the proposed method shows detection 

accuracy rates of 97.8%, 96.6%, and 97.4% for knives, pistols, and lighters, respectively, with a CPU 

usage of 42.71% and a detection time of 17.89 ms, all of which are superior to the comparison methods. 

The above research results indicate that the developed hazardous material detection method is effective 

and practical. This method can provide a theoretical basis for research in the field of hazardous 

substance detection. 

Povzetek: Izboljšana metoda z združenima modeloma DeepLabv3+ in YOLOv5s zelo učinkovito poveča 

natančnost in hitrost zaznavanja nevarnih predmetov v letalstvu.  

 

1 Introduction  
With the rapid development of economic globalization 

and socio-economic factors, civil aviation, as an 

important hub for domestic and international passenger 

transportation, has seen a continuous increase in its 

passenger flow. People conduct frequent business and 

travel activities through civil aviation airports, and 

airport security checks have become increasingly 

important. In this context, dangerous goods (DGs) 

detection has become an important part of ensuring 

airport and aviation safety [1]. However, the current 

methods for detecting DGs have the problem of low 

accuracy. Many experts have conducted relevant 

research, such as Wei et al. who developed a synthesis 

method for X-ray safety inspection images to address the 

issue of low detection accuracy of dangerous objects. 

Comparative analysis results showed that this method 

improved the recognition performance of DGs [2]. Daud 

et al. suggested a system grounded on software defined 

radio technology to address the high cost and low 

accuracy of traditional liquid hazardous material 

detection methods (HMDMs). The system was found to 

have accurately identified over 95% of both suspicious  

 

and non-suspicious liquids [3]. To deal with the problem 

of low real-time detection accuracy of DGs hidden under 

human clothing, the Jayachitra team proposed a weighted 

improved YOLOv5 framework, and experimental results 

showed that this framework was superior to existing 

frameworks [4]. Fahad et al. proposed a robust denoising 

framework that combines discrete wavelet transform 

(DWT) and stationary wavelet transform (SWT) to 

address the problem of decreased target recognition rate 

in airport DGs detection due to noise in dual energy X-

ray imaging. Outcomes denoted that the framework 

strengthened the reliability of DGs detection [5]. 

Although significant progress has been made in luggage 

security checks, the accuracy of detecting hidden DGs in 

human body security checks is still relatively low 

compared to luggage security checks due to factors such 

as clothing obstruction, low resolution of terahertz 

images, and high noise. The protection of people's lives 

and property is of the utmost importance. Therefore, it is 

crucial to establish a precise and efficient technique to 

detect concealed DGs in clothing. DeepLabv3+ is a deep 

learning model designed for semantic segmentation (SS). 

It offers the advantages of multi-scale feature fusion and 
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high computational efficiency. This model is commonly 

used in fields such as smart security systems and 

autonomous vehicles [6]. YOLOv5s is a real-time object 

detection model that has outstanding real-time 

performance and lightweight model advantages, and is 

widely used in security monitoring and autonomous 

driving scenarios [7]. Many experts have conducted 

relevant research. For instance, Chen et al. suggested 

using an enhanced DeepLabv3+ lightweight neural 

network to tackle the problem of inaccurate SS in remote 

sensing images of complex scenes. Their findings 

revealed that the neural network exhibited strong 

robustness [8]. Zhao et al. raised an enhanced 

DeepLabV3+ model to address the issue of low 

resolution in remote sensing images caused by building 

shadows. Outcomes demonstrated that the model 

enhanced the detection accuracy of buildings [9]. In 

response to the issue of low tomato recognition accuracy 

caused by multiple environmental factors affecting the 

picking robot, the Gao G team proposed an improved 

YOLOv5s. The findings indicated that the improved 

YOLOv5s model outperformed the original one, with a 

2.72% increase in recognition accuracy and a 1.29% 

increase in mAP [10]. Xiao et al. developed an enhanced 

YOLOv5s algorithm to deal with the issue of the 

inability of the intelligent detection model for porosity in 

circular flower centers to simultaneously consider speed 

and accuracy. Comparative research findings denoted 

that the proposed improved YOLOv5s algorithm 

outperformed the comparative algorithm [11]. 

Summarizing the above research content, Table 1 can be 

obtained. 

 

Table 1: Comparison of research methods 

Literature Technology Advantage Disadvantage 

Wei et al. [2] soft-non-maximum suppression 

(combined with soft-nms) and 

Mask RCNN 

The mAP has increased by 3.4% Increased 

computation time 

Daud et al. [3] A platform based on software-

defined radio (SDR) technology for 

radio frequency (RF) sensing and 

the most advanced machine 

learning (ML) algorithms 

More than 95% of the suspicious and 

non-suspicious liquids were 

successfully classified 

The generalization 

ability is relatively 

low 

Jayachitra 

team. [4] 

Improved YOLOv5 good results with high mAP@. 5 and 

mAP@.5:95. 

Poor adaptability 

Fahad et al. 

[5] 

Robust denoising techniques of 

DWT and SWT 

The proposed system achieved an 

average PSNR of 35.23 and an MSE 

of 19.52 for 256×256 DEXI images, 

The computation 

time is too long 

Chen et al. [8] Improved DeepLabv3+ The Mean Pixel Accuracy (MPA) 

and Mean Intersection over Union 

(MIoU) are generally best than 

DeepLabv3+ , U-Net, and PSP-Net, 

which are respectively improved by 

1.22%, − 0.22%, and 2.22% and 

2.17%, 1.35%, and 3.42%.  == 

Requires high 

hardware support 

Zhao et al. [9] Convolutional Block Attention 

Module (CBAM) and DeepLabV3+ 

Achieving an overall accuracy, 

precision, recall, and F1 score of 

94%, 87%, 90%, and 89%. 

Weak adaptability of 

the plan 

Gao team. 

[10] 

YOLOv5s and CBAM The detection accuracy and recall rate 

were 92.08% and 82.42% 

respectively, and the mAP was 

92.75% 

Increased 

computation time 

Xiao et al. 

[11] 

Slimneck and YOLOv5s mAP@ 0.5 of the verification set 

reaches 99.17% 

The adaptive ability 

is relatively weak 

 

From Table 1, existing research has made progress in 

scenarios such as luggage and liquids. However, for the 

high missed detection rate caused by "clothing 

obstruction, low resolution, and high noise" in terahertz 

human body security checks, there is still a lack of a 

complete solution that simultaneously meets the 

requirements of "lightweight, high recall, and low false 

alarm". Therefore, this paper raises and verifies the 

following core question: In terahertz images, can the 

human mask generated by the improved DeepLabv3+ be 

used as a prior, in conjunction with the Ca-enhanced 

lightweight YOLOv5s, to significantly improve the 

detection accuracy of hidden DGs? Therefore, we 

employ the Deep Labv3+ model and improve it by using 

Depthwise Separable Convolution (DSConv) and 

Squeeze-and-Excitation (SE) Attention Mechanisms 

(AMs) to solve its problems of large parameter count and 

misjudgment of human contour regions. A terahertz 

human security image processing algorithm is 

constructed based on improved Deep Labv3+. At the 
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same time, it is combined with the improved YOLOv5s 

to establish a civil aviation DGs detection method based 

on Deep Labv3+and YOLOv5s. The novelty of this study 

lies in integrating DSConv and SE AMs into the Deep 

Labv3+ model, and improving the YOLOv5s algorithm 

to enhance the accuracy of DGs detection in civil 

aviation airports. It is expected to provide a certain 

theoretical basis for the research field of hazardous 

substance detection. 

2 Methods 

2.1 Construction of terahertz human 

security inspection image processing model 

based on improved deep Labv3+ 

In the last few years, with the increasing flow of civil 

aviation passengers, the detection of DGs has become 

increasingly important [12]. To achieve accurate detection 

of DGs in civil aviation, it is necessary to segment the 

human background [13]. Terahertz imaging is a non-

destructive testing technology that has advantages such 

as high penetration, high-precision imaging, and low 

radiation. It has been widely used in security inspection 

fields such as airports and train stations. However, the 

current methods for detecting hidden DGs in civil 

aviation have reduced detection accuracy due to issues 

such as low resolution and high noise in terahertz 

imaging. Therefore, we utilize the Deep Labv3+ model 

to process security check images of civil airports to 

enhance detection accuracy. The Deep Labv3+ model is 

shown in Figure 1 [14]. 
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Figure 1: Deep Labv3+ model 

 

From Figure 1, the DeepLabv3+ model contains an 

encoder and a decoder. The encoder first extracts feature 

from the input image with deep convolutional neural 

network (DCNN). Secondly, the obtained features are 

input in parallel into a convolutional layer (Conv) with a 

size of 1 × 1, atrous convolutions (Atrous Conv) with 

dilation rates of 6, 12, and 18, and four branches of 

global average pooling. Each branch is compressed 

through a 1 × 1 Conv channel and concatenated to form 

an atrous spatial pyramid pooling (ASPP) module, 

thereby achieving multi-scale context fusion. The 

decoder upsamples the fused features by a factor of 4. 

Simultaneously, the features obtained from the DCNN 

undergo dimension reduction via 1×1 convolutions and 

are concatenated. Then, a 3×3 convolution is employed 

to fuse semantic information and fine details. After 

fusion, the resolution is restored through 4x upsampling, 

and the final output is pixel level SS results. Among 

them, dilated convolution is a deep learning technique 

that expands the receptive field of convolutional kernels 

by introducing dilation rate parameters. It has advantages 

such as multi-scale information aggregation and 

maintaining feature map (FM) resolution, and is broadly 

utilized in areas such as image segmentation and object 

detection. If there is an image that undergoes dilated 

convolution with respect to the input feature 
j

, the 

spatial position 
p

 present in the output FM k  can be 

expressed by equation (1). 

[ ] [ ] [ ]
l

k p j p r l w l= +                          (1) 

In equation (1), r  is the expansion rate, l  means the size 

of the visual field, and w  means the convolution kernel 

(CK). Due to the variation of the dilation rate of the CK, 

the actual size of the dilated CK can be represented by 

equation (2). 

( 1)( 1)Z z z r= + − −                            (2) 

In equation (2), z  denotes the size of the original CK. Z  

stands for the actual size of the CK after dilation. Thus, 

the area of input data that the dilated kernel of a dilated 

convolution can process is expressed by equation (3). 

1 ( 1)i iF F Z S+ = + −                              (3) 

In equation (3), iF
 and 1iF+  represent the respective 

input data regions that the CKs of the previous layer and 

the current layer can process after expansion. S  denotes 
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the stride distance by which the CK moves during the 

convolution operation. Therefore, the Deep Labv3+ 

model avoids information loss and enhances the accuracy 

of image segmentation through dilated convolution. 

However, the DeepLabv3+ model has the problem of 

excessively large parameters. DSConv is a convolution 

algorithm that reduces computational complexity and 

parameter count by splitting spatial and channel 

dimension correlations. It has the advantages of 

significantly reducing parameter and computational 

complexity, improving model efficiency and 

performance, and can effectively compensate for the 

shortcomings of DeepLabv3+ models [15]. The 

calculation steps of standard convolution and DSConv 

are shown in Figure 2. 
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Figure 2: The calculation steps of standard convolution 

and DSConv 

 

In Figure 2, inH
, inW

, and C  indicate the height, width, 

and the amount of channels of the input FM. N  means 

the amount of channels in the output FM, K  means the 

height and width of the ck, outH
, outHW

, and outH
 denote 

the length, width, and amount of channels in the output 

FM, while midH
 and midW

 mean the length and width of 

the intermediate FM. From Figure 2 (a), the standard 

convolution is utilized to the input FM of in inH W C 
, 

and after calculating the convolution with N  

K K N  s, the output of out outH W N 
 is obtained. 

The calculation cost can be represented by equation (4). 

s in inC H W C N K K=                   (4) 

In equation (4), sC
 is the standard convolution. The 

calculation steps of DSConv are divided into two steps. 

Firstly, the deep convolution in Figure 2 (b) is used to 

separately perform 1K K   spatial convolution on 

each input channel, while keeping the amount of 

channels C  constant, to obtain the intermediate feature 

mid midH W N 
. Subsequently, the convolution with N  

1 1 C  s in Figure 2 (c) is used to linearly combine the 

intermediate features, resulting in the final N  channel 

outputs. The DSConv calculation cost DSConvC
 can be 

represented by equation (5). 

DSConv in inC H W C K K C N K K=     +     (5) 

Comparing equations (5) and (4), the computational 

complexity decreases by about 8 to 9 times, while the 

accuracy remains almost unchanged [16]. Thus, the 

standard convolution in the DeepLabv3+ model can be 

replaced with DSConv to achieve lightweighting. The SE 

AM has been introduced into the encoder of the 

DeepLabv3+ model to strengthen its ability to extract 

human detail features [17]. Thus, a terahertz human 

security inspection image processing model based on 

improved Deep Labv3+ is constructed. The model is 

shown in Figure 3. 
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Figure 3: Terahertz human body security inspection image processing model based on improved Deep Labv3+
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From Figure 3, the operation steps of the model can be 

seen. Firstly, civil aviation security personnel use 

terahertz security systems to sample individuals carrying 

different hazardous materials under different 

environmental and weather conditions. After sampling, 

the video is converted into an image and saves in JPG 

format with a resolution of 304 * 140 [18]. Secondly, the 

image is preprocessed. During preprocessing, median 

filtering is used to denoise the image. Logarithmic 

transformation method is used to enhance the image. 

Next, the processed images are input into the improved 

Deep Labv3+ model. Subsequently, the preprocessed 

image enters the encoder of the Deep Labv3+ model. The 

encoder uses DCNN to preliminarily extract image 

features. After extraction, multi-scale features are 

extracted using 3 × 3 DSConv layers with expansion 

rates of 4, 8, 12, and 16, respectively. Simultaneously, a 

pooling layer is utilized to capture global contextual 

information. Then, the SE AM is used to reinforce 

important features. Finally, the decoder of the original 

Deep Labv3+ model is used to convert the output 

features of the encoder into images and output the results. 

 

2.2 Construction of hazardous material 

detection method based on improved Deep 

Labv3+ and improved YOLOv5s 
 

After building the improved Deep Labv3+ model, to 

further ENHANCE the performance of DGs detection in 

civil aviation human security inspection images, the 

YOLOv5s network model is introduced to complement 

it. The YOLOv5s is a lightweight object detection model 

offering fast detection speeds and high accuracy. It is 

employed in various fields, including video surveillance 

and autonomous driving [19]. However, when facing civil 

aviation security check scenarios, the DGs carried by the 

human body are relatively small, and YOLOv5s network 

has the ISSUE of low detection accuracy. Therefore, we 

utilize coordinate attention (CA) and Lightweight 

bidirectional feature pyramid network (BiFPN) to 

strengthen it. The CA is an efficient feature extraction 

method that has the advantages of enhancing feature 

extraction capabilities and reducing computational 

complexity, and is widely used to improve network 

performance. Compared to other AMs, the CA not only 

focuses on channel information, but also sensitively 

captures orientation and position sensitive information. 

BiFPN is an improved feature pyramid network structure 

that has advantages such as bidirectional information 

transmission and structural optimization, and is widely 

used to enhance the detection accuracy of object 

detection models for objects of different sizes. The CA 

and lightweight BiFPN structure are denoted in Figure 4. 
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Figure 4: CA and lightweight BiFPN structure 

 

In Figure 4, O  and U  denote the width and height of the 

FM. From Figure 4 (a), the operation steps of the CA are 

to first input the FM into a residual connection to 

alleviate the gradient vanishing problem. Secondly, 

feature representations are obtained in both horizontal 

and vertical directions by averaging and pooling the FMs 

globally. The output of global average pooling can be 

represented by equation (6). 

0

0

1
( ) ( , )

1
( ) ( , )

h

c c

i W

w

c c

i H

z h x h i
W

z w x j w
H

 

 


=



 =





                 (6) 

In equation (6), i  and 
j

 denote coordinate indices, 

( , )cx j u
 and 

( , )cx o i
 denote the feature matrices, and 

( )o

c o
 and 

( )u

c u
 denote the eigenvalues. Next, the 
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output of the Conv is normalized. Then, two 

convolutions and the Sigmiod activation function are 

used to generate attention weights in two directions. 

Finally, the attention weights generated are applied to the 

original FM input, producing the final FM output. The 

output of CA can be represented by equation (7). 

( , ) ( , ) ( ) ( )o u

c c c ci j x i j f i f j =          (7) 

In equation (7), 
( , )cx i j

 indicates the original input 

feature matrix, 
( )o

cf i
 denotes the horizontal-direction 

output, 
( )u

cf j
 signifies the vertical-direction output, and 

( , )c i j
 is the final feature matrix generated by the CA. 

In Figure 4 (b), 3Q
, 4Q

, and 5Q
 are FMs from different 

levels input to BiFPN, 1  to 9  are weight coefficients, 

3

INQ
, 4

INQ
, and 5

INQ
 are the original FMs input, 4

TDQ
 is 

the upsampled FM, and 3

OutQ
, 4

OutQ
, and 5

OutQ
 are the 

FMs processed by BiFPN. As shown in Figure 4 (b), the 

lightweight BiFPN only has three feature input layers. 

Compared to the original BiFPN, it lacks two feature 

input layers, which can improve computational efficiency 

without affecting feature fusion performance. 4

TDQ
 can 

be represented by equation (8). 

1 4 2 5

4

1 2

e ( )
( )

IN IN

TD Q R size Q
Q Conv

 

  

 + 
=

+ +
     (8) 

In equation (8),   is a very small constant, and eR size  

is the operation of adjusting the size of the FM. So, 3

OutQ
, 

4

OutQ
, and 5

OutQ
 can be represented by equation (9). 
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 (9) 

 

Although the detection accuracy of YOLOv5 has been 

enhanced with CA and lightweight BiFPN, the 

commonly used Generalized Intersection over Union 

(GIoU) loss function (LF) still has limitations. It cannot 

determine the relative position when the predicted box 

completely encloses the real box. In view of this, we 

apply the α-Complete Intersection over Union (Alpha-

OU) LF and the Complete Intersection over Union 

(CIoU) entropy LF to improve it. Among them, the loss 

value CIoUL
 of the CIoU LF can be represented by 

equation (10). 

2

( , )
1CIoU

a b
L IoU v

d


= − + +           (10) 

In equation (10), a  denotes the center coordinates of the 

model-annotated bounding box, 


 is a hyperparameter, 

b  means the center coordinates of the model-predicted 

bounding box, CIoUL
 is the loss value, 

( ) 
 is the 

Euclidean distance, d  is the minimum diagonal length of 

the mini bounding box, v  is the additional penalty for 

aspect ratio difference, and IoU  is the intersection-over-

union ratio. By introducing the   parameter, Alpha-OU 

further improved CIoU, enabling it to better balance 

confidence and positional accuracy. By combining 

Alpha-IoU and CIoU, a new LF CIoU −  can be 

obtained. The loss value Loss  can be expressed by 

equation (11). 
2

2

( , )
1 ( )

a b
Loss IoU v

d


 




= − + +        (11) 

Thus, the improved YOLOv5s network model has been 

constructed, and its structure is shown in Figure 5. 
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Figure 5: Improved YOLOv5s network model structure 
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From Figure 5, the enhanced YOLOv5s first utilizes the 

backbone network to extract input image features. The 

backbone network includes the Focus module, Darknet 

Squeeze-and-Excitation Block with Depthwise 

Convolution (DSBL) module, Cross Stage Partial 

(CPS), and CA mechanism. The role of DSBL, CPS, 

and CA mechanisms is to improve the network’s feature 

extraction capability. The Spatial Pyramid Pooling 

(SPP) module is used for multi-scale feature extraction. 

Secondly, the neck network is employed to further 

perform multi-scale fusion of features. The neck 

network includes multiple lightweight BiFPN 

(TBiFPN), upsampling (Up), DSBL, and CSP modules. 

Finally, the network predicts through different Convs 

and outputs FMs with sizes of 80x80x225, 40x40x225, 

and 20x20x225, respectively.  

Finally, we combine improved Deep Labv3+ and 

improved YOLOv5s to construct a method for detecting 

DGs at civil airports. The detection method first 

generates terahertz human body images through the 

terahertz security system during civil aviation security 

checks. Secondly, the median filtering method is 

employed to denoise the obtained image. Moreover, the 

logarithmic transformation method is employed to 

enhance the image. Then, using an improved Deep 

Labv3+ model for human segmentation, the human 

body is separated from the background for easier 

detection of clothing. Finally, the improved YOLOv5 is 

used to detect DGs in the segmented images and output 

the detection results. To overcome the problem of 

insufficient number of self-collected terahertz images, 

we conduct offline re-augmentation of the samples. First, 

rotate randomly at ±15° and simultaneously apply a 

horizontal flip with a 50% probability. Then, we utilize 

superimpose Gaussian noise (σ=0.01) to simulate the 

random disturbance of the equipment. Subsequently, 

within the Saturation and Valu Spaces, the luminance 

variation is ±30%, combined with Gamma correction 

in the [0.8,1.2] interval. Finally, contrast-constrained 

adaptive histogram equalization is adopted for local 

contrast enhancement. 8 new samples are generated for 

each original image. Experiments are conducted on an 

Ubuntu 18.04 workstation equipped with an Intel Xeon 

E5-2680 v3 CPU at 3.30 GHz and two RTX 3090 GPUs, 

accelerated by PyTorch 1.13 and CUDA 11.7. Input 

images are resized to 640 × 640 pixels using bilinear 

interpolation while preserving the aspect ratio and 

padded with a gray value of 114 on the edges. For the 

improved YOLOv5s, stochastic gradient descent is 

applied with a batch size of 16, an initial learning rate of 

0.007 that is cosine-annealed to 0.0007, a 3-epoch 

warm-up, momentum of 0.937 and weight decay of 

0.0001. The loss function combined CIOU, 

classification, and objectness terms with equal weights 

and the backbone is initialized with ImageNet pretrained 

weights. Training ran for 300 epochs with early stopping 

patience of 30 epochs. For the improved DeepLabv3+, 

SGD is also used with a batch size of 16, an initial 

learning rate of 7 × 10-4 decayed by a poly factor of 0.9, 

a 5-epoch warm-up, momentum of 0.9 and weight decay 

of 1×10-4. The loss consists of Dice and Focal terms 

with Focal alpha of 0.75 and Focal gamma of 2, and the 

backbone is initialized from ImageNet pretrained 

weights for 300 epochs. Both networks employ gradient 

clipping with max_norm = 10 and mixed-precision 

training. The best model is selected according to the 

highest  validation mAP@0.5. The pseudo-code of the 

detection method is shown in Table 2. 

 

Table 2: Pseudo-code of the detection method 

DGs detection method based on improved Deep Labv3+ and improved 

YOLOv5s 

# Import the necessary libraries 

import torch 

import torchvision 

# Define the DeepLabv3+ model with DSConv 

def create_deeplabv3_plus_with_dsconv(): 

    model = 

torchvision.models.segmentation.deeplabv3plus_resnet50(pretrained=False) 

    # Here, the replacement logic of DSConv is added 

    # For example: Replace some Conv with DSConv 

    return model 

# Define the YOLOv5s model 

def create_yolov5s(): 

    model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) 

    return model 

# Data loading and preprocessing 

def load_and_preprocess_terahertz_images(image_paths): 

    images = [] 
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    for path in image_paths: 

        image = torchvision.io.read_image(path) 

        # Carry out necessary preprocessing, such as normalization, etc 

        image = image / 255.0 

        images.append(image) 

    images = torch.stack(images) 

    return images 

# Detect hidden aviation threats 

def detect_concealed_aviation_threats(images, deeplabv3_plus, yolov5s): 

    # Generate human masks using DeepLabv3+ 

    deeplab_output = deeplabv3_plus(images)['out'] 

    human_mask = (deeplab_output > 0.5).float() 

    # Use YOLOv5s for object detection 

    yolov5_output = yolov5s(images * human_mask) 

    # Process the test results 

    threats = [] 

    for result in yolov5_output.pred: 

        # Filter out threat targets 

        threat_boxes = result[result[:, 4] > 0.5]  # The confidence threshold is 

0.5 

        threats.append(threat_boxes) 

    return threats, human_mask 

# Main function 

def main(): 

    # Create a model 

    deeplabv3_plus = create_deeplabv3_plus_with_dsconv() 

    yolov5s = create_yolov5s() 

    # Load terahertz images 

    image_paths = ['path/to/image1.jpg', 'path/to/image2.jpg'] 

    images = load_and_preprocess_terahertz_images(image_paths) 

    # Detect hidden aviation threats 

    threats, human_mask = detect_concealed_aviation_threats(images, 

deeplabv3_plus, yolov5s) 

    return threats, human_mask 

# Run the main function 

threats, human_mask = main() 

 

3 Results and analysis 

3.1 Performance analysis of dangerous 

goods detection methods 
To test the efficacy of the developed detection method, a 

performance comparison experiment was conducted 

against other methods. The comparative methods 

included the HMDM based on Faster R-CNN, the 

HMDM based on EA-YOLOv8, and the HMDM based 

on SSD. Network parameter settings of improved 

YOLOv5: batch size and weight decay rate were 16 and 

0.0001, respectively. The optimizer utilized stochastic 

gradient descent method. The training epochs were 300 

times. The initial learning rate was 0.007. The training 

iterations and initial learning rate of the improved Deep 

Labv3+ model were 300 and 7×10-4, respectively. The 

weight decay rate and batch size were 1×10-4 and 16, 

respectively. The momentum was 0.9, and the optimizer 

was stochastic gradient descent. The human body image 

dataset was subjected to terahertz security checks by 15 

participants carrying DGs. Data preprocessing first used 

median filtering to remove noise. Secondly, logarithmic 

transformation was used for enhancement processing. 

Finally, the Labelme labeling software was used to label 

the human body contour and generate a "human body" 

label. After completing the annotation, the original image 

and corresponding label images were stored in the 

database. There were a total of 4892 images, with 70% 

being the training set, 20% being the testing set, and 10% 

being the validation set. The hazardous materials dataset 

was sourced from HiXray and PIDray, with a total of 

13462 images. 80% of the dataset was the training set 

and 20% was the testing set. There are 45,403 original 

images in the HiXray dataset and 12,600 original images 

in the PIDray dataset. Both databases contain dangerous 

items such as firearms, knives, liquid bottles, lighters, 

and scissors. HiXray provides COCO JSON annotation, 

and PIDray provides YOLO txt annotation. To align with 

the concealed carrying scenarios, only the above five 

types of targets are retained, uniformly converted to the 

COCO JSON format, and the images are scaled to 640×
640 pixels and converted to single-channel grayscale. 

After category filtering, a total of 13,462 images were 

obtained, including 10,362 HiXray and 3,100 PIDray. 
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The preprocessing flow first performs CLAHE local 

contrast enhancement, and then applies rotation, flipping, 

noise addition and luminance-gamma combined 

augmentation, expanding each image by 8 times. The 

experimental comparison indicators were precision, 

recall, and F1 score, etc. The experimental environment 

is denoted in Table 3. 

 

Table 3: Experimental environment 

Parameter names Parameter 

CPU 
Intel®Xeon® Processor 

E5-2680 v3 

Constant frequency 3.30 GHz 

Random access memory 16GB 

Hard disk drive 500GB 

Operating system Ubuntu 18.04 

Matrix laboratory version 2021a 

Programming language Python3.7 

Development framework PyTorch1.7 

Data analysis software Spss24.0 

 

The tests of FPS and CPU usage were conducted on a 

system equipped with an Intel Xeon E5-2680 v3 

processor. The test environment was the Ubuntu 18.04 

operating system, equipped with 16GB random access 

memory (RAM), and was executed under the condition 

of ensuring that no other high-load processes were 

running. To ensure the repeatability of the test results, we 

conducted 100 inference iterations on the model, 

processing a 640×640 pixel image in each iteration. All 

tests were conducted under the same system Settings to 

ensure the consistency of the results. Figure 6 illustrates 

the experimental results of the study, which are based on 

a comparative analysis of the precision and recall of 

various detection methods in the aforementioned 

environment. 

From Figure 6 (a), the proposed detection method had a 

precision of 97.83%, which was much higher than Faster 

R-CNN's 95.34%, EA-YOLOv8's 91.49%, and SSD's 

87.12%. According to Figure 6 (b), the recall rates of the 

proposed detection method, Faster R-CNN, EA-

YOLOv8, and SSD were 97.17%, 90.03%, 89.76%, 

88.75%, and 87.88%, respectively. The research method 

had the highest recall rate. The above findings suggest 

that, compared to other detection methods, the research 

method offers superior precision and recall. The 

comparison results of F1 score loss values and the 

training loss graph of the proposed detection method for 

various detection methods are shown in Figure 7. 
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Figure 6: Comparison results of recall rate and precision rate 
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Figure 7: Comparison results of F1 score, loss values, and the training loss graph of the proposed detection method 

 

According to Figure 7 (a), the F1 score of the proposed 

detection method was 98.89%, the F1 score of Faster R-

CNN was 92.57%, the F1 score of EA-YOLOv8 was 

90.12%, and the F1 score of SSD was 88.11%. The 

research method had the highest F1 score. From Figure 7 

(b), the loss values of the proposed detection method, 

Faster R-CNN, EA-YOLOv8, and SSD were 0.18, 0.22, 

0.32, and 0.38, respectively. The research proposed 

detection method had the lowest loss value. The above 

findings denote that the research method is more 

effective than the comparative methods in terms of both 

the F1 score and the loss value. Furthermore, as shown in 

Figure 7 (c), the validation loss continued to decline and 

stabilize without any rebound, indicating that the model 

has not experienced significant overfitting. Figure 8 

showcases the comparison results of the mean precision 

(mAP@0.5) and frames per second (FPS) for each 

method when the IoU threshold was set to 0.5. 
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Figure 8: mAP@0.5 and FPS comparison results 

 

In Figure 8(a), the proposed detection method achieved 

the highest mAP@0.5 of 97.66%, surpassing Faster R-

CNN (88.79%), EA-YOLOv8 (90.08%), and SSD 

(84.26%). In Figure 8(b), the research method achieved 

the highest average FPS at 59.68 fps. In comparison, 

FasterR-CNN achieved 47.32 fps, EA-YOLOv8 achieved 

42.14 fps, and SSD achieved 27.23 fps. These findings 

reveal that the research method outperforms the 

comparison methods in terms of both mAP@0.5 score 

and FPS. To verify the reliability of the experiment, 
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statistical analysis was conducted on various 
experiments involving hazardous materials. The results 

of the statistical test are shown in Table 4. 

 

Table 4: Statistical test results 

DGs Indicator Research Faster R-

CNN 

EA-YOLOv8 SSD p value 

Cutting tools Precision 97.83% 95.34% 91.49% 87.12% p<0.001 

Pistols Recall 97.17% 90.03% 89.76% 88.75% p<0.001 

Lighters F1 score 98.89% 92.57% 90.12% 88.11% p<0.001 

Cutting tools Loss values 0.18 0.22 0.32 0.38 p<0.001 

Pistols mAP@0.5 97.66% 88.79% 90.08% 84.26% p<0.001 

Lighters FPS 59.68 fps 47.32 fps 42.14 fps 27.23 fps p<0.001 

 

From Table 4, the p-values of the comparative 

experiments with Precision, Recall, F1 score, Loss 

values, mAP@0.5, and FPS were all less than 0.001, 

indicating that the experimental results are reliable. To 

verify the performance contribution of the α-CIoU loss 

function, the SE module and the CA module to the 

detection method, ablation experiments were conducted 

on them. The experimental results are shown in Table 5. 

 

Table 5: Results of the ablation experiment 

Project Precision Loss value 

α-CIoU 97.83% 0.18 

GIoU 90.14% 0.21 

CIoU 89.86% 0.26 

Remove the SE module 89.96% 0.24 

Remove the SE module 

and the CA module 

84.14% 0.27 

 

As shown in Table 5, the Precision rate of using the α-

CIoU loss function was significantly higher than that of 

GIoU and CIoU, and the loss value was lower than that 

of using GIoU and CIoU. After removing the SE module 

and the CA module, the Precision rate of model checking 

decreased significantly, and the loss value gradually 

increased. This result indicates that the introduction of 

the α-CIoU loss function, SE module and CA module 

significantly improves the performance of the model. 

 

3.2 Detection performance analysis 
After testing the effect of the raised detection method, we 

conducted an analysis of its application effectiveness 

compared to other methods. We conducted separate 

inspections on civil aviation security personnel carrying 

knives, pistols, and lighters. The test results are shown in 

Figure 9. 

From Figure 9 (a), the detection accuracy of the research 

method for cutting tools, pistols, and lighters was 97.8%, 

96.6%, and 97.4%, respectively. From Figures 9 (b), 9 

(c), and 9 (c), Faster R-CNN, EA-YOLOv8, and SSD 

had the highest detection accuracies of 86.2%, 88.4%, 

and 89.7% for the three DGs, respectively, which were 

lower than the lowest detection accuracy of 96.6% 

proposed by the research method. The above findings 

indicate that the proposed detection method can 

accurately detect DGs carried by the human body and has 

practical value. The results of CPU occupancy, memory 

size, detection time, Average Precision (AP), Mean 

Square Error (MSE), and Root Mean Square Error 

(RMSE) for each method are shown in Table 6. 

From Table 6, the AP of the developed detection method 

was 97.62%, significantly lower than the 89.21% of 

Faster R-CNN, 90.62% of EA-YOLOv8, and 82.87% of 

SSD. In addition, the detection methods proposed in the 

study showed MSE value, RMSE value, memory usage 

size, CPU usage rate, and detection time of 1.257, 1.121, 

13.2 MB, 42.71%, and 17.89 ms, respectively. The above 

results indicate that compared with the comparative 

methods, the detection method proposed in the study 

exhibits better performance in AP value, MSE value, 

RMSE value, memory usage size, CPU usage rate, and 

detection time. To verify the reliability of the detection 

effect, we conducted a statistical analysis of the 

experiment, and the analysis results are shown in Table 7. 

From Table 7, the p-values of the detection effect 

experiments were all less than 0.001. This result indicates 

that the conducted experiments have a significant 

difference at the statistical 0.1% level, and the 

experimental results are reliable. To verify the 

performance of the proposed model under different 

conditions, experiments were conducted on it in various 

environments. The experimental results are shown in 

Table 8. 

From Table 8, the detection methods proposed in the 

study were applied in Indoor airport security check, 

Outdoor airport security check, and High-humidity 

airport security. The missed detection rates of check in 

the three different environments were 1.51%, 1.78%, and 

1.98% respectively. The false detection rates were 2.29%, 

2.06% and 2.21% respectively. All were lower than the 

comparison methods. The above results indicate that the 

detection method proposed in the research has superior 

detection performance in different environments and 

possesses good universality and practical value. 
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Figure 9: Detection effect of hazardous materials 

 

Table 6: Comparison results of each method 

Indicator Research Faster R-CNN EA-YOLOv8 SSD 

AP 97.62% 89.21% 90.62% 82.87% 

MSE 1.257 2.796 2.893 4.671 

RMSE 1.121 1.672 1.701 2.161 

Memory usage size 13.2 MB 147.3 MB 168.9 MB 203.2 MB 

CPU 42.71% 57.38% 61.22% 56.37% 

Detection time 17.89 ms 48.92 ms 59.94% 46.27% 

 

Table 7: Statistical analysis results of the detection experiment 

Category Indicator Research Faster R-CNN EA-YOLOv8 SSD p value 

All types of hazards AP 97.62% 89.21% 90.62% 82.87% p<0.001 

All types of hazards MSE 1.257 2.796 2.893 4.671 p<0.001 

All types of hazards RMSE 1.121 1.672 1.701 2.161 p<0.001 

All types of hazards Memory usage size 13.2 MB 147.3 MB 168.9 MB 203.2 MB p<0.001 

All types of hazards CPU 42.71% 57.38% 61.22% 56.37% p<0.001 

All types of hazards Detection time 17.89 ms 48.92 ms 59.94% 46.27% p<0.001 

Cutting tools Accuracy 97.8% 86.2% 83.2% 85.3% p<0.001 

Pistols Accuracy 96.6% 83.6% 87.8% 89.7% p<0.001 

Lighters Accuracy 97.4% 84.8% 88.4% 84.6% p<0.001 

 

Table 8: Test results under different conditions 

Environmental conditions Model name 
Missed detection 

rate 

False detection 

rate 
p value 

Indoor airport security check 

Research 1.51% 2.29% p<0.001 

Faster R-

CNN 
2.02% 3.04% p<0.001 

EA-YOLOv8 1.83% 2.58% p<0.001 
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Environmental conditions Model name 
Missed detection 

rate 

False detection 

rate 
p value 

SSD 2.21% 2.87% p<0.001 

Outdoor airport security check 

Research 1.78% 2.06% p<0.001 

Faster R-

CNN 
2.55% 3.57% p<0.001 

EA-YOLOv8 2.04% 2.32% p<0.001 

SSD 2.37% 2.73% p<0.001 

High-humidity airport security 

check 

Research 1.98% 2.21% p<0.001 

Faster R-

CNN 
3.06% 3.82% p<0.001 

EA-YOLOv8 2.24% 2.63% p<0.001 

SSD 2.53% 2.95% p<0.001 

 

4 Discussion 
This study conducted comparative experimental analysis 

on the performance of DGs detection methods for civil 

airports based on improved Deep Labv3+ and improved 

YOLOv5s, and conducted application effect analysis 

experiments on this detection method. The findings 

denoted that the precision of this detection method, 

Faster R-CNN, EA-YOLOv8, and SSD were 97.83%, 

95.34%, 91.49%, and 87.12%, respectively. The 

proposed detection method had the highest precision. 

This result indicates that the introduction of DSConv and 

SE improves the detection accuracy of the detection 

method. This result coincides with the relevant research 

findings of the Kuo T C team [20]. In the recall 

comparison experiment, the recall rates of the proposed 

detection method, Faster R-CNN, EA-YOLOv8, and 

SSD were 97.17%, 90.03%, 89.76%, 88.75%, and 

87.88%, respectively. The proposed detection method 

had the highest recall rate. This result indicates that the 

introduction of CA improves the accuracy of the 

detection method. The results obtained by Peng H et al. 

in related studies are similar [21]. In the loss value 

comparison experiment, the loss values of the proposed 

detection method, Faster R-CNN, EA-YOLOv8, and 

SSD were 0.18, 0.22, 0.32, and 0.38, respectively. The 

proposed research method had the lowest loss value. This 

indicates that combining a lightweight BiFPN with an 

improved DeepLabv3+ model enhances the detection 

performance. This result is consistent with the relevant 

research findings of Kim W's team [22]. In addition, the 

proposed detection method had a recall rate of 97.17% 

and an F1 score of 92.57%, mAP@0.5 value was 

97.66%, and the average FPS was 27.23 f/s, both of 

which were better than the comparison methods. This 

further demonstrates the superior performance of the 

raised detection method. In the comparative analysis 

experiment of application effects, the detection accuracy 

of the developed detection method for cutting tools, 

pistols, and lighters were 97.8%, 96.6%, and 97.4%, 

respectively, all of which were superior to the 

comparative methods. Moreover, the AP value, MSE 

value, RMSE value, memory usage size, CPU usage rate, 

and detection time were 97.62%, 1.257%, 1.121%, 13.2 

MB, 42.71%, and 17.89 ms, respectively, all of which 

were better than the comparative detection method. This 

result indicates that the proposed detection method has 

good practical value. This finding is similar to the 

research finding of Gallo G et al. in 2022 [23]. The above 

research results indicate that the proposed method for 

detecting DGs in civil aviation is effective and has 

practical application value. The limitation of this study is 

that it only conducted the detection of hidden DGs in 

civil aviation human bodies, without considering the 

luggage security check process. The future research 

direction is to combine terahertz images of the human 

body with corresponding X-ray images of luggage, and 

use graph neural networks to achieve cross modal feature 

fusion detection, thereby improving the success rate of 

collaborative detection of DGs in the human body and 

luggage. For the practical application of airport security 

inspection, the proposed method can make use of the 

existing terahertz security inspection equipment and 

other detection devices at the airport in terms of 

hardware integration, and connect high-performance 

computing devices (GPU servers or edge computing 

devices) externally to accelerate the model operation, 

meeting the low latency requirements of real-time 

security inspection. In terms of software integration, API 

interfaces are developed to achieve seamless 

communication between the detection results and the 

existing security inspection system. At the same time, the 

results are converted into compatible formats (such as 

XML, JSON) through a data conversion module to 

ensure that the data can be accepted and processed by the 

existing system. To meet the real-time requirements, 

operations such as compressing the model and 

optimizing the algorithm are carried out to reduce the 

detection time. Lightweight model architectures (such as 

Tiny-YOLO) are utilized to enhance the detection speed. 

In terms of hardware, dedicated AI chips (FPGA, ASIC) 

are adopted to accelerate computing. Code optimization 

and parallel processing further improve efficiency. 

Considering compatibility, middleware is developed to 

ensure seamless integration of the new system with the 

existing communication network. Standard network 

protocols (such as TCP/IP) are used to guarantee the 

security and reliability of data transmission. Integration 

with the passenger information management system is 

explored to quickly obtain detection results and respond. 
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Facing hardware limitations and system compatibility 

constraints, model quantization and pruning are adopted 

to reduce the computational load. A lightweight 

architecture is selected to adapt to the existing hardware. 

Virtualization or containerization technology (Docker) is 

utilized to ensure the compatibility of the new system 

and achieve seamless integration. The integration with 

the passenger information management system is 

explored to respond quickly to the detection results. 

 

5 Summary 
To solve the problem of low accuracy in current 

HMDMs, an improved Deep Labv3+ model 

incorporating DSConv and SE AMs was introduced. At 

the same time, it was combined with an improved 

YOLOv5s network model to establish a method for 

detecting DGs in civil aviation. A performance 

comparison analysis was performed to assess the 

research method against other methods. The findings 

revealed that the proposed method outperformed the 

others in terms of precision, recall and F1 score. 

Subsequently, the proposed detection method was 

analyzed for its application effectiveness, and it was 

found that the method exhibited high accuracy in 

detecting three types of DGs. In addition, the proposed 

detection method has demonstrated superior performance 

in terms of MSE, RMSE, AP value, CPU usage, and 

detection time. The above findings reveal that the 

developed detection method has effectiveness and 

practical value. This research has achieved certain results 

in the detection of DGs in terahertz images, but there are 

also limitations. The generalization ability of the model 

has not been fully verified in other imaging modes or 

diverse environments, which limits the evaluation of its 

wide applicability. The limited size of the dataset may 

lead to overfitting of the model, affecting its predictive 

performance on new data. In addition, the research 

mainly focuses on detection in non-occluded scenarios, 

and the detection capability under occluded conditions 

such as human clothing has not been fully evaluated. At 

present, the model only covers three specific types of 

DGs. For a wider range of prohibited items, its detection 

efficiency needs further investigation. Future work will 

involve validating models in more complex 

environmental Settings and exploring the integration of 

multiple imaging techniques to enhance the robustness 

and adaptability of the models. Meanwhile, expanding 

and diversifying datasets is also an important direction 

for enhancing the generalization ability of models and 

reducing the risk of overfitting. 
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